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Abstract: Individual differences often appear in electroencephalography (EEG) data collected from
different subjects due to its weak, nonstationary and low signal-to-noise ratio properties. This causes
many machine learning methods to have poor generalization performance because the independent
identically distributed assumption is no longer valid in cross-subject EEG data. To this end, transfer
learning has been introduced to alleviate the data distribution difference between subjects. However,
most of the existing methods have focused only on domain adaptation and failed to achieve effective
collaboration with label estimation. In this paper, an EEG feature transfer method combined with
semi-supervised regression and bipartite graph label propagation (TSRBG) is proposed to realize
the unified joint optimization of EEG feature distribution alignment and semi-supervised joint label
estimation. Through the cross-subject emotion recognition experiments on the SEED-IV data set, the
results show that (1) TSRBG has significantly better recognition performance in comparison with the
state-of-the-art models; (2) the EEG feature distribution differences between subjects are significantly
minimized in the learned shared subspace, indicating the effectiveness of domain adaptation; (3) the
key EEG frequency bands and channels for cross-subject EEG emotion recognition are achieved by
investigating the learned subspace, which provides more insights into the study of EEG emotion
activation patterns.

Keywords: electroencephalogram (EEG); emotion recognition; cross-subject; transfer learning; joint
label estimation

1. Introduction

In 1964, Micheal Beldoch first introduced the idea of Emotional Intelligence (EI) in [1]
which examined three modes of communication (i.e., vocal, musical, and graphic) to identify
nonverbal emotional expressions. In 1990, Salovey and Mayer formally put forward the
concept of EI and considered emotional intelligence as an important component of artificial
intelligence in addition to logical intelligence [2]. The key of EI is that machines can
recognize the emotional state of humans automatically and accurately. Endowing machines
with EI is indispensable to natural human–machine interaction, which makes machines
more humanized in communication [3,4]. In addition, endowing machines with EI has great
impacts in many fields such as artificial intelligence emotional nursing, human health, and
patient monitoring [5]. Emotion is a state that integrates people’s feelings, thoughts, and
behaviors. It includes not only people’s psychological response to the external environment
or self-stimulation, but also the physiological response accompanying this psychological
response [6]. Compared with the widely used data modalities such as image, video, speech,
and text [7–9], EEG has its unique advantages such as high time resolution. In addition,
EEG is difficult to camouflage in emotion recognition since it is directly generated from
the neural activities of the central nervous system [10]. Therefore, EEG is widely used in
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the field of objective emotion recognition [11] and some other brain–computer interface
paradigms [12].

Nowadays, with the continuous development of computer technology, bioscience,
neuroscience, and other disciplines, EEG-based emotion recognition has more and more
potential applications in diverse fields such as healthcare, education, entertainment, and
neuromarketing [13–15]. Meanwhile, researchers have been paying continuous attention to
it and many machine learning or deep learning models for EEG-based emotion recognition
have been proposed. Murugappan et al. mixed the EEG samples of subjects’ composed of
four states, i.e., happiness, fear, disgust, and surprise, and divided them by fuzzy c-means
clustering method. After that, the samples with similar characteristics were identified by
looking for the inherent characteristics of the category itself [16]. Thejaswini et al. extracted
EEG time-frequency features and then performed emotion recognition by a channel fusion
method together with a channel-wise supervised SVM classifier [17]. The experimental
results of [18] verified the possibility of exploring robust EEG features in cross-subject
emotional recognition. Ali et al. proposed to decompose EEG signals via multivariate
empirical mode decomposition (MEMD), and then employed deep learning methods to
classify different emotional states [19]. Although deep learning models generally obtained
better performance, their results were usually difficult to interpret due to the black-box
training mode [20,21], which were widely used in subject-independent EEG emotion recog-
nition. In [22], deep networks were used to simultaneously minimize the recognition error
on source data and force the latent representation similarity (LRS) of source and target data
to be similar. To reduce the risk of negative transfer, a transferrable attention neural net-
work was proposed to learn the emotional discriminative information by highlighting the
transferrable brain regions data and samples by local and global attention mechanism [23].
According to the emotional brain’s asymmetries between left and right hemispheres, EEG
data of both hemispheres are separately mapped into discriminative feature spaces [24,25].
Zheng et al. firstly introduced the deep belief network into EEG-based emotion recognition
to classify the three states, i.e., positive, neutral, and negative. Although they studied
the key frequency bands and channels of EEG emotion recognition [26], its underlying
mechanism was still not intuitive enough. In subsequent studies, it was found that the
Gamma frequency band is the most important one in emotion recognition [27]. Recent
advances in EEG-based emotion recognition can be found in [5,28–30].

Though EEG could objectively and accurately describe the emotional state of subjects,
EEG is typically weak and nonstationary. Therefore, EEG data collected from different
subjects under the same emotional state might have considerable discrepancies due to the
distinction of individual physiology and psychology [5], leading to the poor performance
of traditional machine learning methods in cross-subject EEG emotion recognition. To solve
this problem, the concept of Transfer Learning is introduced to reduce the differences be-
tween cross-subject EEG data, and to improve the universality of affective brain–computer
interface system [31,32]. Its basic idea is to use the knowledge of auxiliary domain to
facilitate the emotion recognition task of the target domain. The feature transformation-
based transfer learning method is the most widely one among the existing models, which
aims to project the features of the source and target domain data into a subspace where
the between-domain data distribution difference is minimized. Zheng et al. early on
proposed to build personalized EEG-based emotion recognition using transfer learning
and in [33], both knowledge transfer by both feature transformation and model parameters
sharing were tested for cross-subject emotion recognition. Zhou et al. proposed a novel
transfer learning framework with Prototypical Representation-based Pairwise Learning to
characterize EEG data with prototypical representations. The characterized prototypical
representations are evident with a high feature concentration within one single emotion
category and a high feature separability across different emotion categories. They finally
formulated the EEG-based emotion recognition task as pairwise learning [34]. Bahador et
al. proposed to extract spectral features from the collected 10-channel EEG data through a
pre-trained network to quantify the direct influence among channels. The spectral-phase



Systems 2022, 10, 111 3 of 20

information of EEG data was encoded into a bi-dimensional map, which is further used to
perform knowledge transfer by characterizing the propagation patterns from one channel
to the others [35].

Although transfer learning has been widely used in EEG-based emotion recognition to
align the EEG data from different subjects [36], most of the existing researches simply place
the emphasis on domain-invariant feature learning and recognition accuracy. Therefore, it
is necessary to jointly optimize the recognition process in combination with the domain-
invariant feature learning. In [22], neural networks were used to simultaneously minimize
the recognition error on source data and force the latent representations of source and target
data to be similar. Ding et al. constructed an undirected graph to characterize the source
and target sample connections, based on which the transfer feature distribution alignment
process is optimized together with the graph-based semi-supervised label propagation
task [37]. However, this graph was constructed by the original space data and is not
dynamically updated during the model optimization; therefore, it cannot well describe
the sample connections between the two domains. In addition to the recognition accuracy,
most existing studies only visualized the aligned distributions of source and target EEG
data and did not sufficiently investigate the properties of the learned shared subspace in
emotion expression [22,38,39].

In view of the above shortcomings, this paper proposes an EEG transfer emotion
recognition method combining semi-supervised regression with bipartite-graph label prop-
agation. Compared with the existing studies, the present work makes the following
contributions.

• The semi-supervised label propagation method based on sample-feature bipartite
graph and semi-supervised regression method are combined to form a unified frame-
work for joint common subspace optimization and emotion recognition. We first
achieve better data feature distribution alignment through EEG feature transfer, based
on which we then construct a better sample-feature bipartite graph and sample-label
mapping matrix to promote the estimation of EEG emotional state in the target domain;

• The EEG emotional state in the target domain is estimated by a bi-model fusion
strategy. First, a sample-feature bipartite graph is constructed based on the premise
that similar samples have similar feature distributions. This graph is used to char-
acterize the sample-feature connections between the source and the target domain
for label propagation, as shown by the ‘Bi-graph label propagation’ part of Figure
1. Furthermore, a semi-supervised regression is used to learn a mapping matrix to
describe the intra-domain connections between samples and labels, which aims to
estimate the EEG emotional state of the target domain. By fusing both models, the
EEG emotional state of the target domain is estimated from the perspective of similar
feature distributions should be shared by samples from the same emotional state;

• We explore the EEG emotion activation patterns from the learned common subspace
shared by source and target domains, which is based on the rationality that the
subspace should retain the common features of the source and the target domain and
inhibit the non-common features. We measure the importance of each EEG feature
dimension by the normalized `2-norm of each row of the projection matrix. Based
on the coupling correspondence between EEG features and the frequency bands
and channels, the importance of frequency bands and brain regions in EEG emotion
recognition are quantified.

Notations. In this paper, the EEG frequency bands are represented by Delta, Theta, Alpha,
Beta, and Gamma. Greek letters such as α, λ represent the model parameters. Matrices
and vectors are denoted by boldface uppercase and lowercase letters, respectively. The
`2,1-norm of matrix A ∈ Rr×c is defined as ‖A‖2,1 = ∑r

i=1

√
∑c

j=1 a2
ij = ∑r

i=1 ‖ai‖2, where

ai is the i-th row of A.
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Figure 1. The overall framework of TSRBG.

2. Methodology

In this section, we first introduce its model formulation and then its optimization
algorithm.

2.1. Problem Definition

Suppose that the labeled EEG samples from one subject {Xs, Ys} = {(xsi, yi
s)}ns

i=1
define the source domain Ds, and the unlabeled EEG samples from the other subject
{Xt} = {xtj}nt

j=1 form the target domain Dt, where Xs ∈ Rd×ns , Xt ∈ Rd×nt , Ys ∈ Rns×c.

xsi ∈ Rd, xtj ∈ Rd are, respectively, the i-th and j-th samples in the source and target
domains. yi

s|ns
i=1 ∈ R1×c is the label vector of sample i-th source sample which is encoded in

one-hot vector, d is the feature dimension, c is the number of emotional states, ns and nt are
the number of samples in source and target domains, respectively, and n = ns + nt is the
total number of all domains samples. The feature space and label space of both domains are
the same, i.e., Xs = Xt and Ys = Yt; however, their marginal distributions and conditional
distributions are different due to the individual differences of EEG, i.e., Ps(Xs) 6= Pt(Xt)
and Ps(Ys|Xs) 6= Pt(Yt|Xt).

As shown in Figure 1, we propose a joint method for EEG emotion recognition. The
model consists of two parts, domain adaptation, and semi-supervised joint label estimation.
Below, we introduce them in detail.

2.2. Domain Alignment

Suppose that the distribution differences of source and target EEG data can be min-
imized in their subspace representations. We measure the marginal and conditional dis-
tribution differences between the source and target domain subspace data through the
Maximum Mean Discrepancy (MMD) criterion [40]. In detail, we project the source and
target domain data into respective subspaces by two matrices; that is, we define Ps ∈ Rd×p

is the projection matrix of the source domain and Pt ∈ Rd×p is the one of the target domain,
where p (p� d) is the subspace dimensionality. Then, the projected data of two domains
can be represented as PT

s Xs and PT
t Xt, respectively. Marginal distribution alignment can be

achieved by minimizing the distance between the sample means of the two domains, that
is,

Mdist(Ps, Pt) =

∥∥∥∥∥ 1
ns

ns

∑
i=1

PT
s xsi −

1
nt

nt

∑
j=1

PT
t xtj

∥∥∥∥∥
2

2

=

∥∥∥∥PT
s Xs1ns

ns
− PT

t Xt1nt

nt

∥∥∥∥2

2
. (1)
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Similarly, conditional distribution alignment aims to minimize the distance between
the sample means belonging to the same class of the two domains, that is,

Cdist(Ps/t, Ft) =
c

∑
k=1

∥∥∥∥∥∥ 1
nk

s

nk
s

∑
i=1

PT
s xsi −

1
nk

t

nk
t

∑
j=1

f (k,j)
t PT

t xtj

∥∥∥∥∥∥
2

2

=
∥∥∥PT

s XsYsNs − PT
t XtFtNt

∥∥∥2

2
, (2)

where nk
s and nk

t denote the number of samples belonging to the k-th|ck=1 emotional state
in source and target domains, respectively. 1ns ∈ Rns and 1nt ∈ Rnt are all-one column
vectors. f ((k,j))

t > 0 (∑c
k=1 f ((k,j))

t = 1) denote the probability that the j-th target domain
sample belongs to the k-th emotional state category. Ns (Nt is the diagonal matrix whose
k-th diagonal element is 1/nk

s (1/nk
t ). However, the label information of target domain data

is not available. Here, we utilize the probability class adaptive formula [37] to estimate the
target domain label and we denote by Ft ∈ Rnt×c.

For simplicity, we combine Mdist and Cdist with the same weight. Thus, the joint
distribution alignment is formulated as

Dist = Mdist + Cdist. (3)

For clarity, we rewrite (3) in matrix form as

Dist = min
Ps/t ,Ft

∥∥∥PT
s XsYsNs − PT

t XtFtNt

∥∥∥2

F

s.t. PT
s/tXs/tHs/tX

T
s/tPs/t = Ip,

(4)

where Hs/t = Ins/t − 1/ns/t1ns/t 1
T
ns/t

is the centralization matrix, Ins/t ∈ Rns/t×ns/t is the

identify matrix, Ys = [Ins , Ys] ∈ Rns×(c+1), Ft = [Int , Ft] ∈ Rnt×(c+1) is the extended
label matrix, Ns/t = diag(1/ns/t, Ns/t) ∈ R(c+1)×(c+1). Additionally, to avoid too much
divergence between source and target domain in the projecting process, we minimize the
distance between them by

min
Ps ,Pt
‖Ps − Pt‖2,1. (5)

2.3. Label Estimation

We reduce the divergence between the source and the target domain by Equation (4)
and simultaneously expect that better target labels can be calculated. In order to describe the
target domain label estimation process from two aspects, we use a bi-model fusion method
to estimate the target domain label. On one aspect, a semi-supervised label propagation
method is used for emotional state estimation which is based on the sample-feature bipartite
graph. The graph is constructed by characterizing the connections among EEG features
and samples. On the other aspect, a semi-supervised regression method is used to estimate
the EEG emotional state in the target domain. The two models are adaptively balanced to
achieve more accurate target domain label estimation.

2.3.1. Bipartite Label Propagation

The semi-supervised label propagation method based on a sample-feature bipar-
tite graph is used to estimate the label of target domain samples, which has the follow-
ing formula

min
G,Ft

‖S−A‖2
F + λTr(YTLY), (6)

where A = [0n, B; BT , 0p] ∈ R(n+p)×(n+p) is the bipartite graph similar matrix, 0n ∈ Rn×n,
0p ∈ Rp×p are all-zero matrices, and the matrix B ∈ Rn×p is the sample-feature similarity
matrix determined by both source and target data in their subspace representations. Based
on matrix B, we expect to learn a better bipartite graph similarity matrix G ∈ Rn×p,
and then we can form the corresponding matrix S = [0n, G; GT , 0p] ∈ R(n+p)×(n+p) with
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respect to A. λ is a regularization parameter, Y = [Ys; Ft; Fd] ∈ R(n+p)×c is the label matrix
including samples label matrix F = [Ys, Ft] ∈ Rn×c and features label matrix Fd ∈ Rp×c for
the subspace features, matrix L = D− S ∈ R(n+p)×(n+p) is the graph Laplacian matrix, and
D = [D1, 0n×p; 0p×n, D2] ∈ R(n+p)×(n+p) is a diagonal matrix whose diagonal elements are
dii|

n+p
i=1 = ∑

n+p
j=1 sij, 0n×p ∈ Rn×p and 0p×n ∈ Rp×n are all-zero matrices, sij is the element

in row i and column j of matrix S. Tr(·) is the trace of a certain matrix.

2.3.2. Semi-Supervised Regression

For the semi-supervised regression method in target domain label estimation, we have
its formula as

min
W,Ft ,b

∥∥∥XT
newW− F + 1bT

∥∥∥2

F
+ γ‖W‖2

2,1, (7)

where W ∈ Rp×c is the sample-label mapping matrix, γ is a regularization parameter,
Xnew ∈ Rn×p is the subspace data and b ∈ R1×c is the offset variable. ‖·‖2

2,1 represents the
squared `2,1-norm.

2.3.3. Fused Label Estimation Model

Based on the above analysis in Sections 2.3.1 and 2.3.2, we combined the two models
in (6) and (7), and we obtained the fused model objective function for target domain label
estimation as

min
W,b,G,Ft

α(
∥∥∥XT

newW− F + 1bT
∥∥∥2

F
+ γ‖W‖2

2,1) + β(‖S−A‖2
F + λTr(YTLY))

s.t. G ≥ 0, G1p = 1n, Ft ≥ 0, Ft1c = 1nt ,
(8)

where α, β is the regularization parameter, 1p, 1n, 1c, 1nt are the all-one column vector with
dimensions Rp×1,Rn×1,Rc×1,Rnt×1.

2.4. Overall Objective Function

As stated previously, we jointly optimize domain adaptation and semi-supervised joint
label estimation. On the one hand, domain adaptation effectively reduces the differences in
EEG data feature distribution among subjects and provides well-aligned data for joint label
estimation; on the other hand, a better target domain label can promote the alignment of
conditional distributions of source and target domains. Therefore, we combine them in a
unified framework and finally obtain the objective function of TSRBG as

min
∥∥∥PT

s XsYsNs − PT
t XtFtNt

∥∥∥2

F
+ α
∥∥∥XTPW− F + 1bT

∥∥∥2

F

+ γ(‖W‖2
2,1 + ‖Ps − Pt‖2,1) + β‖G− B‖2

F + λTr(YTLsY)

s.t. PT
s/tXs/tHs/tX

T
s/tPs/t = Ip, G ≥ 0, G1 = 1, F ≥ 0, F1 = 1,

(9)

where α, β, γ, λ are the regularization parameters.

2.5. Optimization

There are seven variables in Equation (9), which are the mapping matrix W, the offset
vector b, the source domain projection matrix Ps, the target domain projection matrix Pt,
the sample-feature similar matrix G, the feature label matrix Fd, and the target domain label
matrix Ft. We propose to update one variable by fixing the others. The detailed updating
rule for each variable is derived below.

• Update W. The objective function in terms of variable W is

min
W

α
∥∥∥XTPW− F + 1bT

∥∥∥2

F
+ γ‖W‖2

2,1. (10)
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There are four variables, P, W, b, Ft, in Equation (10). We need to initialize these
variables apart from W. For target domain label matrix Ft, we utilize the probability class
adaptive formula [37] to estimate the target domain label and the initial value of each

element is
1
c

, where c is the number of emotional state categories. For subspace projection

matrix P = [Ps, Pt], we initialize them by Principal Component Analysis (PCA) [41] on the
original EEG data.

Taking the derivative of Equation (10) w.r.t. b and setting it to zero, we have

b =
1
n
(YT1−WTPTX1). (11)

By substituting Equation (11) into (10), we obtain

min
W

∥∥∥HXTPW−HF
∥∥∥2

F
+

γ

α
‖W‖2

2,1, (12)

where H = In −
1
n

1n1T
n ∈ Rn×n is centralization matrix and In ∈ Rn×n is identify matrix,

1n ∈ Rn×n is an all-one matrix.
Constructing Lagrange function about W based on Equation (12), we have

L(W) =
∥∥∥HXTPW−HF

∥∥∥2

F
+

γ

α
Tr(WTQW), (13)

where Q ∈ Rp×p is a diagonal matrix whose i-th diagonal element is

qii =

p
∑

i=1

√
‖wi‖2

2 + ε√
‖wi‖2

2 + ε
, (14)

and ε is a fixed minimal constant value, wi ∈ R1×c is i-th row vector of W, ‖ · ‖2
2 represents

the squared `2-norm.
Taking the derivative of Equation (13) w.r.t. W and setting it to zero, we obtain

W = (PTXHXTP +
2γ

α
Q)−1(PTXHF). (15)

• Update P. The objective function in terms of variable P is

min
∥∥∥PT

s XsYsNs − PT
t XtFtNt

∥∥∥2

F
+ α
∥∥∥XTPW− F + 1bT

∥∥∥2

F
+ γ‖Ps − Pt‖2,1. (16)

First, we need to convert the `2,1-norm into the trace form. Similar to matrix Q, we
define M = [M0,−M0;−M0, M0] ∈ R2d×2d, where M0 ∈ Rd×d is a diagonal matrix with
its i-th diagonal elements

mii =
1

‖(Ps − Pt)i‖2
. (17)

Here (Ps − Pt)i is i-th row vector of (Ps − Pt), ‖ · ‖2
2 represents the squared `2-norm.

By defining

T =

[
XsYsNsNT

s YT
s XT

s −XsYsNsNT
t FT

t XT
t

−XtFtNtN
T
s YT

s XT
s XtFtNtN

T
t FT

t XT
t

]
∈ R2d×2d, (18)

we construct the Lagrangian function in terms of variable P as

L(P) = Tr(PTTP) + αTr(PTXHXTPWWT)− αTr(PTXHFWT) + γTr(PTMP). (19)
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Taking the derivative of Equation (19) w.r.t. P and setting it to zero, we have

(XHXT)−1(T + γM)P + P(αWWT) = (XHXT)−1(XHFWT). (20)

For Equation (20), we can solve it by Sylvester equation [42] and then obtain the source
domain projection matrix Ps and the target domain projection matrix Pt.

• Update G. The corresponding objective function is

min β‖S−A‖2
F + λTr(YTLsY)

s.t. G ≥ 0, G1 = 1.
(21)

We propose to solve G in a row-wise manner. Accordingly, we convert Equation (21)
to

β
n

∑
i=1

p

∑
j=1

(gij − bij)
2 + λ

n

∑
i=1

p

∑
j=1

∥∥∥fi − fj
d

∥∥∥2

2
gij, (22)

where gij, bij are the (i, j)-elements of matrix G, B respectively, fi is i-th row vector of label

matrix F and fj
d is j-th row vector of matrix Fd.

By defining vij =
∥∥∥fi − fj

d

∥∥∥2

2
, and completing the squared form of gi, Equation (21) is

equivalent to

min
gi

∥∥∥∥gi − (bi − λ

2β
vi)

∥∥∥∥2

2

s.t.gi ≥ 0, gi1 = 1,

(23)

which defines an Euclidean distance on a simplex [43].

• Update Fd. The objective function in terms of variable Fd is

min
Fd

λTr(YTLsY), (24)

which can be decomposed into

min
Fd

λTr(FT
d D2Fd − 2FT

d GTF). (25)

Then, the Lagrangian function of Equation (25) is

L(Fd) = λTr(FT
d D2Fd − 2FT

d GTF). (26)

Taking the derivative of Equation (26) w.r.t. Fd and setting it to zero, we have

Fd = (D2)
−1GTF. (27)

• Update Ft. The objective function in terms of variable Ft is

min
∥∥∥PT

s XsYsNs − PT
t XtFtNt

∥∥∥2

F
+ α
∥∥∥XTPW− F + 1bT

∥∥∥2

F
+ λTr(YTLsY)

s.t. F ≥ 0, F1 = 1.
(28)

By some linear algebra transforms, the first term of Equation (28) can be reformu-
lated as

Tr(PT
t XtFtNtNtFT

t XT
t Pt)− 2Tr(PT

s XsYsNsNtFT
t XT

t Pt). (29)

Similarly, the last two terms of Equation (28) can be written as

α(Tr(FT
t HtFt)− 2Tr(FT

t HtXT
t PtW)) + λ(Tr(FT

t DtFt)− 2Tr(FT
t GT

t Fd)), (30)
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where Ht = Int −
1
nt

1nt 1
T
nt .

By constructing the Lagrangian function based on Equations (28)–(30), we have

L(Ft) =Tr(PT
t XtFtNtNtFT

t XT
t Pt)− 2Tr(PT

s XsYsNsNtFT
t XT

t Pt)

+α(Tr(FT
t HtFt)− 2Tr(FT

t HtXT
t PtW)) + λ(Tr(FT

t DtFt)− 2Tr(FT
t GT

t Fd))

+Tr(ΦFt) + η‖1nt − Ft1c‖2
2.

(31)

Taking the derivative of equation (31) w.r.t. Ft and setting it to zero, we have

XT
t PtPT

t XtFtNtNt − XT
t PtPT

s XsYsNsNt + (αHt + λDt)Ft − α(HtXT
t PtW)

−λGT
t Fd + Φ− η(1nt − Ft1c)1T

c = 0.
(32)

To simplify the notations, we define

Zt = XT
t PtPT

t XtFtNtNt + αHtFt = Z+
t − Z−t

Zs = XT
t PtPT

s XsYsNsNt + α(HtXT
t PtW) = Z+

s − Z−s ,
(33)

where Z+
t and Z+

s means all negative elements in matrix Zt and Zs are replaced by zero;
similarly, Z−t and Z−s means all positive elements in matrix Zt and Zs are replaced by zero
and the negative take the absolute value.

Based on the Karush–Kuhn–Tucker (KKT) condition Φ � Ft = 0 (where � is the
Hadamard product), we have

Ft =
Z−t + Z+

s + λGT
t Yd + η1nt×c

Z+
t + Z−s + λDtFt + ηFt1c×c

� Ft. (34)

We summarize the optimization procedure of our proposed model TSRBG in Algorithm 1.

Algorithm 1 The procedure for TSRBG framework

Input: Data and labels of the source domain {Xs, Ys}, data of the target domain Xt; Sub-
space dimension p; Parameters α, λ, γ, and β;

Output: Sample-label mapping matrix W; Source domain projection matrix Ps; Target
domain projection matrix Pt; Sample-feature similar matrix G; Feature label matrix Fd;
Target domain label matrix Ft.

1: Initialize Ps, Pt with PCA; Target domain label Ft = 1
c ∗ 1nt×c; Feature label matrix

Fd = 1
c ∗ 1p×c;

2: while not converge do
3: Compute W by Equation (15) and then update Q;
4: Using Sylvester equation to compute subspace projection matrix P by Equation (20)

and split it to obtain the subspace projection matrix of source and target domain
respectively and then compute M;

5: Update sample-feature similar matrix G by optimizing Equation (23) and then update
S and Laplacian matrix L = D− S;

6: Compute Feature label matrix Fd by Equation (27);
7: Compute Target domain label matrix Ft by Equation (34);
8: end while

2.6. Computational Complexity

We assume that the complexity between individual matrix elements is O(1). The
computational complexity of TSRBG consists of the following parts. We need O(pn2) to
calculate W and O(pc) to update Q. When updating P, the calculation of the Sylvester
equation needs O(d3 p3 + d2 p2), and then O(dp) complexity is used to update M. For
i ∈ [1, · · · , n], the updating of gi costsO(p), so the complexity isO(np) in updating G. For
the label indicator matrix, Fd costs O(p2c + pnc) and Ft costs O(n2

t c + ntc2 + ntc + nt pc)
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complexities. As a result, the computational complexity of TSRBG is O(T(pn2 + d3 p3 +
n2

t c)), where T is the number of iterations.

3. Experiments
3.1. Dataset

SEED-IV [44] is a video-evoked emotional EEG dataset provided by the brain-like
computing and machine intelligence center, Shanghai Jiao Tong University. In SEED-IV, 72
movie clips with obvious emotional tendency were used to evoke four emotional states of
happiness, sadness, fear, and neutrality in 15 subjects and each subject had three sessions.
In each session, each subject was asked to watch 24 movie clips; that is, every six movie clips
correspond to one emotional state. EEG data was recorded by the ESI NeuroScan System
with a 62-channel cap with sampling frequency of 1000 Hz. To reduce the computational
burden, it was then down-sampled to 200 Hz. By band-pass filtering EEG data to 1–50 Hz,
Differential Entropy (DE) feature was extracted from five different EEG frequency bands,
including the Delta (1–3Hz), Theta (4–7 Hz), Alpha (8–13 Hz), Beta (14–30 Hz), and Gamma
(31–50 Hz). The DE feature is defined as

h(X) = −
∫

X
p(x)ln(p(x))dx, (35)

where X is a random variable, p(x) is the corresponding probability density function.
Assuming that the collected EEG signals obey the Gaussian distribution N(µ, σ2), the DE
feature can be calculated by

h(X) =
∫

p(x)
(
−1

2
ln(2πσ2)− (x− µ)2

2σ2

)
=

1
2

ln(2πσ2) +
Var(X)

2σ2 =
1
2

ln(2πσ2). (36)

The data format provided by SEED-IV is 62× n× 5, where n is the number of EEG samples
in each session. To be specific, there are 851, 832 and 822 samples in the three sessions,
respectively. We reshape DE features into 310 × n by concatenating the 62 values of
5 frequency bands into a vector and then normalize them into [−1, 1] by row.

3.2. Experimental Settings

We set up a cross-subject EEG emotion recognition task based on SEED-IV. For each
session, samples as well as their labels from the first subject form the labeled source domain
and samples from each of the other subjects form target domain. Therefore, for each session,
we have 14 cross-subject tasks.

To evaluate the performance of TSRBG, we compare it with several methods includ-
ing four non-deep transfer learning methods (Joint Distribution Adaptation (JDA) [45],
Graph Adaptation Knowledge Transfer (GAKT) [37], Maximum Independent Domain
Adaptation (MIDA) [24], Feature Selection Transfer Subspace Learning (FSTSL) [46]),
one semi-supervised classification method (Structured Optimal Bipartite Graph learn-
ing (SOBG) [47]), and two deep learning methods (DGCNN [48] and LRS [22]). DGCNN
is a deep learning method which uses the graph structure to depict the relationship of
EEG channels. LRS is a deep transfer method to minimize the discrepancies of latent
representations of source and target EEG data.

In the experiments, the parameters of each method are tuned as follows. For JDA, lin-
ear kernel was used and the dimension h of the subspace was tuned from {10, 20, · · · , 100}
and the parameter λ was searched from {10−3, 10−2, · · · , 103}. For GAKT, the dimension
p of the subspace was tuned from {10, 20, · · · , 100} and the parameter λ and α were
searched from {10−3, 10−2, · · · , 103}. For MIDA, the linear kernel was used, the regular-
ization parameter µ and kernel parameter γ were searched from {10−3, 10−2, · · · , 103}.
For FSTSL, the parameters α, β, γ were tuned from {10−3, 10−2, · · · , 103}. For SOBG,
the parameters λ, η were tuned from {10−3, 10−2, · · · , 103}. In TSRBG, we tuned the
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parameters α, β, γ, λ from {10−3, 10−2, · · · , 103} and the subspace dimensionality was
searched from {10, 20, · · · , 100}.

3.3. Recognition Results and Analysis

The recognition accuracies of the above eight models in the cross-subject EEG emo-
tional state recognition tasks in 3 sessions are shown in Tables 1–3 respectively. In these
tables, ‘sub2’ indicates that the samples from the first subject were used as the labeled
source domain data while the samples from the second subject were used as the unlabeled
target domain data, and so on; ‘AVG.’ represents the average accuracy of all the 14 groups
cross-subject cases in the session. We mark in bold the highest recognition accuracy of each
emotion recognition case (each row of the tables).

Table 1. Cross-subject emotion recognition results in session 1 (%).

Subject JDA GAKT MIDA FSTSL SOBG DGCNN LRS TSRBG

sub2 57.81 73.09 67.69 66.51 35.02 54.64 49.12 73.68
sub3 64.75 62.63 58.40 59.93 63.69 57.46 39.25 67.33
sub4 68.27 58.99 44.77 60.52 50.53 58.99 42.89 71.33
sub5 48.53 39.72 46.53 56.99 48.53 49.12 32.67 73.44
sub6 51.59 53.11 47.83 46.53 49.24 40.42 21.39 67.57
sub7 70.15 58.87 54.99 54.76 44.54 48.18 42.66 75.32
sub8 65.45 62.51 66.39 42.30 43.95 51.12 47.59 80.96
sub9 64.86 63.69 53.35 61.69 45.95 62.98 43.24 74.74
sub10 65.69 51.12 63.81 55.11 47.47 42.66 46.77 78.73
sub11 51.94 62.16 59.34 47.83 47.24 51.00 42.42 73.80
sub12 54.29 59.34 59.11 48.06 50.18 55.93 63.34 71.21
sub13 62.98 64.28 50.65 54.05 52.64 52.29 33.49 68.51
sub14 55.58 65.45 43.95 49.82 49.59 53.23 40.89 68.86
sub15 69.10 52.41 46.65 57.58 33.73 53.82 33.73 74.15
Avg. 60.79 59.10 54.53 54.41 47.31 52.27 41.39 72.83

Table 2. Cross-subject emotion recognition results in session 2 (%).

Subject JDA GAKT MIDA FSTSL SOBG DGCNN LRS TSRBG

sub2 90.75 68.03 66.83 74.88 50.12 65.87 78.13 78.49
sub3 69.59 61.54 69.23 68.99 78.73 68.99 80.41 81.25
sub4 60.49 79.57 63.82 51.56 55.05 59.38 31.85 74.52
sub5 58.89 63.22 71.03 67.55 48.32 56.13 55.05 74.04
sub6 61.78 56.49 41.47 54.09 36.66 52.28 36.18 75.84
sub7 64.54 68.87 69.59 77.28 42.91 64.54 52.04 78.13
sub8 78.49 68.63 66.35 54.81 68.39 49.76 50.12 77.16
sub9 59.13 54.33 60.46 41.83 61.42 54.81 37.02 76.92
sub10 41.11 82.33 62.14 50.00 67.19 60.34 59.38 76.56
sub11 63.58 72.00 51.58 60.82 32.81 53.00 42.91 74.28
sub12 56.49 44.59 41.11 68.87 49.88 47.72 27.76 69.23
sub13 62.98 64.90 53.37 60.34 32.81 49.16 58.41 71.75
sub14 46.51 50.48 49.04 44.71 48.32 61.66 52.28 74.16
sub15 77.76 88.82 55.53 84.01 61.18 60.46 57.57 88.58
Avg. 63.72 65.99 58.68 61.41 51.27 58.77 51.34 76.49
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Table 3. Cross-subject emotion recognition results in session 3 (%).

Subject JDA GAKT MIDA FSTSL SOBG DGCNN LRS TSRBG

sub2 54.62 60.10 87.96 88.93 45.99 64.60 55.96 79.56
sub3 64.11 65.57 76.76 70.07 42.09 49.51 49.27 72.26
sub4 57.66 69.34 43.92 63.26 57.06 56.08 43.19 81.14
sub5 63.75 67.64 74.33 61.19 39.54 46.35 39.05 79.68
sub6 57.66 62.65 57.42 54.99 40.88 72.14 41.85 84.91
sub7 66.99 79.93 47.49 72.63 55.60 59.49 18.86 77.86
sub8 62.41 59.85 76.64 64.72 47.93 69.10 58.76 73.24
sub9 75.18 50.24 50.97 47.20 51.82 50.61 37.35 73.11
sub10 51.09 69.34 41.73 58.64 32.60 50.24 45.13 76.64
sub11 57.06 81.75 54.14 56.08 40.63 61.92 58.76 75.79
sub12 45.50 57.54 56.69 61.31 53.77 59.37 54.62 70.32
sub13 55.72 61.44 46.59 46.72 42.34 50.00 42.70 76.28
sub14 56.45 77.25 57.06 77.62 50.85 53.41 27.01 79.56
sub15 70.32 85.28 52.19 62.04 56.45 54.01 23.60 84.67
Avg. 59.89 67.71 58.85 63.24 46.97 56.92 42.58 77.50

According to these obtained results shown in Tables 1–3, we draw the following observations.

• TSRBG has achieved better EEG emotional state recognition accuracy than the other
compared models in most cases. The highest recognition accuracy is the 15th subject of
session 2, which is 88.58%. The average recognition accuracy of the three sessions are
better than the other seven models, which are 72.83%, 76.49%, and 77.50%, respectively.
On the whole, it verifies that the proposed TSRBG model is effective.

• By comparing the average recognition accuracy of the eight models in three sessions,
it can be found that the joint optimization of semi-supervised EEG emotional states
estimation and EEG feature transfer alignment in a tight coupling way can obtain
better recognition accuracy. By setting GAKT and TSRBG as control groups, we find
that the accuracy of TSRBG is significantly better than that of GAKT, and the main
difference between them is the semi-supervised EEG emotion state estimation process.
GAKT constructs an undirected graph based on the unaligned original data and
this graph will not be updated with the data distribution alignment. In the double
projection feature alignment subspace, it fails to well describe the sample association
between the two domains. As a result, it cannot accurately estimate the EEG emotion
state in the target domain, which affects the alignment effect of conditional distribution.
However, TSRBG estimates the EEG emotional states of target domain by a bi-model
fusing method. One model is used to construct a sample-feature bipartite graph to
characterize inter-domain associations for label propagation. The initialized graph is
dynamically updated based on the data subspace representations. The other model is
the semi-supervised regression, which can effectively build the connection between
subspace data representations and the label indicator matrix.

In order to describe the recognition performance advantages of our proposed model
in more detail, we use the Friedman test [49] to judge whether the eight models have the
same performance in cross-subject EEG emotion state recognition tasks. The underlying
assumption is that “the performance of all models is the same”. We rank the performance of
the compared models in each group of cross-subject emotion state recognition experiments
(in our experiment, the higher the recognition accuracy, the higher the ranking), and
calculate the average ranking ri of each model. Assuming that there are K models and N
data sets, we calculate the variable τX 2 as

τX 2 =
12N

K(K + 1)

(
K

∑
i=1

r2
i −

K(K + 1)2

4

)
, (37)
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which follows the X 2 distribution with degree of freedom K− 1. In our work, there are 8
comparative models and 42 groups of cross-subject EEG emotion state recognition tasks.
That is, K = 8, and N = 42.

Then, we can calculate the variable τF as

τF =
(N − 1)τX 2

N(K− 1)− τX 2
, (38)

which obeys the F distribution with degree of freedom K− 1 and (K− 1)(N − 1).
According to the recognition results of different models in Tables 1–3, we calculate

that the average rankings of them are [3.79, 3.36, 4.81, 4.5, 6.19, 5.14, 6.79, 1.29]. Based
on (37) and (38), we obtain the value of variable τF is 35.682. If the significance level α
is 0.05, then the critical value of Friedman test is 2.0416, which can be obtained through
MATLAB expression ‘icd f (‘F’, α, K− 1, (K− 1) ∗ (N − 1))’ [49]. Since 35.682 is far greater
than 2.0416, the assumption “the performance of all models is the same” is rejected. It is
necessary to further distinguish the algorithms through the Nemenyi test-based post-hoc
test. The results are shown in Figure 2. The models are sorted based on the value of average
ranking ri and the model with higher ranking is closer to the figure top. The length of the
corresponding vertical line of these models is called the critical distance (CD), whose value
1.620 is calculated by

CD = qα

√
K(K + 1)

6N
, (39)

where the critical value qα is 3.031 when α = 0.05. We can judge whether there are
significant differences between models by whether there are overlaps in the vertical lines
corresponding to the models in Figure 2. For example, the rank value of TSRBG is 1.29 while
it is 3.36 for GAKT, the gap between them is 2.07, which is greater than the CD value 1.620,
so there is no overlap between their corresponding vertical lines. Therefore, the TSRBG is
significantly better than GAKT in the cross-subject EEG emotion recognition tasks. Similar
analysis can be performed on the other models.

Nemenyi test: p-value=0.05, CD=1.620

TSRBG: 1.29

GAKT: 3.36
JDA: 3.79

FSTSL: 4.5

MIDA: 4.81

SOBG: 6.19

DGCNN: 5.14

LRS: 6.79

0

Figure 2. Nemenyi test on the emotion recognition results of the compared models in our experiments.
The critical distance value is 1.620.

Further, the average recognition results of these models are reorganized by confusion
matrices to analyze the recognition performance of each model in each emotional state.
The results are shown in Figure 3. We find that TSRBG has a high average recognition
accuracy of 82.48% in neutrality state, which is the highest recognition accuracy among
the four kinds of emotional states. The proportions of the neutral EEG samples were
wrongly divided into sadness, fear, and happiness by 6.90%, 6.56%, and 4.06%, respectively.
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Compared with the other models, the recognition accuracies of the sadness and neutrality
states were significantly improved by TSRBG. For example, the recognition rate of sad
EEG emotional states was improved by at least 16.85% compared with the other models.
Moreover, the recognition accuracy of the fear emotion category was improved slightly, at
3.45%.
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Figure 3. The recognition results organized by confusion matrices.

3.4. Subspace Analysis and Mining

In this work, the process of EEG feature transfer is to seek dual subspaces, which
are expected to reduce distribution differences between the source and the target domain
data as much as possible. For each domain, subspace data representation is obtained by
projecting the original data with a projection matrix. In order to intuitively reflect the
alignment effect of two domain data in the subspace, we use the t-SNE method [50] to
visualize two groups of experimental data before and after alignment. As shown in Figure
4, we see that the data distributions of source and target domain in the subspace have been
effectively aligned.

The subspace feature dimension is p. In order to obtain the subspace dimension
suitable for data distribution alignment, we show the change of model recognition accuracy
with the adjustment of subspace dimension in Figure 5. It is observed that TSRBG is
generally insensitive to the subspace dimension. When the subspace dimension is adjusted
within the interval [30, 60], TSRBG generally have satisfactory recognition accuracies.

From the perspective of transfer learning, the subspace should reserve the common
information and exclude the non-common information between subjects; that is, in the
learned subspace, the common components between the source and the target domain
should be preserved while the subject-dependent components should be excluded. The
subject-independent common components are considered as the intrinsic component of
emotion that does not change between subjects. The subject-dependent non-common
components are considered as the unique external information of different subjects. From
the perspective of EEG features, the subject-independent common EEG features should have
larger weights and contribute more to cross-subject emotion recognition. By contrast, the
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subject-dependent non-common EEG features should have smaller weights and contribute
less in cross-subject emotion recognition. If we can quantify the importance of different
EEG feature dimensions, according to the corresponding relationship between EEG feature
dimension and frequency band [51], the common EEG activation patterns in cross-subject
emotion recognition can be explored.

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

sad

fear

happy

neutral

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

sad

fear

happy

neutral

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

sad

fear

happy

neutral

(d)

Figure 4. Source and target data distributions. (a) original space of session2 subject8; (b) subspace of
session2 subject8; (c) original space of session3 subject12; (d) subspace of session3 subject12.
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Figure 5. Recognition performance of TSRBG in terms of different subspace dimensions.
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We assume that θsi and θti are the importance measurement factors of the i-dimensional
features of the source and target domain respectively. Based on the `2,1-norm feature
selection theory [52], θsi and θti can be obtained by calculating the normalized `2-norm
of the i-row vector of the subspace projection matrix of the source and target domain,
respectively. That is,

θ(s/t)i
=

‖p(s/t)
i‖2

∑d
j=1 ‖p(s/t)

j‖2
, (40)

where p(s/t)
i is the i-th row vector of the subspace projection matrix. Then, we can quanti-

tatively calculate the importance of the a-th frequency band and the l-th channel through

ω(a) = θ(a−1)∗62+1 + θ(a−1)∗62+2 + · · ·+ θa∗62,

ψ(l) = θl + θl+62 + θl+124 + θl+186 + θl+248,
(41)

where a = 1, 2, 3, 4, 5 denote the Delta, Theta, Alpha, Beta, and Gamma frequency bands,
respectively. l = 1, · · · , 62 denote the 62 channels, which are FP1, FPZ, · · · , CB2.

In SEED-IV, the DE features are extracted from five frequency bands and 62 channels.
Therefore, the corresponding relationship between the feature importance measurement
and different frequency bands (channels) can be established, as shown in Figure 6.

Figure 6. The framework of emotion activation mode analysis.

As shown in Figure 7, we quantify the importance of different EEG frequency bands in
cross-subject emotion recognition, according to the above analysis. Figure 7a presents the
results obtained by analyzing the source projection matrix Ps in three sessions, respectively,
and their average results. Figure 7b displays the results obtained by analyzing the target
projection matrix Pt in three sessions, and their average result. Figure 7c presents the
average results of the source and target domains in three sessions, and the average results
of both across all sessions. From the perspective of data-driven and pattern recognition, it
is believe that the Gamma frequency band is the most important one in the cross-subject
EEG emotion recognition.

Furthermore, we calculated the importance of different EEG channels, as shown in
Figure 8. In Figure 8a, we showed the importance of each brain region in the form of the
brain topographic map. We observed that the position of the left side of the prefrontal
lobe had high weight in all results, and believe that this brain region should have higher
importance in cross-subject EEG emotion recognition. The top 10 important channels of
each session and the overall average are quantitatively analyzed in Figure 8b. We believe
that FP1, P06, P05, O1, P4, and P8 are more important for the cross-subject EEG emotion
recognition. Considering that the model has good performance for sadness and neutral
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EEG emotional states, the above brain region and channels might be more closely related
to these two emotional states.
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Figure 7. Quantitative importance measures of EEG frequency bands in emotion expression.
(a) Source domain; (b) Target domain; (c) Average.
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Figure 8. Critical brain regions correlated to emotion expression and the top 10 EEG channels.
(a) Critical brain regions; (b) Top 10 EEG channels (%).

4. Conclusions

In this paper, we proposed a new model termed TSRBG for cross-subject emotion
recognition from EEG, whose main merits are generally summarized as follows. (1) The
unification of the feature domain adaptation and the target domain label estimation was
effectively realized in a unified framework. Better-aligned source and target data can effec-
tively improve the target domain label estimation performance; in turn, more accurately
estimated target domain label information can better facilitate the modeling of conditional
distribution modeling, leading to better domain adaptation performance. (2) The intra- and
inter-domain connections were investigated based on the subspace aligned data, which
formulated a bi-model fusion strategy for target domain label estimation, leading to signifi-
cantly better recognition accuracy. (3) The learned subspace of TSRBG provided us with
a quantitative way to explore the key EEG frequency bands and channels in emotional
expression. The experimental results on the SEED-IV data set demonstrated that: (1) The
joint learning mode in TSRBG effectively improved the cross-subject EEG emotion state
recognition performance; (2) The Gamma frequency band and the prefrontal brain region
are identified as more important components in emotion expression.
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