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Abstract: Complex networks are often used to analyze written text and reports by rendering texts in
the form of a semantic network, forming a lexicon of words or key terms. Many existing methods to
construct lexicons are based on counting word co-occurrences, having the advantage of simplicity
and ease of applicability. Here, we use a quantum semantics approach to generalize such methods,
allowing us to model the entanglement of terms and words. We show how quantum semantics
can be applied to reveal disciplinary differences in the use of key terms by analyzing 12 scholarly
texts that represent the different positions of various disciplinary schools (of conceptual change
research) on the same topic (conceptual change). In addition, attention is paid to how closely the
lexicons corresponding to different positions can be brought into agreement by suitable tuning of
the entanglement factors. In comparing the lexicons, we invoke complex network-based analysis
based on exponential matrix transformation and use information theoretic relative entropy (Jensen–
Shannon divergence) as the operationalization of differences between lexicons. The results suggest
that quantum semantics is a viable way to model the disciplinary differences of lexicons and how
they can be tuned for a better agreement.

Keywords: quantum semantics; semantic networks; lexicons; text analysis

1. Introduction

Research fields always contain disciplinary groups where key scientific terms differ,
and the same terms may be used differently in discussing and framing the key problems
within the field. Such disciplinary fragmentation is particularly characteristic in the human
and behavioral sciences [1,2]. Since scholarly texts are a major medium for disseminating
the ideas and views of disciplinary groups, examination of how key terms are used in them
provides important information on disciplinary differences. In this study, we suggest a
simple method suitable for constructing, analyzing, and comparing networks of key terms
(lexicons) in 12 scholarly texts related to learning sciences, to examine the differences and
to find out how the lexicons could be tuned for better overlap.

The disciplinary structure of science and the formation of disciplinary schools, along
with their characteristic ways of using scientific terms and forming various research pro-
grams, have long been topics of interest [3–5]. The use of networks as representations of the
structure of science and its conceptual systems [4,5] was also recognized quite early, decades
before the science of science [4] matured into the new research field of the cartography
of sciences [6–8]. Contemporary science of science [9,10] has provided a variety of means
to study the structure of sciences, their disciplinary and conceptual structures [6–8], and
means for characterizing disciplinary differences [9–14]. Many such studies utilize methods
based on text analysis and linguistic approaches developed within network science [15].
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Focus on linguistic structures is also supported by studies within the philosophy and
history of science. The language and linguistic structures involved in forming disciplinary
groups, and their identity and ways of communicating scientific views and ideas, were
central themes in Kuhn’s conception of science, which he developed after his views about
scientific revolutions and paradigms [16]. In these later studies, Kuhn focused on the
relational structures of scientific terms and concepts and how a networked, interlinked
structure of concepts supports the formation of their meaning, referring to such networks
as lexicons or lexical networks [16–18]. According to Kuhn, a lexicon is a network of terms,
and terms are related through their connections in context. Here we adopt this view and
take lexicon to correspond to the relatedness of words through their co-occurrence in texts,
or rather, as will be seen later, how the co-occurrences are entangled in text. The basic
assumption here is that disciplinary differences emerge from users of the lexicons having
the option to use different interrelationships within the adopted lexicon. Such lexicons thus
become basic structures characterizing the disciplinary groups and their identities.

Taking lexicons of scientific terms central for identifying disciplinary groups lends
itself easily to the idea of using scholarly texts as sources to explore the similarities and
differences in the use of terms between disciplinary groups within the same research
field [15]. The semantic structure of texts and the semantic fields attached to their key
terms are often approached using some version of co-word mapping or bag-of-words
methods (see, e.g., reference [15] and references therein). Co-word mapping methods
have a long history going back to seminal studies in the 80s and 90s [19–23], then still
hampered by limited computing resources [15]. In the last two decades, co-word mapping
methods have given room to the now widely applied topic modeling of texts, which has its
origins in natural language processing and attempts to find topics on basis of analyzing
bags of words from the text [15,24–26]. Consequently, word co-occurrence analysis and
its different variants still find new and innovative applications in text and text-structure
analysis [27–30].

Recently, text analysis methods that are more sensitive than co-word mapping to text
structure have been introduced, with the aim of revealing syntactic and semantic structures
that run deeper than co-word and semantic field analyses. The co-word mapping methods
capture syntactic structures only up to word adjacency, but they can be generalized to
take into account more complicated syntactic structures composed of subject–verb–object
triads and networks constituted by such triads [31]. Other methods going beyond co-
word analysis are looking in detail for example: concept diversity (cognitive content)
through lexical diversity of text [14]; relation of key concepts and the architecture of the text
structure [32,33]; searching semantic frames through finding communities of verbs and their
arguments [34]; creating semantic networks by using concept-centered sub-networks [35];
and finding the larger-scale semantic structure of texts [36,37]. In all these cases, complex
networks methods are used in construction of the semantic, lexical, or concept networks,
and different network measures (closeness centrality, betweenness centrality, or some
specially engineered measures for network topology) are utilized in analysis. Moreover,
different types of computer software exist for different kinds of analysis methods—for
example, for co-word mapping and topical analysis (for a reviews, see reference [15,37]) and
analysis of semantic frames (for a review, see reference [34]). Here, however, the focus is
not on the comparison of different methods or on providing a review of available methods
and software, and therefore, more detailed discussion of such approaches and methods is
beyond the scope of this study.

In this study, we propose a generalization of word co-occurrence counting to construct
a network of key terms, a kind of lexical network, where links connecting key terms
represent the probability of (generalized) co-occurrence. Following Kuhn, we refer such
lexical networks as lexicons. The generalization we are proposing is meant to address the
possibility of subjective differences in reading the meaning of a given sentence in a text.
One potential way to overcome this shortcoming is a recently introduced method called
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quantum semantics, which provides a means to estimate the effects of subjective bias and
entangled meanings [38–41].

Quantum semantics can be seen as a generalization of word co-occurrence counting
methods or bag-of-words methods. It preserves the simplicity of co-word counting while
allowing the inclusion of a factor to estimate the effect of subjective bias in reading the
meaning of words in a bag of words [38–41]. From the perspective of quantum semantics,
semantic fields are not fixed or unyielding structures that define relationships between
words as extracted from texts, but rather, tentative templates for how producers of texts can
be expected to compose sentences, and how readers of text can be expected to weigh the
importance of co-occurrence of words in a sentence, i.e., read meaning into a sentence. In
this study, we use quantum semantics in constructing the semantic networks (i.e., lexicons)
that allow us to explore the extent of disciplinary differences in lexicons.

Seminal ideas of quantum semantics appeared already two decades ago and were
applied to word association tasks and categorization tasks (see, e.g., reference [41] for
a review), based on the insight that word meanings are entangled in the sense that the
context where they appear with other words affects the ability to factorize meanings
of words to elementary, independent elements (i.e., kinds of pure states). To describe
such entangled states of word pairs, formalism from quantum logic, essentially in form
of qubits, was adopted [41]. The recent idea to quantify the entanglement by using a
quantum information theoretic measure called concurrence [38–40] provides substantial
simplification to adopt quantum semantics as the basis to construct lexical networks.
It should be noted that adopting quantum semantics to generalize word co-occurrence
counting does not imply endorsing a view that words are quantum entities, only that
generalized logic and probability behind the quantum theory are adopted. Here, we use
such an approach to analyze scholarly texts to construct lexicons (lexical networks) of their
key terms.

Quantum semantics makes it possible to study effective subjective bias between word
pairs, and with that knowledge, to build a lexicon in the form of a (semantic) network. To
explore the structure of lexicons, we invoke methods developed for analysis of complex
networks. A network description is here based on a (weighted) adjacency matrix obtained
through quantum semantics. The analysis is then carried out using an exponential matrix
transformation that allows us to define a density matrix [42–46] for the lexicon (i.e., the
probability of connectivity between links). The density matrix, on the other hand, when
suitably scaled, can be interpreted as a correlation matrix between nodes in the network [47],
i.e., now as correlations between co-occurrence of words when each pair of words is
assumed to be entangled. Note that concurrence as a measure of entanglement between
a pair of words or terms is the basis of obtaining the correlation matrix, but correlation
matrix, as it is based on density matrix, takes all connections contained in the network into
account.

The density matrix also allows a straightforward quantitative method for comparison
of the lexicons, to be based directly on entropy differences between different lexicons. Here,
the symmetric form of a relative entropy (here von Neumann entropy, because we are
working with density matrix) in the form of Jensen–Shannon divergence [48–50] is adopted
as the basis of comparison. Owing to its symmetric form and computational stability,
Jensen–Shannon divergence is a convenient choice in comparing semantic networks and
word distributions. Moreover, the square root of Jensen–Shannon divergence can be
interpreted as a kind of (information) distance metric between networks [51–53].

To demonstrate the viability of this method based on quantum semantic networks
in characterizing disciplinary differences of lexicons, we have chosen 12 scholarly texts
concerning models of conceptual change (see reference [54] for a review). The texts deal
with conceptual change models from different and even contradictory viewpoints. These
texts are particularly suitable because the discrepancy of views they provide, to a shared
research theme, is well known and discussed in the research literature. Therefore, it should
be interesting for the reader to see if the method of analysis proposed here will reproduce
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the expected differences in level for lexicons, and in addition, whether or not the possibility
to tune for better agreement of lexicons affects their similarity in essential and substantial
ways.

It is shown that the method proposed here, although quite simple, indeed brings out
clear differences between the texts, but also provides an understanding of how, through
subjectively biasing a better overlap of their lexicons, mutual agreement could be possible.
We believe that the methods introduced here may support the common traditional interpre-
tative analyses, providing simple but sufficiently reliable quantitative measures to detect
disciplinary differences in scholarly texts, and also providing a means to estimate a range
of variation in differences.

2. Materials and Methods

The method to construct and compare lexicons consists of three methodologically
different but closely interrelated steps:

1. Quantum semantics is used to construct the lexicons corresponding a given text.
2. The relevant connectivities of lexicons are found through network analysis.
3. The comparison of lexicons is performed based on a quantum information theoretic

version of Jensen–Shannon divergence.

We have limited discussions of methods to the minimum of what is needed to explain
the steps in the analysis. The details of the derivation behind the results utilized here are
well documented in the original references. The text corpora of scholarly texts used to test
the method are 12 texts of conceptual change research. The texts were chosen to correspond
to positions known to be seminal (three texts) texts displaying two opposing views (three
texts for each case), and texts known to mediate between the opposing views (three texts).

2.1. Text Samples

The text samples chosen were 12 scholarly texts about models of conceptual change [55–66],
published between the years 1982 and 2017. Short descriptions of the 12 texts selected for
analysis are listed in Table 1 and identified with the acronyms provided. The selection was
made on the basis of the widely held opinion that the research field of conceptual change
has seen a long-standing dispute about the nature of conceptual change, in which some
parties have tried to mediate between different views, but some other disciplinary schools
have not found or even striven for a consensus. However, the basic terms and terminology
and conceptions of the basic topic of interest are agreed on. In many ways, such a situation
offers an interesting test-bed for a quantum semantics approach.

Table 1. Scholarly text about conceptual change used as a sample. Acronyms (Acr.) specify the text
provided as a reference, which is briefly described in last column.

Acr. Ref. Description of Position

Ca [55] Developmental psychology and cognition; theories of concepts; cognitive science
P1 [56] Piaget’s theory of learning; Kuhn’s theory of science; scientific knowledge
P2 [57] Updated and augmented version of P1
V1 [58] Framework theory; Knowledge-as-theory view; synthetic conceptual models
V2 [59] Updated and extended version on V1; Contrasts to Knowledge-as-elements view
V3 [60] Review of views in V1 and V2; Contrasts to Knowledge-as-elements view
D1 [61] P-prims and knowledge-as-elements view; Contrasts to knowledge-as-theory view
D2 [62] Augments D1 by Coordination classes; Contrasts to knowledge-as-theory view
D3 [63] Review of views D1 and D2; Contrasts to knowledge-as-theory view
OC [64] Attempts synthesis between knowledge-as-elements and -theory views
A1 [65] Discusses views Ca, P1-2, V1-2, D1-2 and attempts to find common viewpoint
A2 [66] Review, augments A1, with specific emphasis on views as in Ca
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A well-known and widely discussed dispute is related to the question of whether
conceptual knowledge should be seen as forming out of isolated and fragmented pieces
(knowledge-in-pieces view according to some authors) or as broader and in some sense
coherent theory-like structures (framework theories, according to some authors). In such
disputes, referred to in what follows as “knowledge-as-elements” or “knowledge-as-
theory” views (for reviews, see references [64,65]), the discussions are about how to frame
the meanings of key concepts to be used in conceptual change. In this dispute, advo-
cates of both views have held their positions and continued to discuss and criticize the
opposing positions.

Of the twelve texts, texts V1–V3 belong to the camp of “knowledge-as-theory”, and
texts D1–D3 are in the camp “knowledge-as-elements”. The texts OC, A1, and A2 are
reviews, in which consolidation of different views is attempted. In particular, the texts A1
and A2 contain pleas for increased attempts to unify the terminology and strive for better
mutual understanding in order to advance the research field. The texts Ca, P1, and P2 are
seminal works that are often cited [54] but perhaps not so often directly used in developing
researchers’ own positions. In this study, we do not discuss in greater detail the content
of the texts or the disputes. Instead, we are interested in exploring whether the known
opposing positions and attempts to mediate between positions are visible at the level of
terminology and how terms co-occur in texts, i.e., at the basic level of semantic fields.

2.2. Generalizing Word Co-Occurrence: Concurrence

The first step in transforming the written texts into semantic networks, in the form of
lexicons of terms, consist of splitting the sentences into clauses, in order of their appearance,
and after that, recognizing the nouns, and within them, term-like words. The texts were
first simplified by removing stop words and miscellaneous symbols. Next, nouns, verbs,
adjectives, and attributes were picked out from sentences, preserving the sentence structure.
Finally, resulting expressions were stemmed. In that, Mathematica 13 employing Porter’s
algorithm for stemming [67] was used as software. While lacking advanced features
of more advanced natural language processing (NLP), Mathematica produced a quite
acceptable outcome and was selected here because it is supposedly easy enough to adopt,
in comparison to more advanced NLP methods. This choice is a trade-off between accuracy
and simplicity of analysis, because it is not likely that too complex and demanding methods
will be adopted by researchers not working in field of NLP but who need to do similar kind
of analysis in fields of education and behavioral sciences. After stemming, term-like words
that appeared only once were discarded, and from the remaining set, about 70 were chosen
for closer attention. Consequently, the selection process is quite simple and misses many
finer points, but contains basic and robust elements commonly identified in analyzing
speech and writing.

The second step consisted of finding the co-occurrence statistics for the 70 selected
terms. To do so, we utilized quantum semantics approach [38–40], which generalizes the
traditional word co-occurrence measures so that subjective factors can be taken into account
at some level of idealization. In that generalization, the notions of entanglement of words
and concurrence as a measure of the entanglement play key roles. Details behind the
quantum semantic approach, as they are relevant here, are provided in Appendix A. The
key result needed here is the concurrence Q, which quantifies the degree of entanglement
of terms as they appear in a text. Symbols used in developing the methods are summarized
in Table 2.

To obtain concurrence Q (degree of entanglement) between words A and B in a text,
we count four different frequencies of co-occurrence: the frequency n11, that A and B both
occur in a given block of clauses at least once; n00, that neither A or B occurs; n10 that A
occurs at least once but B does not occur; and n01, that A does not occur but B occurs at
least once. Such a situation can be described in the form of a classical 2 × 2 contingency
table of association of two variables A and B. In quantum semantics, the association is
described in terms of qubits, allowing for non-classical dependence due to entanglement
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(due to inherent inseparability and impossibility of factorization of co-occurrence). With
these frequencies, the concurrence Q as a measure of entanglement is given as [38,39] (see
also reference [68])

Q = 2
√

n11n00 + n10n01

√
1− 2 Θ

√
n11n00n10n01

(n11n00 + n10n01)
, 0 ≤ Q ≤ 1 , (1)

where −1 ≤ Θ ≤ 1 is the phase factor (see Appendix A for details and derivation) taken
here as a free parameter to account for subjective bias [38–40]. For further reference, we
define the prefactor Q0 = 2

√
n11n00 + n10n01 that corresponds to concurrence obtained

with Θ = 0. The last factor in Equation (1) given by R = 2
√

n11n00n10n01/(n11n00 + n10n01)
is the ratio of the geometric mean of frequencies n11n00 and n10n01 to their arithmetic mean.
With these definitions, concurrence takes a form Q = Q0

√
1−ΘR. The entanglement is

now possible only in cases R 6= 0.

Table 2. Summary of symbols and abbreviations used recurrently in the text and figures.

Symbol/Abbreviation Symbol/Abbreviation Symbol/Abbreviation

Q Concurrence Q Concurrence matrix β Time-like parameter
Q0 Prefactor of Q [Q]ij Element ij of Q Γ Correlation matrix
R Ratio of averages in Q C Contingency matrix Γi Correlation centrality
Θ Phase factor in Q [C]ij Element ij of C Γ̄ Vector of elements Γi
nxy Co-occurrence frequency W Normalized W H von Neumann entropy
W Weighted adjac. matrix [W ]ij Element ij of W J J-S divergence (JSD)
[W]ij Element ij of W ρ Density matrix SJSD JSD-similarity
di Weighted node degree [ρ]ij Element ij of ρ SCOS cos-similarity

For purposes of comparison, we note an analogy of concurrence to different factors
measuring association between dichotomous variables in [69–71] (see also [38]). In classical
methods, the deviation of associations corresponding to randomly shuffled and punctuated
(random mixing) sentences leads to equivalence n11n00 = n10n01 (representing the so-
called odds ratio of value 1). Consequently, classical measures of contingency are often
taken as either proportional to a factor n10n00 − n00n11 (e.g., mean square contingency or
Yule’s phi coefficient) or to

√
n01n10 −

√
n00n11 (Yule’s Y coefficient). However, different

other ways to measure the deviations from odds ratio are also used (see, e.g., [70,71] for a
summary). There is no unambiguous way to define a contingency measure, but in all of
them, deviations from an odd ratio of 1 (i.e., no correlations) is central. Consequently, in
analogy with Equation (1), where phase factors c and frequencies n are related as c =

√
n,

we define a modified contingency as

C = 2|
√

n01n10 −
√

n00n11 | , 0 ≤ C ≤ 1 . (2)

The modified contingency C as defined in Equation (2) fulfills now the normalization
condition ∑ nij = 1 and corresponds to the minimum value of concurrence Q obtained with
Θ = 1. Therefore, it can be then compared with Q to illustrate the difference in quantum
semantics-based quantification of co-occurrence to a minimal value of concurrence, which
is closely related to contingency coefficients measuring traditional analysis of dichotomous
variables. However, a more detailed quantitative match is not possible between concurrence
Q and different classical contingency measures.

2.3. Constructing Lexicons from Concurrences

We are interested in the concurrence Q of all pairs of terms i and j in a set of 70
selected terms of interest. Each pair is then characterized Q0(i, j) = Q0(j, i), along with
factors R(i, j) = R(j, i). These factors are obtained for all pairs of terms in all texts. In



Entropy 2022, 24, 1058 7 of 25

what follows, we are interested in concurrence Q(i, j), tuned so that in two texts T and T’
the corresponding concurrencies Q(i, j) and Q′(i, j), respectively, become as close to each
other as possible; i.e., we choose factors Θ(i, j) and Θ′(i, j) so that difference is minimized.
In what follows, Q always refers to such optimized concurrences as a best scenario for
matching lexicons. The contingency C, on the other hand, corresponding to the minimal
concurrence, provides the worst scenario as a benchmark. The pairwise values Q(i, j) and
C(i, j) are used to form weighted adjacency matrices Q and C with elements [Q]ij = Q(i, j)
and [C]ij = C(i, j), respectively, describing the connectivity of terms in the lexicon.

2.4. Characterizing Lexicons: Density Matrix

To explore the structure of lexicons, we introduce the weighted adjacency matrix W
with elements [W]ij = Wij, where Wij is taken to be either Q(i, j) or C(i, j) for nodes i and j
and Wij = 0 for unconnected nodes. In what follows, symmetric adjacency matrices are
assumed. For a weighted adjacency matrix, it is recommended to use normalization [42,43,
49,72] to obtain a normalized weighted adjacency matrix W , which for connected nodes
has elements [W ]ij = Wij/

√
didj, where di = ∑j 6=i Wij is the weighted degree (strength) of

node, while for unconnected nodes [W ]ij = 0.
To assign a probability density to links in the network, we then introduce density

matrix ρ characterizing the network [42–46]

ρ = Z−1 exp[ βW ] , (3)

where Z = Tr exp[ βW ] is a normalization factor. Due to normalization, Trρ = 1, the
matrix, has an analogous role to probability density; due to its constructions based on a
real and symmetric matrix W is Hermitian; and finally, due to exponential matrix trans-
formation, it is positive semidefinite matrix; therefore, it can be taken as a density matrix.
Here, the weight factor β defines how links are weighted, with low values corresponding
to situations where the network disintegrates into an unconnected set of nodes, and high
values of β emphasize the role of strong links. The density matrix ρ can be also interpreted
as path or walk counting, providing information on all paths or walks that connect the
nodes in a network [42–46]. The counting of walks is closely related to the question of
how nodes can be reached in given networks, through connecting links. Therefore, we can
use density matrix in Equation (3) to establish a connection between a correlation matrix,
correlating “positions” of nodes in the network, “position” meaning how through different
paths nodes can be reached. In what follows, a short summary is provided, and details not
essential for the rest of the study are relocated to Appendix B.

The density matrix ρ provides a way to formulate a correlation matrix describing how
“positions” of nodes in the network are correlated [47]. Following Estrada’s derivation (see
Appendix B and reference [47]), one can show that it is possible to define a correlation
matrix Γ in the form

Γ = γ−
1
2 ρ γ−

1
2 , (4)

where γ = Diag[Γ] is a diagonal matrix. The elements of [Γ]ij of the correlation matrix can
be shown to be directly related to the covariance of values of nodes i and j in the network
(see Appendix B and reference [47]), providing a way to find the key nodes on the basis of
correlations. Towards this end, we define a correlation centrality as an off-diagonal sum:

Γi = ∑
j 6=i

[Γ]ij , (5)

which closely resembles communicability centrality [42,43]. The correlation centrality is
used here as a basis to define key terms and their rankings.
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2.5. Comparing Lexicons: Divergence and Similarity

Next, we turn to the task of comparing lexicons described by different density matrices
ρ and σ. An obvious approach is to use information theoretic relative entropy as a measure
of difference (see, e.g., [48–53]). Relative entropy quantifies the amount of information that
is needed to make inferences about a given network using information contained in the
network as a basis of comparison. Here, we use the Jensen–Shannon divergence (relative
entropy), which is widely used in the comparison of semantic networks [51–53]. Most
often, in applications to semantic meaning of words, Jensen–Shannon divergence is applied
in context of ordinary probability densities [51–53], but can be generalized for density
matrices, as far as different entropy functions can be generalized for density matrices
(which is usually accepted as in classical case of generalizing Gibbs–Shannon entropy as
von Neumann entropy in quantum mechanics) [73–76].

Jensen–Shannon divergence (JSD) is based on von Neumann–Shannon information
theoretic entropy H(ρ) = −Tr ρlogρ and is defined as a symmetric relative entropy between
density matrices σ and ρ in the form [73–76] (see also [48–50])

J(ρ||σ) = H(
ρ + σ

2
)− 1

2
( H(ρ) + H(σ) ) , 0 ≤ J ≤ 1 . (6)

In characterizing systems that can be represented in terms of density matrices, Jensen–
Shannon divergence has several convenient properties: It is positive, zero if and only if
ρ = σ, symmetric, and always well-defined. In addition, the square root

√
J(ρ||σ) of the

Jensen–Shannon divergence can be also interpreted as an information-based metrics for
the distance between σ and ρ [75,76]. Nevertheless, in practice, computation of divergence
requires some caution, because it involves computing a matrix logarithm. To overcome
issues related to the stability of computation, we have used so-called hypoentropy [77]:
Hλ(ρ) ∝ −[Tr (I + λρ)log(I + λρ)]/λ, which has the limiting values Hλ → H, when
λ→ ∞, thus providing von Neumann entropy [77].

The similarity of a network described by ρ to a network described by σ can now be
defined through Jensen–Shannon divergence (JSD) as

SJSD(ρ||σ) = 1−
√

J(ρ||σ) , 0 ≤ SJSD ≤ 1 , (7)

where the square root of JSD is used because it can be interpreted as a metric, as noted
before. This kind of a similarity measure is an example of information-theoretic similarity
measures (compare, e.g., [78].

For comparisons, we use a different type of similarity, based on correlation centrality
values of nodes. By forming for lexicons L and L’ centrality vectors Γ̄ and Γ̄′ consisting of
centralities Γi and Γ′i of nodes, respectively, we can define the so-called cosine similarity
SCOS as a dot-product [79,80]

SCOS = ( Γ̄ · Γ̄′ ) / ( |Γ̄||Γ̄′| ) , 0 ≤ SCOS ≤ 1 . (8)

The cosine similarity SCOS amounts to comparing the importance of key terms in lexicons.
When it attains a value 1, networks are completely similar, as characterized by vectors of
values of correlation centralities of nodes, whereas for completely different networks, cosine
similarity has a value 0. As the correlation centralities of nodes are obtained as off-diagonal
sums of the correlation matrix, related to density matrix, we can expect that similarity SJSD
based on Jensen–Shannon divergence and cosine similarity SCOS provide results that are in
agreement, although they may differ slightly; they provide complementary information on
the origin of the similarity.

3. Results

The method to construct, analyze, and compare lexicons was demonstrated by analyz-
ing 12 scholarly texts related to conceptual change (see Table 1). First, we discuss results
on the basic features and statistics of lexicons. Second, results in identifying key nodes are
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introduced, and third, on the basis of these results, the similarity of lexicons is discussed.
Fourth and finally, key terms responsible for the similarity of lexicons are presented.

3.1. Word Frequency Statistics

The text analysis and stemming was carried out by using Mathematica 13, as explained
in previous section. The texts were of different lengths, and they contained different
numbers of words and sentences. The numbers of sentences and words after stemming in
each text are provided in Table 3. Although the absolute numbers of sentences and words
varied quite a lot, the ratio of words to sentences was in range from 8 to 16; the mean
value and standard deviation were 12± 2. In what follows, only relative frequencies of
co-occurrence are of interest; absolute numbers are of no further relevance.

Table 3. Numbers of sentences (NS) and words (NW ) and their ratio NW /NS in texts listed in Table 1.

Ca P1 P2 V1 V2 V3 D1 D2 D3 OC A1 A2

NS 339 160 453 240 245 86 626 392 105 260 410 287
NW 3801 1617 3793 3299 3449 1205 5692 3720 1075 3092 6185 3651
NW/NS 11.2 10.1 8.4 13.7 14.1 14.0 9.1 9.5 10.2 11.9 15.1 12.7

Of the list of stemmed expression, the most relevant 150 words and terms were selected
for further scrutiny. Selection was done on basis what appeared to be of relevance for the
topic (conceptual change, learning, and instruction) in question. For example, “earth” and
“hollow”, though occurring in many documents, were dropped, since they are related to
one specific example often discussed, but not of interest to discussing the general nature of
conceptual change. From the resulting list, we then selected 90 terms having the highest
frequencies of appearance for closer scrutiny, to be analyzed through their co-occurrence
statistics.

Eventually, on basis of co-occurrence, only about 50 out of the 90 terms appeared to
be are of interest. These terms are also listed in Figures 7 and 8, where we can see that
most of them, but not all, are obviously relevant for the topic of conceptual change. The
frequency distribution of the 50 most frequently occurring terms in all 12 texts is shown in
Figure 1 (panel a, left). The distributions are shown as functions of rank of occurrence; the
most common term has the highest rank of 1, and the larger the rank number, the lower the
frequency. The term “concept” is omitted, because its appearance is dominant, being about
two times more frequent than the next most abundant term, “student.” The distribution of
terms, being flat, shows how no specific term appears preferentially in the 12 texts chosen
as examples. This is also seen in individual distributions (Figure 1b, right, in the same order
of rankings as in the large figure a at left) shown separately and denoted by acronyms (see
Table 1). As can be seen, a few terms stand out in each individual text as the most abundant,
but they are different ones in different texts. This reveals the diversity of texts even just on
the basis of word frequency distributions.

3.2. Lexicons: Concurrence and Construction

To get a more in-depth picture, we next turn to the (modified) contingency C and
concurrence Q, and construct the lexicons in a form of a network. The concurrence Q is
of special interest, because optimizing it allowed us to tune the lexicons to overlap better,
and thus led to more similar semantic fields. As was explained previously (Section 2.3), in
tuning lexicons for the best overlap, we found for each link a phase factor which brings the
concurrences as close to the their common average value as possible (constrained only by a
factor R). For each pair of lexicons, and for each pair of links in each lexicon, these phase
factors are different.
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Figure 1. The distributions of occurrence (number) frequency n of terms. The rank R according to
number frequency n is shown in panel (a) on the left for the 50 most frequently appearing key terms
in all 12 texts. The distributions of frequencies in individual texts (denoted by acronyms referring to
Table 1) are shown on the right in panel (b), in the same order as in (a).

Figure 2 shows three examples of how optimized concurrences Q and corresponding
contingencies C are related for lexicons A and B. The examples in Figure 2a–c (in upper
row) show that contingencies C (gray symbols) for connections between word/term pairs
in different lexicons A and B are not related to a significant degree. The situation changes
when one turns to optimized concurrence Q (black symbols), when for many (but not for all)
term pairs it is possible to find a phase factor Θ that brings the concurrences of term pairs
in lexicons A and B close to each other; in many cases, values of Q in lexicons A and B are
aligned, forming a straight line, as seen in Figure 2a–c. This demonstrates that optimization
significantly improves the overlap of lexicons, and consequently, the necessary conditions
for the formation of shared meanings. For example, in cases (Figure 2a) of A = A1 tuned
to B = V2 and D1 (some of the best matching cases), we can see a significant increase in
how concurrences are aligned. In the case (Figure 2c) of A = V3 tuned to B = D3 (one of the
worst-matching cases), the tuning does not lead to equally high optimal values of Q, but
still much higher values than obtained for contingency C, indicating a significant increase
in the overlap of lexicons even in that case. The results in Figure 2 demonstrate the effect of
optimization and differences between optimized concurrences and contingencies of term
pairs. We will later (Figures 7 and 8, having first discussed the similarity of lexicons) return
to the question of which terms are those ones yielding optimization, and at the same time,
having significant roles in increasing the similarity of lexicons.
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A complementary picture of the effects of tuning is provided in Figure 2d–f, where the
same cases as in Figure 2a–c are shown differently, plotting the values of concurrence Q
against the values of contingency C in each individual lexicon. In the results in Figure 2d–f,
we can observe that while some terms have same values of Q and C, most of the terms have
widely different values, and in general, values of Q are higher than those of C (the cases
A = V3 and B = D3 being particularly clear). This is, of course, as expected, provided that
Q is tunable. In summary, from the results in Figure 2, we can conclude that many terms
yield optimization (points above the straight line in Figure 2a–c), and these highly tunable
term pairs play an important role in improving the overlap of lexicons and providing
shared meanings.
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Figure 2. Optimized concurrences’ (Q) corresponding contingencies C compared. (a–c) (upper row)
display three examples in the form of a scatter plot showing the optimized concurrences Q (black
symbols) and corresponding contingencies C (gray symbols, in the same scale, although the axis
label is only for Q) for lexicons A and B. The three cases are indicated by acronyms referring to texts
(see Table 1). (d–f) (lower row) display the same cases as (a–c) but plot the values of concurrence Q
against values of contingency C for each lexicon.

To provide an idea of the diversity of lexicons, we show in Figure 3 all 12 cases as
projections on an underlying spring-embedding of agglomerated networks of all 12 cases.
In this visual rendering of the lexicons, the size of a node (term) is proportional to its corre-
lation centrality as defined in Equation (5). The individual lexicons, as shown in Figure 3,
already show through visual inspection that they differ in size but show little systematicity,
thereby defying simple classifications or categorizations. Visual representations, as shown
in Figure 3, are suggestive, but quite unreliable for making inferences about differences.
Therefore, we turn to more controllable ways to estimate the similarity of lexicons.
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Figure 3. The lexicons of 12 research articles on conceptual change. The 12 lexicons visualized
as spring-embedded networks. The acronyms of lexicons (upper left corner) identify the texts, as
summarized in Table 1. Figure provides a schematic view, and therefore, only a few nodes are
identified: Co = concept, CC = conceptual change, cg = change, ch = child, B = belief, K = knowledge,
L = learn, R = research, s = student, and Sc = science. In each lexicon, a given node is always in
the same position. The size of each node is proportional to its correlation centrality (as defined in
Equation (5)).
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3.3. Divergence and Similarity of Lexicons

Networks appear differently for different values of weight parameter β, and to decide
when a stable region is reached and networks can be compared, we need to monitor the
behavior of divergence when the value of β is increased. Examples of the behavior of
Jensen–Shannon divergence J (based on concurrence Q) with increasing β are shown in
Figure 4a–c (upper row) for lexicons V1, OC, and A1. In each case, the 11 different sets
shown correspond to the results when a given lexicon is optimized for the best overlap
with all the other 11 lexicons (denoted in the legends in upper row). In all cases, we can
see that divergence grows rapidly in region 2 < β < 5, reaches a maximum at 5 < β < 10,
and eventually reaches constant values for β > 30. This behavior results when increasing
β, links with different weights contribute to the divergence. In regions with of low values
of β, all links are weak, and since networks contain always same nodes, they are essentially
disintegrated but similar. Gradually, with increasing values of β, many links begin to
gain importance with increased weighting, and many of them begin to contribute to the
similarity (or rather, dissimilarity) of networks; divergence reaches a maximum. With
increasing weighting, however, only the most important links with the highest values
of concurrence continue to contribute to the similarity and divergence decreases. Such
a decrease in divergence indicates that lexicons possess, after all, quite a few term pairs
connected by high concurrence links. Therefore, with the most important links dominating
the behavior of the divergence at the highest values of β, divergences do not change
anymore. In this region, one can reliably identify the key nodes (terms) and their rankings.
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Figure 4. Jensen–Shannon divergences J for three lexicons, V1, OC, and A1. The divergence J(A||B)
with increasing β is shown in panels (a–c) (upper row) for lexicons V1, OC, and A1, based on
concurrence Q; and in panels (d–f) (lower row) based on contingency C. In each case, divergence J
for a given lexicon A as compared to all other 11 lexicons B is as indicated by acronyms in legends.

The divergences J for optimized lexicons show large variation. Lexicons OC (Figure 4b)
and A1 (Figure 4c) have much lower divergences in comparison to V1 (Figure 4a). Such
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differences cannot be observed in the case of non-optimized lexicons corresponding to
modified contingency C and shown in Figure 4d–f (lower row). The comparison of results
in Figure 4a–c to those in Figure 4d–f (note the difference in scales) for Q- and C-based
divergences demonstrates the important effect of optimization on matching the lexicons.
However, the relative ordering of divergences is somewhat similar in both cases; optimiza-
tion increases match, but does not dramatically change how relative differences behave.

Jensen–Shannon- divergence J (JSD) provides a basis to define the similarity SJSD of
lexicons, as introduced in Equation (7). The similarity SJSD takes into account all links in the
lexicons, and thus, is a global similarity measure. The cosine similarity SCOS in Equation (8),
on the other hand, is based on the correlation centrality of nodes, i.e., off-diagonal sums
of the correlation matrix. Figure 5 shows the similarities SJSD and SCOS (upper and lower
panels, respectively) for C- and Q-based lexicons (left and middle panels, respectively) as
deviations from the median similarity (values shown above legends). The absolute change
∆S in similarity when C-based lexicons are optimized to Q-based lexicons is shown in
Figure 5 in the right-hand panels.
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Figure 5. Similarity comparisons of lexicons. The similarity SJSD based on Jensen–Shannon divergence
is shown in the upper row for contingency C (at left) and concurrence Q (middle). The changes ∆S
due to tuning are also shown (right). All values are shown as deviations from the median (value
provided above bar-legend). The cosine similarity SCOS is shown in the lower row. In both cases,
results are for a stabilized state with β = 50.

Results in Figure 5 for SJSD show that in all cases the increase in similarity due to
optimization is significant, although relative patterns as related to median values are
somewhat similar, as already seen in three examples in Figure 4. However, some interesting
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changes in relative patterns are notable. The clusters V1–V3; D1–D3; and OC, A1, and A3
are also present in contingency-based similarity patterns (upper row, left), but D1 is not
strongly featured in the cluster D1–D3. It is also noteworthy that A1 in Q-based similarity
is strongly similar to all other lexicons, but not to the same degree as in C-based similarity.
However, in all cases all similarities increase significantly when lexicons are changed from
C-based (median similarity 0.61) lexicons to Q-based ones (median similarity 0.94) for
better matching.

It is interesting to note, as Figures 4 and 5 reveal, that texts V1, V2, and V3 are by
the same lead authors, and thus supposedly belonging to the same thematic area and
topics, so they are similar to each other. However, e.g., V1 is most similar to V2, yet it is
more similar to OC and A1 than to V3. This indicates that V1 and V3 differ somewhat in
their vocabularies, because apparently the authors wrote about their topic with differing
emphasis, but nevertheless, review articles OC and A1 with the purpose of covering all
aspects as thoroughly as possible, attained even larger similarities. In concordance with
that notion, lexicon OC corresponding to a review article is most similar to V1 and V2,
and next to them to A1, which is also the lexicon of a review article. Lexicon A1, on the
other hand, is most similar to A2, OC, and V2, in that order. Contrary to these more or
less expected findings, Figure 5 shows that sets D1, D2, and D3 of lexicons are less similar
to each other than they are to lexicon A1; the authors of D1, D2, and D3 have to some
degree different vocabularies in their texts, but the review article manages to cover all of
them. In addition, V1, V2, and V3 all have quite low similarity to D1, D2, and D3, which
was expected, because the main dividing line of thought is known to be between these
disciplinary sub-groups. There are other more minor details of some interest, but for this
study attempting to demonstrate the viability of the proposed method, it is not necessary
to discuss those differences or their origins in more detail.

Scatter plots of similarities SJSD and SCOS for all 12 lexicons are shown in Figure 6,
based either on contingency C or concurrence Q (left and in the middle, respectively, in
Figure 6). In scatter plots, Kendall’s tau (non-parametric) correlation coefficients τ for the
data points are also provided. The results in Figure 6a,b (upper row) are shown for β = 0.3
and for a stabilized state with β = 50 (Figure 6d,e in lower row). It is seen that at low
values of β, the correlation between Q- and C-based cos-similarities SCOS is larger than for
JSD similarities SJSD. For comparison, straight lines indicate the reference lines of equal
values, to show an increase in similarity owing to the optimization (i.e., all data points are
well above the reference lines). As cos-similarity puts weight on key terms, the behavior
shown in Figure 6 indicates that key terms contribute significantly to similarity. Lower
values of correlation for JSD-based similarities in comparison to cos-similarity indicate
larger variety in weak links corresponding to auxiliary terms. This is a conclusion that can
also be inferred from the examples shown in Figure 2. The results in Figure 6c,f on the left
display how cos- and JSD-similarities are correlated for C- and Q-based lexicons at low and
high values of β. We can see that in the stabilized region, Q- and C-based similarities align,
while in initial, low values of β, the scatter of values is much larger. The main message of
this figure is that the best correlation of similarities is achieved between C- and Q-lexicons
in stabilized region β� 1, meaning that in this stage, the key terms of optimized lexicons
dominate the similarity. In this region, cos-similarity and JSD-similarity provide essentially
the same results.

From the results in Figures 5 and 6, we can conclude that some lexicons of some texts
are highly overlapping. For example, lexicons V1 and V2 are quite similar to each other,
as are also lexicons P1 and P2 and A1 and A2. The texts that correspond to these lexicons
had the same authors. In addition, lexicon A1 is highly similar to nearly all other lexicons,
and OC also overlaps with many of the lexicons. These lexicons are from review-like texts,
and A1 in particular attempts to cover many different views on conceptual change. In
optimization, the similarity gain is also largest for the lexicons A1 and OC.
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Figure 6. Scatter plots of similarities SJSD and SCOS for all 12 lexicons. Similarities based on concur-
rence Q and contingency C (SCOS (left) and SJSD (in the middle). Straight lines indicate the references
of equal value. Values of (non-parametric) Kendall’s tau correlation coefficient τ are provided. The
values corresponding to the initial state β = 0.3 are shown in the upper row, and those corresponding
to the final stabilized state β = 50 in the lower row. The right panel shows scatter plots of SJSD against
SCOS.

Finally, it is of interest to compare the similarity of lexicons based on co-occurrence
counts to the similarity obtained on the basis of frequency distributions shown in Figure 1.
Such a comparison can be carried out using JSD-similarity, which can be calculated from
Equations (6) and (7) for ordinary probability distributions by replacing density matri-
ces with probability density distributions and traces with sums. The resulting pairwise
similarities of lexicons are similar to results shown in Figures 5 and 6, and again the
same high similarity clusters, as discussed above, can be discerned. For comparison, the
Kendall–tau correlations of frequency-based lexicon JSD-similarities to concurrence and
contingency-based similarities are now 0.37 and 0.35, respectively. The differences are not
large, indicating that few frequently appearing terms are also the terms that connect to
other frequently occurring terms. Next, we turn to identifying the key terms responsible
for the similarity and how they are shared in different lexicons.

3.4. Key Terms and Shared Key Terms

A rough idea of the rankings of key terms is provided in Table 4, where the top-most
key terms are listed in cumulative order, for C- and Q-based lexicons and for low and high
values of β. The key terms are listed in four cohorts. Cohort I contains all terms that are
found among the top 10 terms in at least eight lexicons, cohort II contains terms found
among the top 20 but not among cohort I, and similarly cohorts III and IV contain terms
that appear in the top 40 and 60 but not in any of the lower cohorts. From the results in
Table 4, we can see that in C-based lexicons, cohort I contains only a single shared term, in
contrast to Q-based lexicons, where several terms are shared.
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Table 4. Cumulative appearance of terms in cohorts of top 10 (I), 20 (II), 40 (III), and 60 (IV) terms,
for concurrence (Q) and contingency (C)-based ranking. Terms that appear in at least 8 lexicons are
listed. In the column for β = 0.3, terms that also appear for β = 50.0 are in boldface, and in the
corresponding column, only additional terms are listed.

Cohort β = 0.3 β = 50

Q-I concept, conceptual change, knowledge, student theory/ies
Q-II change, learn process
Q-III belief, children, explanation, model,

research, science, term, process nature, idea
Q-IV construct, epistemol., experience naive

information, misconception, p-prim, world
nature, idea, analog, coherence

C-I concept, student
C-II change, learn,conceptual change, knowledge, thery/(ies) student
C-III belief, children,research, science, term,

process,nature, explanation, idea
C-IV construct, epistemol., experience naive,idea

information, misconception, p-prim, world explanation
analog, coherence,evidence,model

This demonstrates the significance of optimization. In cohorts II–IV we can see many
differences when C- and Q-cohorts are compared. Although the collections of terms are
nearly the same, their positions within cohorts changed. Terms that appear in higher
Q-cohorts in comparison to their positions in C-cohorts are the terms that need to increase
their value of concurrence with other terms due to optimization (e.g., terms “conceptual”,
“change”, “knowledge”, and “theory”) to become better shared, and very few terms (e.g.,
“nature”) were moved lower cohorts due to optimization. The rankings of top terms in C-
and Q-based lexicons are thus different, although the differences are not dramatic. It is
noteworthy that in both C- and Q-lexicons, the effect of β on the rankings of the upper-most
terms was not very significant. This is in agreement with the result that cos-similarity
(which weights key terms) did not change dramatically with increasing value of β (see
Figures 5 and 6).

Taking the Q-based correlation centrality as the basis of the rankings, the occurrences
of the top-ranking terms in different lexicons are shown in Figure 7. The first panel,
Figure 7a, shows how frequently a given term (listed on the right) occurs among the top
10 terms. If, in a given lexicon, the term is found among the top 10 ranking terms in all 11
optimized lexicons, the symbol is dark purple; the fewer the occurrences, the lighter the
blue symbol. The occurrences among the 20 and 40 top ranking terms are shown in panels
Figure 7b,c, respectively; and finally, in panel Figure 7d, for the 60 top ranking terms. Only
cases where a given term is found in eight lexicons are shown.

In all texts, “concept”, “conceptual change”, “change(e)”, “student”, and “learn(ing)”
are among the top 10 terms; and “knowledge” and “theori(es)” are among the top 10 in
most lexicons. Other terms occur more sporadically, and one has large variability between
lexicons in the distribution of top terms. When attention is based on occurrence among
the 20 top terms, new frequently-occurring terms emerge. Among them are “science” and
“research(ing)”. Furthermore, “model” can be found among the top 20 terms in many
lexicons. In the set of 40 top ranking terms, new frequently-occurring terms are “structure”,
“coherence”, “belief”, and “misconception”. This shows how different common themes
emerge gradually as expanding shared sets of terms; the lexicons are overlapping. Finally,
in the set of the 60 highest ranking terms, two new blocks of interest emerge. One block
corresponds to framework theories with terms “frameworktheori(es)” and “coher(ence)”;
the other block consists of knowledge-as-elements view terms “knowledge(in)piec(es)” and
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“p-prim”. In addition, the terms “process”, “exper(ience)”, and “explanation” are featured
among the top 60 terms.

1 
 

 

Figure 7. Patterns of shared terms in optimized lexicons based on concurrence Q. Occurrences of
terms in top 10 (a), 20 (b) 40 (c), and 60 (d) cohorts in all 12 cases in the stabilized case with β = 50.
When a term in the lexicon occurs in all 11 tuned cases, the symbol is purple; otherwise blue. The
lighter the symbol, indicating occurrence, the fewer the tuned lexicons where the term occurs. Note
that only the terms occurring at least eight times are shown.

The breakdown of terms in cohorts of 10, 20, 40, and 60 top-ranking cohorts already
gives us an idea how terms and their semantic fields are shared by different optimized
lexicons, leading to the overlap and similarity of the lexicons. The top-ranking terms listed
in Figure 7 are also the terms denoted by large nodes in Figure 3. Together, the information
provided by these representations establishes a qualitative idea of which lexicons are similar
and on what basis of shared terms.

The breakdown of key terms in top-cohorts as based on concurrence Q can be com-
pared with similar breakdown when C-based correlation centrality is used as the basis of
ranking. The breakdown in top cohorts in that case is shown in Figure 8. Comparing the
results in Figure 7 to results in Figure 8, we see that with contingency C, key terms are not
shared as frequently as for concurrence Q; many lexicons that overlap by sharing key terms
with Q drop out for C. Comparison in Figures 7 and 8 finally answers the question of which
terms are the significant, tunable terms that are responsible for the increased similarity of
lexicons; they are the terms appearing in Figure 7 but not in Figure 8. In cases of cohorts of
top 10 and 20, we can locate several such important, tunable terms. On the other hand, the
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terms that appear in Figures 7 and 8 both, i.e., in practice nearly all terms in Figure 8, are
not tunable, or their roles are not changed by tuning. Therefore, in seeking better overlap of
lexicons, terms appearing in cohorts of top 10 and 20 terms in Figure 7 but not in Figure 8
are the most important ones.
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Figure 8. Patterns of shared terms in lexicons based on concurrence C. Occurrences of terms in top 10
(a), 20 (b) 40 (c), and 60 (d) cohorts in all 12 cases in the stabilized case with β = 50. Terms occurring
at least eight times are shown.

4. Conclusions

In this study, we have introduced an approach to constructing and comparing lexicons
of terms in scholarly texts. The purpose of the method is to provide a relatively simple
means to compare disciplinary differences as they appear in texts, and moreover, to study
the extent to which lexicons can be optimized for the best possible overlap. The approach
suggested here consists of three steps, each of which warrants some brief discussion.

First, we have adopted and utilized the recently suggested quantum semantics [38–40]
to construct and optimize lexicons. Quantum semantics allows us to describe how subjec-
tive biases affect connections between words, and thus, give the possibility of different read-
ings of the meanings of words. According to quantum semantics, the meanings of words
and terms are entangled so that different meanings can not be entirely separated [38–40].
The “quantumness” in this context does not refer to any physical-like quantization, but
rather, to a specific kind of a logic behind quantum physics, which allows the superposition
and entanglement of states (here, co-occurrence of words). Such a logical structure is pro-
vided by quantum logic, and therefore, the approach borrowing it is referred to as quantum
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semantics. A major shortcoming of quantum semantics as applied to a written text is the
ambiguity that remains in inferring the phase factors (see Appendix A) that determine
the degree of entanglement [38–40]. Due to that limitation, compound phase Θ remains
a fitting parameter. Although in principle the individual phase factors can be obtained
(see reference [39] for a discussion), it is impossible with the sample and data in focus here.
Therefore, we have only discussed results corresponding to extreme cases with classical
contingency C (no optimization) and complete optimization of concurrence Q. This shows
the possible bounds of variation of achieving overlap in lexicons, and thus, possibilities for
improved agreement of meaning as far as it is reflected in similar co-occurrence of words
in expressions. Despite many limitations, quantum semantics thus provides an alternative
to approaches in which semantic fields are constrained to have fixed meanings, without the
possibility of subjective bias. Interestingly, recent advances in quantum semantics [81] may
open a way to discuss the role of subjective experiences (e.g., including affective factors) in
determining the phase factors, and thus, tuning of lexicons. This possibility aligns well with
approaches where sentiment analysis is included as part of analysis of cognitive networks
(see, e.g., reference [31]. However, further discussions of such extensions is beyond the
scope of present study.

Second, on the basis of quantum semantics, lexicons of terms were constructed in the
form of networks and analyzed by utilizing path (walk) counting in terms of exponential
matrix transformation, which is widely used as the basis of network analysis [42–45]. Based
on exponential matrix transformation, a density matrix and correlation matrix [47] were
introduced to characterize the lexicons. The correlation matrix allowed us to define the
correlation centrality of nodes, used here to identify the important nodes in the lexicon.

Third, and finally, by using density matrices, comparisons of lexicons could be based
on information theoretic relative entropy (Jensen–Shannon divergence, JSD) [48,50–53].
Apart from the use of a correlation matrix, as suggested in reference [47], the other steps
were standard ones from other similarly focused studies, thereby requiring no further
discussion.

The method suggested here was tested by applying it in the analysis of 12 scholarly
texts about research in conceptual change. The results show that the method is able to
bring out the disciplinary differences, in agreement with the expectations and known
differences in the positions taken by different authors. That finding in itself was of course
not unexpected, and many features revealed by the semantic analysis were probably easy
to anticipate for those familiar with the content of the papers (see, e.g., reference [54]
and references therein). It was also found that although concurrence, contingency, and
frequency-based similarities produce different results, the differences are not dramatic;
in all cases nearly the same clusters of texts turned out to be the most similar to each
other. This indicates that frequently occurring terms are also the terms responsible for the
strongest links between term pairs. Such a dependence is expected on the basis of tight
focus of texts, and furthermore, a certain idiosyncratic way of authors discussing the topics.

Nevertheless, the results suggest that overlap of lexicons can be improved by optimiza-
tion (i.e., tuning for best agreement). If one takes the lexicons central for communicating
ideas across different disciplinary groups, as in Kuhn’s view [16–18], the ability to improve
overlap can be taken as a proxy to enhance and improve communication of ideas and find
a consensus of views.

In summary, we have demonstrated that a relatively simple (but many stepped)
method of analysis which is a generalization of word co-occurrence counting is a viable
way to construct and compare lexicons. It brings out the disciplinary differences in scholarly
texts, and thus can be used to study differences in how various disciplinary schools frame
their key concepts and use them in disseminating their ideas. We believe that having a
sufficiently simple method for such analyses will help to lower the threshold to adopt
network-based methods in fields of research (e.g., educational and behavioral science)
where such methods are not yet well known, but where they might provide significant
support for more traditional interpretative research approaches.
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Appendix A. Concurrence

In quantum semantics [38–40], word co-occurrence is described as a two-state event:
words A and B may both occur at least once in a block of text, only one of them might
occur (at least once), or neither A nor B occurs. Occurrence is described by tag 1 and
non-occurrence by 0. By adopting this simple prescription for co-occurrence counting, the
outcomes can be coded as pairs |00 > (neither A nor B occur), |01 > (A does not occur
but B occurs), |10 > (A occurs but not B), and |11 > (A and B both occur). These states
|00〉, |11〉, |01〉, and |10〉 are the basic building blocks of the well-known qubit states of two
two-state systems [38–40]. Note that we use here the so called bra-ket notation for states,
but this is not essential here, and notation can be taken as a shorthand for indexing states of
co-occurrence. The frequencies to find each of them in counting the co-occurrence of words
in sentences of a given text are denoted by n00, n01, n10, and n11, respectively.

Having defined the elementary states |00〉, |01〉, |10〉, and |11〉, we can construct a
superposition of these states, corresponding to the most general possibility of all potential
ways to build up the word meaning as it is realized in different sentences. Such a state can
be constructed from a two qubit pure states in the form [38,40]

|Ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉 (A1)

where amplitudes cij are complex numbers related to real valued frequency nij with nor-
malization Σnij = Σ|cij|2 = 1 and also including phase factors φij in the form

cij =
√

nij eiφij (A2)

As discussed in detail in reference [38], phase factors φij can be taken as parameters that
describe various possible subjective ways to read meanings into the co-occurrence of terms
A and B, i.e., to emphasize the meaning of a connection differently. Such biased and
subjective ways to emphasize connections are supposedly at least one factor behind the
differences in understanding meanings of words [38–40], and with similar arguments, can
be also extended to cases where scientific terms have different, disciplinary-dependent
meanings in different scholarly texts. The question of how phase factors should be adjusted,
and how they are related in detail in subjective factors, is an unsolved problem, and
therefore, they are usually treated as post factum fitting parameters (see reference [39]
for a detailed discussion). Nevertheless, the expressions in Equations (A1) and (A2) now
allow us to take into account a kind of entanglement effect due to biased emphasis on
co-occurrence.

Factorization of state |Ψ〉 in Equation (A1) into independent marginal states of single
qubits is not possible in general; the state is said to be entangled. Different entanglements
then correspond to different subjective, biased readings of the meaning of co-occurrence.
Recently, it has been suggested that the degree of entanglement can be quantified as a
difference between the factorized state and entangled state, called a concurrence Q [38,40],
following the way the entangled states are characterized in quantum information the-
ory [68]. The basic idea behind such an approach is a notion that entanglement becomes
measurable by switching the order of appearance of the co-occurrence, thereby changing
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the state as opposite to the original [40]. Technically, as pointed out by Galofaro et al., this
is an “abstract machine” corresponding a quantum logic gate as applied to word mean-
ing [40]. Such an “abstract machine” of transformation of meaning can be now constructed
by utilizing Pauli spin-operator σy, with the result [38,68]

Q = 〈Ψ| σy ⊗ σy |Ψ∗〉 (A3)

where ∗ denotes a complex conjugate. Evaluating the expression in Equation (A3) for state
in Equation (A1) is straightforward, leading to the result [38]

Q = 2 | c01c10 − c00c11| , 0 ≤ Q ≤ 1 (A4)

Next, by substituting in Equation (A3) the amplitudes in Equation (A2), we finally get the
concurrence in terms of co-occurrence frequencies and phase factors, in the form [38]

Q = Q0

√
1−Θ

√
n01n10n00n11

(n01n10 + n00n11)/2
, (A5)

where Q0 = 2
√

n01n10 + n00n11 and Θ = cos(φ01 + φ10 − φ00 − φ11) is the compound
phase factor, taken here as the free parameter to account for (unknown) phase factors. It
is interesting to note that the last term in the square root is the ratio R of the geometric
mean of n10n01 and n00n11 to their arithmetic mean. With these abbreviations concurrence,
one obtains a simple form Q = Q0

√
(1−ΘR) of Equation (1), where entanglement is now

possible only in cases R 6= 0.

Appendix B. Density Matrix and Correlation Matrix

In a very basic level, a network is characterized by its nodes (vertices), links between
nodes (edges) and weights of the links, and the corresponding relevant magnitude or
value characterizing the connection. This information is contained in a condensed form
in weighted adjacency matrix W, where entries [W]ij = Wij provide the weight of a link
between nodes i and j if there is a link connecting the nodes; otherwise, Wij = 0. Here, we
assume that matrices are symmetric, i.e., Wij = Wji.

A probability density-like quantity called density matrix ρ characterizing the network
can be introduced through matrix exponential transformation exp[ βW ] [42–46]. This
transformation is related to weighted path (or walk) counting between nodes, as can be
seen through power-series expansion

exp[β W] = I +
β1W1

1!
+

β2W2

2!
+

β3W3

3!
. . . , (A6)

where matrix power Wk counts weight of paths (walks) of length k, and each element
exp[βW]ij provides the weighted count connecting nodes i and j. Note that the exponential
transformation weights the paths according to their length k by a weight factor βk and the
inverse of the factorial k!. Therefore, connections with short paths gain more importance
than those with long paths.

When we normalize the exponential transformation in Equation (A6), we obtain the
density matrix

ρ = Z−1 exp[ βW ] , (A7)

where Z = Tr exp[ βW ] is a normalization factor. Due to normalization, Trρ = 1 the matrix
has an analogous role to probability density; due to its constructions based on a real and
symmetric matrix W, it is Hermitian; and finally, due to exponential matrix transformation,
it is a positive semidefinite matrix; therefore, it can be taken as a density matrix [42–44,47].

The density matrix ρ provides a way to formulate a correlation matrix describing how
nodes’ positions in the network as they relate to their adjacency (i.e., steps separating the
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nodes) are correlated [47]. Following Estrada’s derivation (see reference [47]), we introduce
a matrix Γ in the form

Γ = γ−
1
2 ρ γ−

1
2 , (A8)

where γ = Diag[Γ] is a diagonal matrix. Note that quantity Γ in Equation (A8) differs from
definition of similar quantity C in reference [47] (Equation 3.3) only by normalization factor
Z we use to define density matrix in Equation B.2, but it cancels out, making Equation (A8)
equivalent to Equation (3.3) in reference [47]. To avoid confusion, we remind the reader that
for obvious reasons of notation used in the present study, we have used different symbols
in comparison to reference [47].

By tracing the steps of argument in reference [47] (from Equation 3.3. to 3.6), the ele-
ments of [Γ]ij of the correlation matrix can be shown to be directly related to the covariance
of values of nodes i and j in the network [47]. Here, these intermediate steps or arguments
are not repeated, because they are exactly the same as in reference [47]. The correlation
matrix Γ provides now a way to find the key nodes on the basis of correlations; nodes
correlated strongly with other nodes are important, and the weaker correlation, the less the
significance of the node.
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et al. Science of science. Science 2018, 359, e0185.
11. De Domenico, M.; Omodei, E.; Arenas, A. Quantifying the diaspora of knowledge in the last century. Appl. Netw. Sci. 2016, 1, 15.
12. Ding, J.; Ahlgren, P.; Yang, L.; Yue, T. Disciplinary structures in Nature, Science and PNAS: Journal and country levels.

Scientometrics 2018, 116, 1817–1852.
13. Herrera, M.; Roberts, D.C.; Gulbahce, N. Mapping the Evolution of Scientific Fields. PLoS ONE 2010, 5, e10355.
14. Milojevic, S. Quantifying the cognitive extent of science. J. Informetr. 2015, 9, 962–973.
15. Leydesdorff, L.; Adina Nerghes, A. Co-word Maps and Topic Modeling: A Comparison Using Small and Medium-Sized Corpora.

J. Assoc. Inform. Sci. Tech. 2017, 68, 1024–1035.
16. Kuhn, T.S. The Road since Structure; University of Chicago Press: Chicago, IL, USA, 2000.
17. Hoyningen-Huene, P. Reconstructing Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 1993.
18. Gattei, S. Thomas Kuhn’s Linguistic Turn and the Legacy of Logical Empiricism; Routledge: Oxon, UK, 2016.
19. Callon, M.; Courtial, J.-P.; Turner, W.A.; Bauin, S. From translations to problematic networks: An introduction to co-word analysis.

Soc. Sci. Inform. 1983, 22, 191–235.
20. Leydesdorff, L. Words and co-words as indicators of intellectual organization. Res. Policy 1989, 18, 209–223.
21. Tijssen, R.; Van Raan, A. Mapping co-word structures: A comparison of multidimensional scaling and LEXIMAPPE. Scientometrics

1989, 15, 283–295.
22. Lehmann, F. Semantic networks. Comp. Math. Apll. 1992, 23, 1–50.
23. Carley, K.M. Network text analysis: The network position of concepts. In Text Analysis for the Social Sciences: Methods for Drawing

Statistical Inferences from Texts and Transcripts; Roberts, C.W., Ed.; Lawrence Erlbaum: Mahwah, NJ, USA, 1997; pp. 79–102.
24. Leydesdorff, L.; Welbers, K. The semantic mapping of words and co-words in context. J. Informetr. 2011, 5, 469–475.
25. Blei, D.M.; Lafferty, J.D. Topic models. In Text Mining: Classification, Clustering, and Applications; Srivastava, A.N., Sahami, A., Eds.;

Taylor and Francis: London, UK, 2009; pp. 71–94.
26. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.



Entropy 2022, 24, 1058 24 of 25

27. Amancio, D.R.; Oliveira, O.N., Jr.; da Fontoura Costa, L. Structure–semantics interplay in complex networks and its effects on the
predictability of similarity in texts. Physica A 2012, 391, 4406–4419.

28. Kulig, A.; Drozdz, S.; Kwapien, J.; Oswiecimka, P. Modeling the average shortest-path length in growth of word-adjacency
networks. Phys. Rev. E 2015, 91, 032810.

29. Yin, X.; Wang, H.; Yin, P.; Zhu, H.; Zhang, Z. A co-occurrence based approach of automatic keyword expansion using mass
diffusion. Scientometrics 2020, 124, 1885–1905.

30. Zhu, X.; Zhang, Y. Co-word analysis method based on metapath of subject knowledge network. Scientometrics 2020, 123, 753–766.
31. Teixeira, A.S.; Talaga, S.; Swanson, T.J.; Stella, M. Revealing semantic and emotional structure of suicide notes with cognitive

network science. Sci. Rep. 2021, 11, 19423.
32. Christianson, N.H.; Sizemore, B.A.; Bassett, D.S. Architecture and evolution of semantic networks in mathematics texts. Proc. R.

Soc. A 2020, 476, 20190741.
33. Chai, L.R.; Zhou, D.; Bassett, D.S. Evolution of semantic networks in biomedical texts. J. Complex Netw. 2020, 8, cnz023.
34. Ribeiro, E.; Teixeira, A.S.; Ribeiro, R.; de Matos, D.M. Semantic frame induction through the detection of communities of verbs

and their arguments. Appl. Netw. Sci. 2020, 5, 69.
35. Medeuov, D.; Roth, C.; Puzyreva, K.; Basov, N. Appraising discrepancies and similarities in semantic networks using concept-

centered subnetworks. Appl. Netw. Sci. 2021 6, 66.
36. de Arruda, H.F.; Silva, F.N.; Marinho, V.Q.; Amancio, D.R.; da Fontoura Costa, L. Representation of texts as complex networks: A

mesoscopic approach. J. Complex Netw. 2018, 6, 125–144.
37. Amancio, D.R. Probing the Topological Properties of Complex Networks Modeling Short Written Texts. PLoS ONE 2015, 10,

e0118394.
38. Surov, I.A.; Semenenko, E.; Platonov, A.V.; Bessmertny, I.A.; Galofaro, F.; Toffano, Z.; Khrennikov, A.Y.; Alodjants, A.P. Quantum

semantics of text perception. Sci. Rep. 2021, 11, 4193.
39. Surov, I.A. Quantum Cognitive Triad: Semantic Geometry of Context Representation. Found. Sci. 2021 26, 947–975.
40. Galofaro, F.; Toffano, Z.; Doan, B.-L. A quantum-based semiotic model for textual semantics. Kybernetes 2018, 47, 307–320.
41. Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision. Cambridge University Press: Cambridge, UK, 2012.
42. Estrada, E. The Structure of Complex Networks: Theory and Applications. Oxford University Press: Oxford, UK, 2012.
43. Estrada, E.; Hatano, N.; Benzi, M. The physics of communicability in complex networks. Phys. Rep. 2012, 514, 89–119.
44. Benzi, M.; Estrada, E.; Klymko, C. Ranking hubs and authorities using matrix functions. Linear Algebra Appl. 2013, 438, 2447–2474.
45. Kunegis, J.; Fay, D., Bauckhage, C. Spectral evolution in dynamic networks. Knowl. Inf. Syst. 2013, 37, 1–36.
46. Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 2008,

201 82–94.
47. Estrada, E. Informational cost and networks navigability. Appl. Math. Comp. 2021, 397, 125914.
48. Biamonte, J.; Faccin, M.; De Domenico, M. Complex networks from classic to quantum. Comm. Phys. 2019, 2, 53.
49. Faccin, M.; Johnson, T.; Biamonte, J.; Kais, S.; Migdał, P. Degree Distribution in Quantum Walks on Complex Networks. Phys. Rev.

X 2013, 3, 041007.
50. De Domenico, M.; Biamonte, J. Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison. Phys. Rev.

X 2016, 6, 041062.
51. Gerlach, M.; Font-Clos, F.; Altmann, E. G. Similarity of Symbol Frequency Distributions with Heavy Tails. Phys. Rev. X 2016, 6,

021009.
52. Ré, M. A.; Azad, R. K. Generalization of Entropy Based Divergence Measures for Symbolic Sequence Analysis. PLoS ONE 2014, 9,

e93532.
53. Dias, L.; Gerlach, M.; Scharloth, J.; Altmann, E. G. Using text analysis to quantify the similarity and evolution of scientific

disciplines. R. Soc. Open Sci. 2018, 5, 171545.
54. Potvin, P.; Nenciovici, L.; Malenfant-Robichaud, G.; Thibault, F.; Sy, O.; Mahhou, M.A.; Bernard, A.; Allaire-Duquette, G.; Sarrasin,

J.B.; Brault Foisy, L.-M.; et al. Models of conceptual change in science learning: Establishing an exhaustive inventory based on
support given by articles published in major journals. Stud. Sci. Educ. 2020, 56, 157–211.

55. Carey, S. Reorganization of knowledge in the course of acquisition. In Ontogeny, Phylogeny, and Historical Development; Strauss, S.,
Ed.; Ablex: Norwood, NJ, USA, 1983; pp. 1–27

56. Posner, G.J.; Strike, K.A.; Hewson, P.W.; Gertzog, W.A. Accommodation of a Scientific Conception: Towards a Theory of
Conceptual Change. Sci. Educ. 1982, 66, 211–227.

57. Strike, K. A.; Posner, G. J. A revisionist theory of conceptual change. In Philosophy of Science, Cognitive Psychology, and Educational
Theory and Practice; Duschl, R.A., Hamilton, R.J., Eds.; Sunny Press: Newark, NJ, USA, 1992; pp. 147–176.

58. Vosniadou, S. Capturing and modelling the process of conceptual change. Learn. Instr. 1994, 4, 45–69.
59. Vosniadou, S.; Skopeliti, I. Conceptual change from the framework theory side of the fence. Sci. & Educ. 2014, 23, 1427–1445.
60. Vosniadou, S. Initial and scientific understandings and the problem of conceptual change. In Converging Perspectives on Conceptual

Change; Amin, T.G., Levrini, O., Eds.; Routledge: London, UK, 2017; pp. 17–25.
61. diSessa, A.A.; Sherin, B.L. What Changes in Conceptual Change? Int. J. Sci. Educ. 1998, 20, 1155–1191.
62. dSessa, A. A Bird’s-Eye View of the “Pieces” vs. “Coherence” Controversy (from the “Pieces” Side of the Fence). In International

Handbook of Research on Conceptual Change; Vosniadou, S., Ed.; Routledge, New York, NY, USA, 2013; pp. 35–60.



Entropy 2022, 24, 1058 25 of 25

63. diSessa, A. Knowledge in pieces: An evolving framework for understanding knowing and learning. In Converging Perspectives on
Conceptual Change; Amin, T.G., Levrini, O., Eds.; Routledge: London, UK, 2017; pp. 9–16.

64. Özdemir, G.; Clark, D.B. An overview of conceptual change theories. Eur. J. Math. Sci. Tech. Educ. 2007, 3, 351–361.
65. Amin, T.G.; Smith, C.L.; Wiser, M. Student Conceptions and Conceptual Change. Three overlapping phases of research. In

Handbook of Research on Science Education; Lederman, N.G., Abell, S.K., Eds.; Routledge: London, UK, 2014; Volume. 2, pp. 57–81.
66. Amin, T. Representation, concepts, and concept learning. In Converging Perspectives on Conceptual Change; Amin, T.G., Levrini, O.,

Eds.; Routledge: London, UK, 2017; pp. 129–139.
67. Porter, M.F. An algorithm for suffix stripping. Program 1980, 14, 130–137.
68. Wootters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245–2248.
69. Yule, G.U. On the Methods of Measuring Association Between Two Attributes. J. R Stat. Soc. 1912, 75, 579–652.
70. Warrens, M. J. On association coefficients for 2x2 tables and properties that do not depend on the marginal distributions.

Psychomterika 2008, 73, 777–789.
71. Bonett, D.G.; Price, R.M. Statistical Inference for Generalized Yule Coefficients in 2x2 Contingency Tables. Soc. Meth. Res. 2007, 35,

429–446.
72. Zhang, Z.; Shan, T.; Chen, G. Random walks on weighted networks. Phys. Rev. E 2013, 87, 012112.
73. Majtey, A.; Lamberti, P.W.; Prato, D.P. Jensen-Shannon divergence as a measure of distinguishability between mixed quantum

states. Phys. Rev. A 2005, 72, 052310.
74. Briët, J.; Harremoës, P. Properties of classical and quantum Jensen-Shannon divergence. Phys. Rev. A 2009, 79, 052311.
75. Lamberti, P. W.; Majtey, A. P.; Borras, A.; Casas, M.; Plastino, A. Metric character of the quantum Jensen-Shannon divergence.

Phys. Rev. A 2008, 77, 052311.
76. Osán, T. M.; D.G. Bussandri, D. G.; Lamberti, P. W. Quantum metrics based upon classical Jensen–Shannon divergence. Physica A

2022, 594, 127001.
77. Furuichi, S.; Mitroi-Symeonidis, F.-C.; Symeonidis, E. On Some Properties of Tsallis Hypoentropies and Hypodivergences. Entropy

2014, 16, 5377–5399.
78. Emmert-Streib, F.; Dehmer, M.; Shi, Y. Fifty years of graph matching, network alignment and network comparison. Inform. Sci.

2016, 346–347, 180–197.
79. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012.
80. Newman, M. Networks, 2nd ed.; Oxford University Press: Oxford, UK, 2018.
81. Surov, I.A. Natural Code of Subjective Experience. Biosemiotics 2022, 15, 109–139.


	Introduction
	Materials and Methods
	Text Samples
	Generalizing Word Co-Occurrence: Concurrence
	Constructing Lexicons from Concurrences
	Characterizing Lexicons: Density Matrix 
	Comparing Lexicons: Divergence and Similarity

	Results
	Word Frequency Statistics
	Lexicons: Concurrence and Construction
	Divergence and Similarity of Lexicons 
	Key Terms and Shared Key Terms

	Conclusions
	Appendix A
	Appendix B
	References

