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Abstract: The travel time prediction of vehicles is an important part of intelligent expressways. It 
can not only provide the vehicle distribution trend of each section for the expressway management 
department to assist the fine management of the expressway, but it can also provide owners with 
dynamic and accurate travel time prediction services to assist the owners to formulate more reason-
able travel plans. However, there are still some problems in the current travel time prediction re-
search (e.g., different types of vehicles are not processed separately, the proximity of the road net-
work is not considered, and the capture of important information in the spatial-temporal perspec-
tive is not considered in depth). In this paper, we propose a Multi-View Travel Time Prediction 
(MVPPT) model. First, the travel times of different types of vehicles of each section in the express-
way are analyzed, and the main differences in the travel times of different types of vehicles are 
obtained. Second, multiple travel time features are constructed, which include a novel spatial prox-
imity feature. On this basis, we use CNN to capture the spatial correlation and the spatial attention 
mechanism to capture key information, the BiLSTM to capture the time correlation of time series, 
and the time attention mechanism capture key time information. Experiments on large-scale real 
traffic data demonstrate the effectiveness of our proposal over state-of-the-art methods. 
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1. Introduction 
As an important part of transportation infrastructure, expressways provide im-

portant support for social economic development and people’s quality of life. However, 
in recent years, the number of vehicles in China has gradually increased, and the manage-
ment and planning of expressways have faced many problems. In order to improve the 
efficiency of vehicle management of expressways, China’s road management depart-
ments have deployed more than 20,000 sets of gantry equipment on expressways across 
China [1], and the intelligent charging and real-time location recording of vehicles have 
been realized, which further promotes the fine management of expressways [2]. This is of 
great significance to improve expressway traffic efficiency, reduce logistics costs, facilitate 
mass travel, and promote the high-quality development of expressways. At the same 
time, due to the construction of expressway infrastructure, the expressway gantry system 
also generates massive Electronic Toll Collection (ETC) data, which provides data support 
for the “ETC plus”. ETC data record most of the vehicles driving on the expressway, 
which basically reflects the traffic status of the expressway section [3]. Therefore, through 
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ETC data, we can accurately obtain the road utilization rate, traffic rate, traffic speed, 
travel time, etc., which can help us effectively predict the traffic flow [4], travel time [5], 
and speed [6] of all vehicle types in each section of the expressway. 

Travel time prediction is an important part of an intelligent expressway, which pro-
vides travelers with travel time information of each path, helps travelers make more in-
telligent travel decisions, and formulates more accurate and reasonable expressway driv-
ing schedules [7]. In addition, travel time prediction can also provide auxiliary decision-
making information for road management and rectification for traffic management de-
partments. A large number of researchers have studied travel time prediction [5,7,8], with 
the deepening of research, the error value is gradually reduced, but there are still some 
problems. First, there is no separate discussion of different types of vehicles, and different 
types of vehicles on expressways have different travel characteristics [8]. Most researchers 
predict the future travel time based on the overall travel time of all vehicles, which may 
seriously affect the accurate prediction of travel time and cannot be applied to fine ex-
pressway management. Second, the road proximity is not considered, which has great 
influence on traffic prediction [9]. However, the proximity of the road network is not con-
sidered in the current travel time prediction research. Third, the important information 
extraction does not consider both spatial and temporal features. In the long-term sequence 
processing, different information of time dimension and space dimension has different 
weights for the prediction model [10,11]. If more weight can be given to the important 
information of the two dimensions of time and space, the accuracy of the prediction model 
could be further improved. 

To address the aforementioned challenges, we propose a Multi-View Travel Time 
Prediction Model (MVTTP). First, the travel time characteristics of each vehicle type on 
the expressway are analyzed, and the vehicles are classified according to the difference in 
travel time of each vehicle type. On this basis, we consider multi-view spatial-temporal 
features to construct feature vectors, where we propose a novel spatial proximity feature. 
Finally, we propose a new deep learning framework in which the Convolutional Neural 
Network (CNN) captures the spatial dependency of the network structure and then adds 
a spatial attention mechanism to weight the important information, and the Bi-directional 
Long Short-Term Memory (BiLSTM) captures the temporal dependency of the time series 
and adds a temporal attention mechanism to capture the important temporal features. The 
experimental results show that the predicted values after classification are closer to the 
real travel time values and that the model has better prediction performance. The predic-
tion performance of the model is also improved after considering the spatial proximity, 
and the proposal has better prediction performance compared with other deep learning 
methods. 

Our contributions are summarized below: 
 We analyze the travel time of expressway, find out there are great differences in the 

travel time of different types of vehicles, and further verify the necessity of separate 
predictions for different types of vehicles. 

 We propose a road network proximity feature for travel time prediction, which can 
perceive the correlation of adjacent sections in the space of the road network. 

 We propose a novel travel time prediction model, which considers the road network 
proximity, temporal and spatial correlation, and can capture the key spatial-temporal 
information. 

 We conducted extensive experiments on real- traffic datasets. The results show that 
our method consistently outperforms the competing baselines. 
The organization of this paper is as follows: The first section is the introduction; the 

second section is the related work. The third section is the details in the Methodology. The 
fourth section is the Experimental Results and Analysis, and finally, the fifth section is the 
Conclusion. 
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2. Related Work 
At present, travel time prediction models can be divided into two categories, one is 

model driven, the other is data driven. [12]. Model-driven methods were a common travel 
time prediction model in the past. [13], which are mainly divided into queuing models 
and cell transmission models. With the development of business and industry, a large 
amount of data is collected, and data-driven prediction has become a hot research topic 
[14], which can be divided into machine learning algorithms and deep learning models. 

Model-driven methods predict future travel time by modeling parameters in traffic 
models [12]. In the development of model-driven travel time prediction, Takaba et al. [15] 
use leakage a model and delay model based on queuing theory to predict travel time; their 
results show that the leakage model has a better performance than the delay model. Ska-
bardonis et al. [16] take the free travel time and traffic signal delay time as the total travel 
time of the vehicle and used the queuing theory model based on motion wave theory to 
predict total travel time. Juri et al. [17] combined statistical prediction technology with cell 
transmission model, using a sliding window framework for online travel time prediction, 
which is a point-to-point, online, short-term prediction method. Seybold et al. [18] pro-
posed an improved cell transmission model to predict travel time, which uses the least 
square method and global least square method to optimize model parameters. Model-
driven prediction has a relatively complete traffic model and theoretical system, which 
can clearly explain the relationship between various traffic volumes. However, its predic-
tion time is short, and its prediction performance is not good. 

The data-driven method mainly uses a large number of historical data to conduct the 
model learning and parameter optimization. Then, the model can achieve the effect of an 
approximately real situation [19]. It is mainly divided into the traditional time series pre-
diction method, the machine learning method, and the deep learning model [20]. The tra-
ditional time series prediction algorithms mainly include Autoregressive Integrated Mov-
ing Average (ARIMA) and Historical Average (HA), which were once widely used in the 
field of traffic forecasting [21]. However, since these methods are based on historical rec-
ords for forecasting, they cannot capture the context features of the data and are gradually 
replaced by machine learning algorithms. 

With the development of machine learning and deep learning, a large number of 
travel time prediction methods based on machine learning or deep learning have been 
proposed. Before 2016, Machine learning is a hot research topic [22,23], most of the re-
search on travel time prediction was based on machine learning methods and feature vec-
tors for travel time prediction. However, in 2016, the deep learning system AlphaGo de-
veloped by Google defeated the championship of human chess, the deep learning once 
again became a research hotspot in various fields [24–26]. Since then, deep learning-based 
travel time has also become a research hotspot in the field of transportation. 

The mainstream algorithms of machine learning for travel time prediction include 
Support Vector Regression (SVR), K-Nearest Neighbor (KNN), Linear Regression (LR), 
Adaptive Boosting (AdaBoost), etc. Kwon et al. [7], based on LR, used stepwise variable 
selection and decision trees to predict the travel time of expressways. Rice et al. [27] also 
proposed an improved LR with time-varying coefficient, which uses historical time and 
the traffic condition of the day to predict travel time. Vanajakshi et al. [28] used SVR to 
predict short-term travel time. Based on this, Qiu et al. [29] predicted travel time by using 
floating car trajectory data and radar velocity data based on SVR. Castro-Neto et al. [30] 
proposed an online support vector machine (OL-SVR) for travel time prediction in atypi-
cal traffic conditions such as traffic accidents, bad weather, and holidays. Yao et al. [31] 
used the travel time, traffic flow, and road occupancy of historical time as the input of 
SVR, and selected Gaussian radial basis function as the kernel function to predict the 
travel time. Wang et al. [32] predicted the travel time based on the improved KNN, using 
cross validation to determine the selection of the k value. Yao et al. [33] selected the train-
ing feature and the most similar neighbor days through the classification models of ran-
dom forest (RF) and KNN and then used the regression model of RF and KNN to predict 
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the time of traffic congestion. Traditional machine learning is the simple linear regression 
model, which fails to capture the complex nonlinear spatial-temporal correlations. 

Deep learning overcomes the limitations of the shallow learning of machine learning 
and can capture nonlinear spatial-temporal correlations well. Hopfield et al. [34] first pro-
posed a time RNN model. With the in-depth study of the RNN, the model has been grad-
ually applied to various fields. Yun et al. [35], used the Recurrent Neural Network (RNN) 
model for travel time prediction at expressway and urban intersections, and the experi-
mental results showed that the model has good prediction performance. Since RNN has 
difficulty preserving long-term memory and has the problems of vanishing gradients and 
explosion gradients, researchers thus proposed to use Long Short-Term Memory (LSTM) 
[36], Gated Recurrent Unit (GRU) [37], and Bi-directional Long Short-Term Memory 
(BiLSTM) [38] for travel time prediction. However, it is difficult for a single neural net-
work to capture both temporal and spatial correlations in a long time sequence.  

With the development of deep learning [39], combining the advantages of multiple 
single deep learning models into complex deep learning models has become a hot research 
topic in time series prediction [40]. Yao et al. [21] proposed a combined model for traffic 
flow prediction in which CNN and LSTM capture the spatial-temporal correlation of traf-
fic flow and then use the periodically shifted attention mechanism to capture the perio-
dicity and the flow gating mechanism to explicitly model dynamic spatial similarity. Liu 
et al. [41] also used a combined model for traffic flow prediction, which used Convolution 
LSTM to extract spatial-temporal correlations of traffic flow, and then used Bi-LSTM to 
capture periodicity. Guo et al. [42] combined CNN with LSTM to capture both temporal 
and spatial correlations in population flow prediction, and used temporal attention mech-
anisms to capture more important temporal information. Xu et al. [43] utilized feature 
embedding blocks to capture semantic information from multiple features. Then, based 
on the spatial attention mechanism and the temporal attention mechanism, captured the 
spatial and temporal dependencies in the multimodal traffic demand. In the above deep 
learning combined prediction model, they use the convolution idea to capture the spatial 
correlation, use the recurrent neural network to capture time correlation, and use the at-
tention mechanism to capture important spatial-temporal information.  

At the same time, the combined model is also widely used in travel time prediction 
[44]. Li et al. [45] used CNN and LSTM to obtain spatial-temporal correlation, and then 
used the time attention mechanism to correct the drift error in travel time. Fang et al. [46] 
used a graph neural network (GCN) and a graph attention mechanism to obtain the spa-
tial-temporal correlation of travel time and used CNN to obtain the spatial context infor-
mation. Wang et al. [47] proposed a geo-based convolution, which converted the GPS se-
ries into a feature map, and then used LSTM to obtain the temporal correlation and a 
channel attention mechanism to capture the important information between different sub-
paths. The above combined travel time models can capture both temporal correlations and 
spatial correlations, but they do not have an attention mechanism that considers both time 
and space.  

In summary, the difference of our proposed method compared with the literature is 
that we consider both spatial and temporal attention mechanism, and we also consider 
the travel time difference in vehicle types and the proximity of road network. 

3. Methodology 
3.1. Overview 

In this section, we give an overview of the proposed model as shown in Figure 1. 
First, we preprocess the data to remove abnormal data and ensure the integrity of the data. 
On this basis, we converted the ETC data into vehicle trajectories based on the gantry 
topology data, so that we could obtain the travel time of vehicles in all sections. However, 
there is no traffic flow in a certain period of time in some sections, so there is no travel 
time in a certain time interval. Therefore, we supplemented the missing data by repairing 
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the algorithm. After preparing the data, we analyzed and modeled multiple features, and 
process the vehicle separately according to the vehicle type. Finally, we used CNN to cap-
ture spatial correlation and BiLSTM to capture temporal correlation and then used the 
attention mechanism of spatial and temporal information to capture important infor-
mation for model prediction. Therefore, we could obtain the predicted travel time of each 
vehicle. 

ETC dataGantry topology data Trajectory set

ETC dataset
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Figure 1. Overall framework. 

3.2. Notations and Problem Formulation 
In this section, we first fix some notations and define the travel time prediction prob-

lem. We follow previous studies [48] and define the set of time intervals as ܫ =<
,ଵܫ ,ଶܫ … , ௧ܫ , ்ܫ >. We further define the following: 

ETC data. When the vehicle passes through the ETC gantry, the Road Side Unit (RSU) 
on the gantry will conduct an information transaction with the On Board Unit (OBU) of 
the vehicle. The RSU will record the vehicle ID, the gantry ID, the time of information 
transaction, the expressway entrance of the vehicle, and other information and then up-
load it to the ETC system. This uploaded information constitutes the ETC data ܽݐܽ݀ܧ. 

Section: The ETC gantry of the expressway is called ܰ݁݀݋, the area between two 
adjacent gantries forms a section which is referred to as ܳܦ =< ,ݐܽܦ ݏ݅݀ > ݐܽܦ , =
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,ଵ݁݀݋ܰ}  are shown ܦܳ and ݁݀݋ܰ .is the distance between two nodes ݏ݅݀ ଶ}, where݁݀݋ܰ
in Figure 2. The set of all sections (i.e., expressway network) can be express as ܹܮ =
,ଵܦܳ} ,ଶܦܳ … ,  .{௡ܦܳ

QD2

QD3

QD1

QD4

Node2 Node3

Node3'Node2'Node1'

Node1

 
Figure 2. Schematic of the sections. 

Vehicle trajectory: A set of ETC gantry ܽݐܽ݀ܧ through which a vehicle passed while 
driving on the expressway, ܽݐܽ݀ܧ = ,ଵ݁݀݋ܴܰ} ,ଶ݁݀݋ܴܰ {௡݁݀݋ܴܰ ݁݀݋ܴܰ , =<
,ܦܫ ܶ݅݉݁, ,ܦܫݎ݁ݐ݊ܧ … . > ܽݐܽ݀ܧ .  are composed of multiple gantry transaction records, 
-is the gantry Identity Docu ܦܫ ;s contain more than 100 data attributes݁݀݋ܴܰ .݁݀݋ܴܰ
ment (ID); ܶ݅݉݁ is the transaction time of the gantry; ܦܫݎ݁ݐ݊ܧ is the enter station ID. 
ETC data, ܽݐܽ݀ܧ,  can be converted into vehicle trajectory data, ܽݐܽ݀ܧ → ݆ܽݎܶ =
,଴ܦ} ,ଵܦ ݅ܦ … ,݆ܦ ௜ܦ ,{ாܦ = ( ௜ܰ , ௜ܶ), 0 ≤ ݅ ≤ ݅∀ ,ܧ ≤ ݆, ௜ܶ ≤ ௝ܶ -௜ is the trajectory point, inܦ .
cluding node ௜ܰ and time property ௜ܶ. ௜ܰ is the label of the i-th node passed by the ve-
hicle, and ௜ܶ is the information interaction time when the vehicle passes through node 

௜ܰ. ܦ଴ is the start-point of the trajectory, and ܦா is the end-point of the trajectory. 
Vehicle type: China’s license plates mainly include blue license plates, yellow license 

plates, green license plates, white license plates, and black license plates. In order to clarify 
the meaning of the vehicle type, the vehicle is divided into five categories according to the 
color of the license plate. They are Class A vehicle (blue license plate), Class B vehicle 
(yellow license plate), Class C vehicle (green license plate), Class D vehicle (white license 
plate), and Class E vehicle (black license plate). In addition, all vehicles together are called 
Class F vehicles. 

Travel time: The time consumed by a vehicle passing a certain section <
,1݁݀݋ܰ 2݁݀݋ܰ > is called travel time ∆ݐ: 

ݐ∆ = ௡௢ௗ௘ଶݐ − ௡௢ௗ௘ଵ (1)ݐ

If ݉ vehicles pass section ܳܦ௝ at time window ݅, the travel time ∆ݐ௜
௝,௔௟௟ of all vehi-

cles at section ܳܦ௝ at time window ݅ can be expressed as: 

௜ݐ∆
௝,௔௟௟ = ൛∆ݐ௜

௝,ଵ, ௜ݐ∆
௝,ଶ, … , ௜ݐ∆

௝,௠ൟ (2)

The average travel time ௜ܻ
௝ of the section ܳܦ௝ of ݉ vehicles at time window ݅ can 

be expressed as: 

௜ܻ
௝ = ෍ ௜௝ݐ∆

௝,௖/݊
௠

௖ୀଵ
 (3)

Travel time prediction problem: The travel time prediction problem aims to predict the 
travel time of ݐ + 1 time interval, given the data until time interval ݐ. In addition to his-
torical travel time data, we also include relevant context features, including spatial prox-
imity features, spatial correlation features, time correlation features, and traffic situation 
correlation features. We define the context feature of section ݆ at time point ݅ as a vector 
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݁௜
௝ ∈ ℝ௥, and ݎ as the number of features. Therefore, travel time prediction can be ex-

pressed as: 

௜ܻାଵ
௝ = ℱ( ௝ܻି௛,…௝

ொ஽ , … , ℰ௝ି௛,…௝
ொ஽ ) (4)

For ݆ ∈ ௝ܻି௛,…௝ ,ܦܳ
ொ஽  is historical travel time, where ݆ − ℎ denotes the starting time. 

ℱ(. ) is the prediction function. ℰ௝ି௛,…௝
ொ஽  are context features for all sections ܳܦ for time 

intervals from ݆ − ℎ to ݆. ℰ can be expressed as: 

ℰ =

⎣
⎢
⎢
⎢
⎡ℰ௖

ଵ, ℰ௖
ଶ, … , ℰ௖

௡

ℰ௦
ଵ, ℰ௦

ଶ, … , ℰ௦
௡

ℰ௧
ଵ, ℰ௧

ଶ, … , ℰ௧
௡

ℰ௭
ଵ, ℰ௭

ଶ, … , ℰ௭
௡⎦

⎥
⎥
⎥
⎤
 (5)

where ℰ௖ is the spatial proximity features, ℰ௦ is the spatial correlation features, ℰ௧ is the 
time correlation features, ℰ௭ is the traffic situation correlation features, and ℰ௡ denotes 
the context features from ݊-th time intervals. 

3.3. Data Preprocessing 
3.3.1. Raw Data Cleaning 

ETC gantries record transaction time, vehicle license plate, toll station, and other in-
formation when the vehicle passes through the ETC gantry. However, there are some spe-
cial conditions (e.g., terrible weather, vehicle OBU anomaly, gantry RSU anomaly) that 
make the ETC system record abnormal data. Through research and analysis, the main 
abnormal data can be divided into data redundancy and data error, as shown in Tables 1 
and 2, where *, ** represents other characters that are not displayed. 

Data redundancy: The transaction information of each vehicle passing through the 
ETC gantry should be unique. However, data collection, transmission, storage procedures 
may not work properly, resulting in multiple uploads of data. Therefore, these data need 
to be cleaned. 

Table 1. Examples of data redundancy. 

Tradeid Obuid Tradetime Flagid Carplate … 
G001639 ** 6A59 ** 27 May 2021 6:21:38 3402 * Blue MinA12 … 
G001639 ** 6A59 ** 27 May 2021 6:21:38 3402 * Blue Min A12 … 
G001639 ** 6A59 ** 27 May 2021 6:21:38 3402 * Blue Min A12 … 
G001639 ** 6A59 ** 27 May 2021 6:21:38 3402 * Blue Min A12 … 

Data error: Data attributes differ from normal traffic data. There are three main cases: 
The first is that the data are not normally collected, which is replaced by special characters 
(e.g., Error 1). The second is that data are lost due to abnormalities in the system during 
transmission, and the system uses random characters to replace lost data (e.g., Error 2, 
Error 4). The third is that the data do not conform to normal traffic rules (e.g., Error 3), the 
time of the trade station being later than the time of the enter station. Therefore, these data 
need to be cleaned 

Table 2. Examples of data error. 

Class Obuid Entime Flagid Ttradetime … 
Error 1 62F3 ** 000000 3502 * 20 May 2021 11:21:38 … 
Error 2 6873 ** 22 May 2021 7:31:54 a6p823 22 May 2021 13:11:50 … 
Error 3 628A ** 25 May 2021 8:21:38 350A * 25 May 2021 0:56:32 … 
Error 4 236d45 29 May 2021 9:29:11 3502 * 29 May 2021 15:23:11 … 

3.3.2. Vehicle Travel Time Construction 
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After preprocessing the ETC data, we construct the trajectory of each vehicle through 
the gantry sequence, and then calculate the section travel time of the vehicle combined 
with the gantry topology data, the details of the processing are shown in Algorithm 1. 
First, the trajectory of each vehicle is counted, and the vehicle trajectory is divided into 
multiple sections trajectory. Then, each section trajectory is matched with the gantry to-
pology data to check whether the section belongs to the expressway gantry topology. If 
there is, the travel time of the vehicle passing through the section is directly calculated; if 
not, we need to search for the shortest path of the section, through the shortest path of the 
section sequence, to add the missing gantry record. After the data are added, we can cal-
culate the travel time of all sections. The algorithm is as follows. 

Algorithm 1 Travel time window construction algorithm. 
Input: ETC data ܽݐܽ݀ܧ; Expressway road network topology data ܹܮ; 
Output: Vehicle travel time data ݐܦ; 
,ଵ݁݀݋ܴܰ}=ܽݐܽ݀ܧ :1 ,ଶ݁݀݋ܴܰ … , ܹܮ ,{௡݁݀݋ܴܰ = ,ଵܦܳ} ,ଶܦܳ … , ܦܳ ,{௡ܦܳ =< ,ݐܽܦ ݏ݅ܦ >; 
2: for ݅=0 to ݅=݊ − 1 do 
௜ =ܶ݅݉݁௜ାଵݐ∆ :4 − ܶ݅݉݁௜//Calculating the time difference of adjacent nodes; 
ݐܽܦ  :5 =< ݀݋ܴܰ ௜݁ , ܶ݅݉݁௜ , ,௜ାଵ݁݀݋ܴܰ ܶ݅݉݁௜ାଵ >//save the information of adjacent nodes; 
,ݐܽܦ) = ݐܦ  :6  ;௜),//save the vehicle passage informationݐ∆
7: end for 
7: if ܴܰ݁݀݋௜ and ܴܰ݁݀݋௜ାଵ in ܹܮ //if adjacent nodes are in topological data; 
,ݐܽܦ) = ݐܦ :8  ;௜)//the vehicle passage time remains unchangedݐ∆
9: else 
 {} = ݏ݅ܦ  :10
11:  { ଵܰ, ଶܰ, … , ܰ௠}  ← shortest path(ܹܮ, ܰ )//search for the shortest path, which ܰ =
௜݁݀݋ܴܰ} ,  ;{௜ାଵ݁݀݋ܴܰ
ݏ݅ܦ  :12 ← { ଵܰ, ଶܰ, … , ܰ௠}//the shortest distance is converted into distance; 
௜ݒ  :13 = /ݏ݅ܦ  ௜ܰ.்௜௠௘ .//calculate the speed of the front and back gantry; 
௜ݐ∆  :14 = ௜ܰାଵ.்௜௠௘ − ௜ܰ.்௜௠௘  

ݐܽܦ :15 =< ௜ܰ , ௜ܰ.்௜௠௘ , ௜ܰାଵ, ௜ܰାଵ.்௜௠௘ , ݐ∆ > 
,ݐܽܦ) = ݐܦ  :16  ;௜), //save the vehicle passage informationݐ∆
17: Return ݐܦ 

3.3.3. Repair of Missing Data of Time Interval 
In real traffic conditions, some sections with small traffic flow will have no traffic 

flow at a certain time interval, so there is no travel time feature in these time intervals. To 
solve this problem, some researchers will add an ideal value to replace missed data. Since 
the ideal value cannot truly reflect the traffic situation, it may cause some problems when 
predicting the travel time. Therefore, we filled the missing value according to the histori-
cal travel time correlation of the road network, the details of the processing are shown in 
Algorithm 2. 

Algorithm 2 The addition algorithm of missing data in time window. 
Input: ݀ܽܽݐ = ,ଵݔ} ,ଶݔ ଷݔ … ,  ;௡}//The sequences with missing valuesݔ
Output: ݀ܽܽݐ∗ = ,ଵݔ} ,ଶݔ ,ଷݔ ସݔ … ,  ;௡}//The complete sequenceݔ
1: for ݅ ← 0 to ݊ do 
2:   if ݅ == 0 
3:       if ݀ܽܽݐ[݅] is ݊ܽ݊ and ݀ܽܽݐ[݅ + 1], data ݀ܽܽݐ[݅ + 2] is not ݊ܽ݊ 
[݅]ܽݐܽ݀          :4 ← (data[݅ + 1] + data[݅ + 2])/2; 
5:       end if 
6:   end if 
7:   if ݅ == 1 
8:       if ݀ܽܽݐ[݅] is ݊ܽ݊ and ݀ܽܽݐ[݅ − ݅]ܽݐܽ݀ ,[1 + 1] is not ݊ܽ݊ 
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[݅]ܽݐܽ݀          :9 ← (data[݅ − 1] + data[݅ + 1])/2; 
10:      end if 
11:  end if 
12:   if ݅ >= 2 and ݅ <= (n − 3) 
13:      if ݀ܽܽݐ[݅] is ݊ܽ݊ and ݀ܽܽݐ[݅ − ݅]ܽݐܽ݀ ,[1 + 1] is not ݊ܽ݊ 
[݅]ܽݐܽ݀         :14 ← (data[݅ − 1] + data[݅ + 1])/2; 
15:      end if 
16:      if ݀ܽܽݐܽ݀ ,[݅]ܽݐ[݅ + 1] is ݊ܽ݊ and ݀ܽܽݐ[݅ − ݅]ܽݐܽ݀ ,[1 − 2] is not ݊ܽ݊: 
[݅]ܽݐܽ݀         :17 ← (data[݅ − 1] + data[݅ − 2])/2; 
18:      end if 
19:      if ݀ܽܽݐܽ݀ ,[݅]ܽݐ[݅ − 1] is ݊ܽ݊ and ݀ܽܽݐ[݅ + ݅]ܽݐܽ݀ ,[1 + 2] is not ݊ܽ݊  
[݅]ܽݐܽ݀         :20 ← (data[݅ + 1] + data[݅ + 2])/2; 
21:      end if 
22:   end if 
23:   if ݅ == ݊ − 2 
24:      if ݀ܽܽݐ[݅] is ݊ܽ݊ and ݀ܽܽݐ[݅ − ݅]ܽݐܽ݀ ,[1 + 1] is not ݊ܽ݊ 
[݅]ܽݐܽ݀         :25 ← (data[݅ − 1] + data[݅ + 1])/2; 
26:      end if 
27:      if ݀ܽܽݐܽ݀ ,[݅]ܽݐ[݅ + 1] is ݊ܽ݊ and ݀ܽܽݐ[݅ − ݅]ܽݐܽ݀ ,[1 − 2] is not ݊ܽ݊ 
[݅]ܽݐܽ݀         :28 ← (data[݅ − 1] + data[݅ − 2])/2; 
29:      end if 
30:   end if 
31:   if ݅ == ݊ − 1 
32:      if ݀ܽܽݐ[݅] is ݊ܽ݊ and ݀ܽܽݐ[݅ − ݅]ܽݐܽ݀ ,[1 − 2] is not ݊ܽ݊ 
[݅]ܽݐܽ݀         :33 ← (data[݅ − 1] + data[݅ − 2])/2; 
34:      end if 
35:   end if 
36: end for 
 ܽݐܽ݀ ← ∗ܽݐܽ݀ :37
38: return ݀ܽܽݐ∗ 

The algorithm mainly repairs the missing values of the first part, the middle part, 
and the end part of the data and then supplements them according to the correlation of 
the travel time before and after the section. The repair effect is shown in Figure 3. Figure 
3 shows that the repair value will be dynamically supplemented according to the correla-
tion before and after, and the added value can almost reflect the real traffic situation. 

 
Figure 3. Repair effect of algorithm. 

3.4. Travel Time Analysis and Modeling 
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3.4.1. Differentiation Analysis of Vehicles 
There are many different types of vehicles on expressways in China, and the travel 

time of different types of vehicles may be different. Therefore, we analyze the travel time 
of two sections with long mileage and short mileage, and the distribution of travel time is 
shown in Figure 4. It can be drawn from the figure that the travel time of different types 
of vehicles is different, and the travel time of Class B vehicles is the largest difference with 
other types of vehicles, and its travel time value is much higher than the average travel 
time of all vehicles (Class F vehicle). The overall average travel time is almost in the mid-
dle between the Class B vehicles and other types of vehicle, which is smaller than that of 
the Class B vehicles and larger than that of other types of vehicles. Therefore, it can be 
concluded that there are differences in travel time among different types of vehicles. It is 
irrational to predict travel time with the overall travel time, and it is necessary to analyze 
the travel time of each vehicle separately. 

  
(a) (b) 

Figure 4. Travel times visualization of all types of vehicles: (a) is a visualization of section 1; (b) is a 
visualization of section 2. 

To effectively obtain the difference between each type of vehicle, we further analyze 
the above Sections 1 and 2. Figure 5 shows the travel time comparison of vehicles in two 
sections, and Figure 6 shows the average absolute error results of each type of vehicle. It 
can be drawn from Figure 5 that in addition to the vehicles with Class B vehicle, the travel 
time values of all types of vehicles have little difference, and the travel time of a Class B 
vehicle is significantly higher than that of other vehicle types. Figure 6 shows that the 
absolute error of travel time between Class B vehicle and other vehicles is relatively large, 
and the average absolute error between other types of vehicles is relatively small. There-
fore, Class B vehicles and other types of vehicles need to be processed separately. The 
travel time of vehicles is mainly between Class II vehicles (Class B vehicle, just that, big 
vehicles with yellow license plates) and Class I vehicle (Class A vehicle, Class C vehicle, 
Class D vehicle, Class E vehicle, just that, small vehicles with other color license plates). 
we mainly construct two travel time prediction models of Class I and Class II vehicles to 
realize the travel time prediction of expressways. 
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(a) (b) 

Figure 5. Travel time statistics of different types of vehicles: (a) is the statistics for section 1; (b) is 
the statistics for section 2. 

  
(a) (b) 

Figure 6. Average absolute error of travel time between different types of vehicles: (a) is the statis-
tics for section 1; (b) is the statistics for section 2. 

3.4.2. Context Features Modeling 
In this section, we will introduce each context feature in detail 

(1) Spatial proximity features 
Near things are more related than distant things [49]. There is a strong continuity 

between the sections of the expressway, so the flow and speed between the sections are 
correlated in the road network [9]. However, each section of the road network has differ-
ent distances, and the travel time of the upstream and downstream sections will also be 
different. It is difficult to directly capture the correlation between adjacent sections. There-
fore, we consider converting the speed proximity of adjacent sections to the travel time 
proximity. We denote the section speed as ொܸ஽(௜), velocity has the correlation of adjacent 
sections, ௝ܸି௥ ∝ ⋯ ∝ ௝ܸ ∝ ⋯ ∝ ௝ܸା௥, and the section distance ݏ݅ܦொ஽(௜) is fixed. Therefore, 
we construct the travel time proximity ℰ௖ based on ݏ݅ܦொ஽(௜) and ொܸ஽(௜). ℰ௖ can be repre-
sented as: 
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ℰ௖ =  
௝ݏ݅ܦ

௝ܸ±௥
 (6)

where ݆ is the gantry number, and ݎ is the number of adjacent gantries. 
The ݎ value is the key to spatial proximity. To obtain the optimal range of ݎ, we use 

Pearson's correlation coefficient to analyze the influence factors of travel time data ௝ܶ±௥ 
on ௝ܶ . The calculation formula is: 

ߩ =
∑ ( ௝ܶ − ఫܶഥ)( ௝ܶ±௥ − ఫܶ±௥തതതതത)௡

௝ୀଵ

ට∑ ( ௝ܶ − ఫܶഥ)ଶ ∑ ( ௝ܶ±௥ − ఫܶ±௥തതതതത)ଶ௡
௜ୀଵ

௡
௜ୀଵ

 (7)

where ݊ represents the number of traffic samples, ௝ܶ  is the travel time of section ܳܦ௝, 
and ௝ܶ±௥ is the travel time of ݎ sections before and after section ݆. 

We selected three sections for spatial proximity analysis. As shown in Table 3, it can 
be concluded that with the increase in section distance, the correlation of proximity de-
creases gradually. There is a strong correlation between the two sections. 

Table 3. Pearson's correlation analysis of adjacent sections. 

Adjacent sections ௝ܶିଵ ௝ܶିଶ ௝ܶିଷ ௝ܶିସ 
 0.32 0.36 0.59 0.63 ࣋

Adjacent sections ௝ܶାଵ ௝ܶାଶ ௝ܶାଷ ௝ܶାସ 
 0.263 0.38 0.51 0.60 ࣋

(2) Spatial correlation features 
In the road network, different sections have similar traffic speeds and zone mileages; 

that is, they have similar travel times, so the travel time is a spatial correlation. A large 
amount of traffic situation prediction research (e.g., traffic flow, traffic speed, travel time) 
has consider spatial correlation. Therefore, in this study, spatial correlation is also consid-
ered in the travel time prediction. The spatial correlation ℰ௦ can be expressed as the sim-
ilar travel time of section ܳܦ௖  and section ܳܦ௝  and section ܳܦ௭ in the road network, 

௖ܶ ∝ ௝ܶ ∝ ௭ܶ. 
(3) Temporal correlation features 

There is temporal correlation in travel time. The temporal correlation can be ex-
pressed as ℰ௧ = {ℰ௪ , ℰௗ , ℰ௧௖}. ℰௗ is the daily periodicity, ℰௗ is the weekly periodicity, and 
ℰ௧௖ is the time closeness. The travel time of a certain day in each week will have a weekly 
periodicity (e.g., Friday is the day before the weekend holiday in China, a large number 
of people will go back to their hometown, Sunday is the last day of the holiday, and a 
large number of people will return to the city to work), a certain hour in each day also has 
periodicity (e.g., 7–9 p.m. is the peak time of traveling to work, 5–7 p.m. is the peak time 
of getting off work). At the same time, there is also a close correlation between the previ-
ous time intervals and the latter time interval. 
(4) Traffic situation features 

Traffic situations consist mainly of traffic flow, travel time, and traffic speed, which 
interact with each other (e.g., traffic flow increases to a certain level, traffic speed becomes 
smaller, and travel time becomes larger). Therefore, traffic situation features are expressed 
as ℰ௭ = {ℰ௩ , ℰ௤}, where ℰ௩ is traffic speed, and ℰ௤ is traffic flow. 

3.5. Deep Learning Prediction Model 
This section provides details about the deep learning framework. which aims to pre-

dict the expressway section travel time ܻ(t) at the next moment by using nearby histori-
cal travel time data ܴ௖௟௢௦௦, spatial proximity data ܴ௖, traffic situation data ܴ௭, and peri-
odic data ܴௗ , ܴ௪ . Figure 7 shows the architecture of the deep learning model. 
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First, we input spatial proximity data ܴ௖ and traffic situation data ܴ௭ into the CNN 
module to capture the correlation of feature space and road network proximity and then 
use the level attention of CBAM attention mechanism to weight important features to im-
prove the prediction performance of the model. 

Second, we also use CNN to obtain the spatial correlation of the road network, and 
then use the spatial attention of the CBAM attention mechanism to obtain important spa-
tial information. 

Finally, we input the periodic data ܴௗ and ܴ௪ into the BiLSM module to capture 
the proximity of time and the periodicity of time. Then, the time attention mechanism is 
used to dynamically adjust the weight of each time interval on the prediction results. 

Spatial correlation

Spatial proximity 

Traffic situation correlation

…

…

Temporal  correlation 

LOSS

Fusion Sigmoid

Conv

CBAM Attention

MaxPool

Flatten

RepeatVector

BiLSTM

Temporal Attention

Dense

Flatten

 
Figure 7. Deep Learning Prediction Framework. 

3.5.1. CNN-ATTENTION 
In the road network, some sections may have similar travel time distribution, and 

adjacent regions also have some correlation. Therefore, we use the CNN module to cap-
ture the correlation and proximity in the road network space. At the same time, the traffic 
flow and traffic speed of the section are also potentially correlated with travel time. There-
fore, we use the CNN model to capture the correlation between traffic flow and traffic 
speed and travel time. The convolution neural network inputs the extracted original input 

௜ܻ ,௧ as ௜ܻ,௧
௞  into the convolution layer ݇, and uses two-dimensional convolution to capture 

the spatial feature of the travel time of the section. The convolution formula is shown in 
follows: 

௜ܻ ,௧
௞ = ௞ܹ)ܷܮܴ݁ ∗ ௜ܻ,௧

௞ିଵ + ܾ௞) (8)

where K is the number of convolution layers, ݅ is the section, ݐ is the time window, ܴܷ݁ܮ 
is the activation function, ܹ௞ is the weight coefficient, and ܾ௞ is the constant. 

To further capture important information in the spatial dimension, we use the CBAM 
attention mechanism [50] to fully understand the detail changes in features and further 
enhance local spatial feature representation. In level attention, CBAM can strengthen the 
travel time distribution on the feature map, so that the model can obtain the most im-
portant features and give greater weight to travel time prediction. 
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Precisely, as shown in Figure 8, in the level feature attention calculation, we first use 
CBAM for global max-pooling and average-pooling of the inputs by level to obtain Max-
pool level attention vector and AvgPool level attention vector. Then, we input these two 
vectors into a single-layer perceptron with shared weights to obtain two new hierarchical 
attention vectors. We combine these two vectors by the sum of elements and multiply 
them with the original feature map to obtain a new feature map, which can be expressed 
as: 

௖ܯ = ߪ ൬ܲܮܯ ቀ݈݋݋݌ݔܽܯ൫ ௜ܻ ,௧
௞ ൯ቁ + ܲܮܯ ቀ݈݋݋ܲ݃ݒܣ൫ ௜ܻ,௧

௞ ൯ቁ൰ (9)

௖ܨ = )௖ܯ ௜ܻ,௧
௞ )⨂ ௜ܻ,௧

௞  (10)

where ⨂ is the multiply operation, and ߪ represents the sigmoid function 

MaxPool

AvgPool
Shared 
MLPInput feature

Channel
Attention

 
Figure 8. The level attention. 

At the same time, different sections have different levels of influence on the travel 
time prediction of the predicted sections. CBAM can capture important sections in the 
spatial dimension and give greater prediction weights, the spatial attention mechanism is 
shown in Figure 9. In the spatial attention calculation of the road network, we first per-
form average-pooling and max-pooling operations along the level axis to obtain two spa-
tial attention maps and connect them. Then, a standard convolution layer is used to con-
nect them, and convolution operations are used to generate a spatial attention weight ma-
trix. Finally, the weighted feature matrix is obtained by multiplying the matrix with the 
input feature mapping, which is expressed as: 

௦ܯ = ߪ ቀݒ݊݋ܥ൫[݈݋݋݌ݔܽܯ൫ ௜ܻ,௧
௞ ൯; ൫݈݋݋ܲ݃ݒܣ ௜ܻ,௧

௞ ൯]൯ቁ (11)

௦ܨ = )௦ܯ ௜ܻ,௧
௞ )⨂ ௜ܻ,௧

௞  (12)

where ⨂ is the multiply operation, and ߪ represents the sigmoid function. 

Channel-refined
feature

MaxPool
AvgPool

conv 
layer

Spatial
Attention  

Figure 9. The spatial attention. 

3.5.2. BiLSTM-ATTENTION 
There are some rules in daily life: travel time usually shows obvious periodicity and 

trends. Therefore, this section will focus on periodic and trends in travel time series. We 
use BiLSTM to capture the proximity correlation and periodic correlation for historical 
travel time. The input of long time series travel time data into BiLSTM will make it diffi-
cult to learn a reasonable vector representation, thus affecting the prediction performance 
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of the model. Therefore, we use the time attention mechanism to capture important infor-
mation in time to improve the prediction performance of the model. 

The LSTM network is a kind of time-recurrent neural network with memory charac-
teristics. It is a variant of RNN, which can effectively overcome the long-term dependence 
and gradient vanishing of RNN. To effectively obtain the context correlation before and 
after, BiLSTM is proposed. BiLSTM is composed of forward LSTM and backward LSTM, 
and the two LTSM models work on the same principle and have the same internal struc-
ture. The BiLSTM model is shown in Figure 10. 

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM

LSTM

...

...
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x0 x1 x2 xn

h0
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hn

hn

Forward
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Figure 10. The BiLSTM framework. 

Each moment in the Bi-LSTM model is jointly determined by the state of LSTM in 
two directions, and the Bi-LSTM calculation formula is: 

ℎሬ⃗ ௧ = ௧ݔ)ܯܶܵܮ , ℎሬ⃗ ௧ିଵ) (13)

ℎ⃖ሬ௧ = ௧ݔ)ܯܶܵܮ , ℎ⃖ሬ௧ିଵ) (14)

ℎ௧ = ௧ℎሬ⃗ݓ ௧ + ௧ℎ⃖ሬ௧ݒ + ܾ௧ (15)

where ݓ௧  is the weight coefficient of each output in the forward LSTM model, and then 
the weight matrix is constructed; ݒ௧ is the weight matrix constructed by the weight coef-
ficient of each output in the backward LSTM model; and ܾ௧ is the bias at time ݐ. 

After capturing the correlation between the historical travel time and the last travel 
time, we use BiLSTM to predict the results of the ݐ time window using the time series of 
the previous ݐ − 1 time window. The prediction formula is expressed as: 

ℎ௜,௧ = )ܯܶܵܮ݅ܤ ௜ܻ,௧ , ℎ௜,௧ିଵ) (16)

where ℎ௜,௧ denotes the prediction result of section ݅ in time window ݐ, and ௜ܻ,௧  is the in-
put value. 

For the daily periodicity and weekly periodicity of travel time, we use BiLSTM to 
obtain the correlation of ݊ days. The formula can be expressed as: 

ℎ௜,ௗ
௡ = )ܯܶܵܮ݅ܤ ௜ܻ,ௗ

௡ , ௜ܻ ,௪ିଵ
௡ , ℎ௜,ௗିଵ

௡ ) (17)

where ℎ௜,ௗ
௡  is the travel time prediction results of ݀ hours in section ݅. 

At the same time, the contribution of the previous ݊ day historical travel time to the 
prediction is not equal. For example, the effect of yesterday on prediction performance is 
more significant than that of other days at the same time. In addition, there is travel re-
strictions in some areas (e.g., in some areas or time, vehicle travel is restricted), people 
travel more similar on alternate days. In the same way, there are similar travel patterns in 
the daily periodicity. To effectively capture the important information of daily periodicity 
and weekly periodicity, we use the time attention mechanism to assign different weights 
to daily (weekly) travel time from potential daily periodicity and potential weekly perio-
dicity. the equation of attention contribution weight can be shown as: 
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ܽ௜,ௗ
௡ =

exp (ݏ)
∑ exp (ݏ)ௗ∈஽

 (18)

where ܽ௜,௧
௡  is the importance of section ݅ at time window ݐ on day ܦ ,݌ is the number 

of time intervals for input, and ݏ is the contribution scoring function, which can be ex-
pressed as: 

ݏ = ݒ ∗ tanh൫ℎ௜,ௗ
௡ ுݓ + ℎ௜,௧ݓ௑ + ܾ൯ (19)

where ݓு , ,ܾ ,௑ݓ  .are learned parameters ݒ
Finally, the output value of BiLSTM is used as the input of attention mechanism to 

predict the travel time, and the calculation formula is shown: 

ℎ௜,௧
௡ = ෍ ܽ௜,ௗ

௡ ∗ ℎ௜,ௗ
௡

ௗ∈஽
 (20)

4. Results 
4.1. Experimental Settings and Data Description 

The experimental conditions of this experiment are the Window 10 system, a Lenovo 
computer equipped with an Intel kernel, 2.6 GHz processor, and 16 GB memory; all ex-
periments use Python 3.7 version, and the software architecture is developed based on 
Keras deep learning library tool. 

The ETC data used in this experiment are from Fujian Provincial Expressway Infor-
mation Technology Co., Ltd. (Fuzhou, China), which were collected by ETC gantry system 
from 3 May 2021 to 3 June 2021. The transaction data contain 103 attributes, including 
license plate number, enter time, enter station, gantry transaction time, and gantry latitude 
and longitude, the details is shown in Table 4, where *,** represents other characters that 
are not displayed. In order to verify the effectiveness of the proposal, the Fuzhou-Xiamen 
Expressway, with the largest traffic flow in Fujian Province, is selected as the source of 
experimental data. It includes the four cities of Fuzhou, Putian, Quanzhou, and Xiamen. 
We used 70% of the data as training data and 30% as test data. The position of the gantry 
is shown in Figure 11. 
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Figure 11. Distribution of gantries in Fuzhou-Xiamen Expressway. 

Table 4. ETC data attribute. 

Attribute Name Examples Attribute Name Examples 
Trade ID 452 *** 56 OBU Plate Blue Fujian A1 ** 45 

Trade time 2020/9/6 21:29:26 Vehicle Class 1 
Flag ID 33 ** 21 Enter Time 2020/9/6 20:23:51 

Flag Type 0 Enter Station 16 * 7 
Flag Index 1 OBU ID 11C *** B6 

LAT 118.39 ** LNG 24.66*** 

4.2. Evaluation Metric 
We evaluate the predictive performance of our proposed method and existing meth-

ods with two widely-applied metrics. They are Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE), respectively. The calculation formula is as follows: 

MAE =
1

ݍ ∗ ݌
ඩ෍ | ௜ܻ

ᇱ − ௜ܻ|
௠

௜ୀଵ

 (21)

RMSE = ඩ
1

ݍ ∗ ݌
෍( ௜ܻ ′ − ௜ܻ)ଶ

௠

௜ୀଵ

 (22)

where ݍ is the number of sections in the experiment, ݌ is the number of all time win-
dows, ܻ′ is the predicted value, and ௜ܻ is the actual value. 

4.3. Analysis of Sequence Length 
The Sequence length has great influence on travel time prediction. To further analyze 

the performance of the sequence length during prediction, the sequence lengths were 
tested from 1 to 9, and Figure 12a shows the trend of MAE as the sequence length in-
creases. Figure 12b shows the trend of RMSE. From Figure 12, we can know that the se-
quence length is relatively better when it is 4 and 5, where 4 is the best. Therefore, we use 
four time intervals to predict the next time interval. 

  
(a) (b) 

Figure 12. Analysis for between different sequence lengths: (a) is the MAE; (b) is the RMSE. 
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4.4. Analysis of Classification Based on Vehicle Type. 
In order to verify the essentiality of considering the type of vehicle, we use the 

MVTTP model to predict the travel time of Class I vehicles (i.e., big vehicles) and Class II 
vehicles (i.e., small vehicles). The number of convolution kernels is 64, the CNN and 
BiLSTM activation function are both ReLU, the Optimizer is adam, the cell of BiLSTM is 
50, the batch size is 30, and the training epoch is 50. We set the time window to 20 min, 
taking the previous four time windows as input windows to predicting the next 20 min. 

We test the performance of Class I vehicle and Class II vehicle after classification, the 
results are shown in Table 5. Table 5 shows that there is a big difference between the travel 
time prediction performance without considering the vehicle type and considering the 
vehicle type. The prediction performance of the MVTTP model in the two vehicle types is 
much better than that of the vehicle type without considering the vehicle. 

Table 5. Performance of the considering vehicle type. 

Model 
Class II Vehicles Class I Vehicles 

MAE RMSE MAE RMSE 
Unconsidering vehicle type 36.3128 57.9982 59.3436 84.8430 

MVPPT 8.50313 19.1132 11.5529 18.6298 

Figure 13 is the travel time visualization of four sections, which shows that there is a 
big difference between the predicted travel time without considering and the real travel 
time of the vehicle in most of the time. For the section with a travel time of about 100 s, 
the prediction error is about 10 s, while for the section with a longer travel time, the error 
is about 100 s, and the error is about 10%. The predicted travel time without considering 
the type of vehicle is much higher than the predicted travel time of Class II vehicles. This 
is because Class II vehicles will be faster than other types of vehicles, and travel time will 
be shorter. Only in the peak period of travel is the speed of the vehicle reduced, and the 
travel time of all vehicles is similar. The difference between the predicted value without 
considering the type of vehicle and the real travel time of the Class II vehicles will be 
reduced. For the travel time prediction of Class I vehicles, the travel time is far less than 
the predicted value without considering the type of vehicle. Compared with Class II ve-
hicles, the real travel times of Class I vehicles have a bigger difference from the predicted 
value without considering the vehicle type. The error of all sections is greater than 10% 
most of the time, and only in the peak period will the gap narrow. 
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(c) (d) 

Figure 13. Visualization of travel time prediction, (a) is a visualization of section 1; (b) is a visuali-
zation of section 2; (c) is a visualization of section 3; (d) is a visualization of section 4. 

4.5. Analysis of Spatial Proximity 
In this section, we test the predictive performance of spatial proximity features on 

the model. The test results are shown in Table 6. Table 6 shows that the prediction 
performances of both Class I vehicles and Class II vehicles are improved by the spatial 
proximity. The prediction performance of the MVTTP model can be further improved by 
considering the spatial proximity. 

Table 6. Performance of the considering spatial proximity. 

Model 
Class II Vehicle Class I Vehicle 

MAE RMSE MAE RMSE 
MVPPT without spatial closeness 9.0033 21.7577 11.8418 19.6733 

MVTTP 8.50313 19.1132 11.5529 18.6298 

4.6. Analysis of Spatial-Temporal Attention Mechanism 
We test the performance of temporal attention mechanisms and spatial attention 

mechanisms, and the test results are shown in the Table 7. Table 7 shows that the predic-
tion performance of the MVTTP is further improved after considering the spatial attention 
mechanism or temporal attention mechanism. When both attention mechanisms are con-
sidered, the model has better prediction performance. 

Table 7. Test results of spatial-temporal attention mechanisms. 

Model 
Class II Vehicles Class I Vehicles 

MAE RMSE MAE RMSE 
MVTTP without any Attention 8.9798 19.9776 11.8078 19.4728 

MVTTP without spatial Attention 8.890931878 19.80547952 11.6711 19.4977 
MVTTP without temporal Attention 8.852875979 19.86132629 11.6877 19.4169 

MVTTP 8.50313 19.1132 11.5529 18.6298 

4.7. Comparative Analysis of Prediction Models 
To analyze the prediction performance of our proposed model (MVPPT), we use the 

classified vehicle data to compare the following methods, it includes traditional time se-
ries prediction methods, machine learning algorithms, and the current best deep learning 
processing model. 
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HA: Historical Average, the traditional time-series prediction methods, which pre-
dicts the travel time using average values of previous travel time values at the location 
given in the same relative time interval. 

KNN: K-Nearest Neighbor, which is one of the most classical classification and re-
gression methods in data mining. 

SVR: Support vector regression model applies the support vector machine (SVM) 
similarity method for regression analysis. 

AdaBoost: Adaptive Boosting. AdaBoost is a robust boosting tree-based method that 
is widely used in data mining applications.  

LSTM: Long Short-Term Memory, a kind of time-recurrent neural network, which is 
good at processing time series data. 

CNN: Convolutional Neural Network, which is widely used to capture the spatial 
correlation of time series for time series prediction. 

BiLSTM [51]: Bi-directional Long Short-Term Memory, which is composed of for-
ward LSTM and backward LSTM. 

TGCN [52]: Time Domain Graph Convolutional Network, which is a well-known 
traffic forecasting method. 

STDN [21]: Spatial-Temporal Dynamic Network, a method to jointly model both spa-
tial and temporal dependencies by integrating CNN and LSTM. 

The results of the travel time prediction test of the model in Table 8 show that the 
traditional travel time prediction algorithm (HA) has the worst prediction performance, 
because it predicts values only according to historical records without considering the 
context feature. Compared with the traditional time series prediction method, the ma-
chine learning method considering multidimensional feature of the travel time and has 
better prediction performance, among which SVR has the best performance. However, 
machine learning cannot capture nonlinear spatial and temporal correlation. Therefore, 
the neural network (e.g., LSTM, BiLSTM), which can capture spatial-temporal infor-
mation, has better prediction performance, and only CNN has slightly worse prediction 
performance than SVR. In addition, we also use TGCN for performance testing. Due to 
the different distances of each road, the travel time is also different. TGCN is difficult to 
captures sufficient correlation between roads, and only time correlation can be captured. 
Therefore, TGCN did not have a very good prediction performance. In contrast, STDN 
handles spatial and temporal information via local CNN and LSTM, and using a periodi-
cally shifted attention mechanism to learn the long-term periodic dependency, which 
have a better prediction performance. Our proposed model (MVPPT) uses CNN and 
LSTM to capture the spatial-temporal context information, using the attention mechanism 
to capture important information. In addition, MVPPT also consider the context feature 
of spatial proximity, so it has the best prediction performance. 

Table 8. Performance of prediction models. 

Model 
Class II Vehicles Class I Vehicles 

MAE RMSE MAE RMSE 
HA 19.7064 37.3719 23.1210 33.7131 

KNN 15.9966 31.5796 18.2482 28.7021 
SVR 11.8366 23.1494 14.9408 20.9557 

AdaBoost 12.464 28.9111 13.7415 21.3218 
CNN 12.6426 26.7706 15.5382 24.5275 
LSTM 9.7911 20.8325 12.0161 19.4116 

BiLSTM 9.5706 22.7144 11.8629 19.2269 
TGCN 14.7399 30.7650 16.4463 31.8081 
STDN 9.3075 20.5715 11.9132 19.3659 

MVPPT 8.50313 19.1132 11.5529 18.6298 
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5. Conclusions 
For expressway travel time prediction, we analyze the travel times of different types 

of vehicles and propose a novel model of expressway section travel time prediction. From 
the analysis and experimental results, we can find:  
(1) There are big differences in travel time among all types of vehicles. The travel time 

of big vehicles with yellow license plates is much longer than others types of vehicles. 
The main difference in travel time can be divided into two categories: big vehicles 
with yellow license plates and small vehicles with the rest of the plate colors. 

(2) The predicted travel time without considering vehicle type is higher than the real 
travel time of small vehicles and smaller than the real travel time of big vehicles. The 
error of travel time prediction without considering the type of vehicle is about 10%. 
After considering the type of vehicle, the prediction performance of the model has 
been significantly improved, and the predicted values of the model are close to the 
real travel time values of the vehicle.  

(3) The expressway network has close proximity, and the travel time prediction model 
can further improve the prediction performance after using the road network prox-
imity. At the same time, the temporal attention mechanism and spatial attention 
mechanism can capture more important information, which can further improve the 
prediction performance of the model, and the model combining the two attention 
mechanisms has the best prediction performance.  

(4) This proposal can accurately predict the travel time of each section, which is of great 
significance for the fine management of the expressway and the development of 
smart expressways.  
This proposal can accurately predict the travel time of each section, which is of great 

significance to the fine management of highways and the development of smart highways. 
In fact, there are still many undiscovered rules about expressway travel times. In the 

future, we can further improve the performance of the model by capturing the monthly 
periodicity and holiday periodicity in larger datasets. 

6. Discussion 
The prediction of travel time of a section can promote the fine management of ex-

pressways and provide more accurate travel times to the people using them. Therefore, 
we model the travel time prediction based on ETC data, considering the difference of 
travel time of different types of vehicle and the proximity of expressway network. At the 
same time, we also consider the spatial-temporal attention mechanism in the deep learn-
ing framework, which constitutes a multi-view travel time prediction model. The experi-
mental results verify the effectiveness of the model. However, the proposal also has some 
local specificities. First, the experimental data can only be a complete data set that includes 
all the type of vehicles so that the types of vehicles can be classified, which is difficult 
because only the relevant transportation departments can collect these data. Second, the 
road network proximity proposed in this work may only be applicable to the travel time 
prediction of expressways. The urban traffic network is complex, and the correlation be-
tween adjacent road sections is small. Therefore, road network proximity cannot provide 
a large contribution in travel time predictions in cities. 
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