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Abstract: We review the principal information theoretic tools and their use for feature selection, with
the main emphasis on classification problems with discrete features. Since it is known that empirical
versions of conditional mutual information perform poorly for high-dimensional problems, we focus
on various ways of constructing its counterparts and the properties and limitations of such methods.
We present a unified way of constructing such measures based on truncation, or truncation and
weighing, for the Möbius expansion of conditional mutual information. We also discuss the main
approaches to feature selection which apply the introduced measures of conditional dependence,
together with the ways of assessing the quality of the obtained vector of predictors. This involves
discussion of recent results on asymptotic distributions of empirical counterparts of criteria, as well
as advances in resampling.

Keywords: conditional independence; interaction information; Möbius expansion; Markov blanket;
feature selection

1. Introduction

Conditional independence is one of the main concepts in statistics which plays a funda-
mental role in such areas as causal inference, dependence analysis, and graphical modelling.
In this review, we discuss how measures of dependence considered in information theory
are used in classification and regression problems to choose predictors which significantly
influence the outcome. This is a vital application of the information theoretic approach to
variable selection, also known as feature selection. Let us stress, however, that information-
theoretic measures are frequently applied in many other problems in Machine Learning and
Statistics, in contexts other than feature selection. Some representative examples include
data visualisation (t-SNE, [1]), clustering [2], Independent Component Analysis (ICA [3],
Chapter 15), Variational Inference ([4], Chapter 10), and Natural Language Modelling [5],
among others.

In the times of the big data challenge, the problem of a choice of a small group of
variables from the pool of all potential variables, all of which would accurately describe the
changes in response, is gaining in importance. This is needed for better understanding of a
studied phenomena, as well as for construction of tractable models for them. Moreover,
feature selection is instrumental in avoiding curse of dimensionality problem when a
prohibitive amount of data are required for adequate fitting of the model ([6], Chapter
2) and avoiding overfitting (ibid., Chapter 7). This is also important for prediction, as
classifiers which avoid using inactive predictors are usually less variable. Feature selection
is frequently applied because of cost considerations, especially when measuring some of
the potentially useful predictors is costly or inconvenient.

Another competing direction of research with a similar aim is dimensionality reduction,
in particular variable extraction, which transforms given variables to obtain a lean group of
new predictors. Primary examples of such methods are Principal Components Regression
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and Partial Least Squares, see, e.g., [6], and more recent approaches based on neural
networks [7].

Here, we focus on an important group of selectors, called filters, which, during the
selection process, do not take into account the classifier (or regression estimator) which will
incorporate selected variables. In contrast, wrappers select features to optimise performance
of a specific classifier under consideration (see, e.g., methods which also yield ranking
of features, such as [8–10]). The property that filters are model-agnostic makes them a
universal tool which can be used for any classifier or regression estimator.

In this paper, we try to present critical and, unavoidably, partial assessment of the state
of the art for this problem, focusing on results which can be formally proved, and showing
motivation, advantages, and limitations of the presented solutions, including the most
recent ones. Additionally, we show that the majority of information-based feature selection
criteria can be viewed as truncated or truncated and weighted expansions of Möbius
decomposition. This sheds new light on similarities and differences between the frequently
employed criteria. Moreover, based on the recent results, asymptotic distributions of their
plug-in empirical counterparts are discussed. Such results are needed to construct a test of
conditional independence which control probability of false alarms. The recent advances in
resampling yielding conditionally independent samples which provide alternative method
to solve this problem are also discussed. By this, hopefully, a new insight is added to
existing reviews (see e.g., [11–14]).

The paper is organised as follows. We first discuss in Section 2 the main information
theoretic objects and their interplay, focusing on Möbius decomposition of conditional
mutual information (CMI). In Section 3, we introduce and discuss a feature selection
problem from the information theory perspective based on measures of dependence in-
troduced in the previous section. The concept of Markov Blanket of a target variable,
being the aim of feature selection as the minimal set of predictors containing the whole
information about it, is investigated here. In Section 4, we study feature selection criteria
related to CMI stressing that most of them are naturally related to Möbius decomposition.
Moreover, this section introduces another group of selectors based on variational bounds of
information measures. In the following Section 5, we discuss the interplay between various
CMI-related measures. The next sections cover the approximate distributions of the intro-
duced measures (Section 6) and an alternative method of assessing their distributions using
resampling schemes (Section 7). These properties are vital for performance of conditional
independence tests, which are building blocks of feature selection algorithms. In Section 8,
Markov Blanket discovery algorithms are described. Section 9 discusses feature selection
in continuous case, Section 10 covers related problem of interaction detection stressing how
these can be incorporated into feature selection approach.

2. Conditional Mutual Information and Related Measures

We start with discussing properties and the role that conditional mutual information
(CMI) plays in variable selection based on information theoretic concepts. We will focus on
a discrete finite case, meaning that the considered variables take a finite number of discrete
values. The continuous case is reviewed shortly in Section 9. In the following, Y will denote
the class variable whereas X and Z (possibly multivariate) are features which will be used
to predict Y. For basic information theoretic concepts we refer to [15,16].

2.1. Mutual Information MI

Definition 1 ([15], p. 46). The Mutual Information (MI) between Y and X is defined as

I(Y; X) = ∑
x,y

P(X = x, Y = y) log
P(X = x, Y = y)

P(X = x)P(Y = y)
= H(Y)− H(Y|X), (1)

where H(Y) = −∑y P(Y = y) log P(Y = y) and H(Y|X) = ∑x P(X = x)H(Y|X = x) are
the entropy and the conditional entropy, respectively.
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The second equality in (1) motivates the name Information Gain also used for MI. It
also yields intuitive meaning for MI as the decrease in variability of Y is measured by
its entropy when the information about another variable X is available. We remark that
I(Y; X) is frequently denoted as MI(Y; X). Note that the semicolon in I(Y; X) determines
between which variables dependence is considered: either between Y and X in the case
of I(Y; X) or between Y and (X, Z) in the case of I(Y; X, Z). I(Y; X) evaluates how similar
the joint distribution PYX of (Y, X) is to the product PY ⊗ PX of their marginal distributions.
As PY ⊗ PX corresponds to independence of X and Y, I(Y; X) can be considered a measure
of strength of dependence between Y and X. If follows from the definition that ([15],
Section 2.3)

I(Y; X) = KL(PY,X ||PY ⊗ PX),

where Kullback–Leibler (KL) divergence between distributions PW and PZ is defined as

KL(PW ||PZ) = ∑
w

P(W = w) log{P(W = w)/P(Z = w)}.

We note that KL divergence is closely related to the Maximum Likelihood (ML) method
and popular feature selection method Akaike Information Criterion (AIC) is derived as the
bias-corrected ML [17]. We also remark that Kullback–Leibler divergence can be replaced
by other pseudo-distance between probability distributions resulting in a different measure
of dependence.

It follows from the properties of KL divergence that I(Y; X) is non-negative and is
equal to zero if, and only if, PY,X = PY ⊗ PX , i.e., when Y and X are independent. Moreover,
the definition (1) that Mutual Information is symmetric: I(Y; X) = I(X; Y). It is also easily
seen that (see formula (2.450) in [15])

I(Y; X) = H(Y) + H(X)− H(Y, X). (2)

2.2. Conditional Mutual Information CMI

We denote by PX|Z=z conditional distribution of X given Z = z and define I(Y; X|Z =
z) = KL(PY,X|Z=z||PY|Z=z ⊗ PX|Z=z) as the strength of dependence between Y and X given
Z = z. Thus, I(Y; X|Z = z) = 0 means that Y and X are independent given that Z equals z.
Now we define conditional mutual information.

Definition 2 ([15], p. 49). The conditional mutual information (CMI) is

I(Y; X|Z) = EZ=z I(Y; X|Z = z)

= ∑
z

P(Z = z)∑
x,y

P(X = x, Y = y|Z = z) log
P(X = x, Y = y|Z = z)

P(X = x|Z = z)P(Y = y|Z = z)
. (3)

Thus, the conditional mutual information is the mutual information of Y and X given
Z = z averaged over the values of Z. It is measure of dependence between Y and X given
the knowledge of X. From the properties of Kullback–Leibler divergence it follows that

I(Y; X|Z) = 0 ⇐⇒ X and Y are conditionally independent given Z.

This is a powerful property, not satisfied for other measures for dependence, such as
partial correlation coefficient in the case of continuous random variables. The conditional
independence of X and Y given Z will be denoted by X ⊥⊥ Y|Z and abbreviated to CI. We
note that since I(Y; X|Z) is defined as a probabilistic average of I(Y; X|Z = z) over Z = z,
it follows that

I(Y; X|Z) = 0 ⇐⇒ I(Y; X|Z = z) = 0 for any z in the support of Z.
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Thus, formally, testing conditional independence of X and Y given Z is equivalent to
testing unconditional dependence of X and Y on every stratum Z = z. This, however, does
not make the problem an easy task, as sometimes claimed, since performing such tests
simultaneously on each strata (global null), even when we have sufficient data to do it,
would result in lack of control of the probability of false signals (multiple testing problem).

The above definitions can be naturally extended to the case of random vectors (i.e.,
when X, Y, and Z are multivariate) by using a multivariate probability mass functions
instead of a univariate one. It is also easily seen that the following chain formula holds

I(Y; X, Z) = I(Y; X) + I(Y; Z|X). (4)

2.3. Interaction Information I I

The 3-way interaction information I I(Y; X, Z) of, possibly multivariate, X, Y, and Z
plays also important role in feature selection.

Definition 3. The 3-way interaction information I I(Y; X, Z) is defined as

I I(Y; X; Z) = I(Y; X|Z)− I(Y; X) = I(Y; X, Z)− I(Y; X)− I(Y; Z). (5)

The second equality, stemming from (4), neatly explains the idea of interaction infor-
mation: we want to evaluate the synergistic effect (positive or negative) of both X and Z
influencing Y, disregarding the sum of their individual effects. Thus, from the evaluated
strength of overall dependence between Y and a pair (X, Z) measured by I(Y; X, Z), we sub-
tract the strength of individual dependences of Y on X and Y on Z measured by I(Y; X) and
I(Y; Z), respectively. Although it is not immediately clear from the definition, I I(Y; X; Z)
is actually a symmetric function of its arguments. However, it can be positive, negative, or
0. If it is positive, X and Z are said to be complementary wrt to Y or interacting positively
in influencing Y. A smaller than 0 value of I I indicates redundancy among features or
their inhibition.

We define 2-way as I I as

I I(Y; X) = I(Y; X) and I I(Y; X|Z) = I(Y; X|Z).

Definition (5) can be generalised in a recursive way to define k-way interaction infor-
mation (see [18–20] for alternative equivalent definition). For any subset of indices
S = {s1, s2 . . . , s|S|}, ZS := (Zs1 , Zs2 , . . . , Zs|S|) will stand for the sub-vector of Zis with
indices in S. Abusing the notion, Z ∈ ZS will be mean that Z ∈ {Zs1 , Zs2 . . . , Zs|S|}. Let
S = {1, . . . , |S|} and k = |S| be the cardinality of S. We define k-way interaction information
I I(Z1; Z2; . . . ; Z|S|) so that the chain formula holds.

Definition 4. k-way interaction information I I(Z1; Z2; . . . ; Z|S|) is defined as

I I(Z1; Z2; . . . ; Z|S|) = I I(Z1; . . . ; Z|S|−1|Z|S|)− I I(Z1; . . . ; Z|S|−1), (6)

where, consistently with the definition of the conditional mutual information in (3), we define

I I(Z1; . . . ; Z|S|−1|Z|S|) = ∑
z|S|

p(z|s|)I I(Z1; . . . ; Z|S|−1|Z|S| = z|s|).

Using expansions of MI and CMI in terms of entropies, the following formula for
k-way I I is obtained

I I(Z1; . . . ; Z|S|) = −
|S|

∑
i=1

∑
T⊆S,|T|=i

(−1)|S|−|T|H(ZT), (7)



Entropy 2022, 24, 1079 5 of 25

where ZT = (Zt1 , . . . , Zti ) for T = {t1, . . . , ti}. In particular, we have

I I(Z1; Z2; Z3) = H(Z1, Z2) + H(Z2, Z3) + H(Z1, Z3)− H(Z1, Z2, Z3)− H(Z1)− H(Z2)− H(Z3).

Note that when, e.g., Z3 = XOR(Z1, Z2) = I{Z1 6= Z2} and (Z1, Z2) are independent
copies of a random variable having Bernoulli distribution with p = 1/2, we obtain
I I(Z1; Z2; Z3) = log 2, as in this case I(Z3, Z2|Z1) = H(Z3). In the following, so-called
Möbius expansion (see, e.g., [20]) plays a crucial role.

Theorem 1. The conditional mutual information satisfies the equation

I(X; Y|ZS) = I(Y; X|Z1, . . . , Z|S|) =
|S|

∑
i=0

∑
T⊆S,|T|=i

I I(X; Y; Zt1 , . . . ; Zti ), (8)

where T = {t1, . . . , ti} and, conversely,

I I(X; Y; Zs1 , . . . , Zs|S|) =
|S|

∑
i=0

∑
T⊆S,|T|=i

(−1)|S|−|T| I(X; Y|ZT). (9)

We stress that the inner sum ranges over all subsets of S. For a description of set
functions for which (8) and (9) are equivalent, see [20]. Note that we carefully distinguish
between 3-way interaction information I I(X; Y; ZS) with multivariate ZS as the third
component and I I(X; Y; Z1, . . . ; Z|S|) being (|S|+ 2)-way interaction information between
X, Y and all components Z1, . . . , Z|S|. Equality (8) can be restated, in view of I I(X; Y) =
I(X; Y) and (6) as

I(X; Y|ZS) = I(X; Y) +
|S|

∑
i=1

∑
T⊆S,|T|=i

[I I(X; Zt1 ; . . . ; Zti |Y)− I I(X; Zt1 ; . . . ; Zti )]. (10)

Finally, note that it follows from (9) that I I(X; Y; Z1, . . . ; Z|S|) = 0 provided X and Y are
conditionally independent given any subvector ZT of ZS including Z∅. As we shall see
in Section 4.1, Möbius expansion (8) is a natural starting point to introduce CMI-related
criteria for feature selection.

Let us indicate that for any classifier Ŷ = Y(X) of class variable Y for g classes, its
unconditional probability of error P(Y 6= Ŷ) can be related to conditional entropy H(Y|X)
by means of Fano’s inequality ([15,21])

H(Y|X) ≤ 1 + P(Y 6= Ŷ) log(g− 1),

which, using I(X; Y) = H(Y)− H(Y|X), can be written as

P(Y 6= Ŷ) ≥ H(Y)− I(X; Y)− 1
log(g− 1)

.

This shows that when I(Y; X) decreases, i.e., Y and X become less dependent, the lower
bound on probability of error of any classifier increases.

3. Feature Selection

In this section we discuss an objective of feature selection, the concept of Markov
Blanket and its properties, as well as a greedy search for active features.

3.1. General Considerations: Characterisations of Markow Blanket

Suppose now that we consider class variable Y and p-dimensional discrete vector
(X1, . . . , Xp) =: (Z1, . . . , Zp) of all predictors available. Our aim is to describe Y using
those features among X1, . . . , Xp which jointly influence Y. Note that this is a different task
than selecting features which individually affect Y. Namely, we want to find out which
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features can be discarded without loss of information about Y when the remaining features
are taken into account. Thus, our aim is to check which features become redundant in
the presence of other features. Moreover, we would like to investigate synergy between
active features, that is a possible additional effect due to their simultaneous acting. Joint
informativeness is, thus, crucial for feature selection. In this context, we define a minimal
set of active predictors

Definition 5. We define a minimal subset of active predictors as a minimal subset S∗ ⊂ {1, . . . , p} =:
F, such that

I(Y; XS∗) = max
T⊆F

I(Y; XT) = I(Y; XF), (11)

where XT denotes the subvector of (X1, . . . , Xp) with indices in set T. Minimality is meant in the
set-theoretic sense i.e., S∗ is minimal if there is no proper subset W ⊂ S which satisfies (11).

Note that the second equality in (11) is due to chain formula as it follows that
I(Y; XT) ≤ I(Y; XT′) for T ⊆ T′.

The problem of determining S∗ is a feature selection problem stated in information-
theoretic setting, as XS∗ may be considered as the minimal set describing adequately the
overall dependence of Y on the available vector of predictors. The other possible way of
defining a small subset of predictors which contain ’almost’ all information about target Y
is, for a given value of hyperparameter γ > 0, to consider the smallest subset S∗γ, such that

I(Y; S∗γ) ≥ I(Y; XF)− γ.

The other variant of the problem is its constrained version when a solution is sought for
specific cardinality k of the feature set

I(Y; XS∗) = max
T⊆F,|T|=k

I(Y; XT), (12)

which involves (|F|k ) evaluations of mutual information. We also refer to the related bottle-
neck problem in which information in X is compressed to a random variable M satisfying
a given compression condition making it easy to transmit, which has maximal mutual
information with Y, see, e.g., [22].

Note that since I(Y; XS) is monotone in the second coordinate (I(Y; XS) ≥ I(I(Y; XT)
for T ⊆ S), we have

I(Y; XF) ≥
1

(|F|k )
∑

T⊆F,|T|=k
I(Y; XT),

thus the RHS can be used as a criterion when looking for S∗ ([23]).
It is shown in [24] that when the distribution of (X1, . . . , Xp) is determined by a

subvector XS∗ corresponding to a certain S∗ ⊆ F and is parametrised by τ∗, finding
a maximiser of I(Y; XT) is a first step of maximising the log-likelihood L(T, τ) over T
and τ under so called filter assumption stating that optimisations over T and over τ are
independent. The problem of uniqueness of S∗ satisfying (11) is important and sometimes
disregarded as a problem in feature selection.

Remark 1. Note that although (11) is trivially satisfied for S∗ = F it does not mean that the
minimal set in the sense of inclusion is uniquely defined. The obvious example is constructed by
taking any Y, X, such that I(Y; X) > 0 and letting X1 = X and X2 = f (X1) where f is any
1−−1 transform which maps a set of values of X onto itself. In this case, I(Y; X1) = I(Y; X2) =
I(Y; X1, X2), thus both subsets {X1} and {X2} satisfy (11) and are minimal. Moreover, note that
Y ⊥⊥ X2|X1. However, uniqueness of S∗ satisfying (11) holds for the case of continuous X and Y
binary under strict positiveness assumptions stating that density p(x) is positive almost everywhere
with respect to Lebesgue measure and PX(p(Y = 1|X) = 1/2) = 0 (see [25], p. 97).
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We discuss, now, properties of the set S∗. The first one is obtained by noticing that
in view of the chain formula for S∗ defined in (11) we have I(Y; XS∗c |XS∗) = 0, where Tc

denotes complement of T in F. This is equivalent to stating that S∗ is so called Markov
Blanket of Y.

Definition 6. Markov Blanket of target variable Y is the minimal subset MB(Y) ⊆ F, such that

XMB(Y)c ⊥⊥ Y|MB(Y), (13)

where MB(Y)c = {1, . . . , p} \MB(Y) (Minimal set satisfying (13) is also called Markov bound-
ary).

Thus MB(Y) shields Y from the rest of predictors in the sense that they become
irrelevant once MB(Y) is known. Again, MB(Y) does not need to be uniquely defined. In
order to discuss properties of MB(Y) we introduce the concept of strong relevancy.

Definition 7. Xi is strongly relevant feature provided

I(Y; Xi|XF\{i}) > 0.

Note that the last property is equivalent to Y 6⊥⊥ Xi|XF\{i} and it can be restated as
PY|XF

6= PY|XF\{i}
[24]. Intuitively, strongly relevant features should be included in S∗ as,

after exclusion of such features, the dependence of Y on XF is not adequately described.
In the class of General Linear Models, under minimal conditions, features which are not
strongly relevant are exactly those for which corresponding regression coefficient equals 0
(see [26], Proposition 2.2). The following facts concerning S∗ have been formally proved:

Theorem 2. Assume that Markov Blanket MB(Y) exists. Then, we have:

(i) S∗ coincides with Markov Blanket MB(Y);
(ii) S∗ satisfies

∀T ⊂ F, T ⊆ F \ S∗ ⇐⇒ Y ⊥⊥ XT |XS∗\T ; (14)

(iii) Every strongly relevant feature belongs to S∗.

The first statement is justified above. Part (ii) is due to [27] and indicates that all
subsets of F are partitioned into two parts: the first consisting of sets T disjoint with S∗ for
which Y ⊥⊥ XT |X∗S holds and the remaining ones which are conditionally dependent with
Y given XS∗\T .

We note that (iii) can be justified by the following simple reasoning: it is enough to
show that if j 6∈ S∗ then Xj is not strongly relevant. Indeed, we have

I(Y; XS∗) = I(Y; XF) = I(Y; XF\{j}) + I(Y; Xj|XF\{j})
= I(Y; XS∗) + I(Y; XF\{{j}∪S∗}|XS∗) + I(Y; Xj|XF\{j}) ≥ I(Y; XS∗),

where the second equality follows from the chain formula and the third from the fact
that j 6∈ S∗ and the chain formula again. Thus, from the second equality it follows that
I(Y; Xj|XF\{j}) = 0 whence Xj is not strongly relevant. It is not true in general that MB(Y)
consists only of strongly relevant features. Note that in the last example both X1 and X2
substituted for MB(Y) satisfy (13), but neither of them is strongly relevant as Y ⊥⊥ X1|X2
and Y ⊥⊥ X2|X1. In the case when X is continuous and Y is binary, this can be proved for
strictly positive distributions defined in Remark 1 (cf. Theorem 10 in [28]).

Ref. [27] introduces a concept of m-Markov Blanket S∗m for m ≤ p for which equiva-
lence in (14) is satisfied for any subset T ⊆ F \ S∗m, such that |T| ≤ m. As for m = p the
condition |T| ≤ m is vacuous, p-Markov Blanket of Y is MB(Y).
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3.2. Greedy Feature Selection

In the view of (i) of Theorem 2, finding S∗ is equivalent to finding the minimal set
satisfying

I(Y; XS∗c |XS∗) = 0.

This is a difficult task when p is large as it would involve checking this condition for all 2p

subsets of {1, . . . , p}. The problem is frequently replaced by its greedy selection analogue:
given S defined as the set of indices of features already selected, one determines

arg maxj∈Sc [I(XS∪{j}; Y)− I(XS; Y)] = arg maxj∈Sc I(Xj; Y|XS), (15)

where the second equality follows from (4). The feature having the largest MI with Y is
chosen first and the sequential search is stopped when for all j ∈ Sc we have I(Xj; Y|XS) =
0. Note that, in view of chain equality, the maximised criterion equals

I(Xj; Y|XS) = I(Xj; Y)− I(Xj; XS) + I(Xj; XS|Y) = I(Xj; Y) + I I(Xj; XS; Y), (16)

where I I(Xj, XS, Y) is three-way interaction information of Xj, XS, and Y. The first two terms
of the first equality are called relevance and redundancy of Xj wrt Y and XS, respectively.
Note that in the maximisation process of I(Xj; Y|XS) over Xj, redundancy of Xj with
respect to XS may be outweighed by the magnitude of conditional information which Xj
contains about XS within classes: I(Xj; XS|Y). RHS of (16) involves I I(Xj, XS, Y). In the
next section, we show that I I(Xj, XS, Y) is frequently replaced by algebraic expressions
involving I I(Xj; Xt1 ; . . . ; Xtk ; Y) where k does not exceed 2. This is motivated by (8) and
allows for easier estimation of the expression.

4. Feature Selection Criteria Related to CMI
4.1. Criteria Based on Möbius Expansion

As estimation of conditional quantities, such as I(Y; X|XS) and its effective use for
detecting conditional dependence in case when XS is high-dimensional, requires large
sample sizes (see, e.g., [29], Section 3.2), the common approach is to modify expressions,
such as RHS of (10) to define analogues of CMI. Consider two approaches to achieve this
aim. The first is based on truncation of the sum in (10) at a certain order, the second consists
of weighing the corresponding terms and truncating them. In both cases, conditioning
by random variable XS is replaced with conditioning by low-dimensional sub-vectors of
these vector, which drastically reduces the need for large sample sizes. This makes them
easier to estimate and analyse. As a motivational example, consider the situation when XS
consists of |S| = 10 binary coordinates, uniformly distributed on {0, 1} and the sample size
n = 1000. Then, we expect around 1000/210 ≈ 1 observation for each value XS = xS of the
conditioning variable XS in I(Y; X|XS) whereas the respective number is around 500 for a
single conditioning variable Xi appearing in the definition of, e.g., JMI in (21) below. The
problem that low dimensionality of conditioning set facilitates estimation is recognised
(see, e.g., [29]).

More specifically, we will consider below the following criteria based on truncation:

• Mutual Information Maximisation criterion MIM;
• Conditional Infomax Feature Selection criterion CIFE of order two and three.

Additionally, the following criteria based on truncation and weighing of Möbius
expansion will be considered:

• Generalised Information Criterion GIC;
• Joint Mutual Information criterion JMI of order two and three;
• Mutual Information Feature Selection criterion MIFS;
• Minimum-Redundancy Maximum-Relevance criterion mRMR.

The simplest approach is to consider only the first term of expansion (10) leading to
Mutual Information Maximisation criterion MIM(X) := I(X; Y) (cf. [30]). This completely
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ignores dependence structure between Y and XS, thus taking into account only feature
relevance and disregarding its redundancy. However, it is useful and frequently applied
for preliminary screening of predictors which are than subjected to more precise scrutiny.
Actually, the name ’filters’ is frequently used for exactly such criteria when MI is replaced
by dependence measure between Y and X of user’s choice.

Consideration of the first two summands of expansion (10) leads to Conditional Infomax
Feature Selection (CIFE, [31], see also [24])

CIFE(X) = CIFE(X, Y|XS) = I(X; Y) + ∑
i∈S

I I(Y; X; Xi), (17)

which is also called Short Expansion of CMI of order 2 (SECMI2) in [29].
We stress that, in the definition of CIFE and in definitions of the following criteria,

the argument of the criterion is X := Xi for i ∈ Sc which is the variable over which
maximisation is performed.

Analogously, taking into account the first three summands in (8) yield [32]

CIFE3(X) = I(X; Y) + ∑
i∈S

I I(Y; X; Xi) + ∑
i<j,i,j∈S

I I(Y; X; Xi; Xj), (18)

which is also called, stressing its relation to CMI, SECMI3. Thus, for |S| ≤ 2, CIFE3 in
greedy selection rule yields the same results as (15).

Incorporating weights into (10) leads to the following definition of Generalised Informa-
tion Criterion (GIC): for any β, γ ∈ R|S| we define

Iβ,γ(X) = I(X; Y) +
|S|

∑
k=1

∑
T={t1,...,tk}⊆S

[γ(k)I I(X, Xt1 ; . . . ; Xtk )|Y)− β(k)I I(X, Xt1 ; . . . ; Xtk )]), (19)

where β = (β(1), . . . , β(k)) and γ = (γ(1), . . . , γ(k)). Usually β(l) = γ(l) = 0 for l ≥ l0,
where l0 is a predefined small integer. Letting β(l) = γ(l) = 0 for l ≥ 2 one obtains criteria
introduced in [24] parametrised by β and γ, where, abusing the notion slightly, β := β(1)
and γ := γ(1):

Jβ,γ(X) = I(X; Y) + γ
|S|

∑
i=1

I(X; Xi|Y)− β
|S|

∑
i=1

I(X; Xi). (20)

For β = γ = |S|−1 Joint Mutual Information criterion (JMI) is obtained [33]:

JMI(X) = I(Y; X) +
1
|S|

|S|

∑
i=1

(I(X; Xi|Y)− I(X, Zi)) = I(Y; X) +
1
|S|

|S|

∑
k=1

I I(Y; X; Xi). (21)

Note that, in comparison to SECMI2 in (17), interaction terms are down-weighted by a
factor |S|−1.

Remembering that I I is symmetric and writing I I(Y; X, Zi) = I(Y; X|Zi)− I(Y; X)
one arrives at an useful form of JMI

JMI(X) =
1
|S|

|S|

∑
i=1

I(Y; X|Xi), (22)

which, in particular, shows that JMI = 0 is equivalent to Y ⊥⊥ X|Xi for any i ∈ S.

Remark 2. Note that JMI(X) is always non-negative, but it is not the case for CIFE(X) (and
neither for CIFE3(X)). Indeed, taking arbitrary X such that I(Y, X1) > 0 and letting X2 = · · · =
Xp = X1 it is easy to check that w have for for p > 2:

CIFE(X1, Y|X2, . . . , Xp) = I(X1; Y) +
p

∑
j=2

(I(Xj; Y|X1)− I(Xj; Y)) = −(p− 2)I(X1; Y) < 0
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as I(Xj; Y|X1) = 0 (cf. also [34]).

Letting γ = 0 and β ∈ [0, 1] one obtains Mutual Information Feature Selection (MIFS)
criterion [35]

MIFSβ(X) = I(X; Y)− β
|S|

∑
k=1

I(X; Xi),

with a special case β = 1/|S| called Minimum-Redundancy Maximum-Relevance criterion
(mRMR) introduced in [36]. A normalised version of the MIFS criterion was considered in
[37].

In [38], 3-way JMI has been introduced by starting from the equality

∑
{i,j}⊆S

I(Y; X, Xi, Xj) = ∑
{i,j}⊆S

I(Y; Xi, Xj) + ∑
{i,j}⊆S

I(Y; X|Xi, Xj).

Note that by dropping the first sum on RHS which does not depend on X (as the introduced
criteria will be used to choose X) and scaling the second term by 2/(|S|(|S| − 1) one obtains
in view of (8)

JMI3(X) =
2

S|(|S| − 1) ∑
{i,j}⊆S

I(Y; X|Xi, Xj)

= I(Y; X) +
2
|S| ∑i∈S

I I(Y; X; Xi) +
2

|S|(|S| − 1) ∑
i<j

I I(Y; X; Xi; Xj). (23)

This is generalised information criterion (20) with β(1) = γ(1) = 2/|S| and β(1) = γ(1) =
2/(|S|(|S| − 1) and all other coefficients equal to 0.

The important criterion Conditional Mutual Information Maximisation CMIM using a
different approach consisting of considering non-linear function of I(Y; X|Zi), i = 1, . . . , |S|
has been proposed in [39]

CMIM(X) = min
j∈S

I(Y; X|Xj) = I(Y; X)−max
j∈S

[I(X; Xj)− I(X; Xj|Y)), (24)

which should be maximised over X := Xi for i ∈ Sc. Thus, we look for the best surrogate of
Xi among already chosen variables and the candidate having the worst the best surrogate
of X is chosen. Generalisation of the rule based on CMIM is considered in [40].

4.2. Variational Approach

The other promising approach to approximate MI and CMI is based on construction
of variational lower bounds of these quantities. The bounds obtained are then used as
selection criteria. We discuss two approaches which are similar in nature. The first one is
based on Donsker–Varadhan inequality which states that [41]

I(Y; X) ≥ sup
f∈F

[EPX,Y f (X, Y)− log EPX⊗PY e f (X,Y)], (25)

and inequality becomes equality when family F contains the logarithm of the ratio of
densities of PX,Y and PX ⊗ PY, namely h(x, y) = log( fXY(x, y)/ fX(x) fY(y)). Indeed, note
that by plugging h(x, y) + C into the expression on the RHS of (25) we obtain equality.
Estimation of I(X; Y) based on the Donsker–Varadhan formula has been proposed in [42]
where neural network is applied for F resulting in MINE method. The approach has
been further pursued in [43,44]. Other lower bounds, such as Nguyen–Wainwright–Jordan
bound [45] can also be used. Note that in order to evaluate the expected value under
independence in (25) one uses permutations of the original sample which consists in
permuting X values while keeping the values of Y at their original places (see Section 7).
For feature selection, one can either directly evaluate I(Y; XS∪{j}) or I(Y; Xj|XS). For the
second approach resampling methods which would ensure conditional independence for
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generated data are needed. Note that the efficiency of such methods depends on flexibility
of function class F over which the bound in (25) is optimised. The empirical evidence
suggest that relatively simple neural nets are sufficiently flexible to yield satisfactory
estimators of I(Y; X). They are also preferable, as large networks will increase the variability
of the estimators.

The second bound, similar in flavour to (25), is due to [46]. It is noticed there that for
arbitrary density q(x, y) we have

I(Y; X) = H(Y)− H(Y|X) = H(Y) + EPX EPY|X log p(Y|X)

≥ H(Y) + EPX EPY|X log q(Y|X) = EPX,Y log
q(X|Y)

p(Y)
,

where the inequality is due to D(p(Y|x)||q(Y|x)) ≥ 0. Assuming that q(y) = p(y) in
view of Bayes theorem it is now sufficient to specify marginal density q(x|y) to obtain a
lower bound on I(Y; X). In [46] q(x|y) are considered which either satisfy naive Bayes
assumption or more general assumption that q(xt|y, x1, . . . , xt−1) is geometric mean of
q(xt|y, xi) for i = 1, . . . , t− 1. Other proposals, using specific tree-representation for q(x|y)
are possible (see, e.g., [47]).

5. Interplay between CMI and CMI-Related Criteria

The following result states conditions under which CMI and one of the introduced
criteria coincide. As before, X denotes a feature from XF\S considered as a candidate to be
added to {Xs, s ∈ S}.

Theorem 3.

(i) Assume that all features are conditionally independent given class (naive Bayes assumption):
and features in S are conditionally independent given any not chosen feature (i.e., belonging to
Sc). Then, for X ∈ XF\S, I(Y; X|XS) differs from MIFS1(X) = I(Y; X)−∑i∈S I(X; Xi)
by a factor which does not depend on X.

(ii) Assume that all k-way interaction informations I I(Y; X; Xt1 ; . . . ; Xtl ) = 0 for k > 3 (l > 1).
Then, I(Y; X|XS) = CIFE(Y, X|XS) for any X ∈ XF\S.

(iii) Ref. [24] If Xi, i ∈ S are conditionally independent given X, for X ∈ XF\S and addi-
tionally they are conditionally independent given X and Y, then I(Y; X|XS) differs from
CIFE(Y, X|XS) by a factor which does not depend on X.

(iv) Ref. [48] Assume that for any i ∈ S we have X ⊥⊥ XS\{i}|Xi and additionally X ⊥⊥
XS\{i}|Xi, Y. Then, I(Y; X|XS) = JMI(Y; X|XS).

For completeness, the proof is included in the Appendix A. Note that the conditions
imposed by (i) are very stringent. There are no known probabilistic vectors satisfying
I(Y; X; Xt1 , . . . ; Xtl ) = 0 for l > 1 apart from simple situations, such as XS ⊥⊥ (X, Y), which
obviously does not hold when XS is the set of chosen predictors.

We remark that under conditions of (i) MIFS1(X) = CIFE(X), as due to the naive
Bayes assumption ∑i∈S I(Xi; X|Y) = 0. Additionally, it follows from (21) that JMI(X) =
mRMR(X) provided that the naive Bayes condition holds, thus in order to have JMI(X) =
CMI(X) = mRMR(X) under rather strong assumptions of (iv), we have to assume addi-
tionally naive Bayes condition. This indicates that the last equality can hold only under
restrictive conditions and is not true in general (see [24], Section 4.1).

Assumptions in (iii) and (iv) are not compatible as they lead to different forms of
criteria equivalent to CMI criterion. It is argued in [46] that the only plausible graph
representation of probability structure for which conditions of (iii) is graph with edges
E = {(Y, X)} ∪ {(X, Xi)}i∈S}. In this case, due to data-processing inequality, we have
I(Y; X) ≥ I(Y; XS). This means, however, that X should have been chosen before any
features from S.

Additional results of similar flavours to Theorem 3 are discussed in [38,49].
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It follows from preceding discussion that criteria introduced in Section 4.1 are for-
mally introduced by truncation (or truncation and weighing) of terms in Möbius expan-
sion. Their analytical properties concerning how well they approximate CMI have yet to
be established.

6. Asymptotic Distributions of Information-Theoretic Measures

Sequential feature selection for predicting target variable Y typically involves checking
whether a new candidate feature X is a valuable addition to the set of already chosen
features XS. This is usually based on testing whether null hypothesis H0 : X ⊥⊥ Y|XS holds
and its rejection is interpreted as an indication that X carries an additional information
about Y to that provided by XS. To this end, Î(Y; X|XS) or its modified versions are used.
The usual strategy following statistical testing approach is to derive asymptotic distribution
of Î(Y; X|XS) or its modifications described in Section 4 under the null. This distribution is
used as a benchmark for which value of the statistic for the sample under consideration is
compared to obtain the asymptotic p-value of the test. In the following, we describe the
asymptotic distribution of ĈMI and ĈMI-related criteria under H0. A competing approach
to approximate the distribution of the considered statistic under H0 based on resampling is
described in Section 7.

6.1. Asymptotic Distribution of ĈMI

We assume that X, Y, XS take I, J, K possible values, respectively. As XS is a |S|-
dimensional vector, K is the number of all possible combinations of values of its coordinates.
We let p(x, y, xS) = P(X = x, Y = y, XS = xS) and consider the case when all probabilities
p(x, y, xS) are positive. It is assumed throughout that the estimation of I(Y; X|XS) and
related quantities is based on n independent identically distributed (iid) samples from
the distribution of (X, Y, XS). Construction of estimators of CMI relies on plugging-in
frequencies in place of unknown probabilities, e.g.,

Î(Y; X|XS) = ∑
x,y,xS

p̂(x, y, xS) log
p̂(x, y|xS)

p̂(x|xS) p̂(y|xS)
= ∑

x,y,xS

p̂(x, y, xS) log
p̂(x, y, xS) p̂(xS)

p̂(x, xS) p̂(y, xS)
, (26)

where p̂(x, y, xS) = n(x, y, xS)/n and n(x, y, xS) is a number of samples equal to (x, y, xS).
We will consider only frequencies as estimators of discrete probabilities. Other estimators
exist, e.g., regularised versions of sample frequencies, for which regularisation reflects a
level of departure from conditional independence, see [38,50]. The following known result
is frequently used in dependence analysis (compare [51], see also [52]).

Theorem 4.

(i) Assume that I(Y; X|XS) 6= 0. Then, we have

n1/2( Î(Y; X|XS)− I(Y; X|XS))
d→ N(0, σ2

ĈMI
), (27)

where

σ2
ĈMI

= ∑
x,y,xS

p(x, y, xS) log2 p(x, y, xS)p(xS)

p(x, xS)p(y, xS)
− I2(X, Y|XS) = Var

(
log

p(X, Y, XS)p(XS)

p(X, XS)p(Y, XS)

)
and σ2

ĈMI
> 0.

(ii) Assume that I(Y; X|XS) = 0. Then,

2nÎ(Y; X|XS)
d→ χ2

d, (28)

where d = (I − 1)(J − 1)K.
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The frequently applied test of conditional independence X ⊥⊥ Y|XS is based on the
above useful fact (ii) that under independence asymptotic distribution Î(Y; X|XS) does
not depend on the distribution of (X, Y, XS) and is chi-square with the known number of
degrees of freedom. On the other hand, when the conditional independence does not hold,
the limiting distribution of Î(Y; X|Z)− I(Y; X|XS) is normal with the variance depending
on the underlying probability distribution PXYZ. We stress that speeds of convergence of
Î(Y; X|XS) to I(Y; X|XS) are different in both cases: they equal n−1 in the first case and
n−1/2 in the second.

The test based on CMI is a popular tool in dependence analysis, in particular for
Markov Blanket discovery (see Section 8). It has different names among which G2 test is
the most popular (see, e.g., [53]). Additionally, in the literature X2 denotes the second order
approximation of ĈMI, which turns out to be the conditional chi-square test and has the
same asymptotic distribution as Î(Y; X|XS).

6.2. Asymptotic Distribution of Modified Criteria

Asymptotic distribution of the modified criteria related to ĈMI can be also derived.
Let Ĵβ,γ(X, Y|Z) be a plug in-version of Jβ,γ defined in (20). Moreover, let p = (p(x, y, xs))
be a vector of probabilities of dimension M = I× J×K, p̂ corresponding vector of fractions
and f : [0, 1]M → R be a function which represents Jβ,γ as a function of p, i.e., Jβ,γ = f (p).
For example for JMI criterion (see (22)) the corresponding function is defined as

f JMI(p) := ∑
x,y,xS

p(x, y, xS)
1
|S| ∑

s∈S
ln

p(x, y, xs)p(xs)

p(x, xs)p(y, xs)
,

where xs denotes coordinate of xS. We state here the result on asymptotic distribution of

Ĵβ,γ(X, Y|XS) proved in [29]. Let Σ
x,′y′ ,x′S
x,y,xS denote an element of matrix Σ with row index

x, y, xS and column index x′, y′, x′S.

Theorem 5.

(i) We have

n1/2( Ĵβ,γ(X, Y|XS)− Jβ,γ(X, Y|XS))
d→ N(0, σ2

Ĵ ), (29)

where σ2
Ĵ
= D f (p)TΣD f (p) = Var(D f (p)T p̂) and Σ = nΣ p̂ is a matrix consisting of

elements Σ
x′ ,y′ ,x′S
x,y,xS = p(x′, y′, x′S)(I(x = x′, y = y′, xs = x′S)− p(x, y, xS))/n.

(ii) If σ2
Ĵ
= 0 then

2n( Ĵβ,γ(X, Y|XS)− Jβ,γ(X, Y|XS))
d→ VT HV, (30)

where V follows N(0, Σ) distribution, and H = D2 f (p) is a Hessian of f .

In particular, we have the following result for ĴMI [54]:

Corollary 1. Let Y be binary.

(i) If σ2
ĴMI
6= 0 then

n1/2( ĴMI − JMI) d→ N(0, σ2
ĴMI

,

where

σ2
ĴMI

= ∑
x,y,xS

p(x, y, xS)

(
1
|S| ∑

s∈S
ln

p(x, y, xs)p(xs)

p(x, xs)p(y, xs)

)2

− (JMI)2 (31)
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(ii) We σ2
ĴMI

= 0 ⇐⇒ JMI = 0. In this case,

2nĴMI d→ VT HV =
M

∑
i=1

λiZ2
i ,

where V and H are defined in Theorem 2, Zi are iid N(0, 1) and λi are eigenvalues of the
matrix W = ΣH which has the following elements

W
x′ ,y′ ,x′S
x,y,xS =

1
|S|

|S|

∑
s=1

[ I(xs = x′s)
p(xs)

− I(x = x′, xs = x′s)
p(x, xs)

− I(y = y′, xs = x′s)
p(y, xs)

+
I(x = x′, y = y′, xs = x′s)

p(x, y, xs)

]
.

It follows from Theorem 1 that if for any i ∈ S we have that I(Y; X|Xi) = 0, i.e., Y and
X are conditionally independent given Xi, then asymptotic distribution is that of quadratic
form specified in (ii), otherwise the distribution is normal.

The main advantage of using modified criteria instead of CMI is that their estimation
does not require as large samples as for CMI itself. Note that for modifications of order
k, conditioning involves k-dimensional strata, whereas for CMI p-dimensional strata are
considered. However, modified criteria considered in Section 4.1 suffer from the fact that
under hypothesis of conditional independence X ⊥⊥ Y|Z the asymptotic distribution of
empirical criterion is not uniquely determined and has to be estimated from the sample.
As in the case of ĴMI, the asymptotic distribution can be either normal (when X 6⊥⊥ Y|Xj
for at least one j ∈ S or coincides with distribution of the quadratic form. Which type of
asymptotic distribution is valid can be decided using resampling schemes shortly discussed
in Section 7. The chosen distribution can used as a benchmark to test the conditional
independence hypothesis (see, e.g., [29,55]). Alternatively, testing of H0 : I(Y; X|XS) = 0
can be replaced by testing H̃0 : I(Y; X|Xi) = 0 for any i ∈ S at each stage of forward feature
selection procedure and the benchmark distribution can be obtained by approximating
eigenvalues of M specified in (ii) (see [54]) or using scaled and shifted χ squared distribution
α + βχ2

d, where α, β, d are estimated from the sample [56]. Note that, although H0 and H̃0
are not equivalent, in the case of faithful distributions (See Section 9.2 for definition of
faithfulness) H̃0 implies H0, as conditional independence is inherited by conditioning
supersets in such a case.

7. Resampling Schemes

When using the conditional independence test, which the test statistic is used for,
what is very common, the exact or even the asymptotic distribution under conditional
independence is not known, the usual practice is to use conditional randomisation (CR) and
resampling schemes to approximate this distribution and use the resulting approximation
as the benchmark distribution, as described in the beginning of Section 6. Analogously
as before, comparison of the value of the statistic based on the observed sample with
the benchmark distribution is used to calculate the CR or resampling p-value. It can be
also used as alternative way of assessing the distribution of the statistic even when its
approximate distribution is known. We briefly discuss these procedures, first for a discrete
XS, then for a continuous case.

• Conditional Randomisation (CR).In the case of the CR approach we assume that the
probability mass function p(x|XS = xS) or density of X given XS = xS is known. Then,
given a sample (X, Y, XS) := (Xi, Yi, XS,i)

n
i=1 one generates a CR sample (X∗, Y, XS) =

(X∗i , Yi, XS,i)
n
i=1, when X∗i are independently sampled from p.m.f. or density p(x|XS =

xS,i) for i = 1, . . . , n. Let T(X, Y, XS) be a test statistic which we would like to use
for testing CI and consider M generated CR samples. We define the permutation
p-value as

pCR =
#{k = 1, . . . , M : T(X∗k , Y, XS) ≥ T(X, Y, XS)}+ 1

M + 1
. (32)
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It follows that pCR is a valid p-value, i.e., conditionally on ((Y, XS), i.e., its distribution
is uniform on the set {1/M, 2/M, . . . , M/(M + 1)} under CI and, thus,

P(pCR ≤ α|Y, Z) ≤ α.

This follows from the following simple fact. Suppose that CI holds and X∗ is such that
PX∗ |XS

= PX|XS
. Then, given Y, XS, when CI holds, we have the following equality in

distribution
T(X, Y, XS)

d
= T(X∗, Y, XS);

(see, e.g., [57]). For recent improvements of the CR method, random permutations are
appropriately chosen and considered instead of choosing them at random, see [58].
In the case when p(x|XS = xS) is unknown, CR sampling is replaced by Conditional
Permutations or Bootstrap X method.

• Conditional permutation (CP). Conditional permutation method is similar to CR method
and differs in that for value xS taken by elements of XS we consider the strata of the
sample corresponding to this value, namely

Pi = {j : (Xj, Yj, XS,j) : XS,j = xS,i}.

The CP sample is obtained from the original sample by replacing (Xj, Yj, XS,j) for
j ∈ Pi by (Xπi(j), Yj, XS,j), where πi is a randomly chosen permutation of Pi. Thus, on
every strata XS = xs we randomly permute values of corresponding X independently
of values of Y. Once M of CP samples are obtained independently in this fashion, we
calculate p-value pPC based on them analogously as before.

• Conditional Bootstrap X (CB.X). Instead of permuting values of X on each strata, we
draw a bootstrap sample from X observations, that is why we sample them with
replacement as many times as is the size of the strata. The remaining steps are as
previously described.

We discuss now the resampling for continuous predictors. Feature selection for this
case is covered shortly in Section 9. We remark here that the aim, methodology of solutions,
and criteria considered are very similar, the main differences consist of technical problems
of adequate estimation of information-theoretic measures in the continuous case.

In the case of XS being continuous, CR methods work as stated, however the situation
is more complicated for CP and CB.X method as those depend on transforming the strata
of the sample, which degenerate to single observation points in this case. One possible
solution is to sample from some estimate p̂(x|XS = xS), e.g., kernel estimate, however
this requires a large number of observations on each strata. The following proposal of
constructing pseudo sample distributions of which is close to PX,Y,XS under CI has been
suggested by [59] and consists in using observations having close values to XS = xS. More
specifically, consider observation (xi, yi, xS,i) and find kth nearest observation to xS,i in XS
space, say, xS,j with corresponding triple (xj, yj, xS,j). Then, observation of (xi, yi, xS,i) is
replaced in the resampling sample by (xj, yi, xS,i).

Another technique for data augmentation, applicable in both discrete and continuous
cases, is knock-off construction which we now describe. Consider the regression problem
involving vector X = (X1, . . . , Xp) of features and response Y. Vector X̃ = (X̃1, . . . , X̃p)
is the knock-off vector for X in this regression problem, if Y ⊥⊥ X̃ and, moreover, for any
S ⊆ {1, . . . , p} we have the following equality in distribution [57]:

(X1, . . . , Xp, X̃1, . . . , X̃p)swap(S)
d
= (X1, . . . , Xp, X̃1, . . . , X̃p, )

where swap(S) means swapping entries Xj and X̃j for any j ∈ S. Thus, in the above sense
X̃1, . . . , X̃p are interchangeable with X1, . . . , Xp and independent of Y at the same time.

The construction of knock-offs is complicated in general, feasible only in special cases
as of now, such as the Gaussian case, and requires knowledge of distribution of PX . Thus,
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even more information is needed than in the case of CR approach. However, the gains are
considerable, as for natural classes of statistics measuring influence of predictors on the
response one can compare the performance of X1, . . . , Xp with that of their knock-offs and
on this basis decide which ones are not strongly relevant. Intuitively, when the performance
of Xj measured, e.g., by an absolute value of estimated regression coefficient, is comparable
to that of its knock-off, then such a variable should be discarded. This approach yields a
bound on FDR of strongly relevant features (Theorem 3 in [26]). Thus, in cases discussed in
Section 3, when the set of strongly relevant features is exactly equal MB(Y), this approach
yields a bound on FDR of its recovery. We stress that, in this way, one can analyse properties
of the whole procedure of MB determination, and not only that of an individual steps in
the algorithm. An additional advantage is that, unlike for the resampling schemes above,
only one sample of knock-offs needs to be generated.

8. Markov Blanket Discovery Algorithms

We discuss now Markov Blanket discovery algorithms. Their aim is to solve a feature
selection problem posed in Section 3 (see Equation (11)) applying CMI or CMI approxima-
tions introduced in Section 4 for which theoretical guarantees are discussed in Section 5.
Such algorithms are used as building blocks for conditional independence tests, based
either on asymptotic distributions of test statistics discussed in Section 6 or approximations
of their distributions based on resampling covered in Section 7.

We discuss three representative examples of Markov Blanket discovery algorithms.
Other examples include [60] and algorithms using assumed faithful Directed Acyclic
Graph (DAG) representation of the underlying probability structure (for DAG fathfulness
of probability distribution based on d-separation (see e.g., [4]), such as HITON-MB [61],
MMMB [62], IPC-MB [63], and STMB [64].

• The GS (Grow and Shrink) algorithm [65]. It consists of two phases. Specific ordering
of variables in F is considered, e.g., variables may be ordered according to value of
I(Y; X) and, then, the variable having the largest value of the mutual information
is the first variable chosen. Denoting by S the current set of chosen variables, we
pick the first variable (in the considered ordering) which depends on Y given XS
(I(Y; X|XS) > 0) and we add it to S, then repeat the step. When there is no longer
such a variable among candidates, the first phase is terminated. We call the resulting
chosen set S∗. In the second phase, we remove from S∗, again using the considered
ordering, any variable Xj which is not strongly relevant with respect to the current S∗,
i.e., such that Xj ⊥⊥ Y|XS∗\{j} (I(Y; Xj|XS∗\{j}) = 0) and we let S∗ := S∗ \ {j}.

• The IAMB (Incremental Association Markov Blanket) [66]. The algorithm is similar
to GS with one important difference in the first step. Namely, it disregards initial
ordering and S is augmented by the most plausible candidate, that is the variable
realising maxi∈Sc I(Xi, Y|XS), provided it is not conditionally independent from Y
given XS.

• GS(m) ([27], where m ≤ p. GS(m) differs from GS in the growing phase only. Namely,
instead of an individual variables with indices in F \ S being considered as possible
candidates, all subsets T of size not exceeding m are taken into account and the check
is performed whether there are conditionally dependent on Y given current S. If this
holds S := S ∪ T.

It is proved in [27] that GS(m) algorithm yields the m-Markov Blanket (see Section 3
for definition of m-Markov Blanket) of Y. Thus, for m = p we have that the output of GS(p)

is MB(Y). However, since, in the growing phase, all subsets of F \ S of size not exceeding
m have to be checked which is computationally intensive, in practice k subsets for k large
enough are checked at every step.

Note that for such results we assume that condition Y ⊥⊥ XT\S|XS or Y ⊥⊥ X|XS can
be verified. In practice, it is impossible to check conditional independence of X and Y
given the set of variables already chosen without error and this has to be replaced with the
appropriate test discussed in Section 6. Obviously, as such a test has to be performed at each
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step, one does not control probability of including false discoveries. False discoveries are
dealt with in the second phase, but no formal results exist concerning how likely recovering
MB(Y) is in the case of practical algorithm. However, see [67] for the results concerning
the PC algorithm in the Gaussian case and knock-off construction discussed in Section 7.

Another possibility is to omit phase two and stop early phase one, applying stopping
rules devised in multiple testing problems to control Family-Wise Error Rate or False
Discovery Rate (see, e.g., [68] where a stopping rule using the Holm procedure has been
applied for CIFE criterion). These methods work promisingly in practice, however, due to
the fact that the set S augmented at each step is data-dependent, also in this case formal
results on the consistency of such procedures are not available.

There is no definitive study of empirical performance of the presented criteria and/or
selection procedures; note that any criterion considered can be used for any feature selection
method described above, thus creating a large number of filter methods. Moreover, those
can be evaluated using their classification performance, as well as for synthetic datasets,
according to their ability to choose active predictors. Thus, we discuss only the reports
on the simplest greedy procedures consisting on the application of discussed criteria
on synthetic datasets with a fixed ahead number of chosen features. Authors of [24]
discuss, among other things, results for datasets coming from NIPS Feature Selection Data
Challange, Gisette, and Madelon (procedures stopped at 200 variables in the first case and
20 in the second). Two interesting points arise from the study: strong performance of JMI,
which was the second best and co-winner in those cases, with respect to balanced accuracy
(BA) and the number of feature chosen, with a strong performance of CMIM (winner
in the case of Gisette and together with CIFE co-winner in the case of Madelon). The
overall strong performance of CIFE was also confirmed in [68,69]. The second important
observation is the failure of performance of CMI, which due to scarcity of data, failed
to detect conditionally dependent variables very early. This is due to the fact that for a
large conditioning set the test becomes very conservative (see also [70] for discussion of
this property).

9. Case of Continuous Distribution PX,Y ,Z

In the following, we shortly discuss conditional independence testing for continuous
distributions. The main motivation to include a continuous case in this review, devoted
mainly to discrete case, is to underline the strong similarities between these two cases. In
particular, we discuss below that all information-theoretic tools defined for the discrete case
have their analogues for continuous distributions. Moreover, we note that the selection
methods presented till now do not depend on continuity of the underlying measure, once
a specific test for conditional independence X ⊥⊥ Y|Z which takes this into account is
used. Thus, the differences between two cases are mostly due to the fact that estimation
of information-theoretic measures are much more difficult for continuous distributions.
Moreover, their asymptotic behaviour under CI is not known, thus making construction of
corresponding tests difficult. On the other hand, for Gaussian case significant simplifica-
tions exists due to the existence of closed formula for CMI discussed in Section 9.2.

9.1. General Considerations

Returning to notation of Section 2, we discuss conditional independent testing in a
continuous case. In this context, it is enlightening to mention the result in [71], where it
is shown that in the continuous case conditional independence testing is a hard problem
in the following sense. For any test on a natural family of PX,Y,Z defined in [71] satisfying
X ⊥⊥ Y|Z, which uniformly achieves type I error asymptotically not larger than a prescribed
significance level α its power for any alternative will be also no larger than α. Thus, such a
test is useless for discriminating between CI and Conditional Dependence.

The indices defined in Section 2 have their natural analogues in the continuous case;
namely probabilities P(X = x, Y = y, Z = z) are replaced by density functions p(x, y, z)
and summations by integrals (for details see [15]). What is important for development



Entropy 2022, 24, 1079 18 of 25

here is that Conditional Independence X ⊥⊥ Y|Z in the continuous case is also equivalent
to conditional Mutual Information I(X; Y|Z) being 0, as in the discrete case. Thus, the
problem boils down to an accurate estimation of I(X; Y|Z) and corresponding testing of CI
using constructed estimator as a test statistic. This, however, is also a much harder task than
in a discrete case as plug-in estimators of entropy, and conditional and unconditional infor-
mation when, e.g., kernel estimators of densities (see, e.g., [6], Chapter 6) are plugged-in are
unstable and work satisfactorily only when very large samples are available. Much better
results are obtained using the variational approach described in Section 4.2. Additionally,
some estimators based on the nearest neighbour idea, such as the Kozachenko–Leonenko
estimator of entropy [72,73] and its refinements, such as the Kraskov et al. estimator [74]
work better than straightforward plug-in estimator. Then, estimators of MI are constructed
using (1). Additionally, the simple approach based on discretising underlying variables is
frequently used. There are two problems related to this approach. The first one is a loss
of information due to this operation. The second, related one, is a difficulty of choosing
an appropriate bin size, especially in many dimensions. Too large bin size may result in
hiding interesting characteristics of predictors’ distributions and, consequently, a loss of
predictive power.

We mention two other approaches for the continuous case. One which is frequently
used is kernel based approach which relies on the following fact [75]:

X ⊥⊥ Y|Z ⇐⇒ E f (X, Z)h(Y, Z) = 0 for any f ∈ FX|Z, h ∈ FY|Z,

where FX|Z = {h(Y, Z) : h(Y, Z) = h0(Y) − E(h0(Y)|Z), h0 ∈ L2
Y}. Thus, although

conditional independence is not equivalent to conditional covariance being zero, this is true
when transformations of vectors (X, Z) and (Y, Z) are allowed. In view of this result it turns
out that its possible to find rich enough function spaces, such that the condition that the
generalized conditional covariance of transformed X and Y being equal to 0 is equivalent
to conditional independence. Moreover, it is the function space that one can consider to
appropriately define Reproducing Kernel Hilbert Spaces (RKHS). This, conceptually, is
much more involved than checking I(X; Y|Z) being 0, save for the technical problems of
testing this condition in the continuous case.

We also mention in this context the second approach, called distillation method [76]
which relies on ideas similar to the construction of partial residual plot and resampling.

9.2. Gaussian Case

We review the case when (Y, X) is Gaussian, where X = (X1, . . . , Xp). This case offers
significant simplifications, as the quantities on which feature selection is based can be
explicitly calculated. Namely, direct calculation yields [15]:

H(X) =
1
2

log |ΣX |+
p
2

log(2πe),

if X ∼ N(µX , ΣX). If (X, Y) ∼ N(µX,Y, ΣX,Y) it follows from (2) that

I(X; Y) =
1
2

log
|ΣX,Y|

|ΣX | × |ΣY|
,

where |Σ| stands for determinant of matrix Σ. In particular for bivariate normal case when
ρ(X, Y) = ρ we have I(Y; X1) = −(log(1− ρ2))/2. Whence, in the case of the conditional
distribution of (Y, X), given XS, where XS ⊆ {2, . . . , p} this yields

I(Y; X1|XS) = −
1
2

log(1− ρ2
par),
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where ρpar is partial correlation coefficient between Y and X1 given XS. Thus, in Gaussian
case information-based dependence indices can be expressed in terms of either correlation
or partial correlation coefficients.

In order to present the PC algorithm, we first introduce the concept of the faithfulness
of the distribution which plays an important role in its construction (see, e.g., [67]). Let
X0 := Y and consider undirected graph G = (V, E), where vertices V = {0, 1, . . . , p}
correspond to variables (Y, X1, . . . , Xp) and E ⊂ V×V, such that (j, k) ∈ E ⇐⇒ (k, j) ∈ E
is the set of edges.

Definition 8. Distribution PY,X is faithful to graph G when for any triple A, B, C ⊂ V we have

A and B are separated by C ⇐⇒ XA ⊥⊥ XB|XC, (33)

when separation by C means that every path joining elements of A and B has to pass through C.
(Implication from LHS to RHS in (33) is called global Markov property)

In the case when (Y, X1, . . . , Xp) is Gaussian and there exists faithful representation of
its distribution, PC algorithm [77] reconstructs its dependence structure with probabilistic
guarantees. The main tool is clever usage of one of the consequences of faithfulness, namely

X1 ⊥⊥ X2|XC1 ⇒ X1 ⊥⊥ X2|XC2 for any C2 ⊇ C1. (34)

The algorithm starts from the fully connected graph and removes edges between any
vertices which are marginally uncorrelated (and, thus, in view of (34) and Gaussianity,
conditionally independent given any subset of variables). Then, it proceeds to remove
edges between vertices which correspond to variables which are conditionally independent
given a subset of their neighbours of size l, where l = 1, 2, . . . is increased stepwise. The
conditional independence is tested using an empirical partial correlation coefficient ρ̂par and
the property that its Fisher transform log[(1 + ρ̂par)/(1− ρ̂par)] is approximately N(0, 1)
normal under CI (details in [67], Section 13.7).

The case when Y is discrete and PX|Y=yi
are normal is more complicated, as in this

scenario distribution of X is that of normal mixture for which no explicit formulae for its
entropy exist (see, however, [34] for special cases of mixtures of summands having the
same covariance matrix). Authors of [78] use approximations of MI (see (18) in [78]) to
address this problem.

To summarise, we note that the section discusses possible approaches to test con-
ditional independence and discover Markov Blanket of target Y when the underlying
distribution is continuous. The first task can be performed by using some available esti-
mators of CMI, discussed above, such as Kraskov et al. estimator [74] in conjunction with
benchmark distribution based on resampling. The other possibility is a kernel method
which reduces the problem to checking whether generalised conditional covariance is 0. For
the parametric case when (X, Y) is Gaussian, the testing problem can be reduced to testing
whether the partial correlation coefficient is 0. Moreover, in this case under faithfulness as-
sumption on the distribution Markov Blanket can be recovered with theoretical guarantees.

10. Interaction Detection

Detection of existing interactions between features in influencing the outcome Y is
an important task of data analysis; primary examples being gene–gene interactions in
Genome-Wide Association Studies (GWAS) and gene–environment interactions. In this
section, we show how information-theoretic measures introduced before can be applied
to solve this problem. Moreover, we indicate that interaction detection problems may be
viewed as a special case of feature selection. Various indices have been proposed to measure
the strength of interactions, one of the most popular tools being interaction information
discussed in Sections 2 and 4.1. There it was considered as a tool to define new selection
criteria by truncating and possibly weighing summands in the Möbius expansion of CMI.
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Here, I I is adopted as a main tool in detection of interactions. Its most popular competitor
is the value of Likelihood Ratio Test statistics for two nested logistic models: an additive
model with no interactions and a saturated model taking all possible interactions into
account. However, it has been shown in [68] that for logistic model when predictors are
independent and at least one of interaction terms is non-zero then I I 6= 0 but not vice versa.
This shows that there are situations when interactions are present and are detected by I I
but will go undetected using logistic model approach. I I is applied as the main tool to find
interactions in AMBIENCE package [79] and BOOST package uses so called Kirkwood
approximation discussed below, which is closely related to I I [80]. Other competitors
to LRT and I I include Multifactor Dimensionality Reduction (MDR) [81] and Restricted
Partitioning Method (RPM) [82].

Now, we will discuss two additional properties of Interaction Information which
are useful in interaction analysis, focusing on its three-way variant applied to predict
synergistic effect of two variables X1 and X2, say, in determining the target Y.

From the first equality in (5) it follows that when both variables are jointly independent
from Y, i.e., (X1, X2) ⊥⊥ Y then I I(X; X2; Y) = 0 as I(X1; X2|Y) = I(X1; X2). Although the
converse is not true, it can be shown in adversarially constructed examples only and, thus,
testing H0 : I I = 0 is usually replaced by (more stringent) hypothesis H̃0 : (X1, X2) ⊥⊥ Y.

The other property is insightful representation

I I(X1; X2; Y) = KL(PX1,X2,Y||P̃K),

where P̃K is Kirkwood Superposition Approximation with masses assigned to points equal

p̃K(x1, x2, y) =
p(x1, x2)p(x1, y)p(x2, y)

p(x1)p(x2)p(y)

is positive but necessarily summing up to 1, mass function supported on values (x1, x2, y)
of (X1, X2, Y). It can be shown that for η denoting the summary mass of P̃K it follows that
when η ≤ 1 and I I = 0, then PX1,X2,Y is equal to its Kirkwood approximation [68].

Let us discuss two commonly used methods of testing that I I(X; X2; Y) = 0. The
most popular one is based on Han’s approximation [20] derived under a stringent assump-
tion of overall independence, which results in considering as the benchmark distribution
chi-squared distribution with (I − 1)(J − 1)(K − 1) degrees of freedom, when I, J, K are
numbers of values of X1, X2, and Y, respectively. This, however, may lead to a large num-
ber of false signals when the pertaining test is employed as the overall independence is
only a very special situation when I I vanishes. It is shown in [69] that when (X1, X2) are
independent of Y, similarly to other measures of conditional dependence discussed in
Section 4.1, the approximate distribution is weighted chi-square distribution. Its complete
description has been given for X1 and X2 having three values and Y being binary, which
includes typical GWAS situation of two loci with two co-dominant alleles. The properties
of the corresponding test have not been investigated yet.

The other method uses permuting Y values of the considered sample and in this way
obtaining M random samples satisfying H̃0 : (X1, X2) ⊥⊥ Y. Then, permutation p-value
can be calculated as (M + 1)−1(1 + ∑M

i=1 I( Î Ii ≥ Î I)) (compare (32)). One can also use chi-
square distribution with the number of degrees of freedom as the benchmark distribution,
analogously to [70]. The advantage of the latter approach is that the number of permuted
samples M may be much smaller than in the case of permutation test.

The main challenge to detect significant interactions among potential predictors F =
{1, . . . , p} is usually computational burden of the procedure. Indeed, any method discussed
should in principle include interaction term for any pair of predictors Xi, Xj, i, j ∈ F. This
requires enlarging set F by |F| × (|F| − 1)/2 hot-encoded interactions, i.e., fitted model
will contain |F| × (|F|+ 1)/2 nominal predictors. This is practically infeasible, e.g., for 100
Single Nucleotide Polymorphisms (SNP) being our predictors this would yield number
of needed tests of order 106 at each step of selection procedure. The frequently adapted
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approach is to screen the set of variables first and then apply more sophisticated procedure
to the chosen variables only.

Consider two other possible solutions. The first one uses the premise that significant
interactions may arise only among variables which themselves are significant. Thus any of
the method described in Section 8 can be used for predictors in F and then two methods
described above are applicable for all interactions of the chosen features using Bonferroni
adjustment for multiple testing or Holm method [83]. The problematic aspect of this
approach is exclusion of possible interactions between two features when only one of them
has non-negligible main effect.

The other group of methods, for which BOOST proposed in [80] is a representative
example, screens interactions by the modified version of LRT test which consists of replacing
likelihood for a fitted additive model by likelihood for normalised Kirkwood approximation
P̃K/η which can be very quickly computed. The pairs for which the value of LRT statistic
modified in this way exceeds certain threshold. Then, an exact LRT test is performed for
all remaining pairs. The weak side of this approach is a choice of a threshold τ in the
first stage which needs to be chosen by a rule-of-thumb as properties of modified LRT test
remain unknown.

11. Conclusions

This paper reviews main ideas concerning feature selection using information theoretic
tools which revolve around detecting and measuring the strength of conditional indepen-
dence. As estimation of CMI, which is a natural and powerful tool for this endeavour,
encounters a problem when dimensionality of the task is large; a natural way is to look for
its good substitutes. Several ways in which such substitutes are constructed are discussed
and the current knowledge about their properties is presented. It is argued that selection
criteria based on truncation of Möbius decomposition make quite far-reaching compromises
on the dependence structures of feature sets, whereas properties of approximations based
on variational approaches are yet to be established. Additionally, major Markov Blanket
discovery algorithms are constructed under assumptions that conditional independence
or its absence can be established without error, when, in reality, the intrinsic features of
any practical CI test applied at each stage is its fallibility. Therefore, further efforts, both
theoretical and experimental, are needed to understand the advantages, drawbacks, and
interrelations between up-to-date developments. The paper presents some recently es-
tablished tools which can be used for this purpose, such as asymptotic distributions of
CMI-related criteria discussed in Section 6. They are used to construct tests of conditional
independence with approximate control of probability of false signals. The problem of
existence of interactions can be similarly approached using results in [69].

Another challenging task is to extend general approaches discussed here, such as
construction of feature selection criteria by truncation of Möbius expansion or variational
approach to multilabel classification when Y is a multivariate binary vector. Several criteria,
such as CIFE or JMI, have been generalised to this case already (cf. [84,85], respectively,
see also [86] for an approach based on Han’s inequality and [87] for the review), but the
general approach, e.g., in the spirit of [24], is still missing. Another important challenge
here seems construction of feature selection criteria which will efficiently take into account
dependence between coordinates of the response.
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Appendix A

Proof of Theorem 3.

Proof. (i) follows from the first equality in (16) after noting that the naive Bayes assumption
implies in particular that: XS ⊥⊥ X|Y and, thus I(X; XS|Y) = 0. Moreover we have

I(X; XS) = H(XS)−∑
i∈S

H(Xi|X) = H(XS)−∑
i∈S

H(Xi) + ∑
i∈S

I(X; Xi).

The conclusion follows as two first terms do not depend on X. (ii) follows directly from
Möbius formula and in order to prove (iii) using I(X; Y) = H(Y)− H(Y|X) we have

I(Y; X|XS) = I(X; Y)− I(X; XS) + I(X; XS|Y)
= I(X; Y)− H(XS) + H(XS|X) + H(XS|Y)− H(XS|X, Y) (A1)

and, thus, up to terms which do not depend on X it equals in view of assumptions

I(X; Y) + H(XS|X)− H(XS|X, Y) = I(X; Y) + ∑
i∈S

(H(Xi|X)− H(Xi|X, Y)) =

I(X; Y) + ∑
i∈S

I(Xi; Y|X),

which differs from CIFE(Y, X|XS) by yet another term which does not depend on X.
(iv) We show now reasoning leading to Joint Mutual Information Criterion JMI

(cf. [33,48]). Namely, we have for i ∈ S

I(X; XS) = I(X; Xi) + I(X; XS\{i}|Xi).

Summing these equalities over all i ∈ S and dividing by |S| we obtain

I(X; XS) =
1
|S| ∑i∈S

I(X; Xi) +
1
|S| ∑i∈S

I(X; XS\{i}|Xi)

and analogously

I(X; XS|Y) =
1
|S| ∑i∈S

I(X; Xi|Y) +
1
|S| ∑i∈S

I(X; XS\{i}|Xi, Y).

Subtracting two last equations and using definition of I I we obtain

I(Y; X|XS) = I(X; Y) +
1
|S| ∑i∈S

I I(X; Xi; Y) +
1
|S| ∑i∈S

I I(X; XS\{i}; Y|Xi).

Moreover it follows from definition of I I that when X is independent from XS\{i} given
Xi and these quantities are independent given Xi and Y the last sum is 0 and we obtain
definition of JMI.
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