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Two-dimensional mapping of sea surface height (SSH) for future wide-swath satellite

altimetry (WSA) is a challenge at present. So far, considering the utilization of data-driven

methods is a new researching direction for SSH mapping. In general, the data-driven

mapping methods rely on the spatial-temporal relationship of the observations. These

methods require training in large volumes, and the time cost is high, especially for the

WSA observations. This paper proposed the prediction neural networks for mapping

(Mapping-PNN) method to improve the training efficiency and maintain stable data and

mapping capabilities. By 10-year wide-swath satellite along track observing system

simulation experiments (OSSEs) on the HYCOM data, the experiment results indicate

that the method introduced in this paper can improve the training efficiency and meet

the grid mapping expectations. Compared with other methods, the root mean squared

error (RMSE) of the mapping-PNN method can be limited within the range of ∼1.8 cm,

and the new method can promote the observation of the ocean phenomena scale with

< ∼40 km, which reaches state of the art.

Keywords: two-dimensional mapping, wide-swath satellite altimetry, interpolation method, neural networks,

data-driven

INTRODUCTION

The 2D SSH mapping is a big challenge for future WSA, which is a major topic of discussion
nowadays. The wide-swath satellite missions, such as the surface water and ocean topography
(SWOT) mission of the US-France (Gaultier et al., 2016) and the Guanlan satellite mission of
China (Chen et al., 2019) will provide 2D altimetric information with a high resolution [15–
30 km, depending on sea state (Morrow et al., 2019)]. At present, the optimal interpolation
(OI) method (Le Traon et al., 2003) and the dynamic interpolation (DI) method (Ubelmann
et al., 2015) are the main classical model-driven two-dimensional data mapping methods
(Lguensat et al., 2017) for the altimetric satellite observations [such as the products of
the AVISO (Archiving, Verification and Interpretation of data of Satellites Oceanography,
CollecteLocalisation Satellites (CLS), AVISO, CNES, 2019)]. The OI method, a static, statistical
data mapping approach based on the objective analysis method (Bretherton et al., 1976), with
the combined observations of multiple satellites (Morrow and Traon, 2012; Amores et al., 2018;
Ballarotta et al., 2019), the SSH grid data products could acquire mesoscale ocean phenomena
larger than ∼150 km scales or longer than ∼10 days (Dussurget et al., 2011; Morrow et al.,
2019) but cannot observe short-period and small-scale ocean dynamic phenomena (Morrow
et al., 2019; Guillou et al., 2020). However, through the OI method with the WSA OSSEs,
more details of ocean dynamic phenomena and sub-mesoscale ocean phenomena could be
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observed, such as the scale ranges from ∼25 to ∼150 km
(Ma et al., 2020). The DI method, which is based on the
potential vorticity (PV) conservation theory (Hua andHaidvogel,
1986; Wunsch and Carl, 1996), can be adopted to observe
instantaneous nonlinear ocean dynamic phenomena and express
them through data reconstruction (Ubelmann et al., 2016), but it
may fail to achieve acceptable results when trying to reconstruct
the coastal regions or the tropic regions (Roge et al., 2017;
Ballarotta et al., 2020). Those classical model-driven methods
could be utilized to obtain SSH grid data products for the
future WSA.

However, there are some detailed problems in the process of
mapping byOImethods, such as eddies missing or the generation
of “artifact” eddies (Ma et al., 2020). The DI method has
limitations on mapping the sea areas where the PV conservation
fails (Roge et al., 2017; Ballarotta et al., 2020). Then, consequently,
the “data-driven”mappingmethods (Lguensat et al., 2017, 2019b;
Zhen et al., 2020) are proposed. Unlike the classical model-driven
methods (Lguensat et al., 2017), the data-driven methods rely on
the spatial-temporal relationship of the observations (Lguensat
et al., 2019b).

Lguensat et al. (2017), who used machine learning (ML)
methods in the Mediterranean, South China sea area (Lguensat
et al., 2019b), and the Gulf of Mexico (Zhen et al., 2020) through
principal component analysis (PCA), K nearest neighbor (KNN),
and k-dimensional tree (KD-Tree) technologies, introduced
a data-driven mapping method named AnDA (Lguensat
et al., 2017). Furthermore, Lopez-Radcenco et al. (2019)
extended the AnDA method to the mapping for multi-satellite-
combined observations, SWOT observing system simulation
experiments (OSSEs)-simulated data, as well as the combination
of observations of nadir altimeter satellites and SWOT, and then
obtained higher-accuracy SSH grid data products than the result
of the OImethod (Lopez-Radcenco et al., 2019). By utilizing deep
learning (DL) for the DI theory verification in North Atlantic
regions, Lguensat et al. (2019a) proved that the combination of
the DI method and DL is feasible for data mapping. Compared
with the result of the DI method on instantaneous nonlinear
data, the accuracy and the error are similar for the data products
obtained by “data-driven” methods, machine learning, and deep
learning. According to the validation by DL, the DI method is
reliable for the instantaneous nonlinear ocean dynamic signals
inversion in the active ocean phenomenon regions (Lguensat
et al., 2019a).

Shi et al. (2015) proposed the convolutional long short-term
memory (ConvLSTM) deep learning method. This approach
uses the convolution neural network (CNN) activation method,
instead of the rectified linear unit (RELU) or Sigmoid activation
functions, to improve the prediction performance in each gate
of the classical LSTM network (Hochreiter and Schmidhuber,
1997). The advantage of CNN is that the feature extraction ability
of LSTM can be enhanced. Inspired by the ConvLSTM neural
network, Lotter et al. (2017) proposed the PredNet method,
which grafts the ConvLSTM network to the C gate (the Gates
of Controller), further improves the feature extraction ability
of the predictive neural network, and makes it more accurate
and reliable (Lotter et al., 2017). At the same time, the PredNet

method is effective in predicting rapidly changing images and
video transport streams (Lotter et al., 2017). Deep learning
algorithms have been used for oceanographic applications, such
as classification, identification, and prediction. Besides, Lima
et al. (2017) used a CNN to identify ocean fronts, which yielded
a higher recognition accuracy than the traditional algorithms.
Yang et al. (2018) established a sea surface temperature (SST)
prediction model based on LSTM networks that have been well
tested using coastal SST data of China. By training 20-year AVISO
grid data, Ma et al. (2019) used PredNet to conduct DL and
implement daily ocean eddy forecast. It was proved that DL could
be available on ocean observation prediction.

The purpose of this paper is to find a new 2D mapping
method for future WSA observations and to map high-precision,
low-error SSH grid data products for future altimetric satellites.

Based on the high-resolution model, this paper puts forward a
new “data-driven” mapping method, prediction neural networks
for mapping (Mapping-PNN) method by training the OSSEs
along-track sampled data of WSA year by year. Additionally, the
least recently used access (LRUA) module proposed by Santoro
et al. (2016) is adopted, and it is a pure content-based memory
write unit that writes memories to either the least used memory
location or the most recently used one (Santoro et al., 2016). As
for the Mapping-PNN test, it could obtain RMSE result similar as
the PredNet method and better than the AnDAmethod, meeting
the expectations. According to the results of experiments, by
using the same sampled data volumes of theWSA in the region of
Kuroshio and the Kuroshio Extension onOSSEs and testing three
datamappingmethods, the RMSE result of 2Dmapping products
can be limited within the range of∼1.8 cm.

The experiment verification indicates that the Mapping-PNN
method is applicable to the 2D mapping for WSA. Compared
with the results of the ML method (Lguensat et al., 2017) and the
DL method (Lotter et al., 2017), the Mapping-PNN method has
the same data-mapping capabilities. It can obtain not only high-
precision, high-resolution SSH grid data product with a high rate
and low error but also promote the ability of the observation for
the scales with <∼40 km.

The remaining sections of this paper are arranged as follows:
Material section describes the test materials and data. Methods
section introduces the method of this paper. Experiment
section illustrates the experiments and results. Conclusion
and Discussion section is the conclusion, discussion, and the
introduction of the future work.

MATERIALS

Model Data of HYCOM
The data set of hybrid coordinate ocean model (HYCOM)
has a resolution of 1/12.5◦ × 1/12.5◦. The Kuroshio and the
Kuroshio Extension regions (the sea area researched in this
paper at 15◦E−39◦E, 120◦N−144◦N region) belong to the
middle latitude range. There are seasonal variations of the
ocean phenomena in the Kuroshio and the Kuroshio extension
regions. Specifically, the seasonal variation of the Kuroshio and
the Kuroshio extension is affected by both dynamic factors
(SST advection and vertical temperature transport) and thermal

Frontiers in Marine Science | www.frontiersin.org 2 September 2021 | Volume 8 | Article 670683

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Di et al. Mapping-PNN for Wide-Swath Satellite Altimetry

factors (net heat flux at the air-sea interface) (Itoh, 2010;
Nagano et al., 2013). The ocean phenomena of the Kuroshio
and the Kuroshio extension increase significantly at the end
of February in winter and strengthen continuingly in spring
(Ji et al., 2018). The absolute geostrophic velocity extreme
value of the Kuroshio extension appears slightly later than the
Kuroshio (Nagano et al., 2013). The HYCOM data cover the
global region, which is conducive to implementing the mapping
simulation works in different target sea regions. The HYCOM
data, as the representative model data in the application of
OSSEs, are updated annually and made available to the public
and facilitate scientific research and mutual verification of peer
work. Meanwhile, HYCOM is a part of the Global Ocean Data
Assimilation Experiment (GODAE) of the United States (Hybrid
Coordinate Ocean Model (HYCOM) Data., 2021). The temporal
resolution of HYCOM data for training is daily. In general,
the HYCOM real-time high-resolution model includes three-
dimensional ocean state description, the local coastal model, and
the global coupled ocean-atmosphere prediction model with a
prescribed ocean boundary.

The Parameters of Guanlan Mission
The 791-Orbit of Guanlan (Chen et al., 2019) was utilized in
the experiment. The altitude of 791-Orbit is 791.254 km, which
ensures a high observation swath of the WSA and provides the
parameters for the OSSEs of the HYCOM. The parameter for
generating the input sources of the OSSEs, including the exact
repeat cycle, the sub-cycle, the orbit altitude, and the swath width,
is required to participate in the calculation process of the along-
track sampling simulations. The exact repeat cycle of 791-Orbit
is approximately 14 days (4-day sub-cycle) over a swath width
of 166.4 km (with a gap width of 27.6 km). A sub-cycle is an
integer number of days; after which, the ground track of a satellite
repeats itself within a small offset. In other words, a sub-cycle
can be viewed as a near-repeat cycle with duration equaling to
an integer number of nodal days (Pie and Schutz, 2008). And 4-
day-long sub-cycle is chosen for OSSEs in the paper according to
the 791-Orbit.

Data of the Simulation Experiment
According to the orbit of the Guanlan satellite and its parameters,
the swath width, the nadir gap width, the coordinates of the
swath trajectory, and the gap trajectory of the satellite had been
calculated. Then, combined with the OSSEs, the sampled data in
one cycle were merged to generate global observations, which
would be used as the input source data for the subsequent
mapping process. In the OSSEs, the data of each orbit on each
cycle were calculated by the satellite track analysis algorithms by
using reasonably matched satellite parameters.

As shown from Figure 1A represents the data sampling
simulation in the OSSEs, using the parameter of the 791-Orbit,
and the figure shows four ascending-descending tracks in one
cycle. Figure 1B is an example of a one-cycle data sampling
simulation according to the 14-day in one cycle of the 791-
Orbit. And Figure 1C illustrates one-cycle Global OSSEs results
in grids. Figure 1 is an example of the sampled observations
region in the West Pacific Ocean (WPO) to show the results of

OSSEs [As shown in Figures 1B,C; see details in Figures 4, 5 of
Experiments section]. In the OSSEs, when the grid points are at
the same longitude–latitude, only the data of the last pass through
are retained. And the data of the region blocked in blue are the
researching sea area in this paper, at 15–39◦E, 120–144◦N, which
is the training, evaluation, and testing volumes for comparison of
mapping methods.

METHODS

The Analog Data Assimilation (AnDA)
The observation data volumes can be organized and calculated as
follows, according to the AnDA method proposed by Lima et al.
(2017).

The following discrete state space (Lguensat et al., 2017):

x(t) = M[x(t−1), η(t)], (1)

y(t) = H[x(t)]+E(t), (2)

where time t ǫ{0, . . . , T} refers to the times in which observations
are available, assuming the observations are at regular time
steps. In Eq. (1), M characterizes the dynamical model of the
true state x(t), while η(t) is a random perturbation added to
represent model uncertainty. The observation Eq. (2) describes
the relationship between the observation y(t) and x(t). And
the observation error is considered by the white noise ε(t).
Considering an additive Gaussian noise ε with covariance T in
Eq. (2) and the observation operator, the H = H is quasi-linear
(Lguensat et al., 2017).

The Eq. (1) represents the dynamical model governing the
evolution of state x through time, whileH is a Gaussian-centered
noise of covariance Q that models the process error. And Eq. (2)
explains the relationship between the observation y(t) and the
state to be estimated x(t) through the operatorH. The uncertainty
of the observation model is represented by the e error, which is
considered here to be Gaussian centered and of covariance R. The
ε and H are independent, and the Q and R are known.

AnDA relies on the following state-space model, to evaluating
filtering, respectively smoothing, posterior likelihood, and the
distribution of the state could be estimated x(t) at time t, given
past and current observations y(1, . . . , t), respectively given all
the available observation y(1, . . . , T) (Lguensat et al., 2019b).

x (t) = F (x (t − 1))+η (t) (3)

y (t) = H (x (t))+ E (t) (4)

The counterpart of a model-driven operator M of Eq. (1) is
the operator F in Eq. (3), which refers to the analog-forecasting
operator. The predicting matrix could be calculated by Kalman
smoother to obtain the final result (Lguensat et al., 2019b).
The Kalman smoother (KS) algorithm can directly provide the
optimal estimation of the state, given the observations and their
corresponding errors. The AnDA method relies on the spatial-
temporal relationship of the observations and introduces the
analog operator through a KNN-search to make the state-space
model being applied in practice.
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FIGURE 1 | (A) The example of along-track SSH data; (B) An example of one-cycle sampling simulation; (C) Obtained from the data projection of (B) onto a 2D plane.

The proceedings of the AnDA method are as follows: firstly,
principal component analysis (PCA) algorithm is performed on
satellite along-track sampled data obtained through OSSEs and
extract data features to prepare for the later ML. Then, secondly,
a KNN search in a catalog of numerical model outputs using a
KD-Tree is implemented, and the finalmapping result is obtained
through Kalman smoothing. Readers can find the AnDA’s
algorithm sketch block diagram in the reference (Lguensat et al.,
2017, 2019b) to learn more details about the AnDAmethod. This
paper compares and discusses the 2D mapping capabilities of the
AnDA and the Mapping-PNN methods in the experimental part

(The code of python type for AnDA method can be found on the
website: https://github.com/ptandeo/AnDA).

The PredNet Method
Shi et al. (2015) proposed the ConvLSTM method. In 2017,
Lotter and Kreiman et al. established the PredNet neural network
architecture based on ConvLSTM (Lotter et al., 2017). The theory
details of ConvLSTM and PredNet are as follows:

ConvLSTM replaced each gate of the LSTM neural network
(proposed by Hochreiter and Schmidhuber, 1997) with
CNN architecture, which improved the ability of feature
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extraction for targets in the original LSTM network. The
theory brief introduction and the implementation method are
as follows:

ConvLSTM is an extension of full-connection LSTM (FC-
LSTM), which has convolutional structures in the input-to-state
and state-to-state transitions. The ConvLSTM determines the
future state of a certain cell in the grid by the inputs and past
states of its local neighbors. The key equations of ConvLSTM (Shi
et al., 2015) are shown in Eqs. (5)–(9) below, where ‘∗’ denotes the
convolution operator and ‘◦’ denotes the Hadamard product:

it = σ (Wxi∗Xt+Whi∗Ht−1+Wci◦Ct−1+bi) (5)

ft = σ (Wxf ∗Xt+Whf ∗Ht−1+Wcf ◦Ct− 1+bf ) (6)

Ct = ft◦Ct−1+it◦tanh
(

Wxc∗Xt+Whc∗Ht−1+bc
)

(7)

ot = σ (Wxo∗Xt+Who∗Ht−1+Wco◦Ct+bo) (8)

Ht = ot◦tanh(Ct) (9)

For a spatiotemporal sequence forecasting problem, the structure
consists of an encoding network and a forecasting network (Shi
et al., 2015). Compared to classical LSTM, ConvLSTM can model
space-time structures by encoding geographic information as
tensors, thereby to overcome the limitation of losing spatial
information in classic LSTM networks. Readers can find the
algorithm sketch block diagram of ConvLSTM in the reference
(Shi et al., 2015) to learn more details about the ConvLSTM
method (The code of python type for ConvLSTM method can
be found on the website: https://github.com/XingguangZhang/
ConvLSTM.).

Tominimize the weighted sum of the activity of the error units
(Ma et al., 2019), based on the ConvLSTM concept, the network
structure is enhanced to construct an improved ConvLSTM,
which is named the PredNet model, for predicting sequences of
images (Lotter et al., 2017). A structure in which the error is fed
forward has been added to the network, as shown in Figure 2.
The network consists of a series of repeatedly stacked blocks, and
each of them can be viewed as one layer (Lotter et al., 2017).

The PredNet architecture is illustrated in Figure 2. Each
module of the network consists of four basic parts: an input
convolutional layer (Al), a recurrent representation layer (Rl),
a prediction layer (Âl), and an error representation (El). The
architecture is rooted in convolutional and recurrent neural
networks (RNN) trained with back propagation (BP) (Ma et al.,
2019).

At
l =

{

xt if l = 0
MAXPOOL(RELU(CONV(Et

l−1))) l > 0
(10)

Ât
l = RELU(CONV

(

Rtl
)

) (11)

Etl =
[

RELU
(

At
l−Â

t
l

)

;RELU
(

Ât
l−A

t
l

)]

(12)

Rtl = CONVLSTM(Et−1
l

, Rt−1
l

, UPSAMPLE(Rtl+1)) (13)

The full set of update rules is listed in Eqs. (10–13).

As follows, Algorithm 1 is the original PredNet algorithm.

Algorithm 1: Calculation of PredNet States

Require:xt
1 At

0 ← xt
2 E0

l
, R0

l
← 0

3 for t← 1 to T do

4 for l = L to 0 do ◮ Update Rt
l
states

5 if l = L then:
6 RtL = ConvLSTM(Et−1L ,Rt−1L )
7 else:
8 Rt

l
=

ConvLSTM(Et−1
l

,Rt−1
l

, Up_Sample(Rt
l+1))

9 for l = 0 to L do ◮ Update Ât
l
,At

l
, Et

l
states

10 if l = 0 then:
11 Ât

0 = SatLU( RELU
(

Conv
(

Rt0
))

)
12 else:
13 Ât

l
= RELU

(

Conv
(

Rt
l

))

14 Et
l
=

[

RELU
(

At
l
− Â

t

l

)

;RELU
(

Ât
l
− A

l

t

)]

15 if l < L then:

16 Ât
l+1 = MaxPool( Conv

(

Elt

)

)

17 End

Algorithm 1 was proposed by Lotter et al. (2017). The Rt
l
states

are computed, and a forward pass is initialized to calculate the
predictions, errors, and higher-level targets. The initial prediction
is spatially uniform (Lotter et al., 2017).

Readers can learn more details about the PredNet method in
the reference (Lotter et al., 2017). This paper also compares the
2D mapping capabilities of the PredNet and the Mapping-PNN
methods in the experimental part, and discusses them (The code
of python type for the PredNet method can be found on the
website: https://coxlab.github.io/prednet).

The Mapping-PNN Method
In the prediction of the target data, the PredNet needs a lot of
learning database for the existing data set, which will increase the
learning period. To improve the training efficiency of the original
version of PredNet, the Mapping-PNN is proposed in this paper,
and the external storage gate is added in ConvLSTM to enhance
the memory and storage capacity of the learning performance
of the ConvLSTM layer, accelerate the learning efficiency of the
original PredNet, and save the waiting period of the observations
on OSSEs. The external storage gate is utilized in the minimum
training period. And the using of the least recently used access
(LRUA) module helps to accelerate the read-write process of
the memories. The AdamOptimizer (Kingma and Ba, 2015) is
adopted to minimize the loss. The specific method is as follows.

The typical external storage gate includes duality of read
and write units, as well as the external memory. The controller,
neuron Cconvlstm, is a ConvLSTM network, which receives the
current input and controls the read units and write units
to interact with the external memories, respectively. Memory
encoding and retrieval in external memories are rapid, with
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FIGURE 2 | The sketch block diagram of PredNet.
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FIGURE 3 | The sketch block diagram of Mapping-PNN.

feature representations being placed into or taken out of memory
potentially every time step. Additionally, it can be used for long-
term storage by slowly updating the weights and for short-term
storage by external memories. Thus, when the model learns the
type of representations, it will be placed into memories, and the
representations will be used to implement mapping.

As shown in Figure 3, the initialized state of the Mapping-
PNN network is represented by init_state. The cell state of
the initialized controller, neuron Cconvlstm, is represented by
ck (k = 1, 2, . . . , n, nǫR, and n equals to the number of
the memory). Given the input SSH observations, the controller
receives the memory rt−1 and cell state ct−1 provided by the
previous state prev_state, and then produces kconvlstm used to
retrieve a particular memory. Besides, the light-green arrow line
represents the writing data streams, while the red arrow line
illustrates the reading data streams.

In terms of a new sequence, it is written to a rarely used
location with the recently encoded information preserved or to
the last used location, which can be used for updating with
newer or possibly more relevant information. Then, the whole
procedure of the algorithm can be described as follows [including
each component of the controller gates Ct, which is transformed
from Eq. (7)]:

wu
t← γ ∗wu

t−1+w
r
t+w

w
t (14)

wlu
t

(

i, j
)

=

{

1 if wu
t ≤ m(wu

t , n)
0 if wu

t >m(wu
t , n)

(15)

ww
t ← RELU(Conv(σ (α) •wr

t−1+(1− σ (α) )•wlu
t−1))) (16)

Mt

(

i, j
)

←Mt−1
(

i, j
)

+ww
t

(

i, j
)

•kt (17)

where wu denotes the usage weight updated at each time step to
keep track of locations most recently read or written; γ denotes

the decay parameter;wlu denotes the least-used weight computed
using wu for a given time step; the notationm(v, n) is introduced
to denote the nth smallest element of the vector v; n is set to
equal the number of the writer to memory; ww refers to the
written weight computed by the function RELU(σ (.)), which
combines the previous read weights wr and previous least-used
weights wlu; α represents a dynamic scalar gate parameter to
interpolate between weights. Before writing to memory, the least
used memory location is computed from wu and set to zero,
and then the memory Mt is written by the computed matrix of
written weights ww. The parameters will be updated dynamically
during back propagation. In addition, Mt (i, j) can be written
into the zeroedmemory locations or the previously usedmemory
locations; if it is the previously used memory location, the w will
simply be erased.

The memory rt is used by the controller as both an input to a
classifier and an additional input for the next input sequence. It
is calculated by the Eq. (18) for prediction.

rt←
∑

i

∑

j

wr
t

(

i, j
)

•Mt

(

i, j
)

(18)

To achieve the learning, the LRUA module proposed by Santoro
et al. (2016) is adopted, which is a pure content-based memory
write unit that writes memories to either the least used memory
location or the most recently used one (Santoro et al., 2016).

Furthermore, wr is ConvLSTM with RELU, following the
Eq. (19):

wr
t

(

i, j
)

← RELU(Conv(K(k_t,M_t (i, j)))) (19)

where Mt refers to the memory matrix at time-step t, and Mt (i,
j) refers to a sub-block in this matrix. The block ofMt (i, j) serves
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as the memory “slots,” with constituting individual memories
(Santoro et al., 2016).

K(k_t,M_t (i, j))← LRUA(k_t,M_t (i, j)) (20)

where the read units can amplify or attenuate the precision of the
focus by the read weights.

Those read weights wr and corresponding memory Mt (i, j)
are used to retrieve the memory rt.

The ConvLSTM Layer in Algorithm 1 (Lotter et al., 2017)
was optimized by the introduction of the LRUA method, and
Algorithm 2 was proposed, as shown:

Algorithm 2, the improvement details of the Mapping-PNN,
adopted the LRUA method.

Algorithm 2:Mapping-PNN

Input: Given N SSH samples {X1,X2, . . . ,XN}

belonging to C with Sampled SSH;
yt ∈ Y = {1, . . . ,C}, for t = 1, . . . ,N;
Output: A Converlutional layer for ssh
prediction;

1 prev_state← init_state (N)

2 c0 ← Clstm (N)

3 r0 ← 0N×(unit_num∗memory_size)

4 wr
0 ←

observation_weight
(

N, unit_num,memory_slots
)

5 wu
0 ← observation_weight

(

N,memory_slots
)

6 M0 ← εN×memory_slots×memory_size

7 return {c0, r0,wr
0,w

u
0 ,M0}

8 _output_ = [ :] [ :]
9 for t← 1 to N do:
10 ht , ct ← CConvlstm

((

Xt , yt
)

, prev_observation
)

11 for i← 0 toXt .length do :
for j← 0 to (Xt .size)/(Xt .length) do :

12 output, curr_state←
MappingPNN

(

i, j, prev_observation
)

13 Memory Retrieval:◮ LRUAMethod
14 K

(

kt ,Mt

(

i, j
))

←

LRUA
(

kt ,Mt

(

i, j
))

(Santoro et al., 2016)
15 wr

t

(

i, j
)

←

RELU
(

Conv
(

K
(

kt ,Mt

(

i, j
))))

16 rt+ = wr
t

(

i, j
)

•Mt

(

i, j
)

17 Memory Encoding (LRUA):

18 wu
t ← γ ∗wu

t−1 + wr
t + ww

t

19 if wu
t ≤ m

(

wu
t , n

)

then wlu
t

(

i, j
)

= 1 else wlu
t

(

i, j
)

= 0
20 ww

t ←

RELU(Conv(σ (α) • wr
t−1 + (1− σ (α)) • wlu

t−1)))
21 Mt

(

i, j
)

← Mt−1
(

i, j
)

+ww
t

(

i, j
)

• kt
22 return {ht , rt}, {ct , rt ,wr

t ,w
u
t ,Mt}

23 prev_state = curr_state;
24 if i == 0 then:
25 o2o_w←

(

output.length,Ms

)

, rand_unif _init (minv,maxv)

26 o2o_b←
(Ms) , rand_unif _init (minv,maxv)

27 end if:
28 output = RELU

(

output • o2o_w
+o2o_b

)

29 train_op =
AdamOptimizer.minimize(−CrossEntropyCost

(yt , _output_))
30 End

In the algorithm, the observation_weight (N, unit_num,
memory_slots

)

function generates a tensor with the zeros set
to the ones; {(N, unit_num), rand_unif _init (minv, maxv)}
generates a tensor with a uniform distribution, and the value of
all elements is set betweenminv andmaxv.

For the current time-step t, the sampled data
{X1, X2, . . . , XN} and the corresponding sample-class yt
will be received by the controller CConvlstm. The current state of
the network curr_state is used by the controller as an additional
input for the next time step. According to each sequence of the
sample, the algorithm randomly generates the prediction label.
If the sampled data Xt comes from a new observation, it will
be bound to the appropriate yt and stored by the write units
in the external memory, which is presented in the subsequent
time step. Once a sample from an observed-already data is
presented, the controller will retrieve the bound information by
the read units from the external memory for SSH prediction.
The cross_entropy_cost(·) is to measure the loss between the
predicted value and the correct prediction label. Then, the
adaptive moment estimation, Adam,optimizer(·) (Kingma and
Ba, 2015), is adopted to minimize the loss. Furthermore, the
back-propagated (BP) error signal from the current prediction
updates those previous weights and bias, such as the o2o_

w,o2o_ b,wr
t ,w

w
t and wu

t , followed by the updating of the external
memory. Those processes would be repeated until the model
converges. Meanwhile, there are some observation gaps or
missing data after generation of grid SSH; therefore, an optimal
interpolation is needed. The parameters, such as the coefficient
matrix, the spatial distances, and searching range, will be
designed based on the target region (the coefficient matrix of the
observations and the errors, the range of the latitude-longitude,
etc.) (Lguensat et al., 2017; Amores et al., 2018; Ma et al., 2020).

EXPERIMENTS

Experimental Setups
The Regions and the Target Date
TheAnDA, PredNet, andMapping-PNNmethods all need a large
number of training sets during the neural network training. By
utilizing 10-year HYCOM data, three data-driven methods were
trained, and a target day (at the 15◦E ∼ 39◦E, 120◦N ∼ 144◦N
region—take a date on March 1, 2017 of HYCOM for example)
was considered as the target field of the experimental dataset
of the three data-driven methods. The temporal resolution of
test datasets is daily. The cycle of the Guanlan 791-Orbit is
14 days, and the target day is the March 1, 2017 on HYCOM.
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Furthermore, take the selection of the test data, for example, for
AnDA, PredNet, and Mapping-PNN methods. The test data are
obtained from January 1, 2017 to March 1, 2017 on HYCOM,
which could be divided into “30-day data” (from January 1, 2017
to January 30, 2017) and “60-day data” (from January 1, 2017 to
March 1, 2017).

The studied region in this paper is the Kuroshio region
(Kuroshio extension as well). With the variation of the seasons
in the northern hemisphere, the ocean phenomenon varies
significantly in this region. Considering that the early stage
of March is in the transition period from winter to spring,
“March 1, 2017” is selected as the research target date. At this
time, several new unique ocean phenomena of spring are in the
generation stage, and unique ocean phenomena of winter are
in the transformation stage. The illustration of the comparative
analysis and research among the data mapping algorithms in the
Kuroshio region and the Kuroshio extension region would be
valuable for the ocean science research.

TABLE 1 | Computer hardware resource in this paper.

Hardware

resource

Computer configurations

CPU Intel(R), Core (TM), i7-8700K@3.70 GHz, 16 Cores

Memory 64.0 GB

Operating System 64-bit Windows 10

Hard Disk SSD 860 EVO250GB(Samsung); Seagate Hub BK SCSI

8TB Disk; and WD20EZRZ-00Z5HB0(WDC) 4TB Disk

The AnDA, PredNet, and Mapping-PNN methods used
2005–2015 OSSEs observations for model training, 2015 ∼2016
original data for evaluation, and 2017 original data for tests. The
research on ocean phenomena represented by the Kuroshio and
the Kuroshio extension is based on detailed statistics, analysis,
and summary from over decades’ observations.With consistency,
both use the observation data as the research basis.

The evaluation and test methods of AnDA refer to the
method introduced by Lguensat et al. (2017). In addition, the
methods introduced by Beauchamp et al. (2020) are used as
the evaluation methods of PredNet and Mapping-PNN. The
validation and evaluation methods are listed in detail to evaluate
the mapping performance of comprehensive indicators. For
experiment results, please see The Comparison of the Experiment
Results of the AnDA, the PredNet, and the 426 Mapping-
PNN section.

The Hyper Parameters’ Configuration
Some hyper parameters, such as optimizer and learning rate,
are as follows: For the AnDA method, the error probability is
0.01. For the PredNet method and the Mapping-PNN method,
to minimize the loss, an Adam,optimizer (·) is utilized, and the
learning rate is 0.01 until the model converges after training
80 times in test No.1 (See Table 3 in The Comparison of the
Experiment Results of the AnDA, the PredNet, and the 426
Mapping-PNN section for details). To avoid the overfitting, the
early stopping strategy is utilized during the training. And if the
loss of the evaluation data is no longer reduced, the training will
be stopped, and the overfitting can be avoided. Meanwhile, 80
training times are the epochs when the early stopping happens.

FIGURE 4 | (A) The original SSH field of the regions on HYCOM; (B) the along-track sampled data of OSSEs on HYCOM by the parameters of Guanlan; (C) mapping

result of the AnDA method; (D) mapping result of the PredNet; (E) mapping result of the Mapping-PNN method.
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FIGURE 5 | (A) The absolute geostrophic velocity derived from Figure 4A, the original SSH; (B) the absolute geostrophic velocity from Figure 4C (the AnDA method);

(C) the absolute geostrophic velocity from Figure 4D (the PredNet method); (D) the absolute geostrophic velocity from Figure 4E (the Mapping-PNN method).

Computer Configuration Used in This Paper (Table 1)

Validation Methods
In the analysis of the experimental results, several validation
methods have been used to validate the test results of three data-
driven methods, such as the method of illustrating the mapping
results by the figures, the absolute geostrophic velocities, the
RMSE of the mapping results, the Taylor Diagram (Taylor and
Karl, 2001; Beauchamp et al., 2020), the power spectral density
(PSD) diagram, and the efficiency of the methods.

The Taylor Diagram (Taylor and Karl, 2001), as an effective
method, has been widely used to evaluate and verify mapping
work. The correlation coefficient (COR), centered root mean
square error (Centered RMSE), and standard deviation (STD)
can all be expressed on Taylor Diagram and in the form of
one point. The Taylor Diagram can centrally express not only
the related information of multiple mapping methods but also
comprehensively and clearly reflect the data reconstruction
capabilities of the methods. The COR indicates the similarity
between the reconstruction results and the observations. The
centered RMSE represents the error difference between the
mapping results and the trues. The ratio of the STD reflects the
degree of dispersion between the ability to reconstruct the entire

spatial data and the observations. The theoretical expressions
of COR, RMSE, and STD are detailed in Eqs. (21), (22), and
(23) (Taylor and Karl, 2001; Beauchamp et al., 2020; Zhen et al.,
2020), respectively.

STD : σ 2
x_x̂ (tk) =

1

N

∑N

k=1
[(xk−x̂k)−(xk−x̂k)]

2

(21)

COR : COR (tk) =
COV(xk, x̂k)

σ (xk)σ (x̂k)
(22)

Centered RMSE : RMSE =

√

√

√

√

1

N

N
∑

k=1

[(xk−xk)− (xr−xr)]
2

(23)

The Comparison of the Experiment Results
Figure 4 illustrates the 2D SSH mapping results from the
AnDA, the PredNet, and the Mapping-PNN in Figures 4C–E,
respectively. Beyond that, Figure 4A denotes the original SSH
field of HYCOM, and Figure 4B illustrates the along-track
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sampled data simulated from OSSEs on the date of March 1,
2017 on HYCOM, which utilized the parameter of 791-Orbit
of Guanlan.

After the OSSEs process (Figure 4A), as the description
mentioned, we used the OI as a first guess of the PredNet and
Mapping-PNN methods for the gaps and missing data of the
target region. By using the methods of AnDA, PredNet and
Mapping-PNN, respectively, the 2D SSH grid of the 15◦E−39◦E,
120◦N−144◦N region could be obtained. The grid data are shown
in Figures 4C–E, respectively.

TABLE 2 | The RMSE of the AnDA method, the PredNet method, and the

Mapping-PNN method.

AnDA PredNet Mapping-PNN

RMSE (cm) 2.0 1.8 1.8

The absolute geostrophic velocity diagram is shown in
Figure 5. Figure 5A represents the absolute geostrophic velocity
inversed from the original SSH field of the region (the Kuroshio
and the Kuroshio extension, 15–39◦E, 120–144◦N region);
Figure 5B represents the absolute geostrophic velocity of the
AnDA method; Figure 5C represents the absolute geostrophic
velocity of the PredNet method; and Figure 5D represents the
absolute geostrophic velocity of the Mapping-PNN method.

As indicated in Figure 5, the absolute geostrophic velocity
inversed from the Mapping-PNN method (Figure 5D) is more
similar to the true value of HYCOM than the geostrophic velocity
inversed from the other two methods. Compared with the AnDA
method and the PredNet method, the Mapping-PNN method
could obtain more small-scale ocean phenomena.

Table 2 displays the RMSE of the above test. As revealed in
Table 2, the RMSE level of the 2D SSH grid data by using the
methods of the three data-driven methods is basically within the
range of <2 cm. The RMSE of the AnDA method, the PredNet
method, and the Mapping-PNN method is 2.0, 1.8 and 1.8 cm,

FIGURE 6 | The Taylor Diagram computed for the AnDA, the PredNet, and the Mapping-PNN methods, respectively.
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FIGURE 7 | The PSD of the AnDA, the PredNet, and the Mapping-PNN (M-PNN for short).

TABLE 3 | The comparison of efficiency, error probability, accuracy, and learning rate of the three data-driven methods.

No. Test datasets Efficiency Error probability Learning rate Accuracy

AnDA PredNet M-PNN AnDA PredNet M-PNN AnDA PredNet M-PNN

1 30-day 9 days 7 days 4 days 0.01 0.02 0.02 89% 91% 92%

2 60-day 9 days 9 days 6 days 0.01 0.01 0.01 91% 91% 93%

respectively. Therefore, the RMSE of the WSA SSH grid data
products can all be limited within the range of∼1.8 cm.

Figure 6 is the Taylor Diagram corresponding to AnDA,
PredNet, and Mapping-PNN methods. Specifically, the red star
signifies the location of HYCOM Original value on the diagram.
The green dot represents the COR, RMSE, and STD location of
the AnDA mapping result on the diagram. The gray dot refers
to the error location of the PredNet, and the orange dot refers
to the error location of the Mapping-PNN. The RMSE results
of the three data-driven methods are in the range of <2 cm,
which are the same as the descriptions in Table 2. The RMSE
value of PredNet and Mapping-PNN is slightly better, which is
in the range of 1.8 cm. In addition, the Mapping-PNN method
has the same data mapping capabilities and can obtain high-
precision, high-resolution SSH grid data product with a high rate
and low error. As shown in Figure 6, the relative error of the
Mapping-PNN method is better than that of the other methods.

Figure 7 is the PSD diagram corresponding to AnDA,
PredNet, and Mapping-PNN (M-PNN for short.) methods,
respectively. The red line denotes the PSD of the HYCOM
true value of the 15–39◦E, 120–144◦N region. The black line
represents the PSD of the observations of the OSSEs, the deep-
red line refers to the PSD of the mapping result from the AnDA
method, the orange line is that of PredNet, and the blue line in
the PSD diagram signifies the Mapping-PNN method. It shows
that the Mapping-PNN method is better than the other methods
for recognizing scales < ∼40 km (including the sub-mesoscale,
the ocean fronts, the internal waves, etc.), but the reconstruction
ability of them are almost the same for the scales larger than
∼40 km.

InTable 3, the efficiency, accuracy, and learning rate (the error
probability for AnDA) of the three data-driven methods [AnDA,
PredNet, and Mapping-PNN methods (M-PNN for short)] are
described to evaluate their DL ability. The continuous time of the
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Mapping-PNN training is better than that of the AnDA method
and the PredNet method, which reaches 4 days long in test No. 1
and 6 days long in test No. 2 in the Kuroshio and the Kuroshio
extension regions (from January 1, 2017 to March 1, 2017 on
HYCOM). The efficiency of Mapping-PNN is higher, and the
Mapping-PNN method has similar accuracy and learning rate
with the PredNet method and the AnDA method.

CONCLUSION AND DISCUSSION

Focusing on the future scientific research targets of WSA
2D mapping, this paper proposes a new data-driven mapping
method called Mapping-PNN. The experiment result, which
has been obtained through 10-year WSA satellite along-track
OSSEs on the HYCOM data, illustrates that the method of this
paper can decrease the mapping RMSE, improve the training
efficiency, and meet the grid mapping expectations. Three data-
driven methods (the AnDA, the PredNet, and the Mapping-
PNN) were used to implement data mapping practice tests in
the same region. The future satellite will provide 2D wide-swath
altimetric information with an unprecedented high resolution.
By comparing the three data mapping methods, this research
shows that the data reconstruction ability of the Mapping-PNN
method meets the WSA scientific targets.

The Mapping-PNN method proposed in this paper is
evaluated with several ways, which are SSH differences, as well as
the absolute geostrophic velocities differences, are illustrated with
visibility analysis, and the comparisons of errors are presented
with the Taylor Diagram and the PSD diagram. More specifically,
the OSSEs are implemented in the same region, and the AnDA,
the PredNet and the Mapping-PNN methods are used for 2D
SSH Mapping. The RMSE of the three data-driven methods is
at the range of <2.0 cm. Notably, the RMSE value of PredNet
and Mapping-PNN is slightly better, which is in the range of
∼1.8 cm.With the same data mapping capabilities, the Mapping-
PNN method could obtain high-precision, high-resolution SSH
grid data product. The observational dataset is based on a 14-
day aggregation; considering to test other aggregation strategies,
the experiments with months or seasons will be one of the future
works. And, in addition, to improve the efficiency, we will use
GPU(s) to implement mapping experiments in the future.

Being different from the classical model-driven method, the
data-driven methods rely on the spatial-temporal relationship
of the observations so that a data-driven method can capture
the ocean phenomena that may not be accounted for in purely
numerical models (Lopez-Radcenco et al., 2019). Moreover,
the DI method (one of the model-driven methods) is based
on the PV conservation theory. When sub-mesoscale ocean
phenomena are <∼10 km scale, the kinetic energy is dominated
by internal waves, in which the geostrophic balance fails, and

the PV conservation theory is no longer applicable. And the PV
conservation theory in coastal regions or the tropic regions may
also fail, in which the DI method is invalid.

The data-driven method is more suitable for global 2D
mapping of ocean phenomena with small scales. The data-driven
and model-driven methods can be combined appropriately to
obtain a new method, which not only has better mapping error
accuracy than the current data-driven method but also has the
common advantages of both methods. This will be a challenge
for future mapping work and a research direction in the future.

One development direction of the 2D mapping method
will be continuing more in-depth research along the direction
of the data-driven roadmap, considering the utilization
of new methods, such as generative adversarial networks
(GANs) (Goodfellow et al., 2014) and enhanced networks for
reinforcement learning (Huang et al., 2017), etc.

Furthermore, considering the data-driven mapping method,
making error analysis of each layer (especially the hidden layer),
replacing the previous BP method of individual neurons with the
idea of Capsule (Sabour et al., 2017), to improve the learning
rate of the entire network, and avoid the hidden dangers of
invariance of CNN (Sabour et al., 2017), then obtaining data
reconstruction closer to the real fields will be another research
direction for future.
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