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Abstract. Complete data matrices are required for some statistical analysis techniques,
making imputation of missing data necessary in certain circumstances. The Krzanowski
imputation system is based on singular value decomposition of a matrix and has no distri-
butional or structural assumptions, but the system needs an imputation refining process
through an iterative scheme. Two such iterative schemes already exist: expectation-
maximization, Bro et al. and parity check, Arciniegas-Alarcón et al. The aim of this
study is to present new variants of the basic method and to determine which iterative
scheme produces the higher quality imputations. For this a simulation study was per-
formed, and from incomplete matrices the quality of the imputations was assessed by es-
timating their uncertainty and by other criteria such as variance, bias and mean square
error when a parameter of interest is considered. The best results were found using iter-
ations with parity check and eliminating the singular values of the imputation equation.
Keywords: Missing values, Singular value decomposition, Uncertainty, Imputation, It-
erative computational scheme

1. Introduction. Imputation is a technique that replaces by plausible values the miss-
ing elements of a matrix, and thereby enables the application of statistical analyses that
require complete data matrices. Several distinct variations of imputation can be identi-
fied: simple imputation (SI), multiple imputation (MI), and imputation based on statis-
tical models that depend on unobserved latent variables. Maximum likelihood estima-
tion of parameters in such models is conducted using an iterative method known as the
expectation-maximization (EM) algorithm [3].

Some of the classic references that formally present these methods are Dempster et
al. [4], Seber [5, 6], Srivastava and Carter [7], Rubin [8], Little and Rubin [9], Srivastava
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[10], Srivastava and Dolatabadi [11], and van Buuren [12]. More recent descriptions of
these methodologies that describe new developments such as free software, three-way and
three-mode multivariate analysis, and Bayesian statistics can be found in Tian et al. [13],
Anindita et al. [14], Murray [15], Muharemi et al. [16], Matsuda and Komaki [17] and van
Ginkel et al. [18].
The aforementioned methods depend heavily on structural and distributional assump-

tions because they may need, for instance, a normal multivariate distribution or their
efficiency may also depend on the mechanism that is assumed to underlie the missing val-
ues in the data set under study: values may be missing completely at random (MCAR),
missing at random (MAR), or missing not at random (MNAR) [9, 19,20].
Because of this dependence, applied researchers may prefer general imputation schemes

that are free from any distributional or structural restriction. One such nonparametric
method is the Krzanowski imputation system based on the singular value decomposition
(SVD) of a matrix [21]. Currently (May of 2020) in Google Scholar, this system numbers
47 citations and in Arciniegas-Alarcón et al. [2] can be found some references related to the
historical evolution of the method from its first presentation. Specifically, in Arciniegas-
Alarcón et al. [2] it was proposed to apply the Krzanowski system to real data from
multi-environmental experiments, but in this work no conclusive results were obtained
as to which iterative scheme (EM iterations or parity check iterations) will best avoid
convergence issues [1, 22].
Consequently, nine simple variants of the imputation equation proposed by Krzanowski

in 1988 will now be tested, five of them will use EM-type iterations and the remaining
four will use parity check iterations. Of these nine variants, two will be considered as
“gold standard” and the remaining seven are new variants, that constitute the paper’s
contribution to data analysis and that to our best knowledge have not yet been tested in
the statistical literature concerned with the chosen imputation system.
To delimit the research and determine the most efficient iterative scheme, a simulation

study was performed according to the methodology proposed by Heydarbeygie and Ahma-
di [23]. Thus, incomplete matrices were generated under the MCAR mechanism and from
them was estimated the uncertainty of the imputation of each of the proposed variants,
testing their significance using a nonparametric method. Additional criteria suggested by
these authors were also used.
The outline of this paper is as follows. Section 2 presents a review on the existing stud-

ies about data imputation. Section 3 presents two updated versions of the Krzanowski
imputation method using iterations with parity check and EM, which will be consid-
ered as “gold standard” as they have already been presented in previous work. Section
4 presents seven new variants of the Krzanowski system through changes in the corre-
sponding imputation equations. Section 5 presents a numerical assessment of the new
proposals comparing them with the “gold standard” methods through a simulation study.
In Sections 6 and 7 the results and discussion are presented and finally in Section 8 the
conclusions of the work with possible open lines of research are described.

2. Related Work. Strategies to circumvent the missing data problem have been de-
scribed in the literature, so we first present a short review. In 1977, Dempster et al. [4]
proposed a general method to iteratively calculate estimates by maximum likelihood where
incomplete data exist, due, for example, to missing observations. Since each iteration of
the algorithm consists of a step of expectation, followed by a step of maximization, the
algorithm was called EM [5,6].
Little and Rubin [9] summarized computational calculations as follows: “The EM algo-

rithm formalizes a relatively old ad hoc idea for handling missing data: 1) replace missing
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values by estimated values, 2) estimate parameters, 3) re-estimate the missing values as-
suming the new parameter estimates are correct, 4) re-estimate parameters, and so forth,
iterating until convergence”. An application of the EM algorithm is found in multivariate
statistical analysis, because if it is assumed that sampling comes from an exponential
family, the multivariate normal distribution is a member of it [6]. A presentation of the
EM algorithm and Newton-Raphson alternatives, under the assumptions of normality and
MAR missing data mechanism, to obtain maximum likelihood estimators of mean vectors
and covariance matrices from incomplete multivariate data can be found in Srivastava
and Carter [7] and Srivastava [10]. Bayesian developments have also been presented with
the algorithm, see details in Matsuda and Komaki [17].

Another alternative for analyzing incomplete data is multiple imputation – MI [8]. This
involves three distinct steps: (i) Imputation: The missing values are estimated M times,
generating M completed data sets (observed + imputed); (ii) Analysis: The M completed
data sets are analyzed using appropriate statistical procedures for the problem at hand;
(iii) Combination: The M separate sets of results are combined into one single inference.
A recent description of the technique can be found in Murray [15].

MI can be applied for univariate and/or multivariate imputation. For univariate impu-
tation, linear models can be used [11] and for the multivariate case, Markov Chain Monte
Carlo (MCMC) or Fully Conditional Specification (FCS) algorithms [12,14]. Although the
EM and MI algorithms may be two of the best options that the modern theory of missing
data can provide, on certain occasions these methods do not guarantee the same quality in
the results in non-normal distributions and/or with MNAR missing data mechanisms [18].

For this reason, alternative methods have recently been used in [16], for example,
schemes that use kNN (k nearest neighbors) algorithms or through imputations based
in random forest (predictors that consist of a collection of randomized regression trees)
which are highly versatile because they are non-parametric systems and can be applied
to continuous, categorized or mixed data. In order to contribute to the growth of non-
parametric imputation methods, our work proposes new alternatives based on the general
scheme of Krzanowski [21] which is now presented.

3. Krzanowski Imputation System with Parity Check or EM Iterations.

Method 1 (M1). The first method consists of an updated version of the imputation
system of Krzanowski (1988) with some minor changes that improve its performance [2].
Consider a matrix Y(n × p) with elements yij (i = 1, . . . , n; j = 1, . . . , p) and p > n (if
p < n the matrix should be first transposed). First, suppose there is just one missing value
yij in Y. Then, the ith row from Y is deleted and the SVD for the ((n− 1)× p) resulting

matrix Y(−i) is calculated as Y(−i) = UDV
T
, U = (ush), V = (vsh), D =

(
d1, . . . , dp

)
.

The next step is to delete the jth column from Y and obtain the SVD for the (n×(p−1))

matrix Y(−j) as Y(−j) = ŨD̃ṼT , Ũ = (ũsh), Ṽ = (ṽsh), D̃ =
(
d̃1, . . . , d̃p−1

)
. The

matrices U, V, Ũ and Ṽ are orthonormal, while D̃ and D are diagonal. Now, combining
the two SVDs, Y(−i) and Y(−j), the imputed value is given by

ŷij =
H∑

h=1

ũih

(
d̃h

√
p

p− 1

) 1
2

vjh

(
dh

√
n

n− 1

) 1
2

(1)

where H is the optimal number of SVD components as found by cross-validation adapted
for missing data matrices and available in the R statistical environment [24]. In this
work we used the “bcv” package, which has implemented cross-validation for incomplete
matrices using an EM algorithm [25,26] (https://github.com/patperry/r-bcv).
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When there is more than one missing value, an iterative scheme is required as fol-
lows. Initially all missing values are replaced by their respective column means, giving
a completed matrix Y and then the columns are standardized by subtracting mj and
dividing the result by sj (where mj and sj represent the mean and the standard de-
viation of the jth column calculated only from the observed values). Using the stan-
dardized matrix, the imputation for each missing value is recalculated using Equation
(1). Finally, the matrix Y is returned to its original scale, yij = mj + sj ŷij. Then, the
process is iterated until stability is achieved in the imputations. In order to avoid con-
vergence problems, a parity check should be done in each iteration by matching the sign

of

(
ũih

(
d̃h
√

p
p−1

) 1
2

)(
vjh

(
dh
√

n
n−1

) 1
2

)
in (1) to the sign of uihdhvjh obtained from the

SVD of the Y matrix for each h = 1, . . . , H [2, 22].

Method 2 (M2). It is possible to avoid the parity check by using an alternative expres-
sion for (1) following the results of Bro et al. [1]. They suggest updating the missing yij
by the corresponding element of the matrix

S =

(
Ũ

(
Ũ
)+

)
Y

(
V

(
V
)+)T

(2)

where (•)+ represents the Moore-Penrose generalized inverse. Note that for each missing
observation a different S matrix will be calculated; the inclusion in the algorithm of (2)
makes the imputation basically an expectation maximization (EM) operation [1, 2].

4. Proposed Variants. Next, seven new extensions of the Krzanowski imputation sys-
tem are presented. The extensions consist of proposing variants in the imputation e-
quation but maintaining two of the main characteristics of the system originally chosen:
these seven new extensions can be used in any data set or database that can be written
in a matrix form without depending on some probability distribution or any missing data
mechanism. These characteristics permit the extensions to be applied in various areas of
knowledge, for example, agriculture, medicine, marketing, and engineering, contributing
in the area of non-parametric statistical methods to incomplete data.

Method 3 (M3) and Method 4 (M4). Given that our only interest is the Krzanowski
imputation system, method 1 and method 2 can be considered in this paper as “gold
standard” because they have been previously presented and assessed in the literature,

but Krzanowski suggested that dh can also be estimated independently by d̃h or dh. To
our knowledge, this option has not yet been assessed in method-related references, which
leads us to consider two simple variants of the imputation Equation (1) in the iterative
parity check scheme:

ŷij =
H∑

h=1

ũihd̃h

√
p

p− 1
vjh (3)

ŷij =
H∑

h=1

ũihvjhdh

√
n

n− 1
(4)

The use of (3) gives method 3 and the use of (4) gives method 4.

Method 5 (M5). The fifth variant eliminates d̃h
√

p
p−1

and dh
√

n
n−1

by replacing Equa-

tion (1) of the iterative parity check scheme with
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ŷij =
H∑

h=1

ũihvjh (5)

This modification is based on the results of the research by Eshghi [27], who considered
the effect of eigenvalues to be negligible when cross-validation is used for the choice of the
optimal number of dimensions in the principal component analysis (PCA) from incomplete
matrices. In the Eshghi study, a modified version of the Eastment and Krzanowski [22]
cross-validation method was proposed, but in place of the SVD for the component model
adjustment, the nonlinear iterative partial least squares (NIPALS) algorithm was used and
had the disadvantage that the number of missing data could not exceed 20%. Eshghi’s [27]
justification for proposing this modification is based on the fact that the original method is
computationally very intensive as the size of the matrix under analysis increases, because
it requires the fit of two PCA models for each element of the matrix that is predicted.
In addition, this approach is asymptotically inconsistent, which does not always lead to
the selection of the model with the best predictive capacity (for details on real problems
solved using predictive models see Gunawan [28]). The inconsistency can be corrected
using a leave-group-out cross-validation approach, a fact that is used in the following
proposed methods.

Method 6 (M6) and Method 7 (M7). In methods traditionally used for cross-
validation of PCA, such as those proposed by Eastment and Krzanowski [22] and Gabriel
[29], only one element of the matrix is left out and is later predicted. Owen and Perry [30]
and Eshghi [27] have recently proposed generalizations of these methods, in which subma-
trices or groups of rows (columns) can be left out to make the corresponding prediction.
For example, Owen and Perry [30] recommended leaving out submatrices of dimension
(2× 2) and (3× 3).

Taking account of these results it is proposed to modify method 2 by eliminating two
rows and two columns, i.e., replacing Equation (2) with

S(−2) =

(
Ũ(−2)

(
Ũ(−2)

)+
)
Y

(
V(−2)

(
V(−2)

)+)T

(6)

where Ũ(−2) represents the SVD matrix of Y found after eliminating two columns, namely

Y(−2 columns) = Ũ(−2)D̃(−2)Ṽ
T
(−2) and V(−2) represents the SVD matrix of Y found after

eliminating two rows, namely Y(−2 rows) = U(−2)D(−2)V
T

(−2).
Remember that in this EM algorithm, the missing yij is replaced by the corresponding

value of S(−2), so the first row eliminated from Y will be the ith and the second row will
be randomly chosen from (n− 1) rows remaining. Similarly, the first column eliminated
from Y will be the jth and the second column will be randomly chosen from (p − 1)
columns remaining.

It is possible to consider eliminating three rows and three columns by replacing Equation
(2) with

S(−3) =

(
Ũ(−3)

(
Ũ(−3)

)+
)
Y

(
V(−3)

(
V(−3)

)+)T

(7)

In this case, the first row eliminated from Y will be the ith and the other two rows
will be chosen randomly from the remaining (n− 1) rows. Similarly, the first column
eliminated from Y will be the jth and the other two will be randomly chosen from the
remaining (p− 1) columns. EM algorithms using Equations (6) and (7) will be called M6
and M7 respectively.
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Method 8 (M8) and Method 9 (M9). Two variants can be obtained from method
6 and method 7 described above. Both M6 and M7 eliminate the ith row and jth col-
umn, then randomly delete more rows (columns) depending on the size of the row group
(columns) chosen. In this study we limited it to 2 and 3. However, given that the
Krzanowski imputation method can be applied to any matrix, in a specifically multivari-
ate data matrix [31] the rows and columns should be treated differently. Thus, if the rows
represent independent individuals, random row deletion is reasonable after the obligatory
deletion of the ith row, but in the columns there will generally be correlated variables. For
this reason, we propose that in addition to the obligatory elimination of the jth column,
the elimination of any remaining columns should be based on Spearman’s correlation
coefficient [32].
For example, if the goal is to impute the element yij and the chosen number of columns

eliminated is 3, we suggest imputation in two phases. First apply the EM algorithm
described in method 2 on the incomplete matrix Y, and then on the completed matrix
(observed + imputed) obtain the Spearman correlation matrix. The jth column and
the two columns that have the least correlations with it are eliminated from Y to apply
method 7. A similar procedure applies if only two columns are eliminated, but method
6 is applied. The application of method 6 and method 7 with the Spearman correlation
criterion for elimination of columns is denoted by M8 and M9 respectively.

5. Simulation Study. To compare the variants of the Krzanowski imputation system,
a simulation study was performed following the methodology proposed by Heydarbeygie
and Ahmadi [23]. Thus, 1000 matrices Z of size (100× 8) were generated with elements
obtained from a uniform distribution U(0, 1). For each matrix, 15%, 25% and 35% of
the values were deleted randomly and treated as missing values, obtaining a total of 3000
incomplete matrices, denoted by Zmiss. Subsequently, the nine variants of the Krzanowski
system were applied to each incomplete matrix, obtaining completed matrices (observed
+ imputed) denoted by Z(completed).
To compare the methods, the imputation uncertainty was estimated through a non-

parametric approximation, obtaining a measure of its statistical significance. The proce-
dure is described below. From the Zmiss matrix, 5% of the observed values of each column
were eliminated [33], but initially recorded to compare them after imputation through the
equation.

RDij = |zij.trueval − zij.imputedval|
where zij.trueval is the true value that was eliminated and zij.imputedval is the value produced
by the imputation process. The RDij values are then ranked in ascending order and
replaced by their ranks (i.e., the smallest becomes 1 and so on), and the Wilcoxon signed-
rank test statistic is constructed:

T =

∑n
i=1

∑m
j=1RDij√∑n

i=1

∑m
j=1RD2

ij

where m and n are the number of rows and columns of Zmiss respectively. The significance
measure of imputation uncertainty is approximately estimated by the p-value that is
produced by the Wilcoxon test. The procedure must be repeated several times so that
the variation of p-values can be considered. In this study, the procedure was repeated 10
times as in the studies by Solomon et al. [34].
Having obtained the p-values it is possible to establish if there is little or much un-

certainty within the set of imputed values: at significance level α, p-values lower than α
indicate high uncertainty in the imputations. In our study we used α = 5% and from
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the ten p-values obtained for each of the three thousand matrices, the distribution of the
minimum p-value was studied. For additional details on this methodology, see [23].

One of the important steps of the previous procedure was repetition. Thus, for each
incomplete Zmiss matrix, ten different Z(completed) matrices were produced in each of which
a parameter of interest was estimated and then the ten estimates were compared with the
parameter estimate obtained from the corresponding original matrix Z without missing
data. The comparison was made using mean bias and mean squared error (MSE). The
ten estimates also made it possible to calculate variance as a criterion for selecting the
most efficient imputation method. The parameter studied was the square root of the
maximum eigenvalue of ZTZ (or equivalently, the maximum singular value obtained by
the SVD of Z), which in practice is used for biplot analysis or for analyses involving the
additive main effects with the multiplicative interaction model AMMI [35,36].

6. Results and Analysis. To establish whether any differences exist between our nine
methods, and if any such differences do exist then to pinpoint which methods differ from
the others, we consider the analysis of the data under four general headings: i) imputation
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Figure 1. Distribution of minimum p-values in the different percentages
of missing values
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uncertainty of each method, ii) mean bias of each method, iii) mean squared error of each
method, and iv) variance of the maximum singular value estimate. We now consider the
detailed results for each of these headings in turn, and in each case we have a diagram
and a table for each percentage of missing values in the data set.

6.1. Imputation uncertainty. The statistic used to test the significance of this uncer-
tainty is the minimum p-value of each method for each simulation, and Figure 1 shows
the distributions of these minimum p-values. An asymmetric distribution on the right is
observed in the three percentages of missing values considered for all imputation systems.
To compare the distributions, the nonparametric Friedman test [32] was performed, being
significant only when 25% of the values were eliminated (p-value = 0.0324). This indicates
that the uncertainty does not differ between the nine methods when considering the per-
centages of missing values of 15% (p-value = 0.1615) and 35% (p-value = 0.0625). After
the only significant Friedman test, Wilcoxon-Nemenyi-MCDonald-Thompson’s multiple

Table 1. Statistics of the minimum p-values

Percentage of missing values: 15%
Method Mean Stdev Median IQR
M1 0.09010 0.08178 0.06498 0.10192
M2 0.09175 0.08453 0.06796 0.10032
M3 0.09370 0.08331 0.07080 0.10630
M4 0.08555 0.07870 0.06345 0.09100
M5 0.08891 0.08273 0.06785 0.09745
M6 0.08786 0.08155 0.06222 0.09974
M7 0.08539 0.08107 0.06091 0.09576
M8 0.08997 0.08246 0.06785 0.10081
M9 0.09013 0.08270 0.06466 0.10843

Percentage of missing values: 25%
M1 0.08734 0.08106 0.06570 0.09661
M2 0.08099 0.08074 0.05524 0.09301
M3 0.08618 0.07828 0.06351 0.09990
M4 0.09078 0.08141 0.06785 0.09624
M5 0.08357 0.07660 0.06062 0.09431
M6 0.08839 0.08195 0.06642 0.09745
M7 0.08827 0.08301 0.06498 0.09794
M8 0.08761 0.08106 0.06347 0.10277
M9 0.08990 0.08618 0.06356 0.09747

Percentage of missing values: 35%
M1 0.09330 0.08504 0.07098 0.09872
M2 0.08981 0.08344 0.06670 0.10083
M3 0.08840 0.08057 0.06465 0.09750
M4 0.09174 0.08533 0.06910 0.10125
M5 0.09556 0.08446 0.07098 0.10456
M6 0.08839 0.08107 0.06670 0.09917
M7 0.08311 0.07759 0.05935 0.08756
M8 0.08969 0.08050 0.06670 0.09945
M9 0.08930 0.08617 0.06263 0.10114

Methods that had a significant difference in nonpara-
metric multiple comparisons are shown in bold.
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comparisons were applied [32, 37] and it was found that only a significant difference ex-
isted between the M2 and M4. To observe the magnitude of the minimum p-values, the
corresponding basic statistics are presented in Table 1, and it is observed that the mean
and median of these p-values are greater than α = 5%, which means that the uncertainty
was not significant in the imputed data for all methods in all percentages considered.
With this criterion, it was found that the Krzanowski imputation system and its various
variants produce very good quality imputations (non-significant uncertainty), both with
the iterative scheme that includes parity check and iterations type EM.

6.2. Mean bias. This criterion is used to examine the accuracy of estimation of the max-
imum singular value of each simulated matrix, and Figure 2 shows the distributions of the
mean bias for each imputation method considered. The scale of the box charts indicates
that in the three percentages of missing data, the mean bias was negative, meaning that
the maximum singular value of each original matrix simulated was overestimated when
using the completed data (observed + imputed). This mean bias increased as the number
of imputations increased, which is as expected. Taking this into account, the method
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Figure 2. Distribution of mean bias in the different percentages of missing values
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Table 2. Statistics of the mean bias

Percentage of missing values: 15%
Method Mean Stdev Median IQR
M1 −2.01627 0.09735 −2.01466 0.12296
M2 −1.99057 0.08670 −1.98875 0.12362
M3 −2.01866 0.09926 −2.01774 0.12683
M4 −2.01562 0.09610 −2.01375 0.12550
M5 −1.97786 0.05297 −1.97692 0.07089
M6 −1.98799 0.07645 −1.98672 0.10240
M7 −1.98663 0.06958 −1.98604 0.09174
M8 −1.99158 0.09051 −1.99003 0.12020
M9 −1.99251 0.08864 −1.99169 0.12196

Percentage of missing values: 25%
M1 −3.38173 0.13100 −3.37424 0.16938
M2 −3.37395 0.16470 −3.36470 0.20245
M3 −3.38703 0.13368 −3.37695 0.17433
M4 −3.38015 0.12939 −3.37427 0.16887
M5 −3.33184 0.08069 −3.33318 0.11114
M6 −3.35181 0.10770 −3.34968 0.15500
M7 −3.34580 0.09977 −3.34506 0.13818
M8 −3.36518 0.13412 −3.36107 0.19088
M9 −3.36285 0.13521 −3.35948 0.18025

Percentage of missing values: 35%
M1 −4.76223 0.15083 −4.76284 0.19317
M2 −4.73387 0.16507 −4.73958 0.20146
M3 −4.77648 0.15494 −4.77499 0.19847
M4 −4.76057 0.14919 −4.76293 0.19081
M5 −4.70124 0.10671 −4.70013 0.14417
M7 −4.72430 0.12967 −4.72986 0.15833
M8 −4.76437 0.18517 −4.75829 0.24174
M9 −4.75280 0.17725 −4.75214 0.22599

Methods with the lowest statistics of the mean bias are shown
in bold.

with the lowest mean bias can be considered the best and from a graphical point of view
M5 stands out, the variant of the Krzanowski imputation system that uses parity check
eliminating the singular values from the imputation equation. It can be seen graphically
and in Table 2 that M5 in all percentages has the smallest variation (lowest standard
deviations and lowest interquartile distances) and the mean and median closest to zero,
i.e., with the smallest bias. Note that with 35% imputations M6 was eliminated from the
box plot because M6 showed extremely large mean bias values not comparable with the
remaining imputation systems.
The difference in mean bias between the methods was verified by the Friedman test

and was significant in the three percentages considered, with p-values lower than 0.0001.
Subsequently, the nonparametric multiple comparisons of Wilcoxon-Nemenyi-MCDonald-
Thompson (WNMT) were performed. When 15% of the values were imputed, the central-
ity parameter of the M5 method differed from all remaining imputation systems except
M6 (p-value = 0.0851) and M7 (p-value = 0.4574). When 25% of values were imputed,
the only non-significant difference was found with the M7 method (p-value = 0.5488), and



IMPUTATION USING THE SINGULAR VALUE DECOMPOSITION 1691

when 35% of the values were imputed M5 had significant differences with all other meth-
ods (p-values < 0.0001). This analysis confirms that following the mean bias criterion,
the recommended method is M5 (iterative parity check scheme) because it had significant
differences with the other methods and when it had a centrality parameter equal to M6
and M7, it categorically outperformed them by its low dispersion (Table 2).

6.3. Mean squared error. This criterion is used to examine the overall spread of esti-
mated parameter of each completed Z(completed) matrix with respect to its corresponding
original Z matrix, the parameter studied was the maximum singular value obtained by
the SVD of Z. Figure 3 and Table 3 display the values obtained for this criterion.

Looking at Figure 3 and Table 3, it can be established that in general, according to the
MSE, again the M5 method is the most efficient with the lowest means, medians, standard
deviations and interquartile distances. The Friedman test was performed to compare MSE
distributions and was significant (p-values < 0.0001) in all the imputation percentages
considered. Subsequently, with the multiple pair comparisons of WNMT, it was found
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Figure 3. Distribution of mean squared error in the different percentages
of missing values
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Table 3. Statistics of the mean squared error – MSE

Percentage of missing values: 15%
Method Mean Stdev Median IQR
M1 4.07583 0.39525 4.06040 0.49498
M2 3.97002 0.34589 3.95519 0.49211
M3 4.08588 0.40362 4.07299 0.51083
M4 4.07295 0.39001 4.05628 0.50515
M5 3.91479 0.20957 3.90825 0.28036
M6 3.95821 0.30508 3.94735 0.40700
M7 3.95181 0.27731 3.94474 0.36431
M8 3.97476 0.36201 3.96028 0.47820
M9 3.97813 0.35482 3.96704 0.48608

Percentage of missing values: 25%
M1 11.45499 0.89019 11.38745 1.14537
M2 11.41152 1.11498 11.32184 1.36678
M3 11.49179 0.91012 11.40557 1.17900
M4 11.44388 0.87862 11.38744 1.14091
M5 11.10771 0.53753 11.11011 0.74050
M6 11.24688 0.72330 11.22092 1.03832
M7 11.20487 0.66874 11.19002 0.92435
M8 11.34300 0.90458 11.29713 1.28413
M9 11.32743 0.91077 11.28624 1.21270

Percentage of missing values: 35%
M1 22.70414 1.43614 22.68605 1.83715
M2 22.43738 1.56298 22.46376 1.90922
M3 22.84197 1.48291 22.80492 1.89708
M4 22.68782 1.41944 22.68793 1.81622
M5 22.11303 1.00313 22.09123 1.35487
M7 22.34669 1.35228 22.37270 1.49564
M8 22.73659 1.76984 22.64380 2.30274
M9 22.62190 1.68654 22.58341 2.14959

The method with the lowest mean and median MSE is shown
in bold.

that with the 15% imputation, the median MSE of the M5 method differs from other
methods except M6 (p-value = 0.0814) and M7 (p-value = 0.4352). However, M5 remains
preferable because it has the smallest variation (standard deviation and interquartile
distance in Table 3). When considering the 25% imputation the only non-significant
difference was detected with M7 (p-value = 0.5546), but looking at Table 3, again the
MSE variation of M5 was the smallest (see variability measures). Finally, when 35% of
the values were imputed, the centrality parameter of M5 turned out to be lower than the
other methods (p-values < 0.0001). In summary, according to MSE the recommended
method is the M5 method. Note that at 35% the M6 system did not present MSE results
comparable with the other methods, so it was eliminated from the graph.

6.4. Variance of the maximum singular value estimate. This criterion is used to
examine the spread of this estimate in each simulated matrix, and the M5 method again
outperformed the remaining imputation systems. The efficiency of M5 is shown graph-
ically in Figure 4 (the smallest variance in all imputation percentages). Nonparametric
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analyses similar to those performed with the MSE and the mean bias were also performed
with variance, but are not presented because the result was similar, indicating M5 as
the best variant of Krzanowski’s imputation system. Note that at 35% the M6 and M7
systems did not present MSE results comparable to the other methods; therefore, they
were eliminated from Figure 4.
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Figure 4. Distribution of variance of the maximum singular value in the
different percentages of missing values

7. Discussion. The purpose of this research has been achieved. Nine variants of the
Krzanowski imputation system [2, 21] were tested to determine which iterative scheme
might be the most efficient. Variants based on iterations type EM (M6, M7, M8, and
M9) depended on the M2 scheme by Bro et al. [1], but none of them outperformed the
M5 variant that eliminated the singular values from the imputation equation and that
works with iterations including parity check. In this study M1 (with parity check) and M2
(with EM iterations) were considered as the standard Krzanowski imputation systems,
and these were largely outperformed by M5 using as criteria the mean bias, the MSE and
the variance of the studied parameter.
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Although the results are conclusive and relevant, they are not definitive because they
leave open a line of research related to the imputation method by the singular value
decomposition M5. Being a distribution-free method, it does not imply that it is robust
to different probability distributions [38]; therefore, other simulations based on real data
can be considered to test performance under different probability distributions other than
the uniform one considered here [39, 40].
To delimit this research, only a missing completely at random data mechanism

(MCAR) was considered to directly test the uncertainty of Krzanowski imputations with
the nonparametric approach of Heydarbeygie and Ahmadi [23]. This methodology cannot
be applied under other missing data mechanisms because its main element is the random
elimination of elements, so it would be interesting to explore in future research nonpara-
metric alternatives to estimate the uncertainty of the simple imputation of the M5 system
under the MAR and MNAR mechanisms. While that research is conducted, when applied
researchers are faced with incomplete data following these mechanisms, the performance
of the M5 imputation method can be assessed with bias and/or MSE. Another way of
estimating the uncertainty of imputations that does not depend on distributional or struc-
tural assumptions is by adapting the M5 variant to nonparametric multiple imputation
following the schemes proposed by Bergamo et al. [41], Arciniegas-Alarcón et al. [2] and
Garćıa-Peña et al. [42], this will undoubtedly need further research.
Finally, one aspect that may merit further research with the M5 imputation system

is its performance when the matrices contain discrepant data, because SVD is a least
squares technique that will necessarily be affected by such values. In this case, the first
step is to detect them [43, 44] and later replace in the M5 the classic SVD with robust
SVD [45], as proposed by Gabriel and Odoroff [46], Hawkins et al. [47], Liu et al. [48],
Hernández-González and Galindo-Villardón [49], Jung [50], Zhang et al. [51] and Feng
and He [52].

8. Conclusions. Of the seven new variants of the Krzanowski imputation system that
were proposed in this study based on the decomposition by singular values, the best
performance was obtained when the singular values of the imputation equation were
eliminated within an iterative scheme using parity check. The proposal can be applied to
any data set arranged in a matrix form and does not depend on distributional or structural
assumptions, but it is assumed that the variables or columns of the incomplete matrix un-
der study are correlated and without outliers. Future research may use the new proposal
in studies of robustness to different probability distributions, robustness to different miss-
ing data mechanisms and in the assessment of resampling methods (bootstrap, jackknife
or cross-validation) as tools to produce multiple imputation or to estimate uncertainty
imputations in real data from any area of knowledge.
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