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Abstract: With the development of convolutional neural networks, the effect of pedestrian detection
has been greatly improved by deep learning models. However, the presence of pseudo pedestrians
will lead to accuracy reduction in pedestrian detection. To solve the problem that the existing
pedestrian detection algorithms cannot distinguish pseudo pedestrians from real pedestrians, a
real and pseudo pedestrian detection method with CA-YOLOv5s based on stereo image fusion is
proposed in this paper. Firstly, the two-view images of the pedestrian are captured by a binocular
stereo camera. Then, a proposed CA-YOLOv5s pedestrian detection algorithm is used for the left-
view and right-view images, respectively, to detect the respective pedestrian regions. Afterwards,
the detected left-view and right-view pedestrian regions are matched to obtain the feature point
set, and the 3D spatial coordinates of the feature point set are calculated with Zhengyou Zhang’s
calibration method. Finally, the RANSAC plane-fitting algorithm is adopted to extract the 3D features
of the feature point set, and the real and pseudo pedestrian detection is achieved by the trained
SVM. The proposed real and pseudo pedestrian detection method with CA-YOLOv5s based on stereo
image fusion effectively solves the pseudo pedestrian detection problem and efficiently improves the
accuracy. Experimental results also show that for the dataset with real and pseudo pedestrians, the
proposed method significantly outperforms other existing pedestrian detection algorithms in terms
of accuracy and precision.

Keywords: stereo image fusion; pedestrian detection; CA; YOLOv5s; pseudo pedestrian

1. Introduction

Pedestrian detection is an important branch of object detection, having received wide
attention in the past two decades [1]. The purpose of pedestrian detection is to find all
possible pedestrians in the input image and output the location of pedestrian in the image.
Pedestrian detection can be widely used in areas such as safety monitoring and automatic
driving, where the accuracy of pedestrian detection is crucial [2].

Pedestrian detection technology has developed from traditional hand-assisted fea-
ture detection [3–5] to modern deep learning-based feature detection [6–9]. Traditional
pedestrian detection algorithms require the manual design of filters and features, such as
Gabor filter, gradient-based feature, channel feature, etc., according to statistical or prior
knowledge of the designer. Cheng et al. proposed a pedestrian detection method using a
sparse Gabor filter which is designed according to the learned texture features from some
manually selected typical images of pedestrian [10]. Dalal proposed a pedestrian detection
method using edge features extracted by a histogram of oriented gradient (HOG), which is
obtained by the calculation and statistics of HOG in some manually selected local image
areas [5]. Dollar et al. proposed a pedestrian detection method using channel features
extracted by the integral of some manually selected registered image channels [11]. These
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traditional pedestrian detection algorithms are time consuming and laborious due to the
manual intervention, with relatively low detection accuracy and efficiency.

With the development of convolutional neural networks, the effect of pedestrian detec-
tion has been pushed to an unprecedentedly high level by the modern deep learning-based
pedestrian detection algorithms [12,13]. Modern pedestrian detection algorithms based
on deep learning can autonomously learn and extract features of pedestrian, with high
detection accuracy and efficiency. Many challenging problems have been well solved [14].
For instance, Zhang et al. solved the problem of small-scale pedestrian detection with
asymmetric multi-stage CNNs [15]. Xu et al. solved the efficiency problem of pedestrian
detection through the model reconstruction and pruning of YOLOv3 network [16]. Lin et al.
solved the robustness problem of obscured pedestrian detection with multi-grained deep
feature learning [17]. Li et al. solved the effectiveness problem of pedestrian detection
in hazy weather with a weighted combination layer, which combines multi-scale feature
maps with a squeeze and excitation block [18]. However, the elimination problem of false
positive samples in pedestrian detection has not been solved yet.

The false positive samples include trash cans, traffic lights, trees and people printed
on flat surfaces. Since these false positive samples have similar characteristics to pedes-
trians, they are always incorrectly detected as pedestrian by most pedestrian detection
algorithms [19]. The incorrect detection of false positive samples, such as trash cans, traffic
lights and trees has been solved through network improvement [20–22]. However, the in-
correct detection of people printed on flat surfaces has not been well solved because printed
people have almost exactly the same characteristics as pedestrians. There are mainly two
types of pedestrians printed on flat surfaces: pseudo pedestrian in a 2D plane with back-
ground (PPWB) and pseudo pedestrian in a 2D plane with no background (PPWNB), which
are collectively called pseudo pedestrians in this paper.

There is almost no difference between real and pseudo pedestrians in 2D features, so
it is necessary to take advantage of 3D features to distinguish them. There have been some
attempts to detect pedestrians with 3D information. Shakeri et al. collected 3D information
contained in the left-view and right-view images by a binocular stereo camera, enhanced
the image quality of the pedestrian area of interest by 3D information fusion, and thus
improved the accuracy of pedestrian detection [23]. However, only 2D information is
used in pedestrian detection, which cannot realize real and pseudo pedestrian detection.
Wei et al. also captured 3D information included in the left-view and right-view images
by a binocular stereo camera, took advantage of the complementary information of the
left-view and right-view images, and solved the problem of obscured pedestrian detec-
tion [24]. Nevertheless, similar to Ref. [23], only 2D information is used in pedestrian
detection, which cannot complete real and pseudo pedestrian detection as well. Zhao et al.
acquired 3D information contained in the 2D image and depth map by a light field cam-
era, and performed pedestrian detection according to the 3D information, including 2D
information and depth information [25]. PPWB at the same depth as the background can
be distinguished from the real pedestrian, while PPWNB not at the same depth as the
background can still not be distinguished from the real pedestrian. Therefore, it is necessary
to further solve the problem of pedestrian detection involving both PPWB and PPWNB.

In this paper, a real and pseudo pedestrian detection method with CA-YOLOv5s
based on stereo image fusion is proposed. The proposed method is designed according
to the constructed real and pseudo pedestrian detection bionic model based on human
stereo vision. A binocular stereo camera is adopted to capture the left-view and right-view
images of the pedestrian. The two-view images are respectively detected by the improved
CA-YOLOv5s pedestrian detection algorithm to obtain the respective pedestrian regions.
The detected pedestrian regions are stereo matched to obtain a feature point set, and the 3D
spatial coordinates of the feature point set are calculated with Zhengyou Zhang’s calibration
method. The mismatched feature points are eliminated, and a matched feature point set
is reserved. The 3D features of the matched feature point set are extracted by random
sample consensus (RANSAC) plane fitting, and the real and pseudo pedestrian detection
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is completed by the trained support vector machine (SVM) model. The proposed method
can effectively solve the problem of pseudo pedestrian detection, and increase the accuracy
as well.

The rest of the paper is organized as follow. In Section 2, we review some related
works on the principle of human stereo vision and attention mechanism. In Section 3, we
construct a real and pseudo pedestrian detection bionic model based on human stereo
vision and propose a real and pseudo pedestrian detection method with CA-YOLOv5s
based on stereo image fusion. In Section 4, we report the experimental results. In Section 5,
we make a conclusion.

2. Related Works
2.1. Principle of Human Stereo Vision

Human stereo vision can perfectly realize the real and pseudo pedestrian detection, so
it is the biological theoretical basis of the proposed method in this paper. In human stereo
vision system, as shown in Figure 1, the 3D pedestrian is imaged on the retina through
human optical components such as lens, and the photoreceptor cells on the retina convert
optical signals into bioelectrical signals which are transmitted to the optic chiasma through
the optic nerve. The optic chiasma rearranges the signals and transmits them to the lateral
geniculate nucleus (LGN), and the processed signals are sent to the visual center of the
occipital lobe through optic radiation. In the visual center of the occipital lobe, the region
of interest is extracted by the receptive field division, the binocular single vision is formed
through fusion, the stereo vision is achieved through spatial position perception, and the
real and pseudo pedestrian judgment is made accordingly.
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Output
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Real and pseudo 

pedestrian 

judgment

Spatial position 

perception

Receptive field 

division

Binocular single 

vision

LightLigh

Light

Retina

Lens

Lens

Retina

Optic 

nerve

Optic 

chiasma

Optic 

nerve
RLGN

Optic 

radiation

Visual center

Figure 1. Pedestrian detection principle diagram of human stereo vision.

When viewing an object, the optic chiasma rearranges the signals from the right visual
field of the left eye and the right visual field of the right eye and transmits them to the left
LGN (LLGN), and rearranges the signals from the left visual field of the left eye and the left
visual field of the right eye and transmits them to the right LGN (RLGN) [26]. For LLGN,
the light intensity Ir

L of the optical signal perceived at the right visual field of the left retina(
xr

L, yr
L
)

from the right visual field of the left eye at time t can be expressed by Equation (1),
while the light intensity Ir

R of the optical signal perceived at the right visual field of the
right retina

(
xr

R, yr
R
)

from the right visual field of the right eye at time t can be expressed
by Equation (2). For RLGN, the light intensity Il

L of the optical signal perceived at the left

visual field of the left retina
(

xl
L, yl

L

)
from the left visual field of the left eye at time t can be

expressed by Equation (3), while the light intensity Il
R of the optical signal perceived at the
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left visual field of the right retina
(

xl
R, yl

R

)
from the left visual field of the right eye at time

t can be expressed by Equation (4).

Ir
L(xr

L, yr
L, t) = kL

∫ λh

λl

PL(xr
L, yr

L, λ, t)VL(λ)dλ (1)

Ir
R(xr

R, yr
R, t) = kR

∫ λh

λl

PR(xr
R, yr

R, λ, t)VR(λ)dλ (2)

Il
L

(
xl

L, yl
L, t
)
= kL

∫ λh

λl

PL

(
xl

L, yl
L, λ, t

)
VL(λ)dλ (3)

Il
R

(
xl

R, yl
R, t
)
= kR

∫ λh

λl

PR

(
xl

R, yl
R, λ, t

)
VR(λ)dλ (4)

Wherein
(

xr
L, yr

L
)

and
(
xr

R, yr
R
)

are the coordinates of the corresponding imaging points

in the right visual field of the left and right retina, respectively;
(

xl
L, yl

L

)
and

(
xl

R, yl
R

)
are the coordinates of the corresponding imaging points in the left visual field of the
left and right retina respectively; kl and kr are the adjustable coefficients of the left and
right eye respectively; PL

(
xr

L, yr
L,λ, t

)
and PR

(
xr

R, yr
R, λ, t

)
are the radiation power of light

with wavelength λ received at
(
xr

L, yr
L
)

and
(

xr
R, yr

R
)

respectively; PL

(
xl

L, yl
L, λ, t

)
and

PR

(
xl

R, yl
R, λ, t

)
are the radiation power of light with wavelength λ received at

(
xl

L, yl
L

)
and

(
xl

R, yl
R

)
, respectively; VL(λ) and VR(λ) are the spectral response functions of the left

and right eye, respectively; λh and λl are the upper and lower wavelength limits of human
eye perception.

The optical signal causes ion exchange in the Na+-K+ ion pumps in the photoreceptor
cells of the retina, resulting in a change in the electric potential, which is voltage [27]. Thus,
the optical signals Ir

L and Ir
R at the right visual field of the left and right retina are converted

into the bioelectrical signals Ur
L and Ur

R in the right visual field by photoelectric conversion
(PEC), as expressed by Equations (5) and (6). The optical signals Il

L and Il
R at the right left

field of the left and right retina are converted into the bioelectrical signals Ul
L and Ul

R in the
left visual field by PEC, as expressed by Equations (7) and (8).

Ur
L(xr

L, yr
L, t) = PEC(Ir

L(xr
L, yr

L, t)) (5)

Ur
R(xr

R, yr
R, t) = PEC(Ir

R(xr
R, yr

R, t)) (6)

Ul
L

(
xl

L, yl
L, t
)
= PEC

(
Il
L

(
xl

L, yl
L, t
))

(7)

Ul
R

(
xl

R, yl
R, t
)
= PEC

(
Il
R

(
xl

R, yl
R, t
))

(8)

The bioelectrical signals Ur
L and Ur

R in the right visual field are transmitted to the optic
chiasma (OC) through the optic nerve, where they are rearranged and sent to the LLGN.
The bioelectrical signals received by the LLGN can be expressed by Equation (9). The bio-
electrical signals Ul

L and Ul
R in the left visual field are transmitted to the optic chiasma

through the optic nerve, where they are rearranged and sent to the RLGN. The bioelectrical
signals received by the RLGN can be expressed by Equation (10).

ULLGN(xr, yr, t) = OC(Ur
L(xr

L, yr
L, t) ∪Ur

R(xr
R, yr

R, t)) (9)

URLGN

(
xl , yl , t

)
= OC

(
Ul

L

(
xl

L, yl
L, t
)
∪Ul

R

(
xl

R, yl
R, t
))

(10)

The bioelectrical signals ULLGN in the LLGN are sent to the left brain through optic
radiation (OR). The bioelectrical signals ULB received by the left brain can be expressed
by Equation (11), which represents the right visual field. The bioelectrical signals URLGN
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in the RLGN are sent to the right brain through optic radiation. The bioelectrical signals
URB received by the right brain can be expressed by Equation (12), which represent the left
visual field.

ULB(xr, yr, t) = OR(ULLGN(xr, yr, t)) (11)

URB

(
xl , yl , t

)
= OR

(
URLGN

(
xl , yl , t

))
(12)

In the visual center of the occipital lobe, the bioelectrical signals ULB and URB are
combined into a bioelectrical signal UB representing the whole visual field, which can be
expressed by Equation (13).

UB(x, y, t) = URB

(
xl , yl , t

)
∪ULB(xr, yr, t) (13)

Visual cortex cells only respond significantly to the bioelectrical signal UB−RF in their
receptive field (RF), as expressed by Equation (14).

UB−RF(xRF, yRF, t) = RF(UB(x, y, t)) (14)

The bioelectrical signal UB−RF has a hierarchical structure, in which different layers
correspond to the different bioelectrical signals from the left and right eyes, respectively.
The visual cortex of the brain fuses the layered bioelectrical signals UB−RF in the receptive
field to form a single object image, that is, binocular single vision, then the spatial position
perception is realized, as expressed by Equation (15).

IP(X, Y, Z, t) = F
(
UB−RF(xRF, yRF, t)

)
(15)

Finally, the real and pseudo pedestrian judgment is made by the brain according to
the perceived stereo vision information IP and the judgment result is output, as expressed
by Equation (16).

Output = J(IP(X, Y, Z, t)) (16)

With the above process, the real and pseudo pedestrian judgment is completed by the
human stereo vision system.

2.2. Attention Mechanism

In the pedestrian detection network, more weight can be allocated to the pedestrian
area and less weight to the background area through the focusing effect of the attention
mechanism, so as to improve the accuracy of pedestrian detection and reduce the network
model parameters.

According to its processing mechanism, the attention module can be divided into
three types: spatial attention module, channel attention module and mixed attention
module [28–32]. The spatial attention module carries out average pooling and maximum
pooling in the channel direction at the same time using the spatial weight matrix. The spatial
attention matrix is obtained by convolution, and a 2D spatial attention map is generated by
the activation function, thus the spatial position that needs to be focused on is determined.
Moreover, the attention mechanism has also been used in multimodal image fusion [33–35]
to enhance the pedestrian detection, and has achieved promising results.

Typical channel attention module includes squeeze-and-excitation (SE) and efficient
channel attention (ECA). SE samples the input image by global average pooling, learns the
dependence to each channel by the shared multilayer perceptron (MLP), and generates the
channel attention map by the activation function [28]. ECA improves the shared MLP part of
SE, focusing on the interaction of each channel and its k neighborhood channels, and greatly
reduces the network parameters [29]. The mixed attention module combines different kinds
of attention. The convolutional block attention module (CBAM) and coordinate attention
(CA) are the typical representatives. CBAM connects the channel attention module with
the spatial attention module through convolution, and can obtain the spatial attention and
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channel attention joint optimized features [30]. CA embeds the location information into
the channel attention module, and decomposes the channel attention module into two 1D
feature coding processes, aggregating features along two spatial directions. The network
can quickly focus on the region of interest, and the performance of the pedestrian detection
network can be effectively improved [31].

3. Proposed Method

A real and pseudo pedestrian detection bionic model based on human stereo vision
is designed in this paper, as shown in Figure 2. In the bionic model, the human eyes
are imitated by a binocular stereo camera, which captures external visual information.
The photoreceptor cells on the retina are imitated by the charge coupled device (CCD)
in the camera, which converts the optical signal into an electrical signal. The electrical
signal is transmitted to the processor through the signal line, and the visual center of the
occipital lobe is imitated by the processor. In the processor, the pedestrian region in the
image is firstly extracted by the 2D pedestrian detection network, the fusing process of
binocular single vision is then simulated by the binocular stereo matching, the spatial
position perception is next simulated by the binocular stereo ranging, and the real and
pseudo pedestrian judgment is finally simulated by the SVM prediction.

Processor

Left 

camera

Right 

camera CCD

CCD

Signal line

Pedestrian 

region 

extraction

Binocular 

stereo 

matching

Binocular 

stereo 

ranging

SVM 

prediction

Output

Processor

Figure 2. Bionic model diagram for real and pseudo pedestrian detection based on human
stereo vision.

To realize the function of the processor in the designed bionic model, a real and pseudo
pedestrian detection method with CA-YOLOv5s based on stereo image fusion is proposed
in this paper. As shown in Figure 3, the proposed method consists of four modules,
pedestrian region extraction, binocular stereo matching, binocular stereo ranging and SVM
prediction, which correspond to the four processes of the visual center, that is, receptive field
division, binocular single vision, spatial position perception and real and pseudo pedestrian
judgment. In the pedestrian region extraction module, the dual-view images containing
pedestrian are collected by the binocular stereo camera, and the left-view pedestrian
regions ROIL and the right-view pedestrian regions ROIR are extracted by the improved
CA-YOLOv5s pedestrian detection algorithm, respectively. In the binocular stereo matching
module, SURF matching [36] is performed on the ROIL and ROIR to obtain matched feature
point pairs (pLi, pRi), i = 1, 2, . . . , N, and the calibration parameters fL, fR, R and T of the
binocular stereo camera are calculated by Zhengyou Zhang’s calibration method [37]. In the
binocular stereo ranging module, the feature point set S = {Pi(xi, yi, zi), i = 1, 2, . . . , N}
corresponding to all the matched feature point pairs (pLi, pRi), i = 1, 2, . . . , N in ROIL
and ROIR is calculated according to the calibration parameters of the binocular stereo
camera. The space distance di between each spatial feature point Pi and the origin of the
world coordinate system, namely the optical center of the left-view camera, is calculated,
the mean value d̄ and standard deviation σ of all di are derived, and the absolute difference
|∆di| between each di and d̄ is computed. The mismatched feature points are eliminated
according to the relationship between |∆di| and σ, and the matched feature point set



Entropy 2022, 24, 1091 7 of 24

Smatch =
{

Pj
(

xj, yj, zj
)
, j = 1, 2, . . . , M

}
is obtained, M ≤ N. In the SVM prediction

module, the mean values in x, y and z directions of all the points in Smatch are calculated
to form a new point P(x̄match , ȳmatch , z̄match), and the space distance dmatch is calculated
to represent the space distance between the pedestrian and the camera. According to the
optimal threshold THopt, fitting is performed on all M points in Smatch to obtain a fitting
plane αFit. The standard deviation σd f it

of the distance d f it_j from each point in Smatch to the

fitting plane αFit is calculated. The dmatch and σd f it
are input into the pre-trained real and

pseudo pedestrian classification model, and real and pseudo pedestrian detection can be
achieved. The proposed method solves the problem that the existing pedestrian detection
algorithms cannot identify the pseudo pedestrian well, effectively reduces the number of
false positive samples, and improves the accuracy of pedestrian detection.
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based on stereo image fusion.
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3.1. Pedestrian Region Extraction

Modern deep learning-based pedestrian detection algorithm can be divided into a two-
stage pedestrian detection algorithm and single-stage pedestrian detection algorithm [38].
The most representative two-stage pedestrian detection algorithm is R-CNN series [39], in-
cluding Fast R-CNN [40], Faster R-CNN [7], Cascade R-CNN [41], etc., with high scalability
and good detection performance, but complex structure and low speed. The most repre-
sentative single-stage pedestrian detection algorithm includes YOLO series [42], SSD [8],
RFB [43], M2Det [44], RetinaNet [45], etc., with fast detection speed, but relatively low
detection performance. However, as technical progresses in YOLO series, single-stage de-
tection algorithms have outperformed two-stage detection algorithms not only in detection
speed but also in detection accuracy. Among these single-stage detection algorithms, the
YOLOv5 detection algorithm is particularly suitable for pedestrian detection because of
its fast detection speed, high detection accuracy, and good deployment on hardware de-
vice [46]. There are four common detection algorithms in the YOLOv5 series, i.e., YOLOv5s,
YOLOv5m, YOLOv5l and YOLOv5x. From YOLOv5s to YOLOv5x, the detection accuracy
increases steadily, while the detection speed decreases rapidly and the network complexity
increases significantly [47].

Eight typical object detection algorithms are selected for pedestrian detection algo-
rithm selection and verification, namely, SSD, RFB, RetinaNet, M2Det, YOLOv3, YOLOv4,
YOLOv5s and YOLOv5m. The experimental dataset consists of 17,587 images containing
people selected from the public dataset VOC and 3119 pedestrian images with a resolution
of 2448× 2048 collected in the laboratory, totaling 20,706 images. Image samples of the
dataset are shown in Figure 4. During the experiment, the same parameters are used to
train the model, and the same model performance indices, that is, average precision (AP)
and frame per second (FPS), are selected to evaluate the model. The experimental results
are shown in Table 1. The performance indices of YOLOv5s and YOLOv5m are significantly
better than the other six algorithms. For YOLOv5s, the AP is 89.35%, the FPS is 73, and the
model parameter amount is 26.88 MB, while for YOLOv5m, the AP is 90.36%, the FPS is 60,
and the model parameter amount is 80.23 MB. The AP of YOLOv5s is only 1.01% lower than
that of YOLOv5m, but the FPS of YOLOv5s is 21.7% higher than that of YOLOv5m and the
parameter amount of YOLOv5s is 66.5% lower than that of YOLOv5m. The FPS and param-
eter amount of YOLOv5s are significantly better than those of YOLOv5m. Therefore, on the
premise of ensuring the detection accuracy, YOLOv5s with the fastest detection speed and
the smallest model parameter amount is selected as the basic network for improving the
pedestrian detection performance in this paper.

The attention mechanism consistent with human perception is beneficial for the pedes-
trian detection network to focus on pedestrian quickly. In most pedestrian detection scenes,
pedestrian objects usually have characteristics of multi-scale variation and spatial position
variation due to the movement of pedestrian parallel to and perpendicular to the shoot-
ing direction. Hence, both channel attention and spatial attention should be considered.
Therefore, the mixed attention mechanism is selected to optimize the YOLOv5s network.

Table 1. Performance comparison of different pedestrian detection algorithms.

Algorithm AP (%) FPS Parameter Amount (MB)

SSD 82.42 31 90.27
RFB 81.57 23 141.67

RetinaNet 74.63 11 138.86
M2Det 81.29 25 226.03

YOLOv3 83.89 14 234.98
YOLOv4 83.06 46 244.30
YOLOv5s 89.35 73 26.88
YOLOv5m 90.36 60 80.23
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(a) (b) 

Figure 4. Image examples of the dataset. (a) Image selected from VOC dataset. (b) Collected image.

Pedestrian feature extraction was carried out in the backbone network of YOLOv5s.
Glenn Jocher et al. found that the last layer of the backbone network C3 is the best choice
for replacement in the process of optimizing YOLOv5s with C3 Transformer (C3TR) [47],
i.e., replacing the attention module for the C3 module in the last layer of the backbone
network of YOLOv5s. The CBAM mixed attention module and CA mixed attention module
are used to replace the C3 module in the last layer of the backbone network of YOLOv5s.
Meanwhile, the SE and ECA channel attention modules are used to complete the compara-
tive experiment.

The improved YOLOv5s network is denoted as CBAM-YOLOv5s, CA-YOLOv5s, SE-
YOLOv5s and ECA-YOLOV5s, respectively. The model parameter amount and model
compression ratio are shown in Table 2. When the input image size is 640 × 640, the model
parameter amount of YOLOv5s is 26.88 MB. Compared with these data, the model param-
eter amount of CBAM-Yolov5s is 22.50 MB, which is compressed by 16.29%. The model
parameter amount of CA-YOLOv5s is 22.47 MB, which is compressed by 16.41%. The model
parameter amount of SE-YOLOv5s is 27.63 MB, which is increased by 2.79%. The model
parameter amount of ECA-YOLOV5s is 22.37 MB, which is compressed by 16.78%. ECA-
YOLOV5s is the best, and CA-YOLOv5s is the second. The performance indices AP, recall
and FPS of CBAM-YOLOv5s, CA-YOLOv5s, SE-YOLOv5s and ECA-YOLOV5s are shown
in Table 3. For YOLOv5s, AP is 89.35%, recall is 82.09% and FPS is 73. Compared with this,
CA-YOLOv5s is better than YOLOv5s in the AP index, CBAM-YOLOv5s and CA-YOLOv5s
are better than YOLOv5s in the recall index, CBAM-YOLOv5s, CA-YOLOv5s and ECA-
YOLOv5s are better than YOLOv5s in the FPS index. Only CA-YOLOv5s is better than
YOLOv5s in all three indices.

In conclusion, CA-YOLOv5s is selected as the pedestrian detection algorithm in this
paper, and its network structure is shown in Figure 5, in which the C3 module in the last
layer of the backbone network is replaced with the CA attention module. The detailed
network structure of the CA is shown in Figure 6, in which the attention weights in height
and width directions of the input feature map can be obtained respectively. The feature
visualization comparison is shown in Figure 7. Compared with YOLOv5s, the features of
CA-YOLOv5s are more focused on the pedestrian region.
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Table 2. Parameter amount and model compression ratio of different improved pedestrian detection
algorithms with different attention modules.

No. Detection Model Size Parameter Amount Model Compression
Algorithm (MB) Ratio (%)

1 YOLOv5s 640 × 640 26.88 —
2 CBAM-YOLOv5s 640 × 640 22.50 16.29
3 CA-YOLOv5s 640 × 640 22.47 16.41
4 SE-YOLOv5s 640 × 640 27.63 −2.79
5 ECA-YOLOv5s 640 × 640 22.37 16.78

Table 3. Performance comparison of different improved pedestrian detection algorithms with differ-
ent attention modules.

No. Detection Algorithm AP (%) Recall (%) FPS

1 YOLOv5s 89.35 82.09 73
2 CBAM-YOLOv5s 89.19 82.99 74
3 CA-YOLOv5s 89.99 82.82 75
4 SE-YOLOv5s 88.34 81.34 72
5 ECA-YOLOv5s 88.94 81.32 78
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(a)

(c)

(b)

Figure 7. Feature visualization comparison of the last layer of the backbone network between
YOLOv5s and CA-YOLOv5s. (a) Input image. (b) Feature visualization of C3 in YOLOv5s. (c) Feature
visualization of CA in CA-YOLOv5s.

The output of the proposed CA-YOLOv5s pedestrian detection algorithm is shown
in Figure 8. Figure 8a contains a real pedestrian and a PPWB, and Figure 8b contains
a real pedestrian and a PPWNB. The output includes the bounding box of the detected
pedestrian, the coordinate information of the bounding box, the label and the confidence.
Table 4 illustrates the coordinates of the top left corner and the bottom right corner of the
bounding box in Figure 8a, as well as the label and confidence of the detected pedestrian.
As shown in Figure 8, the real pedestrian, the PPWB and the PPWNB are all detected as
a pedestrian by the CA-YOLOv5s algorithm. Therefore, the real pedestrian and pseudo
pedestrian should be further distinguished on this basis.

(a) (b) 

Figure 8. Output images of CA-YOLOv5s pedestrian detection algorithm. (a) Containing PPWB.
(b) Containing PPWNB.
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Table 4. Output data of Figure 7a.

No. Label and Confidence Top Left Corner, Bottom Right Corner

1 person 1.00 (570, 585), (962, 1770)
2 person 1.00 (1155, 566), (1569, 1886)

3.2. Binocular Stereo Matching and Ranging

In the binocular stereo matching module, the extracted left-view pedestrian region
ROIL and the right-view pedestrian region ROIR are stereo matched by SURF matching [36],
so as to obtain the multiple matched feature point pairs (pLi, pRi), i = 1, 2, . . . , N and the
corresponding 2D coordinates PLi(xLi, yLi) (in ROIL) and PRi(xRi, yRi) (in ROIR). Figure 9
shows a pair of extracted pedestrian regions and their matching result. Then the calibration
parameters fL (left focal length), fR (right focal length), R (rotation matrix) and T (translation
matrix) of the binocular stereo camera are calculated by Zhengyou Zhang’s calibration

method [37], wherein R =

 r1 r2 r3
r4 r5 r6
r7 r8 r9

 and T =
[

tx ty tz
]T .

a b

Figure 9. A pair of extracted pedestrian regions and their matching results. (a) Pedestrian region pair.
(b) Matching results.

In the binocular stereo ranging module, the 3D coordinates Pi(xi, yi, zi) of the matched
feature point pair (PLi, PRi) are calculated using PL(xL, yL), PR(xR, yR), fL, fR, R and T
according to Equation (17) [37]. All these spatial feature points Pi(xi, yi, zi) form a feature
point set S =

{
Pj
(

xj, yj, zj
)
, j = 1, 2, . . . , M

}
. The space distance di between each spatial

feature point Pi in S and the optical center OL of the left-view camera, namely the origin
of the world coordinate system, is calculated according to Equation (18). The mean value
d and standard deviation σ of all di are derived according to Equations (19) and (20).
The absolute difference |∆di| between each di and the mean value d is computed according
to Equation (21). 

x = zxL/ fL
y = zyL/ fL

z = fL( fRtx−xRtz)
xR(r7xL+r8yL+ fLr9)− fR(r1xL+r2yL+ fLr3)

=
fL( fRty−yRtz)

yR(r7xL+r8yL+ fLr9)− fR(r4xL+r5yL+ fLr6)

(17)

di =
√

x2
i + y2

i + z2
i , i = 1, 2, . . . , N (18)

d̄ =
N

∑
i=1

di/N, i = 1, 2, . . . , N (19)
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σ =

√√√√ N

∑
i=1

(
di − d̄

)2/N, i = 1, 2, . . . , N (20)

|∆di| =
∣∣di − d̄

∣∣ (21)

Since there may exist some mismatched feature points in S, the direct use of these
feature points in the plane fitting process will lead to a large deviation in the fitting plane,
and will affect the final real and pseudo pedestrian judgment. Therefore, the mismatched
feature points in S should be eliminated first. If |∆di| > σ, it is considered that Pi is not
within the constraint range of the space distance standard deviation σ in S and is an outlier,
which should be removed. If |∆di| ≤ σ, it is considered that Pi is within the constraint
range of the space distance standard deviation σ in S and is a matched point, which should
be reserved. Finally, a matched feature point set Smatch =

{
Pj
(
xj, yj, zj

)
, j = 1, 2, . . . , M

}
is obtained, wherein M ≤ N. Compared with S, the precision of the fitting plane and
the accuracy of SVM prediction can be improved by eliminating the mismatched feature
points and reserving only the correctly matched feature points. So far, the pedestrian region
extraction, binocular stereo matching and binocular stereo ranging have been realized,
and the 3D information required for the real and pseudo pedestrian judgment is acquired.

3.3. SVM Prediction

In the human visual system, real and pseudo pedestrians are distinguished accord-
ing to the difference of the 3D information. In the proposed method, this process can
be achieved by predicting the 3D information by SVM. The mean values of all M fea-
ture points Pj in Smatch in the x, y, z directions are firstly calculated, and a new point
P(x̄match , ȳmatch , z̄match) can be obtained, as expressed in Equation (22). The space distance
d̄match of P̄ is derived to represent the space distance between the pedestrian and the camera,
as expressed in Equation (23).

P(x̄match, ȳmatch , z̄match ) =

(
M

∑
j=1

xj/M,
M

∑
j=1

yj/M,
M

∑
j=1

zj/M

)
(22)

d̄match =
√

x̄2
match + ȳ2

match + z̄2
match (23)

As shown in Figure 10, the feature points in Smatch are distributed in a spatial range
with a certain thickness for the real pedestrian, while the feature points in Smatch are almost
on the same plane for the pseudo pedestrian. Therefore, the real and pseudo pedestrian
can be distinguished according to the standard deviation σd f it

of the distance d f it− j from all
the feature points Pj in Smatch to their fitting plane αFit.

(a) (b) 

Figure 10. Feature point distribution of real and pseudo pedestrians. (a) Real pedestrian. (b) Pseudo
pedestrian.
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For plane fitting, the random sample consensus (RANSAC) plane-fitting algorithm
can fit most points to be fitted, and eliminate invalid points according to a preset threshold,
which will effectively reduce the interference from matching errors [48–51]. The threshold
TH should be pre-determined before the plane fitting with RANSAC. The TH can be set
according to the human body error tolerance ε, which is half of the human body thickness.
Not only is the human body thickness related to the chest thickness, but it is also related to
the clothes to wear. In the national standard GB/T 10000 [52], a total of 47 basic human size
data from six regions of the country are provided. Among them, the bare chest thickness
is W ∈ [0.155 m, 0.268 m], then W/2 ∈ [0.077 m, 0.134 m]. Considering another thickness
increment, 0.03 m, of the clothes, the human body error tolerance is ε ∈ [0.077 m, 0.164 m].

RANSAC plane fitting is performed on Smatch according to TH, and a spatial plane
αFit is obtained, as shown in Equation (24). The distance d f it− j from all M feature points
Pj in Smatch to the fitting plane αFit is computed, as shown in Equation (25). The standard
deviation σd f it

of d f it− j is derived, as shown in Equation (26).

Ax + By + Cz + D = 0 (24)

d f it− j =

∣∣Axj + Byj + Czj + D
∣∣

√
A2 + B2 + C2

(25)

σd f it
=

√√√√∑M
j=1

(
d f itj
−∑M

j=1 d f it/M
)2

M
(26)

Figure 11 is a distribution diagram of the randomly selected real and pseudo pedestrian
experimental data in the d̄match and σd f it

coordinates. The horizontal axis d̄match is the
space distance between the pedestrian and the camera, and the vertical axis σd f it

is the
standard deviation of the distance from all feature points in the human region to the fitting
plane. The blue circle represents the real pedestrian, and the red asterisk represents the
pseudo pedestrian. As can be seen from Figure 11, within the spatial range of 2–12 m,
the experimental data conform to the first-order linear separability law. Thus, the binary
classification method can be selected for the real and pseudo pedestrian classification.

Common binary classifiers include Bayesian classifier [53], decision tree classifier [54],
back propagation (BP) classifier [55] and SVM classifier [56]. As shown in Figure 11, the two
input variables of the classifier are positively correlated. The input variables are required to
be independent to each other for the Bayesian classifier, so it is not applicable. There are still
a few points in Smatch with relatively large matching error, which will lead to overfitting,
so the decision tree classifier is not applicable either. Meanwhile, the binary classification
problem may have multiple feasible solutions, and the BP classifier can only work out one
feasible solution but not the optimal solution. The SVM classifier is the statistically optimal
solution among many feasible solutions, and has higher generalization performance than
the BP network. Therefore, the SVM classifier is chosen to classify the data in this paper.
The training and predicting process of SVM classifier is expressed in Algorithm 1.
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Figure 11. Distribution diagram of the real and pseudo pedestrian in d̄match and σd f it
coordinates.

Algorithm 1 The SVM training and predicting process.

Input: Label, dre, σre of the targets in the training set bounding box; dre, σre of the targets in
the new bounding box;

Output: Label of the targets in the new bounding box;
1: Put Label, dre, σre of the target in the training set bounding box into the SVM for

training;
2: The true and pseudo classification model is obtained by SVM training;
3: Send the dre and σre of the target in the new bounding box to the true and pseudo

classification model for prediction;
4: return The label of the target in the new bounding box.

For the training process of the SVM classifier, the input is a first-order linear separable
training set TS = {(xi, yi), i = 1, 2, · · ·N}, wherein, xi

(
d̄match_i, σd f it−i

)
is the feature vector,

also known as an instance; and yi ∈ {−1, 1} is the class label of xi. If xi corresponds to the
real pedestrian, yi = 1; and if xi corresponds to the pseudo pedestrian, yi = −1. The output
is the maximal margin separation hyperplane (MMSH) and the real and pseudo pedestrian
classification model.

The optimization process for linear separable SVM can be expressed by Equation (27) [57]:

minω,b
1
2‖ω‖2

s.t. yi(ω · xi + b)− 1 ≥ 0, i = 1, 2, . . . , N.
(27)

Wherein ω and b are the normal vector and intercept of the separation hyperplane,
and the optimal solutions ω∗ and b∗ are the normal vector and intercept of the MMSH,
which is represented by Equation (28).

ω∗ · x + b∗ = 0 (28)
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The real and pseudo pedestrian classification model can be represented by Equation (29)
and can be used in the predicting process of the SVM classifiers.

f (x) = sgn(ω∗ · x + b∗) =
{
−1, pseudo pedestrian
1, real pedestrian

(29)

Next, the threshold TH for plane fitting is increased from 0.07 m to 0.17 m, with a step
of 0.01 m. The performance indices of the SVM classification results with different TH are
compared, and the optimal threshold THopt is selected. In the TH optimization experiment,
64 volunteers acted as real pedestrians, and two flat panels with photos of person and two
human-shaped signboards were used as pseudo pedestrians. In total, 1000 images with
single pedestrian were captured, from which 783 images were randomly selected, including
394 real pedestrians and 389 pseudo pedestrians. Then, 626 images were randomly selected
from the 783 images as the training set, and the remaining 157 images were used as the
verification set. Table 5 shows the performance comparison of the SVM classification results
for different TH.

As can be seen from Table 5, when TH = 0.15 m, the SVM classification model for
real and pseudo pedestrian can achieve the best performance in both accuracy and recall,
and can achieve the second-best performance in precision, which is only 0.02% lower than
the best one. Therefore, the optimal threshold THopt is 0.15 m. For THopt, the optimal
solutions of the MMSH by SVM training are ω∗ =

[
−0.69369225 0.26863033

]
and

b∗ = −1.41798519, which can be further substituted into Equations (28) and (29) to obtain
the labels of the real and pseudo pedestrians in the bounding box.

Table 5. Performance comparison of SVM classification for different TH.

TH Accuracy Precision Recall

0.07 78.34% 85.29% 70.73%
0.08 83.44% 91.89% 77.27%
0.09 85.99% 86.05% 88.10%
0.1 82.80% 87.50% 80.46%

0.11 84.71% 87.50% 80.77%
0.12 86.62% 87.18% 86.08%
0.13 87.26% 89.74% 85.37%
0.14 84.08% 82.28% 85.53%
0.15 91.72% 90.91% 92.11%
0.16 88.54% 90.00% 87.80%
0.17 85.35% 83.75% 87.01%

4. Experiments

In the practical real and pseudo pedestrian detection test, two industrial cameras and
a laptop are used. The Hikvision MV-CA050-11UC industrial camera has a resolution of
2448 × 2048, with a Wallis WL1608-5MP fixed-focus lens of 8 mm. The laptop is equipped
with an Intel Core i7-10750H CPU, 16 GB RAM, and a Nvidia RTX2060 6G graphics card.
The cell size of the calibration board is 30 mm × 30 mm. Two groups of experiments are
conducted with different arrangement mode of pedestrians, i.e., equidistant arrangement
mode and random arrangement mode. In the testing experiment, 71 volunteers acted as real
pedestrians, and two flat panels with person photos and two human-shaped signboards
were used as pseudo pedestrians. A total of 455 testing images with no occlusion were
captured in the two groups of experiments, among which 212 are real pedestrians and
243 are pseudo pedestrians. In the first group of experiment with pedestrians in equidistant
arrangement mode, a total of five shooting scenes were designed, that is, the pedestrian
number was increased from one to five successively, and every one image was collected
every one meter. In the second group of experiments with pedestrians in a random
arrangement mode, a total of three shooting scenes were designed, that is, the pedestrian
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number was increased from three to five successively, and the pedestrians stood randomly.
The main purpose of the proposed real and pseudo pedestrian detection method with
CA-YOLOv5s based on stereo image fusion is to solve the problem of pseudo pedestrian
detection, therefore, the testing experiments are mainly designed to verify the effect of
pseudo pedestrian detection. For this reason, in the experiment, at least one pseudo
pedestrian exists in each image where there is more than one pedestrian in it. As shown in
Table 6, the real and pseudo pedestrian number setting is designed for five different total
numbers, ranging from 1 to 5.

Table 6. Real and pseudo pedestrian number setting.

Pedestrian Number Real Pedestrian Number Pseudo Pedestrian Number

1 1 0
0 1

2 1 1
0 2

3
1 2
2 1
0 3

4

1 3
2 2
3 1
0 4

5

1 4
2 3
3 2
4 1

4.1. Experiments in Equidistant Arrangement Mode

Figure 12 shows the point plots of the real and pseudo pedestrian detection results
by the proposed method for 1–5 pedestrians arranged equidistantly, wherein the real
pedestrian is represented by the label RP, and the pseudo pedestrian is represented by the
label PP. A dot line represents the data points of a same pedestrian at different distances,
different dot lines for different pedestrians. The MMSH is represented by a red line. If the
data point is above the MMSH, it means that the pedestrian detected is a real one; if not,
a pseudo one. If a RP data point is below the MMSH or a PP data point is above the MMSH,
error detection occurs. For the same group of pedestrians, every image is collected every
one meter at a distance from 2 m to 12 m, and 10 images can be collected for each group of
pedestrians. However, when collecting images of five equidistantly arranged pedestrians,
the target may not be captured due to the close distance, but the detection result will not be
affected. For example, in Figure 12e, only nine images of RP10 are collected. As shown in
Figure 12, the proposed method can correctly detect most data points of the real or pseudo
pedestrians, but also with a small amount of error detections. The pedestrian becomes
smaller with the increase in the distance, and the features become not obvious, and hence,
the number of mismatched feature points increases, and the standard deviation from the
feature point set to the fitting plane becomes inaccurate, resulting in the wrong classification
of pedestrians. The number of error detection instances increases with the distance.
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Figure 12. Point plots of the real and pseudo pedestrian detection results for different number of
pedestrians in equidistant arrangement mode. (a) One pedestrian. (b) Two pedestrians. (c) Three
pedestrians. (d) Four pedestrians. (e) Five pedestrians.

Table 7 presents the partial detailed data of Figure 13, wherein the label ‘1’ represents
the real pedestrian and the label ‘−1’ represents the pseudo pedestrian. As shown in
Table 7, the actual label and the predicted label are the same for most data. However,
for the image with four pedestrians, the actual label for the third pedestrian is −1, while
the predicted label is 1, and an error detection occurs. After judging the classification of
the pedestrians in the bounding box, the predicted label is combined with the coordinate
information of the bounding box for output. Figure 13 shows the output images of the
corresponding pedestrians in Table 7. The real pedestrian is displayed in red bounding
box marked as RP, while the pseudo pedestrian is displayed in a blue bounding box
marked as PP. In Figure 13d, the third (from left to right) target is PP, but detected as RP,
and an error detection occurs. This small number of error detection instances is caused by
matching errors.

Table 7. Partial detailed data of Figure 13.

Pedestrian Number No. d̄match (m) σd f it (mm) Actual Label Predicted Label

1 1 6.26 28.37 1 1

2 1 6.76 16.71 −1 −1
2 6.57 31.53 1 1

3
1 6.53 26.45 1 1
2 6.66 21.49 −1 −1
3 6.62 26.08 1 1

4

1 3.72 11.19 −1 −1
2 3.68 12.21 −1 −1
3 3.71 19.68 −1 1
4 3.67 19.81 1 1

5

1 3.75 20.98 1 1
2 3.62 12.71 −1 −1
3 3.70 14.54 −1 −1
4 3.77 7.55 −1 −1
5 3.85 26.15 1 1
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Figure 13. Exemplary images of the pedestrian detection outputs of the data in Table 7. (a) One
pedestrian. (b) Two pedestrians. (c) Three pedestrians. (d) Four pedestrians. (e) Five pedestrians.

4.2. Experiments in Random Arrangement Mode

Figure 14 shows the point plots of the real and pseudo pedestrian detection results
by the proposed method for 3–5 pedestrians arranged randomly. As shown in Figure 14,
the proposed method can correctly detect most data points of the real or pseudo pedestrians,
but also with a small amount of error detections. Table 8 presents the detailed data of
Figure 14. As shown in Table 8, the actual label and the predicted label are the same for
most data. However, for the image with five pedestrians, the actual label for the second
pedestrian is 1, while the predicted label is −1, and an error detection occurs. Figure 15
shows the output images of the corresponding pedestrians in Table 8. In Figure 15c,
the second (from left to right) target is RP, but detected as PP, and an error detection
occurs. This small number of error detection instances is caused by the randomness of the
feature points.

Figure 14. Point plots of the real and pseudo pedestrian detection results for different number of
pedestrians in random arrangement mode. (a) Three pedestrians. (b) Four pedestrians. (c) Five pedestrians.
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Table 8. Detailed data of Figure 14.

Pedestrian Number No. d̄match (m) σd f it (mm) Actual Label Predicted Label

3
1 5.57 17.17 −1 −1
2 5.27 32.38 1 1
3 6.81 25.01 1 1

4

1 5.26 18.21 −1 −1
2 6.74 33.25 1 1
3 7.64 34.21 1 1
4 5.94 29.13 1 1

5

1 4.73 14.16 −1 −1
2 4.64 14.51 1 −1
3 3.70 6.24 −1 −1
4 4.89 27.09 1 1
5 4.02 6.47 −1 −1

(a) (b) (c)

RP

RP RP RP RP

RP
PP

PP

PP PP

PP

PP

Figure 15. Exemplary images of the pedestrian detection output of the data in Table 8. (a) Three
pedestrians. (b) Four pedestrians. (c) Five pedestrians.

Table 9 shows the performance indices of the pedestrian detection on the 455 testing
images captured in the two groups of experiments, with THopt as 0.15 m. TP (True Positive)
corresponds to the real label ‘1’ and the predicted label ‘1’. FN (False Negative) corresponds
to the real label ‘1’ and the predicted label ‘−1’. TN (True Negative) corresponds to the real
label ‘−1’ and the predicted label ‘−1’. FP (False Positive) corresponds to the real label ‘−1’
and the predicted label ‘1’. The accuracy is 93.85%, the precision is 93.81%, and the recall is
92.93%, achieving good performance for the real and pseudo pedestrian detection.

Table 9. Detection performance on the 455 testing images.

T Hopt TP FN TN FP Accuracy Precision Recall

0.15 197 15 230 13 93.85% 93.81% 92.93%

4.3. Contrast Experiments

The performance of the proposed method is tested and compared with seven other
pedestrian detection algorithms on a same test set. Table 10 shows the performance com-
parison of real and pseudo pedestrian detection among different algorithms. Considering
that the number of the real pedestrian is much greater than that of the pseudo pedestrians
in practice, 249 images were randomly selected from the 455 testing images captured in
the two groups of experiments as the testing set in the comparison experiment, of which
212 were real pedestrians and 37 were pseudo pedestrians.
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Table 10. Performance comparison of eight different pedestrian detection algorithms on the 455 test-
ing images.

Pedestrian Detection Algorithms Accuracy Precision Recall

SSD 86.35% 87.71% 97.64%
RFB 85.14% 86.31% 98.11%

RetinaNet 85.54% 87.93% 96.23%
M2Det 85.94% 89.69% 94.34%

YOLOv4 85.14% 85.14% 100.00%
YOLOv5s 85.14% 85.14% 100.00%

CA-YOLOv5s 85.14% 85.14% 100.00%
ours 93.17% 98.99% 92.92%

As shown in Table 10, the accuracy of the seven pedestrian detection algorithms, SSD,
RFB, RetinaNet, M2Det, YOLOv4, YOLOv5s and CA-YOLOv5s ranges from 85.14% to
86.35%, the precision from 85.14% to 89.69%, and the recall from 94.34% to 100%. The recalls
of YOLOv4, YOLOv5s and CA-YOLOv5s are all 100%, which indicates that these three
algorithms can detect all the real pedestrians in the dataset. The precisions and accuracies
are all 85.14%, which means that all the pseudo pedestrians are detected as real pedestrians,
i.e., the real and pseudo pedestrians cannot be distinguished. For the proposed method,
the accuracy is 93.17%, the precision is 98.99%, and the recall is 92.92%. The accuracy
and precision of the real and pseudo pedestrian detection are significantly superior to the
other algorithms. Therefore, the real and pseudo pedestrian detection method proposed in
this paper with CA-YOLOv5s based on stereo image fusion can effectively detect pseudo
pedestrians, and greatly improve the accuracy and precision of the pedestrian detection
network for real and pseudo pedestrian detection.

5. Conclusions

To solve the problem of pseudo pedestrian detection, a bionic model for the real and
pseudo pedestrian detection based on human stereo vision is constructed in this paper,
and a detection method with CA-YOLOv5s based on stereo image fusion for the real and
pseudo pedestrian detection is proposed. In the proposed method, the YOLOv5s pedestrian
detection algorithm is improved by combining with the CA attention mechanism, which
not only increases the detection accuracy, but also compresses the network model size.
Then, stereo matching and ranging are performed on the detected pedestrian regions
based on stereo image fusion so as to obtain the 3D information of the pedestrian. Next,
the trained SVM classifier is used to predict the 3D information features of the real and
pseudo pedestrians extracted by the plane fitting, which can effectively distinguish between
the real and pseudo pedestrians. Experimental results show that the proposed method can
correctly predict the real and pseudo pedestrians and effectively solve the problem that
the existing pedestrian detection algorithms cannot distinguish between real and pseudo
pedestrians well.
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