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Abstract: In network analysis, developing a unified theoretical framework that can compare methods
under different models is an interesting problem. This paper proposes a partial solution to this
problem. We summarize the idea of using a separation condition for a standard network and sharp
threshold of the Erdös–Rényi random graph to study consistent estimation, and compare theoretical
error rates and requirements on the network sparsity of spectral methods under models that can
degenerate to a stochastic block model as a four-step criterion SCSTC. Using SCSTC, we find some
inconsistent phenomena on separation condition and sharp threshold in community detection. In
particular, we find that the original theoretical results of the SPACL algorithm introduced to estimate
network memberships under the mixed membership stochastic blockmodel are sub-optimal. To
find the formation mechanism of inconsistencies, we re-establish the theoretical convergence rate
of this algorithm by applying recent techniques on row-wise eigenvector deviation. The results are
further extended to the degree-corrected mixed membership model. By comparison, our results
enjoy smaller error rates, lesser dependence on the number of communities, weaker requirements
on network sparsity, and so forth. The separation condition and sharp threshold obtained from our
theoretical results match the classical results, so the usefulness of this criterion on studying consistent
estimation is guaranteed. Numerical results for computer-generated networks support our finding
that spectral methods considered in this paper achieve the threshold of separation condition.

Keywords: community detection; consistency; mixed membership network; separation condition;
sharp threshold

1. Introduction

Networks with latent structure are ubiquitous in our daily life, for example, social
networks from social platforms, protein–protein interaction networks, co-citation networks
and co-authorship networks [1–15]. Community detection is a powerful tool to learn the
latent community structure in networks and graphs in social science, computer science,
machine learning, statistical science and complex networks [16–22]. The goal of community
detection is to infer a node’s community information from the network.

Many models have been proposed to model networks with latent community struc-
ture; see [23] for a survey. The stochastic blockmodel (SBM) [24] stands out for its simplicity,
and it has received increasing attention in recent years [25–35]. However, the SBM only
models a non-overlapping network in which each node belongs to a single community.
Estimating mixed memberships of the network whose node may belong to multiple com-
munities has received a lot of attention [36–44]. To capture the structure of the network
with mixed memberships, Ref. [36] proposed the popular mixed membership stochastic
blockmodel (MMSB), which is an extension of SBM from non-overlapping networks to
overlapping networks. It is well known that the degree-corrected stochastic blockmodel
(DCSBM) [45] is an extension of SBM by considering the degree heterogeneity of nodes to
fit real-world networks with various node degree. Similarly, Ref. [41] proposed a model
named the degree-corrected mixed membership (DCMM) model as an extension of MMSB
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by considering the degree heterogeneity of nodes. There are alternative models based
on MMSB, such as the overlapping continuous community assignment model (OCCAM)
of [40] and the stochastic blockmodel with overlap (SBMO) proposed by [46], which can
also model networks with mixed memberships. As discussed in Section 5, OCCAM equals
DCMM, while SBMO is a special case of DCMM.

1.1. Spectral Clustering Approaches

For the four models SBM, DCSBM, MMSB and DCMM, many researchers focus on
designing algorithms with provable consistent theoretical guarantees. Spectral cluster-
ing [47] is one of the most widely applied methods with guarantees of consistency for
community detection.

Within the SBM and DCSBM frameworks for a non-overlapping network, spectral
clustering has two steps. It first conducts the eigen-decomposition of the adjacency matrix
or the Laplacian matrix [26,48,49]. Then it runs a clustering algorithm (typically, k-means)
on some leading eigenvectors or their variants to infer the community membership. For ex-
ample, Ref. [26] showed the consistency of spectral clustering designed based on Laplacian
matrix under SBM. Ref. [48] proposed a regularized spectral clustering (RSC) algorithm de-
signed based on regularized Laplacian matrix and shows its theoretical consistency under
DCSBM. Ref. [30] studied the consistencies of two spectral clustering algorithms based on
the adjacency matrix under SBM and DCSBM. Ref. [50] designed the spectral clustering on
the ratios-of-eigenvectors (SCORE) algorithm with a theoretical guarantee under DCSBM.
Ref. [49] studied the impact of regularization on a Laplacian spectral clustering under SBM.

Within the MMSB and DCMM frameworks for the overlapping network, broadly
speaking, spectral clustering has the following three steps. One first conducts an eigen-
decomposition of the adjacency matrix or the graph Laplacian, then hunts corners (also
known as vertexes) using a convex hull algorithm, and finally has a membership recon-
struction step by projection. The convex hull algorithms suggested in [41] differ in the
k-means algorithm a lot. For example, Ref. [44] designed the sequential projection after
cleaning (SPACL) algorithm based on the finding that there exists a simplex structure
in the eigen-decomposition of the population adjacency matrix and studies the SPACL
theoretical properties under MMSB. Meanwhile, SPACL uses the successive projection
algorithm proposed in [51] to find the corners for its simplex structure. To fit DCMM,
Ref. [41] designs the Mixed-SCORE algorithm based on the finding that there exists a
simplex structure in the entry-wise ratio matrix obtained from the eigen-decomposition of
the population adjacency matrix under DCMM. Ref. [41] also introduces several choices for
convex hull algorithms to find corners for the simplex structure and show the estimation
consistency of the Mixed-SCORE under DCMM. Ref. [43] finds the cone structure inherent
in the normalization of eigenvectors of the population adjacency matrix under DCMM as
well as OCCAM, and develops an algorithm to hunt corners in the cone structure.

1.2. Separation Condition, Alternative Separation Condition and Sharp Threshold

SBM with n nodes belonging to K equal (or nearly equal) size communities and
vertices connect with probability pin within clusters and pout across clusters, denoted by
SBM(n, K, pin, pout), has been well studied in recent years, especially for the case when
K = 2; see [21] and the references therein. In this paper, we call the network generated from
SBM(n, K, pin, pout) the standard network for convenience. Without causing confusion, we
also call SBM(n, K, pin, pout) the standard network, occasionally. Let pin = αin

log(n)
n , pout =

αout
log(n)

n . Ref. [21,52] found that exact recovery in SBM(n, 2, αin
log(n)

n , αout
log(n)

n ) is

solvable, and efficiently so, if |√αin −
√

αout| >
√

2 (i.e., |√pin −
√

pout| >
√

2log(n)
n )

and unsolvable if |√αin −
√

αout| <
√

2 as summarized in Theorem 13 of [53]. This
threshold can be achieved by semidefinite relaxations [21,54–56] and spectral methods
with local refinements [57,58]. Unlike semidefinite relaxations, spectral methods have
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a different threshold, which was particularly pointed out by [21,52]: one highlight for
SBM(n, 2, pin, pout) is a theorem by [59] which says that when pin > pout, if

pin − pout√
pin

�
√

log(n)
n

then spectral methods can exactly recover node labels with high probability as n goes to
infinity (also known as consistent estimation [30,40,41,43,44,48,50]).

Consider a more general case SBM(n, K, pin, pout) with K = O(1); this paper finds
that the above threshold can be extended as

|pin − pout|√
max(pin, pout)

�
√

log(n)
n

, (1)

which can be alternatively written as

|αin − αout|√
max(αin, αout)

� 1. (2)

In this paper, when K = O(1), the lower bound requirement on |pin−pout|√
max(pin,pout)

(and

|αin−αout|√
max(αin,αout)

) for the consistent estimation of spectral methods is called the separation con-

dition (alternative separation condition). The network generated from SBM(n, K, pin, pout)
with pin > pout is an assortative network in which nodes within the community have more
edges than across communities [60]. The network generated from SBM(n, K, pin, pout) with
pin < pout is a dis-assortative network in which nodes within the community have fewer
edges than across communities [60]. Therefore, Equation (2) holds for both assortative and
dis-assortative networks.

Meanwhile, when K = 1 such that p = pin = pout, SBM(n, K, pin, pout) = SBM(n, 1, p, p)
degenerates to Erdös–Rényi (ER) random graph G(n, p) [53,61,62]. Ref. [61] finds that the
ER random graph is connected with high probability if

p ≥ log(n)
n

. (3)

We call the lower bound requirement on p for generating a connected ER random
graph the sharp threshold in this paper.

1.3. Inconsistencies on Separation Condition in Some Previous Works

In this paper, we focus on the consistency of spectral method in community detection.
The study of consistency is developed by obtaining the theoretical upper bound of error
rate for a spectral method through analyzing the properties of the population adjacency
matrix under the statistical model. To compare the consistencies of the theoretical results
under different models, it is meaningful to study whether the separation condition and
sharp threshold obtained from upper bounds of theoretical error rates for different methods
under different models are consistent or not. Meanwhile, the separation condition and
sharp threshold can also be seen as alternative unified theoretical frameworks to compare
all methods and model parameters mentioned in the concluding remarks of [30].

Based on the separation condition and sharp threshold, here we describe some phe-
nomena of the inconsistency in the community detection area. We find that the separation
conditions of SBM(n, K, pin, pout) with K = O(1) obtained from the error rates developed
in [41,43,44] under DCMM or MMSB are not consistent with those obtained from the main
results of [30] under SBM, and the sharp threshold obtained from the main results of [43,44]
do not match the classical results. A summary of these inconsistencies is provided in
Tables 1 and 2. Furthermore, after delicate analysis, we find that the requirement on the
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network sparsity of [43,44] is stronger than that of [30,41], and [63] also finds that the
requirement of Ref. [44] of network sparsity is sub-optimal.

Table 1. Comparison of separation condition and sharp threshold. Details of this table are given

in Section 4. The classical result on separation condition given in Corollary 1 of [59] is
√

log(n)
n

(i.e., Equation (1)). The classical result on sharp threshold is log(n)
n (i.e., Equation (3)) given in [61],

Theorem 4.6 [62] and the first bullet in Section 2.5 [53]. In this paper, n is the number of nodes
in a network, A is the adjacency matrix, Ω is the expectation of A under some models, Are is a
regularization of A, ρ is the sparsity parameter such that ρ ≥ maxi,jΩ(i, j) and it controls the overall
sparsity of a network, ‖ · ‖ denotes spectral norm, and ξ > 1.

Model Separation Condition Sharp Threshold

Ours using ‖Are −Ω‖ ≤ C
√

ρn MMSB&DCMM
√

log(n)
n

log(n)
n

Ours using ‖A−Ω‖ ≤ C
√

ρnlog(n) MMSB&DCMM
√

log(n)
n

log(n)
n

Ref. [41] using ‖Are −Ω‖ ≤ C
√

ρn (original) DCMM
√

log(n)
n

log(n)
n

Ref. [41] using ‖A−Ω‖ ≤ C
√

ρnlog(n) DCMM
√

log(n)
n

log(n)
n

Ref. [43,44] using ‖Are −Ω‖ ≤ C
√

ρn (original) MMSB&DCMM logξ (n)√
n

log2ξ (n)
n

Ref. [43,44] using ‖A−Ω‖ ≤ C
√

ρnlog(n) MMSB&DCMM logξ+0.5(n)√
n

log2ξ+1(n)
n

Ref. [30] using ‖Are −Ω‖ ≤ C
√

ρn (original) SBM&DCSBM
√

1
n

1
n

Ref. [30] using ‖A−Ω‖ ≤ C
√

ρnlog(n)log(n) SBM&DCSBM
√

log(n)
n

log(n)
n

Table 2. Comparison of alternative separation condition, where the classical result on alternative
separation condition is 1 (i.e., Equation (2)).

Model Alternative Separation Condition

Ours using ‖Are −Ω‖ ≤ C
√

ρn MMSB&DCMM 1
Ours using ‖A−Ω‖ ≤ C

√
ρnlog(n) MMSB&DCMM 1

Ref. [41] using ‖Are −Ω‖ ≤ C
√

ρn (original) DCMM 1
Ref. [41] using ‖A−Ω‖ ≤ C

√
ρnlog(n) DCMM 1

Ref. [43,44] using ‖Are −Ω‖ ≤ C
√

ρn (original) MMSB&DCMM logξ−0.5(n)
Ref. [43,44] using ‖A−Ω‖ ≤ C

√
ρnlog(n) MMSB&DCMM logξ (n)

Ref. [30] using ‖Are −Ω‖ ≤ C
√

ρn (original) SBM&DCSBM
√

1
log(n)

Ref. [30] using ‖A−Ω‖ ≤ C
√

ρnlog(n)log(n) SBM&DCSBM 1

1.4. Our Findings

Recall that we reviewed several spectral clustering methods under SBM, DCSBM,
MMSB and DCMM introduced in [26,30,41,43,44,48–50] and DCSBM, MMSB and DCMM
are extensions of SBM (i.e., SBM(n, K, pin, pout) is a special case of DCSBM, MMSB and
DCMM). We have the following question:

Can these spectral clustering methods achieve the threshold in Equation (1) (or Equa-
tion (2)) for SBM(n, K, pin, pout) with K = O(1) and the threshold in Equation (3) for the
Erdös–Rényi (ER) random graph G(n, p)?

The answer is yes. In fact, spectral methods for network with mixed memberships
still achieve thresholds in Equations (1) and (2) for MMSB(n, K, Π, pin, pout) defined in
Definition 2 when K = O(1), where MMSB(n, K, Π, pin, pout) can be seen as a general-
ization of SBM(n, K, pin, pout) such that there exist nodes belonging to multiple commu-
nities. Explanations for why these spectral clustering methods achieve thresholds in
Equations (1)–(3) will be provided in Sections 3–5 via re-establishing theoretical guarantee
for SPACL under MMSB and its extension under DCMM because we find that the main
theoretical results of [43,44] are sub-optimal. Meanwhile, we can obtain (and cannot obtain)
the separation condition and sharp threshold from the theoretical bounds of error rates for
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spectral methods analyzed in [30,41,43,44] ([26,30,48–50]) directly. Instead of re-establishing
the theoretical guarantee for all spectral methods reviewed in this paper to show that they
achieve thresholds in Equations (1) and (3) for SBM(n, K, Pin, Pout) with K = O(1), we
mainly focus on the SPACL algorithm under MMSB and its extension under DCMM since
MMSB and DCMM are more complex than SBM and DCSBM.

We then summarize the idea of using the separation condition and sharp threshold to
study the consistencies, and compare the error rates and requirements on network sparsity
of different spectral methods under different models as a four-step criterion, which we
call the separation condition and sharp threshold criterion (SCSTC for short). With an
application of this criterion, this paper provides an attempt to answer the questions of
how the above inconsistency phenomena occur, and how to obtain consistent resultswith
weaker requirements on the network sparsity of [43,44]. To answer the two questions, we
use the recent techniques on row-wise eigenvector deviation developed in [64,65] to obtain
consistent theoretical results directly related with model parameters for the SPACL and the
SVM-cone-DCMMSB algorithm of [43]. The two questions are then answered by delicate
analysis with an application of SCSTC to the theoretical upper bounds of error rates in
this paper and some previous spectral methods. Using SCSTC for the spectral methods
introduced and studied in [26,30,48–50] and some other spectral methods fitting models
that can reduce to SBM(n, K, Pin, Pout) with K = O(1), one can prove that these spectral
methods achieve thresholds in Equations (1)–(3). The main contributions in this paper are
as follows:

(i) We summarize the idea of using the separation condition of a standard network and
sharp threshold of the ER random graph G(n, p) to study the consistent estimations
of different spectral methods designed via eigen-decomposition or singular value
decomposition of the adjacency matrix or its variants under different models that
can degenerate to SBM under mild conditions as a four-step criterion, SCSTC. The
separation condition is used to study the consistency of the theoretical upper bound
for the spectral method, and the sharp threshold can be used to study the network
sparsity. The theoretical results of upper bounds for different spectral methods can be
compared by SCSTC. Using this criterion, a few inconsistent phenomenons of some
previous works are found.

(ii) Under MMSB and DCMM, we study the consistencies of the SPACL algorithm pro-
posed in [44] and its extended version using the recent techniques on row-wise eigen-
vector deviation developed in [64,65]. Compared with the original results of [43,44],
our main theoretical results enjoy smaller error rates by lesser dependence on K and
log(n). Meanwhile, our main theoretical results have weaker requirements on the
network sparsity and the lower bound of the smallest nonzero singular value of the
population adjacency matrix. For details, see Tables 3 and 4.

(iii) Our results for DCMM are consistent with those for MMSB when DCMM degenerates
to MMSB under mild conditions. Using SCSTC, under mild conditions, our main
theoretical results under DCMM are consistent with those of [41]. This answers the
question that the phenomenon that the main results of [43,44] do not match those
of [41] occurs due to the fact that in Ref. [43,44], the theoretical results of error rates
are sub-optimal. We also find that our theoretical results (as well as those of [41])
under both MMSB and DCMM match the classical results on the separation condition
and sharp threshold, i.e., achieve thresholds in Equations (1)–(3). Using the bound of
‖A−Ω‖ instead of ‖Are −Ω‖ to establish the upper bound of error rate under SBM
in [30], the two spectral methods studied in [30] achieve thresholds in Equations (1)–
(3), which answers the question of why the separation condition obtained from error
rate of [41] does not match that obtained from the error rate of [30]. Using ‖Are −Ω‖
or ‖A−Ω‖ influences the row-wise eigenvector deviations in Theorem 3.1 of [44] and
Theorem I.3 of [43], and thus using ‖Are −Ω‖ or ‖A−Ω‖ influences the separation
conditions and sharp thresholds of [43,44]. For comparison, our bound on row-wise
eigenvector deviation is obtained by using the techniques developed in [64,65] and
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that of [41] is obtained by applying the modified Theorem 2.1 of [66]; therefore,
using ‖Are −Ω‖ or ‖A−Ω‖ has no influence on the separation conditions and sharp
thresholds of ours and that of [41]. For details, see Tables 1 and 2. In a word, using
SCSTC, the spectral methods proposed and studied in [26,30,41,43,44,48–50,67,68] or
some other spectral methods fitting models that can reduce to SBM(n, K, pin, pout)
achieve thresholds in Equations (1)–(3).

(iv) We verify our threshold in Equation (2) by some computer-generated networks in Sec-
tion 6. The numerical results for networks generated under MMSB(n, K, Π, pin, pout)
when K = 2 and K = 3 show that SPACL and its extended version achieve a threshold
in Equation (2), and results for networks generated from SBM(n, K, pin, pout) when
K = 2 and K = 3 show that the spectral methods considered in [26,30,48,50] achieve
the threshold in Equation (2).

Table 3. Comparison of error rates between our Theorem 1 and Theorem 3.2 [44] under
MMSBn(K, P̃, Π, ρ). The dependence on K is obtained when κ(Π′Π) = O(1). For comparison,
we have adjusted the l2 error rates of Theorem 3.2 [44] into l1 error rates. Note that as analyzed in the
first bullet given after Lemma 2, whether using ‖A−Ω‖ ≤ C

√
ρnlog(n) or ‖Are−Ω‖ ≤ C

√
ρn does

not change our v, and has no influence on bound in Theorem 1. For [44], using ‖Are −Ω‖ ≤ √ρn,
the power of log(n) in their Theorem 3.2 is ξ; using ‖A−Ω‖ ≤

√
ρnlog(n), the power of log(n) in

their Theorem 3.2 is ξ + 0.5.

ρn σK(Ω) λK(Π′Π) Dependence on K Dependence on log(n)

Ours ≥ log(n) �
√

ρnlog(n) > 0 K2 log0.5(n)

[44] ≥ log2ξ (n) � √ρnlogξ (n) ≥ 1/ρ K2.5 logξ (n)

Table 4. Comparison of error rates between our Theorem 2 and Theorem 3.2 [43] under
DCMMn(K, P, Π, Θ). The dependence on K is obtained when κ(Π′Π) = O(1). For comparison,
we adjusted the l2 error rates of Theorem 3.2 [43] into l1 error rates. Since Theorem 2 enjoys the
same separation condition and sharp threshold as Theorem 1, and Theorem 3.2 [43] enjoys the
same separation condition and sharp threshold as Theorem 3.2 [44], we do not report them in
this table. Note that as analyzed in Remark 11, whether using ‖A−Ω‖ ≤ C

√
θmax‖θ‖1log(n) or

‖Are −Ω‖ ≤ C
√

θmax‖θ‖1 does not change our v under DCMM, and has no influence on the results
in Theorem 2. For [43], using ‖Are −Ω‖

√
θmax‖θ‖1, the power of log(n) in their Theorem 3.2 is ξ;

using ‖A−Ω‖
√

θmax‖θ‖1log(n), the power of log(n) in their Theorem 3.2 is ξ + 0.5.

Π(i, :) θmax‖θ‖1 σK(Ω) κ(Π′Θ2Π) Dependence on K Dependence on log(n)

Ours arbitrary ≥ log(n) � θmax
√

nlog(n) ≥ 1 K6 log0.5(n)

[43] iid from Dirichlet ≥ log2ξ(n) � θmax
√

nlogξ(n) = O(1) K6.5 logξ(n)

The article is organized as follows. In Section 2, we give the formal introduction to the
mixed membership stochastic blockmodel and review the algorithm SPACL considered
in this paper. The theoretical results of consistency for the mixed membership stochastic
blockmodel are presented and compared to related works in Section 3. After delicate
analysis, the separation condition and sharp threshold criterion is presented in Section 4.
Based on an application of this criterion, the improvement consistent estimation results for
the extended version of SPACL under the degree corrected mixed membership model are
provided in Section 5. Several computer-generated networks under MMSB and SBM are
conducted to show that some spectral clustering methods achieve the threshold in Equation
(2) in Section 6. The conclusion is given in Section 7.

Notations. We take the following general notations in this paper. Write [m] :=
{1, 2, . . . , m} for any positive integer m. For a vector x and fixed q > 0, ‖x‖q denotes
its lq-norm. We drop the subscript if q = 2 occasionally. For a matrix M, M′ denotes
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the transpose of the matrix M, ‖M‖ denotes the spectral norm, ‖M‖F denotes the Frobe-
nius norm, ‖M‖2→∞ denotes the maximum l2-norm of all the rows of M, and ‖M‖∞ :=
maxi ∑j |M(i, j)| denotes the maximum absolute row sum of M. Let rank(M) denote the
rank of matrix M. Let σi(M) be the i-th largest singular value of matrix M, λi(M) denote
the i-th largest eigenvalue of the matrix M ordered by the magnitude, and κ(M) denote
the condition number of M. M(i, :) and M(:, j) denote the i-th row and the j-th column of
matrix M, respectively. M(Sr, :) and M(:, Sc) denote the rows and columns in the index
sets Sr and Sc of matrix M, respectively. For any matrix M, we simply use Y = max(0, M)
to represent Yij = max(0, Mij) for any i, j. For any matrix M ∈ Rm×m, let diag(M) be the
m×m diagonal matrix whose i-th diagonal entry is M(i, i). 1 and 0 are column vectors
with all entries being ones and zeros, respectively. ei is a column vector whose i-th entry is
1, while other entries are zero. In this paper, C is a positive constant which may vary occa-
sionally. f (n) = O(g(n)) means that there exists a constant c > 0 such that | f (n)| ≤ c|g(n)|
holds for all sufficiently large n. x � y means there exists a constant c > 0 such that
|x| ≥ c|y|. f (n) = o(g(n)) indicates that f (n)

g(n) → 0 as n→ ∞.

2. Mixed Membership Stochastic Blockmodel

Let A ∈ {0, 1}n×n be a symmetric adjacency matrix such that A(i, j) = 1 if there is
an edge between node i to node j, and A(i, j) = 0 otherwise. The mixed membership
stochastic blockmodel (MMSB) [36] for generating A is as follows.

Ω := ρΠP̃Π′ A(i, j) ∼ Bernoulli(Ω(i, j)) i, j ∈ [n], (4)

where Π ∈ Rn×K is called the membership matrix with Π(i, k) ≥ 0 and ∑K
k=1 Π(i, k) = 1 for

i ∈ [n] and k ∈ [K], P̃ ∈ RK×K is an non-negative symmetric matrix with maxk,l∈[K] P̃(k, l) =
1 for model identifiability under MMSB, ρ is called the sparsity parameter which controls
the sparsity of the network, and Ω ∈ Rn×n is called the population adjacency matrix
since E[A] = Ω. As mentioned in [41,44], σK(P̃) is a measure of the separation between
communities, and we call it the separation parameter in this paper. ρ and σK(P̃) are two
important model parameters directly related with the separation condition and sharp
threshold, and they will be considered throughout this paper.

Definition 1. Call model (4) the mixed membership stochastic blockmodel (MMSB), and denote it
by MMSBn(K, P̃, Π, ρ).

Definition 2. Let MMSB(n, K, Π, pin, pout) be a special case of MMSBn(K, P̃, Π, ρ) when ρP̃
has diagonal entries pin and non-diagonal entries pout, and κ(Π′Π) = O(1).

Call node i ‘pure’ if Π(i, :) is degenerate (i.e., one entry is 1, all others K− 1 entries are 0)
and ‘mixed’ otherwise. When all nodes are pure in Π, we see that MMSB(n, K, Π, pin, pout)
exactly reduces to SBM(n, K, pin, pout). Thus, MMSB(n, K, Π, pin, pout) is a generalization
of SBM(n, K, pin, pout) with mixed nodes in each community. In this paper, we show that
SPACL [44] fitting MMSB and SVM-cone-DCMMSB [43] and Mixed-SCORE [41] fitting
DCMM also achieve thresholds in Equations (1)–(3) for MMSB(n, K, Π, pin, pout) with
K = O(1). By Theorems 2.1 and 2.2 [44], the following conditions are sufficient for the
identifiability of MMSB, when ρP̃(k, l) ∈ [0, 1] for all k, l ∈ [K],

• (I1) rank(P̃) = K.
• (I2) There is at least one pure node for each of the K communities.

Unless specified, we treat conditions (I1) and (I2) as the default from now on.
For k ∈ [K], let I (k) be the set of pure nodes in community k such that I (k) = {i ∈ [n] :

Π(i, k) = 1}. For k ∈ [K], select one node from I (k) to construct the index set I , i.e., I is the
index of nodes corresponding to K pure nodes, one from each community. Without loss of
generality, let Π(I , :) = IK where IK is the K× K identity matrix. Recall that rank(Ω) = K.
Let Ω = UΛU′ be the compact eigen-decomposition of Ω such that U ∈ Rn×K, Λ ∈ RK×K,
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and U′U = IK. Lemma 2.1 [44] gives that U = ΠU(I , :), and such a form is called ideal
simplex (IS for short) [41,44] since all rows of U form a K-simplex in RK and the K rows
of U(I , :) are the vertices of the K-simplex. Given Ω and K, as long as we know U(I , :),
we can exactly recover Π by Π = UU−1(I , :) since U(I , :) ∈ RK×K is a full rank matrix.
As mentioned in [41,44], for such IS, the successive projection (SP) algorithm [51] (i.e.,
Algorithm A1) can be applied to U with K communities to exactly find the corner matrix
U(I , :). For convenience, set Z = UU−1(I , :). Since Π = Z, we have Π(i, :) = Z(i,:)

‖Z(i,:)‖1
for

i ∈ [n].
Based on the above analysis, we are now ready to give the ideal SPACL algorithm

with input Ω, K and output Π.

• Let Ω = UΛU′ be the top-K eigen-decomposition of Ω such that U ∈ Rn×K, Λ ∈
RK×K, U′U = I.

• Run SP algorithm on the rows of U assuming that there are K communities to obtain I .
• Set Z = UU−1(I , :).

• Recover Π by setting Π(i, :) = Z(i,:)
‖Z(i,:)‖1

for i ∈ [n].

With the given U and K, since the SP algorithm returns U(I , :), we see that the ideal
SPACL exactly (for detail, see Appendix B) returns Π.

Now, we review the SPACL algorithm of [44]. Set Ã = ÛΛ̂Û′ to be the top K eigen-
decomposition of A such that Û ∈ Rn×K, Λ̂ ∈ RK×K, Û′Û = IK, and Λ̂ contains the top
K eigenvalues of A. For the real case, use Ẑ, Π̂ given in Algorithm 1 to estimate Z, Π,
respectively. Algorithm 1 is the SPACL algorithm [44] where we only care about the
estimation of the membership matrix Π, and omit the estimation of P and ρ. Meanwhile,
Algorithm 1 is a direct extension of the ideal SPACL algorithm from the oracle case to the
real case, and we omit the prune step in the original SPACL algorithm of [44].

Algorithm 1 SPACL [44].

Require: The adjacency matrix A ∈ Rn×n and the number of communities K.
Ensure: The estimated n× K membership matrix Π̂.

1: Obtain Ã = ÛΛ̂Û′, the top K eigen-decomposition of A.
2: Apply SP algorithm (i.e., Algorithm A1) on the rows of Û assuming there are K com-

munities to obtain Î , the index set returned by SP algorithm.
3: Set Ẑ = ÛÛ−1(Î , :). Then set Ẑ = max(0, Ẑ).
4: Estimate Π(i, :) by Π̂(i, :) = Ẑ(i, :)/‖Ẑ(i, :)‖1, i ∈ [n].

3. Consistency under MMSB

Our main result under MMSB provides an upper bound on the estimation error of
each node’s membership in terms of several model parameters. Throughout this paper, K
is a known positive integer. Assume that

(A1) ρn ≥ log(n).

Assumption (A1) provides a requirement on the lower bound of sparsity parameter ρ
such that it should be at least log(n)/n. Then we have the following lemma.

Lemma 1. Under MMSBn(K, P̃, Π, ρ), when Assumption (A1) holds, with probability at least
1− o(n−α) for any α > 0, we have

‖A−Ω‖ ≤ α + 1 +
√
(α + 1)(α + 19)

3

√
ρnlog(n).

In Lemma 1, instead of simply using a constant Cα to denote α+1+
√

(α+1)(α+19)
3 , we

keep the explicit form here.
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Remark 1. When Assumption (A1) holds, the upper bound of ‖A−Ω‖ in Lemma 1 is consistent
with Corollary 6.5 in [69] since Var(A(i, j)) ≤ ρ under MMSBn(K, P, Π, ρ).

Lemma 1 is obtained via Theorem 1.4 (Bernstein inequality) in [70]. For comparison,
Ref. [44] applies Theorem 5.2 [30] to bound ‖A − Ω‖ (see, for example, Equation (14)
of [44]) and obtains a bound as C

√
ρn for some C > 0. However, C

√
ρn is the bound

between a regularization of A and Ω as stated in the proof of Theorem 5.2 [30], where
such regularization of A is obtained from A with some constraints in Lemmas 4.1 and 4.2
of the supplemental material [30]. Meanwhile, Theorem 2 [71] also gives that the bound
between a regularization of A and Ω is C

√
ρn, where such a regularization of A should

also satisfy few constraints on A; see Theorem 2 [71] for detail. Instead of bounding the
difference between a regularization of A and Ω, we are interested in bounding ‖A−Ω‖
by the Bernstein inequality, which has no constraints on A. For convenience, use Are
to denote the regularization of A in this paper. Hence, ‖Are − Ω‖ ≤ C

√
ρn with high

probability, and this bound is model independent as shown by Theorem 5.2 [30] and
Theorem 2 [71] as long as ρ ≥ maxi,jΩ(i, j) (here, let Ω = E[A] without considering models,
a ρ satisfying ρ ≥ maxi,jΩ(i, j) is also the sparsity parameter which controls the overall
sparsity of a network). Note that Are is not Ã, where Ã = ÛΛÛ′ is obtained by the top K
eigen-decomposition of A, while Are is obtained by adding constraints on degrees of A; see
Theorem 2 [71] for detail.

In [41,43,44], the main theoretical results for their proposed membership estimating
methods hinge on a row-wise deviation bound for the eigenvectors of the adjacency matrix,
whether under MMSB or DCMM. Different from the theoretical technique applied in
Theorem 3.1 [44], which provides sup-optimal dependencies on log(n) and K, and needs
sub-optimal requirements on the sparsity parameter ρ and the lower bound of σK(Ω), to
obtain row-wise deviation bound for the singular eigenvector of Ω, we use Theorem 4.2 [64]
and Theorem 4.2 [65].

Lemma 2. (Row-wise eigenspace error) Under MMSBn(K, P̃, Π, ρ), when Assumption (A1) holds,
suppose σK(Ω) ≥ C

√
ρnlog(n), with probability at least 1− o(n−α),

• When we apply Theorem 4.2 of [64], we have

‖ÛÛ′ −UU′‖2→∞ = O(

√
K(κ(Ω)

√
n

KλK(Π′Π)
+

√
log(n))

σK(P̃)
√

ρλK(Π′Π)
),

• When we apply Theorem 4.2 of [65], we have

‖ÛÛ′ −UU′‖2→∞ = O(

√
nlog(n)

σK(P̃)
√

ρλ1.5
K (Π′Π)

).

For convenience, set v = ‖ÛÛ′ −UU′‖2→∞, and let v1, v2 denote the upper bound
in Lemma 2 when applying Theorem 4.2 of [64] and Theorem 4.2 of [65], respectively. Note

that when λK(Π′Π) = O( n
K ), we have v1 = v2 = O( K1.5

σK(P̃)
1√
n

√
log(n)

ρn ), and therefore we
simply let v2 be the bound since its form is slightly simpler than v1.

Compared with Theorem 3.1 of [44], since we apply Theorem 4.2 of [64] and Theorem 4.2
of [65] to obtain the bound of row-wise eigenspace error under MMSB, our bounds do not
rely on min(K2, κ2(Ω)) while Theorem 3.1 [44] does. Meanwhile, our bound in Lemma 2 is
sharper with lesser dependence on K and log(n), has weaker requirements on the lower
bounds of σK(Ω), λK(Π′Π) and the sparsity parameter ρ. The details are given below:

• We emphasize that the bound of Theorem 3.1 of [44] should be ‖ÛÛ′ −UU′‖2→∞ =

O(
ψ(Ω)

√
Knlogξ (n)

σK(P̃)
√

ρλ1.5
K (Π′Π)

) instead of ‖ÛÛ′ − UU′‖2→∞ = O( ψ(Ω)
√

Kn
σK(P̃)

√
ρλ1.5

K (Π′Π)
) for ξ > 1

where the function ψ is defined in Equation (7) of [44], and this is also pointed out by



Entropy 2022, 24, 1098 10 of 41

Table 2 of [63]. The reason is that in the proof part of Theorem 3.1 [44], from step (iii) to
step (iv), they should keep the term logξ(n) since this term is much larger than 1. We
can also find that the bound in Theorem 3.1 [44] should multiply logξ(n) from Theorem

VI.1 [44] directly. For comparison, this bound O(
ψ(Ω)

√
Knlogξ (n)

σK(P̃)
√

ρλ1.5
K (Π′Π)

) is K0.5logξ−0.5(n)

times our bound in Lemma 2. Meanwhile, by the proof of the bound in Theorem
3.1 of [44], we see that the bound depends on the upper bound of ‖A−Ω‖, and [44]
applies Theorem 5.2 of [30] such that ‖Are −Ω‖ ≤ C

√
ρn with high probability. Since

C
√

ρn is the upper bound of the difference between a regularization of A and Ω.
Therefore, if we are only interested in bounding ‖A−Ω‖ instead of ‖Are −Ω‖, the

upper bound of Theorem 3.1 [44] should be O(
ψ(Ω)

√
Knlogξ+0.5(n)

σK(P̃)λ1.5
K (Π′Π)

), which is at least

K0.5logξ(n) times our bound in Lemma 2. Furthermore, the upper bound of the row-
wise eigenspace error in Lemma 2 does not rely on the upper bound of ‖A−Ω‖ as
long as σK(Ω) ≥ C

√
ρnlog(n) holds. Therefore, whether using ‖Are −Ω‖ ≤ C

√
ρn

or ‖A−Ω‖ ≤ C
√

ρnlog(n) does not change the bound in Lemma 2.
• Our Lemma 2 requires σK(Ω) ≥ C

√
ρnlog(n), while Theorem 3.1 [44] requires

σK(Ω) ≥ 4
√

ρnlogξ(n) by their Assumption 3.1. Therefore, our Lemma 2 has a weaker
requirement on the lower bound of σK(Ω) than that of Theorem 3.1 [44]. Meanwhile,
Theorem 3.1 [44] requires λK(Π′Π) ≥ 1

ρ while our Lemma 2 has no lower bound
requirement on λK(Π′Π) as long as it is positive.

• Since ‖Ω‖ = ‖ρΠP̃Π′‖ ≤ Cρn by basic algebra, the lower bound requirement on
σK(Ω) in Assumption 3.1 of [44] gives that 4

√
ρnlogξ(n) ≤ σK(Ω) ≤ ‖Ω‖ ≤ Cρn,

which suggests that Theorem 3.1 [44] requires ρn ≥ Clog2ξ(n), and this also matches
with the requirement on ρn in Theorem VI.1 of [44] (and this is also pointed out by
Table 1 of [63]). For comparison, our requirement on sparsity given in Assumption
(A1) is ρn ≥ log(n), which is weaker than ρn ≥ Clog2ξ(n). Similarly, in our Lemma 2,
the requirement σK(Ω) ≥ C

√
ρnlog(n) gives C

√
ρnlog(n) ≤ σK(Ω) ≤ ‖Ω‖ ≤ Cρn,

thus we have log(n) ≤ Cρn which is consistent with Assumption (A1).

If we further assume that K = O(1), λK(Π′Π) = O( n
K ) (i.e., κ(Π′Π) = O(1)) and

σK(P̃) = O(1), the row-wise eigenspace error is of order 1√
n

√
log(n)

ρn , which is consistent
with the row-wise eigenvector deviation of the result of [63], shown in their Table 2. The
next theorem gives the theoretical bounds on the estimations of memberships under MMSB.

Theorem 1. Under MMSBn(K, P̃, Π, ρ), let Π̂ be obtained from Algorithm 1, and suppose the
conditions in Lemma 2 hold; there exists a permutation matrixP ∈ RK×K such that, with probability
at least 1− o(n−α), we have

maxi∈[n]‖e′i(Π̂−ΠP)‖1 = O(vKκ(Π′Π)
√

λ1(Π′Π)).

Remark 2. (Comparison to Theorem 3.2 [44]) Consider a special case by setting κ(Π′Π) = O(1),
i.e., λK(Π′Π) = O( n

K ) and λ1(Π′Π) = O( n
K ). We focus on comparing the dependencies on K

in bounds of our Theorem 1 and Theorem 3.2 [44]. Under this case, the bound of our Theorem 1
is proportional to K2 by basic algebra; since min(K2, κ2(Ω)) = min(K2, O(1)) = O(1) and the
bound in Theorem 3.2 [44] should multiply

√
K because (in [44]’s language) ‖V̂−1

p ‖F ≤
√

K
σK(V̂p)

instead of ‖V̂−1
p ‖F = 1

λK(V̂p)
in Equation (45) [44], the power of K is 2 by checking the bound of

Theorem 3.2 [44]. Meanwhile, note that our bound in Theorem 2 is l1 bound, while the bound in
Theorem 3.2 [44] is l2 bound. When we translate the l2 bound of Theorem 3.2 [44] into l1 bound, the
power of K is 2.5 for Theorem 3.2 [44]. Hence, our bound in Theorem 1 has less dependence on K
than that of Theorem 3.2 [44], and this is also consistent with the first bullet given after Lemma 2.
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Table 3 summarizes the necessary conditions and dependence on the model parameters
of the rates in Theorem 1 and Theorem 3.2 [44] for comparison. The following corollary is
obtained by adding conditions on the model parameters similar to Corollary 3.1 in [44].

Corollary 1. Under MMSB(n, K, Π, pin, pout) with K = O(1), when the conditions of Lemma 2
hold, with probability at least 1− o(n−α), we have

maxi∈[n]‖e′i(Π̂−ΠP)‖1 = O(
1

σK(P̃)

√
log(n)

ρn
).

Remark 3. Consider a special case in Corollary 1 by setting σK(P̃) as a constant, we see that the

error bound O(
√

log(n)
ρn ) in Corollary 1 is directly related to Assumption (A1), and for consistent

estimation, ρ should shrink slower than log(n)
n .

Remark 4. Under the setting of Corollary 1, the requirement σK(Ω) ≥ C
√

ρnlog(n) in Lemma 2
holds naturally. By Lemma II.4 [44], we know that σK(Ω) ≥ ρσK(P̃)λK(Π′Π) = CρnσK(P̃).
To make the requirement σK(Ω) ≥ C

√
ρnlog(n) always hold, we just need CρnσK(P̃) ≥

C
√

ρnlog(n), which gives that σK(P̃) ≥ C
√

log(n)
ρn , and it just matches with the requirement of

the consistent estimation of memberships in Corollary 1.

Remark 5. (Comparison to Theorem 3.2 [44]) When K = O(1) and λK(Π′Π) = O( n
K ), by the

first bullet in the analysis given after Lemma 2, the row-wise eigenspace error of Theorem 3.1 [44]

is O(
logξ (n)

σK(P̃)
√

ρn ), and it gives that their error bound on estimation membership given in their

Equation (3) is O(
logξ (n)

σK(P̃)
√

ρn ), which is logξ−0.5(n) times of the bound in our Lemma 1.

Remark 6. (Comparison to Theorem 2.2 [41]) Replacing the Θ in [41] by Θ =
√

ρI, their DCMM
model degenerates to MMSB. Then their conditions in Theorem 2.2 are our Assumption (A1)
and λK(Π′Π) = O( n

K ) for MMSB. When K = O(1), the error bound in Theorem 2.2 in [41] is

O( 1
σK(P̃)

√
log(n)

ρn ), which is consistent with ours.

4. Separation Condition and Sharp Threshold Criterion

After obtaining Corollary 1 under MMSB, now we are ready to give our criterion after
introducing the separation condition of MMSB(n, K, Π, pin, pout) with K = O(1) and the
sharp threshold of ER random graph G(n, p) in this section.

Separation condition. Let P = ρP̃ be the probability matrix for MMSB(n, K, Π, pin, pout)
when K = O(1), so P has diagonal (and non-diagonal) entries pin (and pout) and σK(P) =
ρσK(P̃) ≡ |pin − pout|. Recall that maxk,l∈[K] P̃(k, l) = 1 under MMSBn(K, P̃, Π, ρ), we have

maxk,l∈[K]P(k, l) = ρ ≡ max(pin, pout). So, we have the separation condition |pin−pout|√
max(pin,pout)

≡
√

ρσK(P̃) (also known as the relative edge probability gap in [44]) and the alternative separa-

tion condition |αin−αout|√
max(αin,αout)

≡
√

ρn
log(n)σK(P̃). Now, we are ready to compare the thresholds

of the (alternative) separation condition obtained from different theoretical results.

• (a) By Corollary 1, we know that σK(P̃) should shrink slower than
√

log(n)
ρn for consis-

tent estimation. Therefore, the separation condition |pin−pout|√
max(pin,pout)

≡ √ρσK(P̃) should

shrink slower than
√

log(n)
n (i.e., Equation (1)), and this threshold is consistent with

Corollary 1 of [59] and Equation (17) of [49]. The alternative separation condition
|αin−αout|√
max(αin,αout)

≡
√

ρn
log(n)σK(P̃) should shrink slower than 1 (i.e., Equation (2)).
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• (b) Undoubtedly, the (alternative) separation condition in (a) is consistent with that

of [41], since Theorem 2.2 [41] shares the same error rate O( 1
σK(P̃)

√
log(n)

ρn ) for

MMSB(n, K, Π, pin, pout) with K = O(1).
• (c) By Remark 5, using ‖Are − Ω‖ ≤ C

√
ρn, we know that in Ref. [44], Equation

(3) is O(
logξ (n)

σK(P̃)
√

ρn ), so
√

ρσK(P̃) should shrink slower than logξ (n)√
n . Thus, for [44], the

separation condition is logξ (n)√
n , and the alternative separation condition is logξ−0.5(n),

which are sub-optimal compared with ours in (a). Using ‖A−Ω‖ ≤ C
√

ρnlog(n),

and Equation (3) in Ref. [44], which is O(
logξ+0.5(n)
σK(P̃)

√
ρn ), we see that for [44], now the

separation condition is logξ+0.5(n)√
n and the alternative separation condition is logξ(n).

• (d) For comparison, the error bound of Corollary 3.2 [30] built under SBM for com-
munity detection is O( 1

σ2
K(P̃)ρn

) for SBM(n, K, pin, pout) with K = O(1), so
√

ρσK(P̃)

should shrink slower than 1√
n . Thus the separation condition for [30] is 1√

n . However,
as we analyzed in the first bullet given after Lemma 2, [30] applied ‖Are−Ω‖ ≤ C

√
ρn

to build their consistency results. Instead, we apply ‖A−Ω‖ ≤ C
√

ρnlog(n) to the
built theoretical results of [30], and the error bound of Corollary 3.2 [30] is O(

log(n)
σ2

K(P̃)ρn
),

which returns the same separation condition as our Corollary 1 and Theorem 2.2
of [41] now. Following a similar analysis to (a)–(c), we can obtain an alternative sepa-
ration condition for [30] immediately, and the results are provided in Table 2. Mean-
while, as analyzed in the first bullet given after Lemma 2, whether using ‖A−Ω‖ ≤
C
√

ρnlog(n) or ‖Are −Ω‖ ≤ C
√

ρn does not change our error rates. By carefully
analyzing the proof of 2.1 of [41], we see that whether using ‖A−Ω‖ ≤ C

√
ρnlog(n)

or ‖Are −Ω‖ ≤ C
√

ρn also does not change their row-wise large deviation, hence it
does not influence their upper bound of the error rate for their Mixed-SCORE.

Sharp threshold. Consider the Erdös–Rényi (ER) random graph G(n, p) [61]. To con-
struct the ER random graph G(n, p), let K = 1 and Π be an n× 1 vector with all entries being
ones. Since K = 1 and the maximum entry of P̃ is assumed to be 1, we have P̃ = 1 in G(n, p)
and hence σK(P̃) = 1. Then we have Ω = ΠρP̃Π′ = ΠρΠ′ = ΠpΠ′, i.e, p = ρ. Since

the error rate is O( 1
σK(P̃)

√
log(n)

ρn ) = O(
√

log(n)
pn ), for consistent estimation, we see that p

should shrink slower than log(n)
n (i.e., Equation (3)), which is just the sharp threshold in [61],

Theorem 4.6 [62], strongly consistent with [72], and the first bullet in Section 2.5 [53] (called
the lower bound requirement of p for the ER random graph to enjoy consistent estimation
as the sharp threshold). Since the sharp threshold is obtained when K = 1, which means a
connected ER random graph G(n, p), this is also consistent with the connectivity in Table 2
of [21]. Meanwhile, since our Assumption (A1) requires ρn ≥ log(n), it gives that p should
shrink slower than log(n)

n since p = ρ under G(n, p), which is consistent with the sharp
threshold. Since Theorem 2.2 of Ref. [41] enjoys the same error rate as ours under the set-
tings in Corollary 1, [41] also reaches the sharp threshold as log(n)

n . Furthermore, Remark 5

says that the bound for the error rate in Equation (3) [44] should be O(
logξ (n)

σK(P̃)
√

ρn ) when using

‖Are −Ω‖ ≤ C
√

ρn; following a similar analysis, we see that the sharp threshold for [44] is
log2ξ (n)

n , which is sub-optimal compared with ours. When using ‖A−Ω‖ ≤ C
√

ρnlog(n),

the sharp threshold for [44] is log2ξ+1(n)
n . Similarly, the error bound of Corollary 3.2 [30] is

O( 1
σ2

K(P̃)ρn
) ≡ O( 1

pn ) under ER G(n, p) since p = ρ, σK(P̃) = 1 and K = 1. Hence, the sharp

threshold obtained from the theoretical upper bound for error rates of [30] is 1
n , which

does not match the classical result. Instead, we apply ‖A−Ω‖ ≤ C
√

ρnlog(n) with a high
probability to build the theoretical results of [30], and the error bound of Corollary 3.2 [30]
is O(

log(n)
pn ), which returns the classical sharp threshold log(n)

n now.
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Table 1 summarizes the comparisons of the separation condition and sharp threshold.
Table 2 records the respective alternative separation condition. The delicate analysis given
above supports our statement that the separation condition of a standard network (i.e.,
SBM(n, K, pin, pout) with K = O(1) or MMSB(n, K, Π, pin, pout) with K = O(1)) and the
sharp threshold of ER random graph G(n, p) can be seen as unified criteria to compare
the theoretical results of spectral methods under different models. To conclude the above
analysis, here, we summarize the main steps to apply the separation condition and sharp
threshold criterion (SCSTC for short) to check the consistency of the theoretical results or
compare the results of spectral methods under different models, where spectral methods
mean methods developed based on the application of the eigenvectors or singular vectors
of the adjacency matrix or its variants for community detection. The four-stage SCSTC is
given below:

step1Check whether the theoretical upper bound of the error rate contains σK(P̃) (note that
P = ρP̃ is probability matrix and maximum entries of P̃ should be set as 1), where
the separation parameter σK(P̃) always appears when considering the lower bound
of σK(Ω). If it contains σK(P̃), move to the next step. Otherwise, it suggests possible
improvements for the consistency by considering σK(P̃) in the proofs.

step2Let K = O(1) and network degenerate to the standard network whose numbers of
nodes in each community are in the same order and can been seen as O( n

K ) (i.e., a
SBM(n, K, pin, pout) with K = O(1) in the case of a non-overlapping network or a
MMSB(n, K, Π, pin, pout) with K = O(1) in the case of an overlapping network, and
we will mainly focus on SBM(n, K, pin, pout) with K = O(1) for convenience.). Let the
model degenerate to SBM(n, K, pin, pout) with K = O(1), and then we obtain the new
theoretical upper bound of the error rate. Note that if the model does consider degree
heterogeneity, sparsity parameter ρ should be considered in the theoretical upper
bound of error rate in step1. If the model considers degree heterogeneity, when it
degenerates to SBM(n, K, pin, pout) with K = O(1), ρ appears at this step. Meanwhile,
if ρ is not contained in the error rate of step1 when the model does not consider degree
heterogeneity, it suggests possible improvements by considering ρ.

step3Let P = ρP̃ be the probability matrix when the model degenerates to SBM(n, K, pin, pout)
such that P has diagonal entries pin and non-diagonal entries pout. So, σK(P) =

|pin − pout| = ρσK(P̃) and separation condition |pin−pout|√
max(pin,pout)

≡ √ρσK(P̃) since the

maximum entry of P̃ is assumed to be 1. Compute the lower bound requirement of
σK(P̃) for consistency estimation through analyzing the new bound obtained in step2.
Compute separation condition |pin−pout|√

max(pin,pout)
≡ √ρσK(P̃) using the lower bound

requirement for σK(P̃). The sharp threshold for the ER random graph G(n, p) is
obtained from the lower bound requirement on ρ for the consistency estimation under
the setting that K = 1, σK(P̃) = 1 and p = ρ.

step4Compare the separation condition and the sharp threshold obtained in step3 with

Equations (1) and (3), respectively. If the sharp threshold� log(n)
n or the separation

condition�
√

log(n)
n , then this leaves improvements on the requirement of the net-

work sparsity or theoretical upper bound of the error rate. If the sharp threshold is
log(n)

n and the separation condition is
√

log(n)
n , the optimality of the theoretical results

on both error rates and the requirement of network sparsity is guaranteed. Finally, if

the sharp threshold� log(n)
n or separation condition�

√
log(n)

n , this suggests that the
theoretical result is obtained based on ‖Are −Ω‖ instead of ‖A−Ω‖.

Remark 7. This remark provides some explanations on the four steps of SCSTC.

• In step1, we give a few examples. When applying SCSTC to the main results of [40,48,67],
we stop at step1 as analyzed in Remark 8, suggesting possible improvements by considering
σK(P̃) for these works. Meanwhile, for the theoretical result without considering σK(P̃), we
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can also move to step2 to obtain the new theoretical upper bound of the error rate, which is
related with ρ and n. Discussions on the theoretical upper bounds of error rates of [50,68]
given in Remark 8 are examples of this case.

• In step2, letting K = O(1) and the model reduce to SBM(n, K, pin, pout) for the non-
overlapping network or MMSB(n, K, Π, pin, pout) for the overlapping network can always
simplify the theoretical upper bound of error rate, as shown by our Corollaries 1 and 2. Here, we
provide some examples about how to make a model degenerate to SBM. For MMSBn(K, P̃, Π, ρ)
in this paper, when all nodes are pure, MMSB degenerates to SBM; for the DCMMn(K, P̃, Π, Θ)
model introduced in Section 5 or DCSBM considered in [30,48,50], setting Θ =

√
ρI makes

DCMM and DCSBM degenerates to SBM when all nodes are pure, similar to the ScBM and
DCScBM considered in [67,68,71], the OCCAM model of [40], the stochastic blockmodel with
the overlap proposed in [46], the extensions of SBM and DCSBM for hypergraph networks
considered in [73–75], and so forth.

• In step3 and step4, the separation condition can be replaced by an alternative separation
condition.

• When using SCSTC to build and compare theoretical results for the spectral clustering method,

the key point is computing the lower bound for |pin−pout|√
max(pin,pout)

when the probability matrix P

has diagonal entries pin and non-diagonal entries pout from the theoretical upper bound of the
error rate for a certain spectral method. If this lower bound is consistent with that of Equation
(1), this suggests theoretical optimality, and otherwise it suggests possible improvements by
following the four steps of SCSTC.

The above analysis shows that SCSTC can be used to study the consistent estimation
of model-based spectral methods. Use SCSTC, the following remark lists a few works
whose main theoretical results leave possible improvements.

Remark 8. The unknown separation condition, or sub-optimal error rates, or a lack of requirement
of network sparsity of some previous works, suggest possible improvements of their theoretical
results. Here, we list a few works whose main results can be possibly improved until considering the
separation condition.

• Theorem 4.4 of [48] proposes the upper bound of the error rate for their regularized spectral
clustering (RSC) algorithm, designed based on a regularized Laplacian matrix under DCSBM.
However, since [48] does not study the lower bound (in the [48] language) of λK and m, we
cannot directly obtain the separation condition from their main theorem. Meanwhile, the main
result of [48] does not consider the requirement on the network sparsity, which leaves some
improvements. Ref. [48] does not study the theoretical optimal choice for the RSC regularizer
τ. After considering σK(P̃) and sparsity parameter ρ, one can obtain the theoretical optimal
choice for τ, and this is helpful for explaining and choosing the empirical optimal choice for τ.
Therefore, the feasible network implementation of SCSTC is obtaining the theoretical optimal
choices for some tuning parameters, such as regularizer τ of the RSC algorithm. By using
SCSTC, we can find that RSC achieves thresholds in Equations (1)–(3), and we omit proofs for
it in this paper.

• Refs. [26,49] study two algorithms designed based on the Laplacian matrix and its regularized
version under SBM. They obtain meaningful results, but do not consider the network sparsity
parameter ρ and separation parameter σK(P̃). After obtaining improved error bounds which are

consistent with separation condition
√

log(n)
n using SCSTC, one can also obtain the theoretical

optimal choice for regularizer τ of the RSC-τ algorithm considered in [49] and find that the
two algorithms considered in [26,49] achieve thresholds in Equations (1)–(3).

• Theorem 2.2 of [50] provides an upper bound of their SCORE algorithm under DCSBM.
However, since they do not consider the influence of σK(P̃), we cannot directly obtain the
separation condition from their main result. Meanwhile, by setting their Θ =

√
ρI, DCSBM

degenerates to SBM, which gives that their errn = 1
ρ2n (1 +

log(n)
ρn ) = O( 1

ρ2n ) by their
assumption Equation (2.9). Hence, when Θ =

√
ρI, the upper bound of Theorem 2.2 in [50]
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is O(
log3(n)

ρ2n ). The upper bound of error rate in Corollary 3.2 of [30] is O(
log(n)

ρn ) when

using ‖A − Ω‖ ≤ C
√

ρnlog(n) under the setting that κ(Π) = O(1), K = O(1) and

σK(P̃) = O(1). We see that log3(n)
ρ2n grows faster than log(n)

ρn , which suggests that there is
space to improve the main result of [50] in the aspects of the separation condition and error
rates. Furthermore, using SCSTC, we can find that SCORE achieves thresholds in Equations
(1)–(3) because its extension mixed-SCORE [41] achieves thresholds in Equations (1)–(3).

• Ref. [67] proposes two models, ScBM and DCScBM, to model the directed networks and
an algorithm DI-SIM based on the directed regularized Laplacian matrix to fit DCScBM.
However, similar to [48], their main theoretical result in their Theorem C.1 does not consider
the lower bound of (in the language of Ref. [67]) σK, my, mz and γz, which causes that we
cannot obtain the separation condition when DCScBM degenerates to SBM. Meanwhile,
their Theorem C.1 also lacks a lower bound requirement on network sparsity. Hence, there is
space to improve the theoretical guarantees of [67]. Similar to [48,49], we can also obtain the
theoretical optimal choices for regularizer τ of the DI-SIM algorithm and prove that DI-SIM
achieves the thresholds in Equations (1)–(3) since it is the directed version of RSC [48].

• Ref. [68] mainly studies the theoretical guarantee for the D-SCORE algorithm proposed
by [14] to fit a special case of the DCScBM model for directed networks. By setting their
θ(i) =

√
ρ, δ(j) =

√
ρ for i, j ∈ [n], their directed-DCBM degenerates to SBM. Meanwhile,

since their errn = 1
ρ , their mis-clustering rate is O(

T2
nlog(n)

ρn ), which matches that of [30]
under SBM when setting Tn as a constant. However, if setting Tn as log(n), then the error

rate is O(
log3(n)

ρn ), which is sub-optimal compared with that of [30]. Meanwhile, similar to
[50,68], the main result does not consider the influences of K and σK(P̃), causing a lack of
a separation condition. Hence, the main results of [68] can be improved by considering K,
σK(P), or a more optimal choice of Tn to make their main results comparable with those of [30]
when directed-DCBM degenerates to SBM. Using SCSTC, we can find that the D-SCORE
also achieves thresholds in Equations (1)–(3) since it is the directed version of SCORE [50].

5. Degree Corrected Mixed Membership Model

Using SCSTC to Theorem 3.2 of [43], as shown in Tables 1 and 2 results in Theorem 3.2 [43]
being sub-optimal. To obtain the improvement theoretical results, we give a formal intro-
duction of the degree corrected mixed membership (DCMM) model proposed in [41] first,
then we review the SVM-cone-DCMMSB algorithm of [43] and provide the improvement
theoretical results. A DCMM for generating A is as follows.

Ω := ΘΠP̃Π′Θ A(i, j) ∼ Bernoulli(Ω(i, j)) i, j ∈ [n], (5)

where Θ ∈ Rn×n is a diagonal matrix whose i-th diagonal entry is the degree hetero-
geneity of node i for i ∈ [n]. Let θ ∈ Rn×1 with θ(i) = Θ(i, i) for i ∈ [n]. Set θmax =
maxi∈[n]θ(i), θmin = mini∈[n]θ(i) and P̃max = maxk,l∈[K] P̃(k, l), P̃min = mink,l∈[K] P̃(k, l).

Definition 3. Call model (5) the degree corrected mixed membership (DCMM) model, and denote
it by DCMMn(K, P̃, Π, Θ).

Note that if we set Π̃ = ΘΠ and choose Θ such that Π̃ ∈ {0, 1}n×K, then we have
Ω = Π̃P̃Π̃′, which means that the stochastic blockmodel with overlap (SBMO) proposed
in [46] is just a special case of DCMM. Meanwhile, if we write Θ as Θ = Θ̃Do, where
Θ̃, Do are two positive diagonal matrices and let Πo = DoΠ, then we can choose D0 such
that ‖Πo(i, :)‖F = 1. By Ω = ΘΠP̃Π′Θ = Θ̃Πo P̃Π′oΘ̃, we see that the OCCAM model
proposed in [40] equals the DCMM model. By Equation (1.3) and Proposition 1.1 of [41],
the following conditions are sufficient for the identifiability of DCMM when θmaxP̃max ≤ 1:

• (II1) rank(P̃) = K and P̃ has unit diagonals.
• (II2) There is at least one pure node for each of the K communities.
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Note that though the diagonal entries of P̃ are ones, P̃max may be larger than 1 as
long as θmaxP̃max ≤ 1 under DCMM, and this is slightly different from the setting that
maxk,l∈[K] P̃(k, l) = 1 under MMSB.

Without causing confusion, under DCMMn(K, P̃, Π, Θ), we still let Ω = UΛU′ be
the top-K eigen-decomposition of Ω such that U ∈ Rn×K, Λ ∈ RK×K and U′U = IK. Set
U∗ ∈ Rn×K by U∗(i, :) = U(i,:)

‖U(i,:)‖F
and let NU ∈ Rn×n be a diagonal matrix such that

NU(i, i) = 1
‖U(i,:)‖F

for i ∈ [n]. Then U∗ can be rewritten as U∗ = NUU. The existence of the
ideal cone (IC for short) structure inherent in U∗ mentioned in [43] is guaranteed by the
following lemma.

Lemma 3. Under DCMMn(K, P̃, Π, Θ), U∗ = YU∗(I , :)where Y = NMΠΘ−1(I , I)N−1
U (I , I)

with NM being an n× n diagonal matrix whose diagonal entries are positive.

Lemma 3 gives Y = U∗U−1
∗ (I , :). Since U∗ = NUU and Y = NMΠΘ−1(I , I)N−1

U (I , I),
we have

N−1
U NMΠ = UU−1

∗ (I , :)NU(I , I)Θ(I , I). (6)

Since Ω(I , I) = Θ(I , I)Π(I , :)P̃Π′(I , :) = Θ(I , I)P̃Θ(I , I) = U(I , :)ΛU′(I , :), we
have Θ(I , I)P̃Θ(I , I) = U(I , :)ΛU′(I , :). Then we have Θ(I , I) =

√
diag(U(I , :)ΛU′(I , :))

when Condition (II1) holds such that P̃ has unit-diagonals. Set J∗ = NU(I , I)Θ(I , I) ≡√
diag(U∗(I , :)ΛU′∗(I , :)), Z∗ = N−1

U NMΠ, Y∗ = UU−1
∗ (I , :). By Equation (6), we have

Z∗ = Y∗ J∗ ≡ UU−1
∗ (I , :)diag(U∗(I , :)ΛU′∗(I , :)). (7)

Meanwhile, since N−1
U NM is an n× n positive diagonal matrix, we have

Π(i, :) =
Z∗(i, :)
‖Z∗(i, :)‖1

, i ∈ [n]. (8)

With given Ω and K, we can obtain U, U∗ and Λ. The above analysis shows that once
U∗(I , :) is known, we can exactly recover Π by Equations (7) and (8). From Lemma 3,
we know that U∗ = YU∗(I , :) forms the IC structure. Ref. [43] proposes the SVM-cone
algorithm (i.e., Algorithm A2) which can exactly obtain U∗(I , :) from the ideal cone U∗ =
YU∗(I , :) with inputs U∗ and K.

Based on the above analysis, we are now ready to give the ideal SVM-cone-DCMMSB
algorithm. Input Ω, K. Output: Π.

• Let Ω = UΛU′ be the top-K eigen-decomposition of Ω such that U ∈ Rn×K, Λ ∈
RK×K, U′U = I. Let U∗ = NUU, where NU is a n × n diagonal matrix whose i-th
diagonal entry is 1

‖U(i,:)‖F
for i ∈ [n].

• Run SVM-cone algorithm on U∗ assuming that there are K communities to obtain I .
• Set J∗ =

√
diag(U∗(I , :)ΛU′∗(I , :)), Y∗ = UU−1

∗ (I , :), Z∗ = Y∗ J∗.

• Recover Π by setting Π(i, :) = Z∗(i,:)
‖Z∗(i,:)‖1

for i ∈ [n].

With given U∗ and K, since the SVM-cone algorithm returns U∗(I , :), the ideal SVM-
cone-DCMMSB exactly (for detail, see Appendix B) returns Π.

Now, we review the SVM-cone-DCMMSB algorithm of [43], where this algorithm can
be seen as an extension of SPACL designed under MMSB to fit DCMM. For the real case,
use Ŷ∗, Ĵ∗, Ẑ∗, Π̂∗ given in Algorithm 2 to estimate Y∗, J∗, Z∗, Π, respectively.
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Algorithm 2 SVM-cone-DCMMSB [43].

Require: The adjacency matrix A ∈ Rn×n and the number of communities K.
Ensure: The estimated n× K membership matrix Π̂∗.

1: Obtain Ã = ÛΛ̂Û′, the top K eigen-decomposition of A. Let Û∗ ∈ Rn×K such that

Û∗(i, :) = Û(i,:)
‖Û(i,:)‖F

for i ∈ [n].

2: Apply SVM-cone algorithm (i.e., Algorithm A2) on the rows of Û∗ assuming there are
K communities to obtain Î∗, the index set returned by SVM-cone algorithm.

3: Set Ĵ∗ =
√

diag(Û∗( Î∗, :)Λ̂Û′∗(Î∗, :)), Ŷ∗ = ÛÛ−1
∗ (Î∗, :), Ẑ∗ = Ŷ∗ Ĵ∗ . Then set Ẑ∗ =

max(0, Ẑ∗).
4: Estimate Π(i, :) by Π̂∗(i, :) = Ẑ∗(i, :)/‖Ẑ∗(i, :)‖1, i ∈ [n].

Consistency under DCMM

Assume that

(A2) P̃maxθmax‖θ‖1 ≥ log(n).

Since we let P̃max ≤ C, Assumption (A2) equals θmax‖θ‖1 ≥ log(n)/C. The following
lemma bounds ‖A−Ω‖ under DCMMn(K, P̃, Π, Θ) when Assumption (A2) holds.

Lemma 4. Under DCMMn(K, P̃, Π, Θ), when Assumption (A2) holds, with probability at least
1− o(n−α), we have

‖A−Ω‖ ≤ α + 1 +
√
(α + 1)(α + 19)

3

√
P̃maxθmax‖θ‖1log(n).

Remark 9. Consider a special case when Θ =
√

ρI such that DCMM degenerates to MMSB,
since P̃max is assumed to be 1 under MMSB, Assumption (A2) and the upper bound of ‖A−Ω‖ in
Lemma 4 are consistent with that of Lemma 1. When all nodes are pure, DCMM degenerates to
DCSBM [45], then the upper bound of ‖A−Ω‖ in Lemma 4 is also consistent with Lemma 2.2
of [50]. Meanwhile, this bound is also consistent with Equation (6.34) in the first version of [41],
which also applies the Bernstein inequality to bound ‖A−Ω‖. However, the bound is C

√
θmax‖θ‖1

in Equation (C.53) of the latest version for [41], which applies Corollary 3.12 and Remark 3.13
of [76] to obtain the bound. Though the bound in Equation (C.53) of the latest version for [41] is
sharper by a

√
log(n) term, Corollary 3.12 of [76] has constraints on W(i, j) (here, W = A−Ω)

such that W(i, j) can be written as W(i, j) = ξijbij, where {ξi,j : i ≥ j} are independent symmetric
random variables with unit variance, and {bi,j : i ≥ j} are given scalars; see the proof of Corollary
3.12 [76] for detail. Therefore, without causing confusion, we also use Are to denote the constraint A
used in [41] such that ‖Are −Ω‖ ≤ C

√
θmax‖θ‖1. Furthermore, if we set ρ ≥ maxi,jΩ(i, j) such

that ρ ≥ θ2
max, the bound in Lemma 4 also equals ‖A−Ω‖ ≤ C

√
ρnlog(n) and the assumption

(A2) reads P̃maxρn ≥ log(n). The bound ‖Are −Ω‖ ≤ C
√

θmax‖θ‖1 in Equation (C.53) of [41]
reads ‖Are −Ω|| ≤ C

√
ρn.

Lemma 5. (Row-wise eigenspace error) Under DCMMn(K, P̃, Π, Θ), when Assumption (A2)

holds, suppose σK(Ω) ≥ Cθmax

√
P̃maxnlog(n), with probability at least 1− o(n−α).

• When we apply Theorem 4.2 of [64], we have

‖ÛÛ′ −UU′‖2→∞ = O(
θmax

√
P̃maxK( θmaxκ(Ω)

θmin

√
n

KλK(Π′Π)
+

√
log(n))

θ2
minσK(P̃)λK(Π′Π)

).

• When we apply Theorem 4.2 of [65], we have

‖ÛÛ′ −UU′‖2→∞ = O(
θmax

√
P̃maxθmax‖θ‖1log(n)

θ3
minσK(P̃)λ1.5

K (Π′Π)
).
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Without causing confusion, we also use v, v1, v2 under DCMM as Lemma 2 for
notation convenience.

Remark 10. When Θ =
√

ρI such that DCMM degenerates to MMSB, bounds in Lemma 5 are
consistent with those of Lemma 2.

Remark 11. (Comparison to Theorem I.3 [43]) Note that the ρ in [43] is θ2
max, which gives that the

row-wise eigenspace concentration in Theorem I.3 [43] is O(
θmax
√

Kn‖U‖2→∞logξ (n)
σK(Ω)

) when using

‖Are −Ω‖ ≤ C
√

ρn and this value is at least O(

√
θmax‖θ‖1K‖U‖2→∞logξ (n)

σK(Ω)
). Since ‖U‖2→∞ ≤

θmax

θmin
√

λK(Π′Π)
by Lemma II.1 of [43] and σK(Ω) ≥ θ2

minσK(P̃)λK(Π′Π) by the proof of Lemma 5,

we see that the upper bound of Theorem I.3 [43] is O(
θmax
√

Kθmax‖θ‖1logξ (n)
θ3

minσK(P̃)λ1.5
K (Π′Π)

), which is
√

Klogξ−0.5(n)

(recall that ξ > 1) times than our v2. Again, Theorem I.3 [43] has stronger requirements on the
sparsity of θmax‖θ‖1 and the lower bound of σK(Ω) than our Lemma 5. When using the bound
of ‖A−Ω‖ in our Lemma 4 to obtain the row-wise eigenspace concentration in Theorem I.3 [43],
their upper bound is

√
Klogξ(n) times than our v2. Similar to the first bullet given after Lemma 2,

whether using ‖A−Ω‖ ≤ C
√

θmax‖θ‖1log(n) or ‖Are −Ω‖ ≤ C
√

θmax‖θ‖1 does not change
our v under DCMM.

Remark 12. (Comparison to Lemma 2.1 [41]) The fourth bullet of Lemma 2.1 [41] is the row-
wise deviation bound for the eigenvectors of the adjacency matrix under some assumptions trans-
lated to our κ(Π′Π) = O(1), Assumption (A2) and lower bound requirement on σK(Ω) since they
apply Lemma C.2 [41]. The row-wise deviation bound in the fourth bullet of Lemma 2.1 [41] reads

O(
θmaxK1.5

√
θmax‖θ‖1log(n)

σK(P̃)‖θ‖3
F

), where the denominator is σK(P̃)‖θ‖3
F instead of our θ3

minσK(P̃)λ1.5
K (Π′Π)

due to the fact that [41] uses σK(P̃)‖θ‖2
F

K to roughly estimate σK(Ω) while we apply θ2
minσK(P̃)λK(Π′Π)

to strictly control the lower bound of σK(Ω). Therefore, we see that the row-wise deviation bound in
the fourth bullet of Lemma 2.1 [41] is consistent with our bounds in Lemma 5 when κ(Π′Π) = O(1),
while our row-wise eigenspace errors in Lemma 5 are more applicable than those of [41] since we
do not need to add a constraint on Π′Π such that κ(Π′Π) = O(1). The upper bound of ‖A−Ω‖
of [41] is C

√
θmax‖θ‖1 given in their Equation (C.53) under DCMMn(K, P̃, Π, Θ), while ours is

C
√

θmax‖θ‖1log(n) in Lemma 4, since our bound of the row-wise eigenspace error in Lemma 5 is
consistent with the fourth bullet of Lemma 2.1 [41], this supports the statement that the row-wise
eigenspace error does not rely on ‖A−Ω‖ given in the first bullet after Lemma 2.

Let πmin = min1≤k≤K1′Πek , where πmin measures the minimum summation of nodes
belonging to a certain community. Increasing πmin makes the network tend to be more
balanced, and vice versa. Meanwhile, the term πmin appears when we propose a lower
bound of η defined in Lemma A1 to keep track of the model parameters in our main
theorem under DCMMn(K, P̃, Π, Θ). The next theorem gives the theoretical bounds on
estimations of memberships under DCMM.

Theorem 2. Under DCMMn(K, P̃, Π, Θ), let Π̂ be obtained from Algorithm 2, suppose conditions
in Lemma 5 hold, and there exists a permutation matrix P∗ ∈ RK×K such that with probability at
least 1− o(n−α), we have

maxi∈[n]‖e′i(Π̂∗ −ΠP∗)‖1 = O(
θ15

maxK5vκ4.5(Π′Π)λ1.5
1 (Π′Π)

θ15
minπmin

).

For comparison, Table 4 summarizes the necessary conditions and dependence on
model parameters of rates for Theorem 2 and Theorem 3.2 [43], where the dependence on
K and log(n) are analyzed in Remark 13 given below.
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Remark 13. (Comparison to Theorem 3.2 [43]) Our bound in Theorem 2 is written as combinations
of model parameters and Π can follow any distribution as long as Condition (II2) holds, where such
model parameters’ related form of estimation bound is convenient for further theoretical analysis (see
Corollary 2), while the bound in Theorem 3.2 [43] is built when Π follows a Dirichlet distribution
and κ(Π′Θ2Π) = O(1). Meanwhile, since Theorem 3.2 [43] applies Theorem I.3 [43] to obtain the
row-wise eigenspace error, the bound in Theorem 3.2 [43] should multiply logξ(n) by Remark 11,
and this is also supported by the fact that in the proof of Theorem 3.1 [43], when computing bound
of ε0 (in the language in Ref. [43]) [43] ignores the logξ(n) term.

Consider a special case by setting λK(Π′Π) = O( n
K ), πmin = O( n

K ) and θmax
θmin

= O(1) with
θmax =

√
ρ, where such case matches the setting κ(Π′Θ2Π) = O(1) in Theorem 3.2 [43]. Now

we focus on analyzing the powers of K in our Theorem 2 and Theorem 3.2 [43]. Under this case, the
power of K in the estimation bound of Theorem 2 is 6 by basic algebra; since min(K2, κ2(Ω)) =

min(K2, O(1)) = O(1), 1
λ2

K(Π
′Θ2Π)

= O( K2

ρ2n2 ), 1
η = O(K) by Lemma A1 where η in Lemma A1

follows the same definition as that of Theorem 3.2 [43], and the bound in Theorem 3.2 [43] should
multiply

√
K because (in the language of Ref. [43]) ‖(ŶCŶ′C)

−1‖F should be no larger than
√

K
λK(ŶCŶ′C)

instead of 1
λK(ŶCŶ′C)

in the proof of Theorem 2.8 [43], the power of K is 6 by checking the bound

of Theorem 3.2 [43]. Meanwhile, note that our bound in Theorem 2 is l1 bound, while the bound
in Theorem 3.2 [43] is l2 bound, and when we translate the l2 bound of Theorem 3.2 [43] into l1
bound, the power of K is 6.5 for Theorem 3.2 [43], suggesting that our bound in Theorem 2 has less
dependence on K than that of Theorem 3.2 [43].

The following corollary is obtained by adding some conditions on the model parame-
ters.

Corollary 2. Under DCMMn(K, P̃, Π, Θ), when conditions of Lemma 5 hold, suppose λK(Π′Π) =
O( n

K ), πmin = O( n
K ) and K = O(1), with probability at least 1− o(n−α), we have

maxi∈[n]‖e′i(Π̂∗ −ΠP∗)‖1 = O(
θ16

max

√
P̃maxθmax‖θ‖1log(n)

θ18
minσK(P̃)n

).

Meanwhile, when θmax = O(
√

ρ), θmin = O(
√

ρ) (i.e., θmin
θmax

= O(1)), we have

maxi∈[n]‖e′i(Π̂∗ −ΠP∗)‖1 = O(
1

σK(P̃)

√
P̃maxlog(n)

ρn
).

Remark 14. When λK(Π′Π) = O( n
K ), K = O(1), θmax = O(

√
ρ) and θmin = O(

√
ρ), the

requirement σK(Ω) ≥ Cθmax

√
P̃maxnlog(n) in Lemma 5 holds naturally. By the proof of Lemma 5,

σK(Ω) has a lower bound θ2
minσK(P̃)λK(Π′Π) = O(θ2

minσK(P)n). To make the requirement

σK(Ω) ≥ Cθmax

√
P̃maxnlog(n) always hold, we just need θ2

minσK(P̃)n ≥ Cθmax

√
P̃maxnlog(n),

and it gives σK(P̃) ≥ C
√

P̃maxlog(n)
ρn , which matches the requirement of consistent estimation in

Corollary 2.

Using SCSTC to Corollary 2, let Θ =
√

ρI such that DCMM degenerates to MMSB, and
it is easy to see that the bound in Lemma 2 is consistent with that of Lemma 1. Therefore,
the separation condition, alternative separation condition and sharp threshold obtained
from Corollary 2 for the extended version of SPACL under DCMM are consistent with
classical results, as shown in Tables 1 and 2 (detailed analysis will be provided in next
paragraph). Meanwhile, when θmax = O(

√
ρ), θmin = O(

√
ρ) and settings in Corollary 2

hold, the bound in Theorem 2.2 [41] is of order 1
σK(P̃)

√
log(n)

ρn , which is consistent with our
bound in Corollary 2.
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Consider a mixed membership network under the settings of Corollary 2 when Θ =
√

ρI such that DCMM degenerates to MMSB. By Corollary 2, σK(P̃)√
P̃max

should shrink slower

than
√

log(n)
ρn . We further assume that P̃ = (2− β)IK + (β− 1)11′ for β ∈ [1, 2) ∪ (2, ∞);

we see that this P̃ with unit diagonals and β − 1 as non-diagonal entries still satisfies
Condition (II1). Meanwhile, σK(P̃) = |β− 2| = P̃max − P̃min and P̃max = max(1, β− 1), so
σK(P̃)√

P̃max
= |β−2|√

max(1,β−1)
should shrink slower than

√
log(n)

ρn . Setting P = ρP as the probability

matrix for such P̃, we have pout = ρ(β− 1), pin = ρ, and max(pin, pout) = ρmax(1, β− 1).

Sure, the separation condition |pin−pout|√
max(pin,pout)

≡
√

ρ|β−2|√
max(1,β−1)

should shrink slower than√
log(n)

n , which satisfies Equation (1). For an alternative separation condition and sharp
threshold, just follow a similar analysis as that of MMSB, and we obtain the results in
Tables 1 and 2.

6. Numerical Results

In this section, we present the experimental results for an overlapping network by
plotting the phase transition behaviors for both SPACL and SVM-cone-DCMMSB to show
that the two methods achieve the threshold in Equation (2) under MMSB(n, K, Π, pin, pout)
when K = 2 and K = 3. We also use some experiments to show that the spectral methods
studied in [26,30,48,50] achieve the threshold in Equation (2) under SBM(n, K, pin, pout)
when K = 2 and K = 3 for the non-overlapping network. To measure the performance of
different algorithms, we use the error rate defined below:

minP∈{K×K permutation matrix}
1
n
‖Π̂−ΠP‖1. (9)

For all simulations, let pin = αin
log(n)

n and pout = αout
log(n)

n be diagonal and non-
diagonal entries of P, respectively. Since P is the probability matrix, αin and αout should be
located in (0, n

log(n) ]. After setting P and Π, each simulation experiment has the following
steps:
(a) Set Ω = ΠPΠ′.
(b) Let W be an n× n symmetric matrix such that all diagonal entries of W are 0, and

W(i, j) are independent centered Bernoulli with parameters Ω(i, j). Let A = Ω −
diag(Ω)+W be the adjacency matrix of a simulated network with mixed memberships
under MMSB (so there are no loops).

(c) Apply spectral clustering method to A with K communities. Record the error rate.
(d) Repeat (b)–(c) 50 times, and report the mean of the error rates over the 50 times.

Experiment 1: Set n = 600, K = 2, and n0 = 250, where n0 is the number of pure nodes
in each community. Let all mixed nodes have mixed membership (1/2, 1/2). Since αin and
αout should be set to less than n

log(n) =
600

log(600) ≈ 93.795, we let αin and αout be in the range
of {5, 10, 15, . . . , 90}. For each pair of (αin, αout), we generate P and then run steps (a)–(d)
for this experiment. So, this experiment generates an adjacency matrix of network with
mixed memberships under MMSB(n, 2, Π, pin, pout). The numerical results are displayed
in panels (a) and (b) of Figure 1. We can see that our theoretical bounds (red lines) are
quite tight, and the threshold regions obtained from the boundaries of light white areas in
panels (a) and (b) are close to our theoretical bounds. Meanwhile, both methods perform
better when |αin−αout|√

max(αin,αout)
increases and SVM-cone-DCMMSB outperforms SPACL for this

experiment since panel (b) is darker than panel (a). Note that the network generated here is
an assortative network when αin > αout, and the network is a dis-assortative network when
αin < αout. So, the results of this experiment support our finding that SPACL and SVM-cone-
DCMMSB achieves the threshold in Equation (2) for both assortative and dis-assortative
networks.
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Experiment 2: Set n = 600, K = 3, and n0 = 150. Let all mixed nodes have mixed
membership (1/3, 1/3, 1/3). Let αin and αout range in {5, 10, 15, . . . , 90}. Sure, this experi-
ment is under MMSB(n, 3, Π, pin, pout). The numerical results are displayed in panels (c)
and (d) of Figure 1. We see that both methods perform poorly in the region between the
two red lines, and the analysis of the numerical results for this experiment is similar to that
of Experiment 1.
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(d) Experiment 2: SVM-cone-DCMMSB

Figure 1. Phase transition for SPACL and SVM-cone-DCMMSB under MMSB: darker pixels represent
lower error rates. The red lines represent |αin−αout|√

max(αin,αout)
= 1.

For visualization, we plot two networks generated from MMSB(n, K, Π, pin, pout)
when K = 2 and K = 3 in Figure 2. We also plot two dis-assortative networks generated
from MMSB(n, K, Π, pin, pout) when K = 2 and K = 3 in Figure A1 in Appendix A. In
Experiments 1 and 2, there exist some mixed nodes for network generated under MMSB.
The following two experiments only focus on network under SBM such that all nodes are
pure. Meanwhile, we only consider four spectral algorithms studied in [26,30,48,50] for the
non-overlapping network. For convenience, we call the spectral clustering method studied
in [26] normalized principle component analysis (nPCA), and Algorithm 1 studied in [30]
ordinary principle component analysis (oPCA), where nPCA and oPCA are also considered
in [50]. Next, we briefly review nPCA, oPCA, RSC and SCORE.

The nPCA algorithm is as follows with input A, K and output Π̂.

• Obtain the graph Laplacian L = D−1/2 AD−1/2, where D is a diagonal matrix with
D(i, i) = ∑n

j=1 A(i, j) for i ∈ [n].
• Obtain ÛΛ̂Û′, the top K eigen-decomposition of L.
• Apply k-means algorithm to Û to obtain Π̂.

The oPCA algorithm is as follows with input A, K and output Π̂.
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• Obtain ÛΛ̂Û′, the top K eigen-decomposition of A.
• Apply k-means algorithm to Û to obtain Π̂.

The RSC algorithm is as follows with input A, K, regularizer τ, and output Π̂.

• Obtain the regularized graph Laplacian Lτ = D−1/2
τ AD−1/2

τ , where Dτ = D + τ I,
and the default τ is the average node degree.

• Obtain ÛΛ̂Û′, the top K eigen-decomposition of Lτ . Let Û∗ be the row-normalized
version of Û.

• Apply k-means algorithm to Û∗ to obtain Π̂.

The SCORE algorithm is as follows with input A, K, threshold Tn and output Π̂.

• Obtain the K (unit-norm) leading eigenvectors of A: η̂1, η̂2, . . . , η̂K.
• Obtain an n× (K− 1) matrix R̂∗ such that for i ∈ [n], k ∈ [K− 1],

R̂∗(i, k) =


R̂(i, k), if |R̂(i, k)| ≤ Tn,
Tn, if R̂(i, k) > Tn,
−Tn, if R̂(i, k) < −Tn,

where R̂(i, k) = η̂k+1(i)
η̂1

(i), and the default Tn is log(n).
• Apply k-means algorithm to R̂∗ to obtain Π̂.

We now describe Experiments 3 and 4 under SBM(n, K, pin, pout) when K = 2 and
K = 3.

(a) K = 2 (b) K = 3

Figure 2. Panel (a): a graph generated from the mixed membership stochastic blockmodel with
n = 600 nodes and 2 communities. Among the 600 nodes, each community has 250 pure nodes. For
the 100 mixed nodes, they have mixed membership (1/2, 1/2). Panel (b): a graph generated from
MMSB with n = 600 nodes and 3 communities. Among the 600 nodes, each community has 150 pure
nodes. For the 150 mixed nodes, they have mixed membership (1/3, 1/3, 1/3). Nodes in panels (a,b)
connect with probability pin = 60/600 and pout = 1/600, so the two networks in both panels are
assortative networks. For panel (a), error rates for SPACL and SVM-cone-DCMMSB are 0.0285 and
0.0175, respectively, where error rate is defined in Equation (9). For panel (b), error rates for SPACL
and SVM-cone-DCMMSB are 0.0709 and 0.0436, respectively. For both panels, dots in the same color
are pure nodes in the same community and green square nodes are mixed.

Experiment 3: Set n = 600, K = 2, and n0 = 300, i.e., all nodes are pure and each
community has 300 nodes. So this experiment generates the adjacency matrix of the network
under SBM(n, 2, pin, pout). Numerical results are displayed in panels (a)–(d) of Figure 3.
We can see that these spectral clustering methods achieve the threshold in Equation (2).
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Experiment 4: Set n = 600, K = 3, and n0 = 200, i.e., all nodes are pure and each
community has 200 nodes. So, this experiment is under SBM(n, 3, pin, pout). The numerical
results are displayed in panels (e)–(h) of Figure 3. The results show that these methods
achieve threshold in Equation (2).

For visualization, we plot two assortative networks generated from SBM(n, K, pin, pout)
when K = 2 and K = 3 in Figure 4. We also plot two dis-assortative networks generated
from SBM(n, K, pin, pout) when K = 2 and K = 3 in Figure A2 in Appendix A.
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(c) Experiment 3: RSC
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(d) Experiment 3: SCORE
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Figure 3. Cont.
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(h) Experiment 4: SCORE

Figure 3. Phase transition for oPCA, nPCA,RSC and SCORE under SBM: darker pixels represent
lower error rates. The red lines represent |αin−αout|√

max(αin,αout)
= 1.

(i) K = 2 (j) K = 3

Figure 4. Panel (a): a graph generated from SBM(600, 2, 30/600, 2/600). Panel (b): a graph generated
from SBM(600, 3, 30/600, 2/600). So, in panel (a), there are 2 communities and each community has
300 nodes; in panel (b), there are 3 communities and each community has 200 nodes. Networks in
panels (a,b) are assortative networks since pin > pout. For both panels, error rates for oPCA, nPCA,
RSC and SCORE are 0. Colors indicate clusters.

7. Conclusions

In this paper, the four-step separation condition and sharp threshold criterion SCSTC is
summarized as a unified framework to study the consistencies and compare the theoretical
error rates of spectral methods under models that can degenerate to SBM in a community
detection area. With an application of this criterion, we find some inconsistent phenomena
of a few previous works. In particular, using SCSTC, we find that the original theoretical
upper bounds on error rates of the SPACL algorithm under MMSB and its extended version
under DCMM are sub-optimal for the error rates and requirements on network sparsity.
To find how the inconsistent phenomena occur, we re-establish theoretical upper bounds
of error rats for both SPACL and its extended version by using recent techniques on row-
wise eigenvector deviation. The resulting error bounds explicitly keep track of seven
independent model parameters (K, ρ, σK(P̃), λK(Π′Π), λ1(Π′Π), θmin, θmax), which allow
us to have a further delicate analysis. Compared with the original theoretical results, ours
have smaller error rates with lesser dependence on K and log(n), weaker requirements
on the network sparsity and the lower bound of the smallest nonzero singular value
of population adjacency matrix under both MMSB and DCMM. For DCMM, we have
no constraint on the distribution of the membership matrix as long as it satisfies the
identifiability condition. When considering the separation condition of a standard network
and the probability to generate a connected Erdös–Rényi (ER) random graph by using
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SCSTC, our theoretical results match the classical results. Meanwhile, our theoretical results
also match those of Theorem 2.2 [41] under mild conditions, and when DCMM degenerates
to MMSB, the theoretical results under DCMM are consistent with those under MMSB.
Using the SCSTC criterion, we find that the reasons behind the inconsistent phenomena
are the sup-optimality of the original theoretical upper bounds on error rates for SPACL
as well as its extended version, and the usage of a regularization version of the adjacency
matrix when building theoretical results for spectral methods designed to detect nodes
labels for a non-mixed network. The processes of finding these inconsistent phenomena,
sub-optimality theoretical results on error rates and the formation mechanism of these
inconsistent phenomena guarantee the usefulness of the SCSTC criterion. As shown by
Remark 8, the theoretical results of some previous works can be improved by applying
this criterion. Using SCSTC, we find that spectral methods considered in [26,41,43,44,48–
50,67,68] achieve thresholds in Equations (1)–(3), and this conclusion is verified by both
theoretical analysis and the numerical results in this paper. A limitation of this criterion
is that it is only used for studying the consistency of spectral methods for a standard
network with a constant number of communities. It would be interesting to develop a more
general criterion that can study the consistency of all methods besides spectral methods,
and models besides those can degenerate to SBM for a non-standard network with large K.
Finally, we hope that the SCSTC criterion developed in this paper can be widely applied
to build and compare theoretical results for spectral methods in the community detection
area and that the thresholds in Equations (1)–(3) can be seen as benchmark thresholds for
spectral methods.
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The following abbreviations are used in this manuscript:

SCSTC separation condition and sharp threshold criterion
SBM stochastic blockmodels
DCSBM degree corrected stochastic blockmodel
MMSB mixed membership stochastic blockmodel
DCMM degree corrected mixed membership model
SBMO stochastic blockmodel with overlap
OCCAM overlapping continuous community assignment model
RSC regularized spectral clustering
SCORE spectral clustering on ratios-of-eigenvectors
SPACL sequential projection after cleaning
ER Erdös–Rényi
IS ideal simplex
IC ideal cone
SP successive projection algorithm
oPCA ordinary principle component analysis
nPCA normalized principle component analysis
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Appendix A. Additional Experiments

(a) K = 2 (b) K = 3

Figure A1. Panel (a): a graph generated from MMSB with n = 600 and K = 2. Each community has
250 pure nodes. For the 100 mixed nodes, they have mixed membership (1/2, 1/2). Panel (b): a
graph generated from MMSB with n = 600 and K = 3. Each community has 150 pure nodes. For the
150 mixed nodes, they have mixed membership (1/3, 1/3, 1/3). Nodes in panels (a,b) connect with
probability pin = 1/600 and pout = 60/600, so the two networks in both panels are dis-assortative
networks. For panel (a), error rates for SPACL and SVM-cone-DCMMSB are 0.0298 and 0.0180,
respectively. For panel (b), error rates for SPACL and SVM-cone-DCMMSB are 0.1286 and 0.0896,
respectively. For both panels, dots in the same color are pure nodes in the same community, and
green square nodes are mixed.

(a) K = 2 (b) K = 3

Figure A2. Panel (a): a graph generated from SBM(600, 2, 2/600, 30/600). Panel (b): a graph
generated from SBM(600, 3, 2/600, 30/600). Networks in panels (a,b) are dis-assortative networks
since pin < pout . For panel (a), error rates for oPCA, nPCA, RSC and SCORE are 0. For panel (b),
error rates for oPCA, nPCA, RSC and SCORE are 0.0067. Colors indicate clusters.

Appendix B. Vertex Hunting Algorithms

The SP algorithm is written as below.

Algorithm A1 Successive projection (SP) [51].

Require: Near-separable matrix Ysp = Ssp Msp + Zsp ∈ Rm×n
+ , where Ssp, Msp should

satisfy Assumption 1 [51], the number r of columns to be extracted.
Ensure: Set of indices K such that Y(K, :) ≈ S (up to permutation)

1: Let R = Ysp,K = {}, k = 1.
2: While R 6= 0 and k ≤ r do
3: k∗ = argmaxk‖R(k, :)‖F.
4: uk = R(k∗, :).

5: R← (I − uku′k
‖uk‖2

F
)R.

6: K = K ∪ {k∗}.
7: k=k+1.
8: end while
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Based on Algorithm A1, the following theorem is Theorem 1.1 in [51], and it is also the
Lemma VII.1 in [44]. This theorem provides the bound between the corner matrix Ssp and
its estimated version returned by letting Ysp be the input of the SP algorithm when M′spS′sp
enjoys the ideal simplex structure.

Theorem A1. Fix m ≥ r and n ≥ r. Consider a matrix Ysp = Ssp Msp + Zsp, where Ssp ∈ Rm×r

has a full column rank, Msp ∈ Rr×n is a non-negative matrix such that the sum of each column
is at most 1, and Zsp = [Zsp,1, . . . , Zsp,n] ∈ Rm×n. Suppose that Msp has a submatrix equal

to Ir. Write ε ≤ max1≤i≤n‖Zsp,i‖F. Suppose ε = O(
σmin(Ssp)√

rκ2(Ssp)
), where σmin(Ssp) and κ(Ssp)

are the minimum singular value and condition number of Ssp, respectively. If we apply the SP
algorithm to columns of Ysp, then it outputs an index set K ⊂ {1, 2, . . . , n} such that |K| = r and
max1≤k≤rminj∈K‖Ssp(:, k)− Ysp(:, j)‖F = O(εκ2(Ssp)), where Ssp(:, k) is the k-th column of
Ssp.

For the ideal SPACL algorithm, since inputs of the ideal SPACL are Ω and K, we see
that the inputs of SP algorithm are U and K. Let m = K, r = K, Ysp = U′, Zsp = U′ −U′ ≡
0, Ssp = U′(I , :), and Msp = Π′. Then, we have maxi∈[n]‖U(i, :) − U(i, :)‖F = 0. By
Theorem A1, the SP algorithm returns I up to permutation when the input is U, assuming
there are K communities. Since U = ΠU(I , :) under MMSBn(K, P, Π, ρ), we see that
U(i, :) = U(j, :) as long as Π(i, :) = Π(j, :). Therefore, though I may be different up to the
permutation, U(I , :) is unchanged. Therefore, following the four steps of the ideal SPACL
algorithm, we see that it exactly returns Π.

Algorithm A2 below is the SVM-cone algorithm provided in [43].

Algorithm A2 SVM-cone [43].

Require: Ŝ ∈ Rn×m with rows have unit l2 norm, number of corners K, estimated distance
corners from hyperplane γ.

Ensure: The near-corner index set Î .
1: Run one-class SVM on Ŝ(i, :) to get ŵ and b̂
2: Run k-means algorithm to the set {Ŝ(i, :)|Ŝ(i, :)ŵ ≤ b̂ + γ} that are close to the hyper-

plane into K clusters
3: Pick one point from each cluster to get the near-corner set Î

As suggested in [43], we can start γ = 0 and incrementally increase it until K dis-
tinct clusters are found. Meanwhile, for the ideal SVM-cone-DCMMSB algorithm, when
setting U∗ and K as the inputs of the SVM-cone algorithms, since ‖U∗ − U∗‖2→∞ = 0,
Lemma F.1. [43] guarantees that SVM-cone algorithm returns I up to permutation. Since
U∗ = YU∗(I , :) by Lemma 3 under DCMMn(K, P, Π, Θ), we have U∗(i, :) = U∗(j, :) when
Π(i, :) = Π(j, :) by basic algebra, which gives that U∗(I , :) is unchanged though I may be
different up to permutation. Therefore, the ideal SVM-cone-DCMMSB exactly recovers Π.

Appendix C. Proof of Consistency under MMSB

Appendix C.1. Proof of Lemma 1

Proof. We apply Theorem 1.4 (Bernstein inequality) in [70] to bound ‖A−Ω‖, and this
theorem is written as shown below.

Theorem A2. Consider a finite sequence {Xk} of independent, random, self-adjoint matrices with
dimension d. Assume that each random matrix satisfies

E[Xk] = 0, and λmax(Xk) ≤ R almost surely.
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Then, for all t ≥ 0,

P(λmax(∑
k

Xk) ≥ t) ≤ d · exp(
−t2/2

σ2 + Rt/3
),

where σ2 := ‖∑k E[X2
k ]‖.

Let ei be an n× 1 vector, where ei(i) = 1 and 0 elsewhere,for i ∈ [n]. For convenience,
set W = A − Ω. Then we can write W as W = ∑n

i=1 ∑n
j=1 W(i, j)eie′j. Set W(i,j) as the

n× n matrix such that W(i,j) = W(i, j)(eie′j + eje′i), which gives W = ∑1≤i<j≤n W(i,j) where

E[W(i,j)] = 0 and

‖W(i,j)‖ = ‖W(i, j)(eie′j + ejei)‖ = |W(i, j)|‖(eie′j + eje′i)‖ = |W(i, j)| = |A(i, j)−Ω(i, j)| ≤ 1.

For the variance parameter σ2 := ‖∑1≤i<j≤n E[(W(i,j))2]‖. We bound E(W2(i, j)) as
shown below:

E(W2(i, j)) = E((A(i, j)−Ω(i, j))2) = Var(A(i, j)) = Ω(i, j)(1−Ω(i, j)) ≤ Ω(i, j)

= ρΠ(i, :)P̃Π′(j, :) ≤ ρ.

Next we bound σ2 as shown below:

σ2 = ‖ ∑
1≤i<j≤n

E(W2(i, j))(eie′j + eje′i)(eie′j + eje′i)‖ = ‖ ∑
1≤i<j≤n

E[W2(i, j)(eie′i + eje′j)]‖

≤ max
1≤i≤n

|
n

∑
j=1

E(W2(i, j))| ≤ max
1≤i≤n

n

∑
j=1

ρ = ρn.

Set t = α+1+
√

(α+1)(α+19)
3

√
ρnlog(n) for any α > 0, combine Theorem A2 with σ2 ≤

ρn, R = 1, d = n, and we have

P(‖W‖ ≥ t) = P(‖ ∑
1≤i<j≤n

W(i,j)‖ ≥ t) ≤ n · exp(
−t2/2

σ2 + Rt/3
)

≤ n · exp(
−(α + 1)log(n)

18
(
√

α+1+
√

α+19)2 +
2
√

α+1√
α+1+

√
α+19

√
log(n)

ρn

) ≤ 1
nα

,

where we use Assumption (A1) such that 18
(
√

α+1+
√

α+19)2 +
2
√

α+1√
α+1+

√
α+19

√
log(n)

ρn ≤ 18
(
√

α+1+
√

α+19)2

+ 2
√

α+1√
α+1+

√
α+19

= 1.

Appendix C.2. Proof of Lemma 2

Proof. Let H = Û′U, and H = UHΣHV′H be the SVD decomposition of HÛ with UH , VH ∈
Rn×K, where UH and VH represent respectively the left and right singular matrices of
H. Define sgn(H) = UHV′H . Since E(A(i, j)−Ω(i, j)) = 0, E[(A(i, j)−Ω(i, j))2] ≤ ρ by
the proof of Lemma 1, 1√

ρn/(µlog(n))
≤ O(1) holds by Assumption (A1) where µ is the

incoherence parameter defined as µ =
n‖U‖2

2→∞
K . By Theorem 4.2 [64], with high probability,

we have

‖Ûsgn(H)−U‖2→∞ ≤ C

√
Kρ(κ(Ω)

√
µ +

√
log(n))

σK(Ω)
,
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provided that c1σK(Ω) ≥
√

ρnlog(n) for some sufficiently small constant c1. By Lemma 3.1
of [44], we know that ‖U‖2

2→∞ ≤
1

λK(Π′Π)
, which gives

‖Ûsgn(H)−U‖2→∞ ≤ C

√
Kρ(κ(Ω)

√
n

KλK(Π′Π)
+

√
log(n))

σK(Ω)
. (A1)

Remark A1. By Theorem 4.2 of [65], when σK(Ω) ≥ 4‖A−Ω‖∞, we have

‖Ûsgn(H)−U‖2→∞ ≤ 14
‖A−Ω‖∞

σK(Ω)
‖U‖2→∞.

By Lemma 3.1 [44], we have

‖Ûsgn(H)−U‖2→∞ ≤ 14
‖A−Ω‖∞

σK(Ω)

√
1

λK(Π′Π)
.

Unlike Lemma V.1 [44] which bounds ‖A−Ω‖∞ via the Chernoff bound and obtains ‖A−
Ω‖∞ ≤ Cρn with high probability, we bound ‖A −Ω‖∞ by the Bernstein inequality using a
similar idea as Equation (C.67) of [41]. Let y = (y1, y2, . . . , yn)′ be any n× 1 vector; by Equation
(C.67) [41], we know that with an application of the Bernstein inequality, for any t ≥ 0 and i ∈ [n],
we have

P(|
n

∑
j=1

(A(i, j)−Ω(i, j))y(j)| > t) ≤ 2exp(− t2/2

∑n
j=1 Ω(i, j)y2(j) + t‖y‖∞

3

).

By the proof of Lemma 1, we have Ω(i, j) ≤ ρ. Set y(j) as 1 or −1 such that (A(i, j) −
Ω(i, j))y(j) = |A(i, j)−Ω(i, j)|, we have

P(‖A−Ω‖∞ > t) ≤ 2exp(− t2/2
ρn + t

3
).

Set t = α+1+
√

(α+1)(α+19)
3

√
ρnlog(n) for any α > 0, by Assumption (A1), we have

P(‖A−Ω‖∞ > t) ≤ 2exp(− t2/2
ρn + t

3
) ≤ n−α.

Hence, when σK(Ω) ≥ C0
√

ρnlog(n) where C0 = 4 α+1+
√

(α+1)(α+19)
3 , with probability at

least 1− o(n−α),

‖Ûsgn(HÛ)−U‖2→∞ ≤ C
√

ρnlog(n)
σK(Ω)

√
1

λK(Π′Π)
.

Note that when λK(Π′Π) = O( n
K ), the above bound turns to be C

√
ρKlog(n)
σK(Ω)

, which is

consistent with that of Equation (A1). Also note that this bound
√

ρnlog(n)
σK(Ω)

√
1

λK(Π′Π)
is sharper

than the ρn
σK(Ω)

√
1

λK(Π′Π)
of Lemma V.1 [44] by Assumption (A1).

Since Û and U have orthonormal columns, now we are ready to bound ‖ÛÛ′ −
UU′‖2→∞:

‖ÛÛ′ −UU′‖2→∞ = maxi∈[n]‖e′i(UU′ − ÛÛ′)‖F

= maxi∈[n]‖e′i(UU′ − Ûsgn(H)U′ + Ûsgn(H)U′ − ÛÛ′)‖F
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≤ maxi∈[n]‖e′i(U − Ûsgn(H))U′‖F + maxi∈[n]‖e′iÛ(sgn(H)U′ − Û′)‖F

= maxi∈[n]‖e′i(U − Ûsgn(H))‖F + maxi∈[n]‖Û(sgn(H)U′ − Û′)ei‖F

= maxi∈[n]‖e′i(U − Ûsgn(H))‖F + maxi∈[n]‖(sgn(H)U′ − Û′)ei‖F

= maxi∈[n]‖e′i(U − Ûsgn(H))‖F + maxi∈[n]‖e′i(U(sgn(H))′ − Û)‖F

= maxi∈[n]‖e′i(U − Ûsgn(H))‖F + maxi∈[n]‖e′i(U − Ûsgn(H))‖F

= 2maxi∈[n]‖e′i(U − Ûsgn(H))‖F = 2‖U − Ûsgn(H)‖2→∞

≤ C

√
K(κ(Ω)

√
n

KλK(Π′Π)
+

√
log(n))

σK(P̃)
√

ρλK(Π′Π)
,

where the last inequality holds since σK(Ω) ≥ σK(P̃)ρλK(Π′Π) under MMSBn(K, P̃, Π, ρ)

by Lemma II.4 [44] This bound is C
√

nlog(n)
σK(P̃)

√
ρλ1.5

K (Π′Π)
if we use Theorem 4.2 of [65].

Remark A2. By Theorem 4.5 [77], we have ‖ÛÛ′−UU′‖2→∞ ≤
√

n(‖Û‖2→∞ + ‖U‖2→∞)‖U−
Ûsgn(H)‖2→∞ ≤

√
n(‖U− Ûsgn(H)‖2→∞ + 2‖U‖2→∞)‖U− Ûsgn(H)‖2→∞ ≤

√
n(‖U−

Ûsgn(H)‖2→∞ + 2√
λK(Π′Π)

)‖U − Ûsgn(H)‖2→∞ = O( 2
√

n√
λK(Π′Π)

‖U − Ûsgn(H)‖2→∞).

Sure our bound ‖ÛÛ′ −UU′‖2→∞ ≤ 2‖U − Ûsgn(H)‖2→∞ enjoys concise form. In partic-
ular, when λK(Π′Π) = O( n

K ) and K = O(1), the two bounds give that ‖ÛÛ′ −UU′‖2→∞ =
O(‖U − Ûsgn(H)‖2→∞), which provides same error bound of the estimated memberships given
in Corollary 1.

Appendix C.3. Proof of Theorem 1

Proof. Follow almost the same proof as Equation (3) of [44]. For i ∈ [n], there exists a
permutation matrix P ∈ RK×K such that

‖e′i(Ẑ− ZP)‖F = O(vκ(Π′Π)
√

Kλ1(Π′Π)). (A2)

Note that the bound in Equation (A2) is
√

K times the bound in Equation (3) of [44],
and this is because in Equation (3) of [44], (in the language of Ref. [44]) ‖V̂−1

p ‖ denotes the

Frobenius norm of V̂−1
p instead of the spectral norm. Since ‖V̂−1

p ‖F ≤
√

K
σK(V̂p)

, the bound in

Equation (3) [44] should multiply
√

K.

Recall that Z = Π, Π(i, :) = Z(i,:)
‖Z(i,:)‖1

, Π̂(i, :) = Ẑ(j,:)
‖Ẑ(j,:)‖1

, for i ∈ [n], since

‖e′i(Π̂−ΠP)‖1 = ‖
e′i Ẑ
‖e′i Ẑ‖1

−
e′iZP
‖e′iZP‖1

‖1 = ‖
e′i Ẑ‖e′iZ‖1 − e′iZP‖e′i Ẑ‖1

‖e′i Ẑ‖1‖e′iZ‖1
‖1

≤
‖e′i Ẑ‖e′iZ‖1 − e′i Ẑ‖e′i Ẑ‖1‖1 + ‖e′i Ẑ‖e′i Ẑ‖1 − e′iZP‖e′i Ẑ‖1‖1

‖e′i Ẑ‖1‖e′iZ‖1

=
|‖e′iZ‖1 − ‖e′i Ẑ‖1|+ ‖e′i Ẑ− e′iZP‖1

‖e′iZ‖1
≤

2‖e′i(Ẑ− ZP)‖1

‖e′iZ‖1

=
2‖e′i(Ẑ− ZP)‖1

‖e′iΠ‖1
= 2‖e′i(Ẑ− ZP)‖1 ≤ 2

√
K‖e′i(Ẑ− ZP)‖F

= O(vKκ(Π′Π)
√

λ1(Π′Π)).



Entropy 2022, 24, 1098 31 of 41

Appendix C.4. Proof of Corollary 1

Proof. Under the conditions of Corollary 1, we have

maxi∈[n]‖e′i(Π̂−ΠP)‖1 = O(v
√

n).

Under the conditions of Corollary 1, Lemma 2 gives v = O( 1
σK(P̃)

1√
n

√
log(n)

ρn ), which
gives that

maxi∈[n]‖e′i(Π̂−ΠP)‖1 = O(
1

σK(P̃)

√
log(n)

ρn
).

Appendix D. Proof of Consistency under DCMM

Appendix D.1. Proof of Lemma 3

Proof. Since Ω = UΛU′, we have U = ΩUΛ−1 since U′U = IK. Recall that Ω = ΘΠP̃Π′Θ,
we have U = ΘΠP̃Π′ΘUΛ−1 = ΘΠB, where we set B = P̃Π′ΘUΛ−1 for convenience.
Since U(I , :) = Θ(I , I)Π(I , :)B = Θ(I , I)B, we have B = Θ−1(I , I)U(I , :).

Set M = ΠB. Then we have U = ΘM, which gives that U(i, :) = e′iU = Θ(i, i)M(i, :)

for i ∈ [n]. Therefore, U∗(i, :) = U(i,:)
‖U(i,:)‖F

= M(i,:)
‖M(i,:)‖F

, and combined with the fact that B =

Θ−1(I , I)U(I , :) ≡ Θ−1(I , I)N−1
U (I , I)NU(I , I)U(I , :) ≡ Θ−1(I , I)N−1

U (I , I)U∗(I , :),
we have

U∗ =


Π(1, :)/‖M(1, :)‖F
Π(2, :)/‖M(2, :)‖F

...
Π(n, :)/‖M(n, :)‖F

B =


Π(1, :)/‖M(1, :)‖F
Π(2, :)/‖M(2, :)‖F

...
Π(n, :)/‖M(n, :)‖F

Θ−1(I , I)N−1
U (I , I)U∗(I , :).

Therefore, we have

Y = NMΠΘ−1(I , I)N−1
U (I , I),

where NM is a diagonal matrix whose i-th diagonal entry is 1
‖M(i,:)‖F

for i ∈ [n].

Appendix D.2. Proof of Lemma 4

Proof. Similar to the proof of Lemma 1, set W = A−Ω and W(i,j) = W(i, j)(eie′j + eje′i),

we have W = ∑1≤i<j≤n W(i,j), E[W(i,j)] = 0 and ‖W(i,j)‖ ≤ 1. Since

E(W2(i, j)) = E((A(i, j)−Ω(i, j))2) = Var(A(i, j)) = Ω(i, j)(1−Ω(i, j))

≤ Ω(i, j) = θ(i)θ(j)Π(i, :)P̃Π′(j, :) ≤ θ(i)θ(j)P̃max,

we have

σ2 = ‖ ∑
1≤i<j≤n

E(W2(i, j))(eie′j + eje′i)(eie′j + eje′i)‖ = ‖ ∑
1≤i<j≤n

E[W2(i, j)(eie′i + eje′j)]‖

≤ max
1≤i≤n

|
n

∑
j=1

E(W2(i, j))| ≤ max
1≤i≤n

n

∑
j=1

θ(i)θ(j)P̃max ≤ P̃maxθmax‖θ‖1.
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Set t = α+1+
√

(α+1)(α+19)
3

√
P̃maxθmax‖θ‖1log(n) for any α > 0, combine Theorem A2

with σ2 ≤ P̃maxθmax‖θ‖1, R = 1, d = n, we have

P(‖W‖ ≥ t) = P(‖ ∑
1≤i<j≤n

W(i,j)‖ ≥ t) ≤ n · exp(
−t2/2

σ2 + Rt/3
)

≤ n · exp(
−(α + 1)log(n)

18
(
√

α+1+
√

α+19)2 +
2
√

α+1√
α+1+

√
α+19

√
log(n)

P̃maxθmax‖θ‖1

) ≤ 1
nα

,

where we use Assumption (A2) such that 18
(
√

α+1+
√

α+19)2 +
2
√

α+1√
α+1+

√
α+19

√
log(n)

P̃maxθmax‖θ‖1

≤ 18
(
√

α+1+
√

α+19)2 +
2
√

α+1√
α+1+

√
α+19

= 1.

Appendix D.3. Proof of Lemma 5

Proof. The proof is similar to that of Lemma 2, so we omit most details. Since E(A(i, j)−
Ω(i, j)) = 0, E[(A(i, j)−Ω(i, j))2] ≤ θ(i)θ(j)P̃max ≤ θ2

maxP̃max, 1
θmax
√

P̃maxn/(µlog(n))
≤ O(1)

holds by Assumption (A2) where µ =
n‖U‖2

2→∞
K . By Theorem 4.2 [64], with high probability,

we have

‖Ûsgn(H)−U‖2→∞ ≤ C
θmax

√
P̃maxK(κ(Ω)

√
µ +

√
log(n))

σK(Ω)
,

provided that c∗σK(Ω) ≥ θmax

√
P̃maxnlog(n) for some sufficiently small constant c∗. By

Lemma H.1 of [43], we know that ‖U‖2
2→∞ ≤

θ2
max

λK(Π′Θ2Π)
≤ θ2

max
θ2

minλK(Π′Π)

under DCMMn(K, P̃, Π, Θ), which gives

‖Ûsgn(H)−U‖2→∞ ≤ C
θmax

√
P̃maxK( θmaxκ(Ω)

θmin

√
n

KλK(Π′Π)
+

√
log(n))

σK(Ω)
,

Remark A3. Similar to the proof of Lemma 2, by Theorem 4.2 of [65], when σK(Ω) ≥ 4‖A−Ω‖∞,
we have

‖Ûsgn(H)−U‖2→∞ ≤ 14
‖A−Ω‖∞

σK(Ω)
‖U‖2→∞ ≤

14θmax‖A−Ω‖∞

θminσK(Ω)
√

λK(Π′Π)
.

Let y = (y1, y2, . . . , yn)′ be any n× 1 vector, and by the Bernstein inequality, for any t ≥ 0
and i ∈ [n], we have

P(|
n

∑
j=1

(A(i, j)−Ω(i, j))y(j)| > t) ≤ 2exp(− t2/2

∑n
j=1 Ω(i, j)y2(j) + t‖y‖∞

3

).

By the proof of Lemma 4, we have Ω(i, j) ≤ θ(i)θ(j)P̃max, which gives ∑n
j=1 Ω(i, j) ≤ P̃maxθmax‖θ‖1.

Set y(j) as 1 or −1 such that (A(i, j)−Ω(i, j))y(j) = |A(i, j)−Ω(i, j)|, we have

P(‖A−Ω‖∞ > t) ≤ 2exp(− t2/2
P̃maxθmax‖θ‖1 +

t
3
).
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Set t = α+1+
√

(α+1)(α+19)
3

√
P̃maxθmax‖θ‖1log(n) for any α > 0, by Assumption (A2), we

have

P(‖A−Ω‖∞ > t) ≤ 2exp(− t2/2
P̃maxθmax‖θ‖1 +

t
3
) ≤ n−α.

Hence, when σK(Ω) ≥ C0

√
P̃maxθmax‖θ‖1log(n) where C0 = 4 α+1+

√
(α+1)(α+19)

3 , with
probability at least 1− o(n−α),

‖Ûsgn(H)−U‖2→∞ ≤ C
θmax

√
P̃maxθmax‖θ‖1log(n)

θminσK(Ω)
√

λK(Π′Π)
.

Meanwhile, since
√

P̃maxθmax‖θ‖1log(n) ≤ θmax

√
P̃maxnlog(n), for convenience, we let

the lower bound requirement of σK(Ω) be Cθmax

√
P̃maxnlog(n).

Similar to the proof of Lemma 2, we have

‖ÛÛ′ −UU′‖2→∞ = maxi∈[n]‖e′i(UU′ − ÛÛ′)‖F ≤ 2‖U − Ûsgn(H)‖2→∞

≤ C
θmax

√
P̃maxK( θmaxκ(Ω)

θmin

√
n

KλK(Π′Π)
+

√
log(n))

σK(Ω)

≤ C
θmax

√
P̃maxK( θmaxκ(Ω)

θmin

√
n

KλK(Π′Π)
+

√
log(n))

θ2
minσK(P̃)λK(Π′Π)

,

where the last inequality holds since σK(Ω) = σK(ΘΠP̃Π′Θ) ≥ θ2
minσK(ΠPΠ′)

= θ2
minσK(Π′ΠP̃) ≥ θ2

minσK(P̃)σK(Π′Π) = θ2
minσK(P̃)λK(Π′Π). And this bound is

C θmax
√

P̃maxθmax‖θ‖1log(n)
θ3

minσK(P̃)λ1.5
K (Π′Π)

if we use Theorem 4.2 of [65].

Appendix D.4. Proof of Theorem 2

Proof. To prove this theorem, we follow similar procedures as Theorem 3.2 of [43]. For i ∈
[n], recall that Z∗ = Y∗ J∗ ≡ N−1

U NMΠ, Ẑ∗ = Ŷ∗ Ĵ∗, Π(i, :) = Z(i,:)
‖Z(i,:)‖1

and Π̂∗(i, :) = Ẑ∗(i,:)
‖Ẑ∗(i,:)‖1

,
where NM and M are defined in the proof of Lemma 3 such that U = ΘM ≡ ΘΠB∗ and
NM(i, i) = 1

‖M(i,:)‖F
, we have

‖e′i(Π̂∗ −ΠP∗)‖1 ≤
2‖e′i(Ẑ∗ − Z∗P∗)‖1

‖e′iZ∗‖1
≤

2
√

K‖e′i(Ẑ∗ − Z∗P∗)‖F

‖e′iZ∗‖1
.

Now, we provide a lower bound of ‖e′iZ∗‖1 as below

‖e′iZ∗‖1 = ‖e′i N−1
U NMΠ‖1 = ‖N−1

U (i, i)e′i NMΠ‖1 = N−1
U (i, i)‖NM(i, i)e′iΠ‖1 =

NM(i, i)
NU(i, i)

= ‖U(i, :)‖F NM(i, i) = ‖U(i, :)‖F
1

‖M(i, :)‖F
= ‖U(i, :)‖F

1
‖e′i M‖F

= ‖U(i, :)‖F
1

‖e′iΘ−1U‖F
= ‖U(i, :)‖F

1
‖Θ−1(i, i)e′iU‖F

= θ(i) ≥ θmin.

Therefore, by Lemma A3, we have

‖e′i(Π̂∗ −ΠP∗)‖1 ≤
2
√

K‖e′i(Ẑ∗ − Z∗P∗)‖F

‖e′iZ∗‖1
≤

2
√

K‖e′i(Ẑ∗ − Z∗P∗)‖F

θmin
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= O(
θ15

maxK5vκ4.5(Π′Π)λ1.5
1 (Π′Π)

θ15
minπmin

).

Appendix D.5. Proof of Corollary 2

Proof. Under conditions of Corollary 2, we have

maxi∈[n]‖e′i(Π̂∗ −ΠP∗)‖1 = O(
θ15

maxK5vκ4.5(Π′Π)λ1.5
1 (Π′Π)

θ15
minπmin

) = O(
θ15

maxv
√

n
θ15

min
).

Under the conditions of Corollary 2, Lemma 5 gives v = O(
θmax
√

P̃maxθmax‖θ‖1log(n)
θ3

minσK(P̃)n1.5 ),

which gives that

maxi∈[n]‖e′i(Π̂∗ −ΠP∗)‖1 = O(
θ15

maxv
√

n
θ15

min
) = O(

θ16
max

√
P̃maxθmax‖θ‖1log(n)

θ18
minσK(P̃)n

).

By basic algebra, this corollary follows.

Appendix D.6. Basic Properties of Ω under DCMM

Lemma A1. Under DCMMn(K, P̃, Π, Θ), we have

‖U(i, :)‖F ≥
θmin

θmax
√

Kλ1(Π′Π)
for i ∈ [n], and η ≥

θ4
minπmin

θ4
maxKλ1(Π′Π)

,

where η = mink∈[K]((U∗(I , :)U′∗(I , :))−11)(k).

Proof. Since I = U′U = U′(I , :)Θ−1(I , I)Π′Θ2ΠΘ−1(I , I)U(I , :) by the proof of Lemma 3,
we have ((Θ−1(I , I)U(I , :))((Θ−1(I , I)U(I , :))′)−1 = Π′Θ2Π, which gives that

mink‖e′k(Θ
−1(I , I)U(I , :))‖2

F = minke′k(Θ
−1(I , I)U(I , :))(Θ−1(I , I)U(I , :))′ek

≥ min‖x‖=1x′(Θ−1(I , I)U(I , :))(Θ−1(I , I)U(I , :))′x

= λK((Θ−1(I , I)U(I , :))(Θ−1(I , I)U(I , :))′) =
1

λ1(Π′Θ2Π)
,

where x is a K× 1 vector whose l2 norm is 1. Then, for i ∈ [n], we have

‖U(i, :)‖F = ‖θiΠ(i, :)Θ−1(I , I)U(I , :)‖F = θi‖Π(i, :)Θ−1(I , I)U(I , :)‖F

≥ θimini‖Π(i, :)‖Fmini‖e′i(Θ−1(I , I)U(I , :))‖F

≥ θimini‖e′i(Θ−1(I , I)U(I , :))‖F/
√

K

≥ θi√
Kλ1(Π′Θ2Π)

≥ θmin

θmax
√

Kλ1(Π′Π)
,

where we use the fact that mini‖Π(i, :)‖F ≥ 1√
K

since ∑K
k=1 Π(i, k) = 1 and all entries of Π

are non-negative.
Since U∗ = NUU, we have

(U∗(I , :)U′∗(I , :))−1 = N−1
U (I , I)Θ−1(I , I)Π′Θ2ΠΘ−1(I , I)N−1

U (I , I)

≥
θ2

min
θ2

maxN2
U,max

Π′Π ≥
θ4

min
θ4

maxKλ1(Π′Π)
Π′Π,
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where we set NU,max = maxi∈[n]NU(i, i) and we use the fact that NU , Θ are diagonal

matrices and NU,max ≤
θmax
√

Kλ1(Π′Π)
θmin

. Then we have

η = mink∈[K]((U∗(I , :)U′∗(I , :))−11)(k) ≥
θ4

min
θ4

maxKλ1(Π′Π)
mink∈[K]e

′
kΠ′Π1

=
θ4

min
θ4

maxKλ1(Π′Π)
mink∈[K]e

′
kΠ′1 =

θ4
minπmin

θ4
maxKλ1(Π′Π)

.

Appendix D.7. Bounds between Ideal SVM-cone-DCMMSB and SVM-cone-DCMMSB

The next lemma focuses on the 2nd step of SVM-cone-DCMMSB and is the cornerstone
to characterize the behaviors of SVM-cone-DCMMSB.

Lemma A2. Under DCMMn(K, P̃, Π, Θ), when conditions of Lemma 5 hold, there exists a
permutation matrix P∗ ∈ RK×K such that with probability at least 1− o(n−α), we have

max1≤k≤K‖e′k(Û∗,2(Î∗, :)−P ′∗U∗,2(I , :))‖F = O(
K3θ11

maxvκ3(Π′Π)λ1.5
1 (Π′Π)

θ11
minπmin

),

where U∗,2 = U∗U′, Û∗,2 = Û∗Û′, i.e., U∗,2, Û∗,2 are the row-normalized versions of UU′ and
ÛÛ′, respectively.

Proof. Lemma G.1. of [43] says that using Û∗,2 as input of the SVM-cone algorithm returns
the same result as using Û∗ as the input. By Lemma F.1 of [43], there exists a permutation
matrix P∗ ∈ RK×K such that

maxk∈[K]‖e′k(Û∗,2(Î∗, :)−P ′∗U∗,2(I , :))‖F = O(

√
Kζε∗

λ1.5
K (U∗,2(I , :))U′∗,2(I , :)

),

where ζ ≤ 4K
ηλ1.5

K (U∗,2(I ,:)U′∗,2(I ,:))
= O( K

ηλ1.5
K (U∗(I ,:)U′∗(I ,:))

), ε∗ = maxi∈[n]‖Û∗,2(i, :)−U∗,2(i, :

)‖F and η = min1≤k≤K((U∗(I , :)U′∗(I , :))−11)(k). Next we give upper bound of ε∗.

‖Û∗,2(i, :)−U∗,2(i, :)‖F = ‖ Û2(i, :)‖U2(i, :)‖F −U2(i, :)‖Û2(i, :)‖F

‖Û2(i, :)‖F‖U2(i, :)‖F
‖F ≤

2‖Û2(i, :)−U2(i, :)‖F
‖U2(i, :)‖F

≤ 2‖Û2 −U2‖2→∞

‖U2(i, :)‖F
≤ 2v

‖U2(i, :)‖F
=

2v

‖(UU′)(i, :)‖F
=

2v

‖U(i, :)U′‖F
=

2v

‖U(i, :)‖F

≤ 2θmaxv
√

Kλ1(Π′Π)

θmin
,

where the last inequality holds by Lemma A1. Then, we have ε∗ = O(
θmaxv

√
Kλ1(Π′Π)

θmin
). By

Lemma H.2. of [43], λK(U∗(I , :)U′∗(I , :)) ≥ θ2
minκ−1(Π′Π)

θ2
max

. By the lower bound of η given in
Lemma A1, we have

maxk∈[K]‖e′k(Û∗,2(Î∗, :)−P ′∗U∗,2(I , :))‖F = O(
K3θ11

maxvκ3(Π′Π)λ1.5
1 (Π′Π)

θ11
minπmin

).

Next the lemma focuses on the 3rd step of SVM-cone-DCMMSB and bounds
maxi∈[n]‖e′i(Ẑ∗ − Z∗P∗)‖F.
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Lemma A3. Under DCMMn(K, P̃, Π, Θ), when the conditions of Lemma 5 hold, with a probabil-
ity of at least 1− o(n−α), we have

maxi∈[n]‖e′i(Ẑ∗ − Z∗P∗)‖F = O(
θ15

maxK4.5vκ4.5(Π′Π)λ1.5
1 (Π′Π)

θ14
minπmin

).

Proof. For i ∈ [n], since Z∗ = Y∗ J∗, Ẑ∗ = Ŷ∗ Ĵ∗ and J∗, Ĵ∗ are diagonal matrices, we have

‖e′i(Ẑ∗ − Z∗P∗)‖F = ‖e′i(max(0, Ŷ∗ Ĵ∗)−Y∗ J∗P∗)‖F ≤ ‖e′i(Ŷ∗ Ĵ∗ −Y∗ J∗P∗)‖F

= ‖e′i(Ŷ∗ −Y∗P∗) Ĵ∗ + e′iY∗P∗( Ĵ∗ −P ′∗ J∗P∗)‖F

≤ ‖e′i(Ŷ∗ −Y∗P∗)‖F‖ Ĵ∗‖+ ‖e′iY∗P∗‖F‖ Ĵ∗ −P ′∗ J∗P∗‖
= ‖e′i(Ŷ∗ −Y∗P∗)‖F‖ Ĵ∗‖+ ‖e′iY∗‖F‖ Ĵ∗ −P ′∗ J∗P∗‖
= ‖e′i(Ŷ∗ −Y∗P∗)‖F‖ Ĵ∗‖+ ‖e′iY∗‖F‖J∗ −P∗ Ĵ∗P ′∗‖.

Therefore, the bound of ‖e′i(Ẑ∗ − Z∗P∗)‖F can be obtained as long as we bound
‖e′i(Ŷ∗ −Y∗P∗)‖F, ‖ Ĵ∗‖, ‖e′iY∗‖F and ‖J∗ −P∗ Ĵ∗P ′∗‖. We bound the four terms as below:

• We bound ‖e′i(Ŷ∗ − Y∗P∗)‖F first. Set U∗(I , :) = B∗, Û∗(Î∗, :) = B̂∗, U∗,2(I , :) =

B2∗, Û∗,2(Î∗, :) = B̂2∗ for convenience. For i ∈ [n], we have

‖e′i(Ŷ∗ −Y∗P∗)‖F = ‖e′i(ÛB̂′∗(B̂∗ B̂′∗)
−1 −UB′∗(B∗B′∗)

−1P∗)‖F

= ‖e′i(Û −U(U′Û))B̂′∗(B̂∗ B̂′∗)
−1 + e′i(U(U′Û)B̂′∗(B̂∗ B̂′∗)

−1

−U(U′Û)(P ′∗(B∗B′∗)(B′∗)
−1(U′Û))−1)‖F

≤ ‖e′i(Û −U(U′Û))B̂′∗(B̂∗ B̂′∗)
−1‖F + ‖e′iU(U′Û)(B̂′∗(B̂∗ B̂′∗)

−1

− (P ′∗(B∗B′∗)(B′∗)
−1(U′Û))−1)‖F

≤ ‖e′i(Û −U(U′Û))‖F‖B̂−1
∗ ‖F + ‖e′iU(U′Û)(B̂′∗(B̂∗ B̂′∗)

−1 − (P ′∗(B∗B′∗)(B′∗)
−1(U′Û))−1)‖F

≤
√

K‖e′i(Û −U(U′Û))‖F/
√

λK(B̂∗ B̂′∗) + ‖e′iU(U′Û)(B̂−1
∗ − (P ′∗B∗(U′Û))−1)‖F

(i)
=
√

K‖e′i(ÛÛ′ −UU′)Û‖FO(
θmax

√
κ(Π′Π)

θmin
) + ‖e′iU(U′Û)(B̂−1

∗ − (P ′∗B∗(U′Û))−1)‖F

≤
√

K‖e′i(ÛÛ′ −UU′)‖FO(
θmax

√
κ(Π′Π)

θmin
) + ‖e′iU(U′Û)(B̂−1

∗ − (P ′∗B∗(U′Û))−1)‖F

≤
√

KvO(
θmax

√
κ(Π′Π)

θmin
) + ‖e′iU(U′Û)(B̂−1

∗ − (P ′∗B∗(U′Û))−1)‖F

= O(v
θmax

√
Kκ(Π′Π)

θmin
) + ‖e′iU(U′Û)(B̂−1

∗ − (P ′∗B∗(U′Û))−1)‖F,

where we have used similar idea in the proof of Lemma VII.3 in [44] such that we
apply O( 1

λK(B∗B′∗)
) to estimate 1

λK(B̂∗ B̂′∗)
.

Now we aim to bound ‖e′iU(U′Û)(B̂−1
∗ − (P ′∗B∗(U′Û))−1)‖F. For convenience, set

T = U′Û, S = P ′∗B∗T. We have

‖e′iU(U′Û)(B̂−1
∗ − (P ′∗B∗(U′Û))−1)‖F = ‖e′iUTS−1(S− B̂∗)B̂−1

∗ ‖F

≤ ‖e′iUTS−1(S− B̂∗)‖F‖B̂−1
∗ ‖F ≤ ‖e′iUTS−1(S− B̂∗)‖F

√
K

|λK(B̂∗)|

= ‖e′iUTS−1(S− B̂∗)‖F

√
K√

λK(B̂∗ B̂′∗)
≤ ‖e′iUTS−1(S− B̂∗)‖FO(

θmax
√

Kκ(Π′Π)

θmin
)

= ‖e′iUTT−1B′∗(B∗B′∗)
−1P∗(S− B̂∗)‖FO(

θmax
√

Kκ(Π′Π)

θmin
)
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= ‖e′iUB′∗(B∗B′∗)
−1P∗(S− B̂∗)‖FO(

θmax
√

Kκ(Π′Π)

θmin
)

= ‖e′iY∗P∗(S− B̂∗)‖FO(
θmax

√
Kλ1(Π′Π)

θmin
) ≤ ‖e′iY∗‖F‖S− B̂∗‖FO(

θmax
√

Kλ1(Π′Π)

θmin
)

By Eq (A3)
≤ θ2

max
√

Kλ1(Π′Π)

θ2
minλK(Π′Π)

max1≤k≤K‖e′k(S− B̂∗)‖FO(
θmaxK

√
κ(Π′Π)

θmin
)

= max1≤k≤K‖e′k(B̂∗ −P ′∗B∗U′Û)‖FO(
θ3

maxK1.5κ(Π′Π)

θ3
min

√
λK(Π′Π)

)

= max1≤k≤K‖e′k(B̂∗Û′ −P ′∗B∗U′)Û‖FO(
θ3

maxK1.5κ(Π′Π)

θ3
min

√
λK(Π′Π)

)

≤ max1≤k≤K‖e′k(B̂∗Û′ −P ′B∗U′)‖FO(
θ3

maxK1.5κ(Π′Π)

θ3
min

√
λK(Π′Π)

)

= max1≤k≤K‖e′k(B̂2∗ −P ′∗B2∗)‖FO(
θ3

maxK1.5κ(Π′Π)

θ3
min

√
λK(Π′Π)

)

By Lemma A2
= O(

K4.5θ14
maxvκ4.5(Π′Π)λ1(Π′Π)

θ14
minπmin

).

Then, we have

‖e′i(Ŷ∗ −Y∗P∗)‖F ≤ O(v
θmax

√
Kκ(Π′Π)

θmin
) + ‖e′iU(U′Û)(B̂−1

∗ − (P ′∗B∗U′Û))−1)‖F

≤ O(v
θmax

√
Kκ(Π′Π)

θmin
) + O(

K4.5θ14
maxvκ4.5(Π′Π)λ1(Π′Π)

θ14
minπmin

)

= O(
K4.5θ14

maxvκ4.5(Π′Π)λ1(Π′Π)

θ14
minπmin

).

• for ‖e′iY∗‖F, since Y∗ = UU−1
∗ (I , :), we have

‖e′iY∗‖F ≤ ‖U(i, :)‖F‖U−1
∗ (I , :)‖F ≤

√
K‖U(i, :)‖F√

λK(U∗(I , :)U′∗(I , :))
≤ θ2

max
√

Kλ1(Π′Π)

θ2
minλK(Π′Π)

. (A3)

• for ‖ Ĵ∗‖, recall that Ĵ∗ =
√

diag(Û∗( Î∗, :)Λ̂Û′∗(Î∗, :)), we have

‖ Ĵ∗‖2 = maxk∈[K] Ĵ
2
∗(k, k) = maxk∈[K]e

′
kÛ∗( Î∗, :)Λ̂Û′∗(Î∗, :)ek

= maxk∈[K]‖e′kÛ∗( Î∗, :)Λ̂Û′∗(Î∗, :)ek‖

≤ maxk∈[K]‖e′kÛ∗( Î∗, :)‖2‖Λ̂‖ ≤ maxk∈[K]‖e′kÛ∗( Î∗, :)‖2
F‖Λ̂‖ = ‖Λ̂‖,

where we have used the fact that ‖Û∗(i, :)‖F = 1 for i ∈ [n] in the last equality. Since

we need σK(Ω) ≥ Cθmax

√
P̃maxnlog(n) ≥ C‖A−Ω‖ in the proof of Lemma 5, we

have ‖Λ̂‖ = ‖A‖ = ‖A−Ω + Ω‖ ≤ ‖A−Ω‖+ ‖Ω‖ ≤ σK(Ω) + ‖Ω‖ ≤ 2‖Ω‖ =
2‖ΘΠP̃Π′Θ‖ ≤ 2Cθ2

maxP̃maxλ1(Π′Π) = O(θ2
maxP̃maxλ1(Π′Π)). Then we have

‖ Ĵ∗‖ = O(θmax

√
P̃maxλ1(Π′Π)).

• for ‖J∗ −P∗ Ĵ∗P ′∗‖, we provide some simple facts first: ‖Λ̂‖ = ‖A‖, ‖Λ‖ = ‖Ω‖, Ω =

UΛU′, Ã = ÛΛ̂Û′, ‖Û‖ = 1, ‖U‖ = 1, ‖e′kP∗ B̂2∗‖ = ‖B̂2∗ek‖ = ‖e′k B̂2∗‖ ≤ ‖e′k B̂2∗‖F =
1. Since Ã is the best rank K approximation to A in the spectral norm, and therefore
‖Ã− A‖ ≤ ‖Ω− A‖ since Ω = UΛU′ with rank K and Ω can also be viewed as a
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rank K approximation to A. This leads to ‖Ω− Ã‖ = ‖Ω− A + A− Ã‖ ≤ 2‖A−Ω‖.
By Lemma H.2 [43], ‖B∗‖ = ‖U∗(I , :)‖ =

√
λ1(U∗(I , :)U′∗(I , :)) ≤

√
κ(Π′Θ2Π) ≤

θmaxκ0.5(Π′Π)
θmin

. ‖A‖ = ‖A−Ω + Ω‖ ≤ ‖A−Ω‖+ ‖Ω‖ ≤ σK(Ω) + ‖Ω‖ ≤ 2‖Ω‖ by
the lower bound requirement of σK(Ω) in Lemma 5, and we also have ‖A−Ω‖ ≤
σK(Ω) ≤ ‖Ω‖. For k ∈ [K], let τk = J∗(k, k), τ̂k = (P∗ Ĵ∗P ′∗)(k, k) for convenience.
Based on the above facts and Lemma A2, we have

maxk∈[K]|τ2
k − τ̂2

k | = maxk∈[K]‖e′kU∗(I , :)ΛU′∗(I , :)ek − e′kP∗Û∗(Î∗, :)Λ̂Û′∗(Î∗, :)P′∗ek‖
= maxk∈[K]‖e′kB2∗UΛU′B2∗ek − e′kP∗ B̂2∗ÛΛ̂Û′ B̂′2∗P

′
∗ek‖

≤ ‖e′k(B2∗ −P∗ B̂2∗)UΛU′B′2∗ek‖+ ‖e′kP∗ B̂2∗(UΛU′ − ÛΛ̂Û′)B′2∗ek‖
+ ‖e′kP∗ B̂2∗ÛΛ̂Û′(B′2∗ − B̂′2∗P ′∗)ek‖
≤ ‖e′k(B2∗ −P∗ B̂2∗)‖‖U‖‖Λ‖‖U′‖‖B′2∗ek‖+ ‖e′kP∗ B̂2∗‖‖UΛU′ − ÛΛ̂Û′‖‖B′2∗ek‖
+ ‖e′kP∗ B̂2∗‖‖Û‖‖Λ̂‖‖Û′‖‖(B′2∗ − B̂′2∗P ′∗)ek‖
≤ ‖e′k(B2∗ −P∗ B̂2∗)‖‖Λ‖‖B′2∗ek‖+ ‖UΛU′ − ÛΛ̂Û′‖‖B′2∗ek‖+ ‖Λ̂‖‖(B′2∗ − B̂′2∗P ′∗)ek‖
= ‖e′k(B2∗ −P∗ B̂2∗)‖(‖Ω‖‖B′2∗ek‖+ ‖A‖) + ‖Ω− Ã‖‖B′2∗ek‖
= ‖e′k(B̂2∗ −P ′∗B2∗)‖(‖Ω‖‖B′2∗ek‖+ ‖A‖) + ‖Ω− Ã‖‖B′2∗ek‖
≤ ‖e′k(B̂2∗ −P ′∗B2∗)‖(‖Ω‖‖B′2∗ek‖+ ‖A‖) + 2‖A−Ω‖‖B′2∗ek‖
= ‖e′k(B̂2∗ −P ′∗B2∗)‖(‖Ω‖‖UB′∗ek‖+ ‖A‖) + 2‖A−Ω‖‖UB′∗ek‖
≤ ‖e′k(B̂2∗ −P ′∗B2∗)‖(‖Ω‖‖B′∗ek‖+ ‖A‖) + 2‖A−Ω‖‖B′∗ek‖
≤ ‖e′k(B̂2∗ −P ′∗B2∗)‖(‖Ω‖‖B′∗ek‖+ 2‖Ω‖) + 2‖Ω‖‖B′∗ek‖
= ‖e′k(B̂2∗ −P ′∗B2∗)‖(‖B′∗ek‖+ 1)O(θ2

maxP̃maxλ1(Π′Π)) + ‖B′∗ek‖O(θ2
maxP̃maxλ1(Π′Π))

≤ ‖e′k(B̂2∗ −P ′∗B2∗)‖(‖B∗‖+ 1)O(θ2
maxP̃maxλ1(Π′Π)) + ‖B∗‖O(θ2

maxP̃maxλ1(Π′Π))

≤ ‖e′k(B̂2∗ −P ′∗B2∗)‖O(θ3
maxP̃maxκ0.5(Π′Π)λ1(Π′Π)/θmin)

+ O(θ3
maxP̃maxκ0.5(Π′Π)λ1(Π′Π)/θmin)

≤ ‖e′k(B̂2∗ −P ′∗B2∗)‖FO(θ3
maxP̃maxκ0.5(Π′Π)λ1(Π′Π)/θmin)

+ O(θ3
maxP̃maxκ0.5(Π′Π)λ1(Π′Π)/θmin)

= O(
K3θ11

maxvκ3(Π′Π)λ1.5
1 (Π′Π)

θ11
minπmin

)O(θ3
maxP̃maxκ0.5(Π′Π)λ1(Π′Π)/θmin)

+ O(θ3
maxP̃maxκ0.5(Π′Π)λ1(Π′Π)/θmin) = O(

K3θ14
maxP̃maxvκ3.5(Π′Π)λ2.5

1 (Π′Π)

θ12
minπmin

).

Recall that J∗ = NU(I , I)Θ(I , I), we have ‖J∗‖ ≤ NU,maxθmax ≤
θ2

max
√

Kλ1(Π′Π)
θmin

where the last inequality holds by Lemma A1. Similarly, we have

J∗(k, k) ≥ θminmini∈[n]
1

‖U(i,:)‖F
≥ θ2

min

√
λK(Π′Π)

θmax
where the last inequality holds by the

proof of Lemma 5. Then we have

‖J∗ −P∗ Ĵ∗P ′∗‖ = maxk∈[K]|τ̂k − τk| = maxk∈[K]
|τ̂2

k − τ2
k |

τ̂k + τk
≤ maxk∈[K]

|τ̂2
k − τ2

k |
τk

≤ θmax

θ2
min

√
λK(Π′Π)

maxk∈[K]|τ̂2
k − τ2

k | = O(
K3θ15

maxP̃maxvκ3.5(Π′Π)λ2.5
1 (Π′Π)

θ14
minπmin

√
λK(Π′Π)

).

Combining the above results, we have

‖e′i(Ẑ∗ − Z∗P∗)‖F ≤ ‖e′i(Ŷ∗ −Y∗P∗)‖F‖ Ĵ∗‖+ ‖e′iY∗‖F‖J∗ −P∗ Ĵ∗P ′∗‖

≤ O(
K4.5θ14

maxvκ4.5(Π′Π)λ1(Π′Π)

θ14
minπmin

)O(θmax

√
P̃maxλ1(Π′Π))
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+
θ2

max
√

Kλ1(Π′Π)

θ2
minλK(Π′Π)

O(
K3θ15

maxP̃maxvκ3.5(Π′Π)λ2.5
1 (Π′Π)

θ14
minπmin

√
λK(Π′Π)

)

= O(
θ15

maxK4.5vκ4.5(Π′Π)λ1.5
1 (Π′Π)

θ14
minπmin

).
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