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Abstract: Financial stocks in the industry chain interact notably because of close economic and
technical relationships. Some participants pay particular attention to one industry chain and are
concerned with different investment horizons. The motivation for this study is to offer more targeted
information to various market participants who focus on different time scales in one industry chain
from a systematic perspective by combining the GARCH-BEKK, heterogeneous network, and wavelet
analysis methods. The findings are as follows: (1) For parties who prefer to take more risks to gain
higher returns, scale 2 (4–8 days) is a good option, while long-term investment (32–128 days) is
suitable for conservative investors. (2) In most cases, some links in the industry chain are particularly
sensitive to changes in stocks in other links. (3) The influence, sensitivity, and intermediary of stocks
in the industry chain on different time scales were explored, and participants could use the resulting
information to monitor the market or select stocks. (4) The structures, key players, and industry
chain attributes of the main transmission paths differ on multi-time scales. Risk transmission can be
controlled by intercepting important spillover relations within the paths.

Keywords: volatility spillover; heterogeneous network; time scale; industry chain

1. Introduction

Interactions among financial stocks, which are caused by risk transmission and in-
formation transfer, are known as the volatility spillover effect [1–3]. This phenomenon is
reflected in the volatility relationship within financial time series [4]. The volatility spillover
effect is a widely discussed topic, and many studies on it have been conducted [5–7].
However, there are various stocks in the market, and the volatility of one might cause
volatility within the whole [8]. For example, if stock A is volatile, it will directly affect
other stocks. The affected stocks, in turn, influence other stocks. Volatility transfer may
occur several times. As a result, the whole system might be influenced by the volatility of
stock A. Therefore, a systematic view could help market participants to comprehensively
understand the stock market. In recent years, scholars began to construct financial networks
and study network features to explore the spillover effects among stocks from a systematic
perspective [6,7,9].

Stocks in the same industry can logically form a chain based on their economic and
technical relationships, i.e., the industry chain [10]. Studying the stocks from an industry
chain perspective is necessary because it can provide more targeted information to market
participants about a particular industry. There are various types of stocks in the market
which can be classified into industries; some participants pay more attention to a particular
industry. Due to value exchange, the stocks of companies in the same industry chain are
closely linked [11]. Links in the industry chain can be divided into three types: upstream,
midstream, and downstream. Accordingly, a company might be affected by one or more
types of link. For instance, some stocks belong to upstream, and some belong to midstream,
and others belong to downstream. If the network nodes have different features, the network
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is regarded as heterogeneous. Therefore, from an industry chain perspective, the spillover
network of stocks in the industry is also heterogeneous.

However, only a few studies have provided stock network analyses from an industry
chain perspective. These studies have successfully used heterogeneous networks to explore
the chain features. For instance, Zhang [10] constructed an influence index threshold
network model using the Pearson correlation coefficient and industrial chain information
about China’s PV market to identify leading enterprises. Jia [12] tested the daily closing
price time series of stocks in the global rare earth industry chain using the Granger causality
test and constructed a risk transmission network of the industrial chain to explore essential
stocks and transmission paths. Feng [11] studied risk transmissions among different
links in the electric vehicle industrial chain using GARCH-BEKK, motif analysis and
network analysis. By dividing the sectors into different links in the industry chain, Xu [13]
investigated the interdependence of tail risks among industries in the Chinese stock market
by constructing a tail event-driven network.

Different market participants, such as individual investors, fund managers, and poli-
cymakers in one industry chain, are concerned with varying investment horizons [14]. For
instance, investors are mainly interested in short investment horizons, while policymakers
pay more attention to long-term equilibrium [15]. The financial time series comprises
different frequency components, forming a multiscale conformation relative to a raw time
series [16]. The stocks in different time horizons have their own distinct features [17], as do
the corresponding spillover networks of stocks. Therefore, decomposing the time series
of one industry into different time horizons can reveal useful hidden information and
offer specific information to participants who are focused on distinct time horizons in the
industry chain. However, previous network analyses of the stock market from an industry
chain perspective have ignored the differences based on different time scales.

Wavelet analysis can transform an original financial time series into different time
scales. This method has been successfully used to reveal hidden information in time se-
ries [18–20]. For instance, using wavelet analysis, Pascoal [19] studied market efficiency,
roughness, and long memory in the PSI20 Index. Wang [16] detected the correlation charac-
teristics between financial time series based on multi-resolution analysis by decomposing
a raw time series into eight scales. Fernandez [21] investigated the spillover relations
in multi-time scales using wavelet analysis and GARCH. Liu [22] used maximum dis-
crete overlapping wavelet transform to decompose Wind Global Market Indices sectors
into six time scales and estimated their spillover relations on different time scales using
GARCH-BEKK. Therefore, aiming to reveal the hidden information of spillover relations
among stocks in the industry chain, and by providing distinct market participants with
more specific references on different time horizons, this study uses wavelet analysis to
decompose an original time series into several multi-scale time series.

As for the spillover effect measurement, GARCH-BEKK, proposed by Engle and
Kroner [23], is applied in this study. Engle is a Nobel Prize winner in Economics because
of his contribution to Autoregressive Conditional Heteroskedasticity (ARCH). ARCH can
measure the variation of time series variables [24]. GARCH-BEKK is one of the models in
the ARCH model family; the advantage of this model is that there is no restriction on the
correlation structure between the variables [25]. GARCH-BEKK is widely used to study
volatility spillover in financial markets [5,26–28].

Herein, the lithium-ion battery industry chain in China is taken as a case study.
Lithium-ion batteries are regarded as the most promising technology for developing power
sources for electric vehicles [29]. In recent years, many countries, including China, have
been proactively developing their lithium-ion battery industries [30]. Therefore, this
industry has gained a great deal of attention from stock market participants.

In summary, the motivation of this study is to offer more pertinent information to
distinct market participants who are focused on different time scales in a given industry
from a systematic perspective. This research takes the lithium-ion battery industry chain in
China as a case study and explores the multi-scale spillover relations in the industry chain
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by combining spillover measurement, heterogeneous network, and wavelet analysis. First,
the raw time series of stocks in the lithium-ion battery industry chain are decomposed into
multi-time scales by wavelet analysis to extract the hidden frequency information in the
original series. Second, the spillover effects of stocks in the industry chain on different scales
are measured by GARCH-BEKK. Third, heterogeneous spillover networks are constructed
according to the links (upstream, midstream, and downstream) to which the stocks belong.
The stocks are nodes, and the spillover relations are edges. Fourth, the topological features,
including structural entropy, key stocks, and main transmission paths in distinct scales, are
studied to answer four questions: (1) Which time scale has the highest or lowest spillover
strength? (2) How do the stocks in one link affect other links in the industry chain on
different scales? (3) What are the typical stocks in the industry chain regarding influence,
sensitivity, and intermediaries on distinct scales? (4) What are the main transmission paths
on the six applied scales?

2. Data and Methodology
2.1. Data

This paper collected the daily closing price data for 59 listed companies in the lithium-
ion battery industry chain from the Wind database (download date: 11 May 2022). Two
companies with large amounts of missing data were removed. Then, according to indus-
try research reports, 57 companies were classified as follows: 12 upstream companies,
25 midstream companies, 15 downstream companies, and 5 companies that belong to
more than one link in the industry chain (see Appendix A). The data time range was from
17 September 2020 to 10 May 2022.

2.2. Methodology

First, the logarithmic return of each company’s stock was calculated to ensure the
stationary nature of the data. Second, wavelet analysis was used to decompose the original
time series into distinct time scales to analyze the relationships of stocks in the lithium-ion
battery industry chain from a multi-scale perspective. Third, by using the GARCH-BEKK
model, the spillover relationships between each pair of stocks in different time scales
were calculated. Fourth, spillover networks in the industry chain on different scales were
constructed, and the characteristics of spillover relationships under different time scales
were explored using network indexes.

Formula (1) calculates the logarithmic return series of each company’s stock in the
industry chain.

Ri = ln(Pi,t)− ln(Pi,t−1) (1)

where Ri is the logarithmic return of company I, Pi,t is the daily closing price of company i
on day t, and Pi,t−1 is the daily closing price of company i on day t − 1.

2.2.1. Time Scale Decomposition by Maximal Overlap Discrete Wavelet
Transformation (MODWT)

To reveal the spillover relationships among stocks in different frequencies and offer
pertinent suggestions to various market participants focusing on different time horizons,
this study used the Maximal Overlap Discrete Wavelet Transformation wavelet (MODWT)
(For more details of the instruction to MODWT, see Percival and Walden (2000) [20]) method
to decompose the original logarithmic return series into different time scales. This process
gave us the following advantages: (1) MODWT overcomes the unfavorable effects caused
by starting point selection for analyses; and (2) The data were not required to have a dyadic
length [31–33]. The original logarithmic return series X of each stock in the industry chain
could be decomposed and reconstructed into several scales and one trend level.

X = ∑J
j=1 Dj + SJ (2)
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where Dj is the wavelet details at scale j and SJ is the trend level. Referring to previous
research using wavelet analysis to study daily financial data, J was set at 6 [22,34,35]. The
original time series were decomposed into six subsequences (Scales 1, 2, 3, 4, 5, and 6) by
MODWT. Each subsequence represents the contribution of fluctuations on a specific scale.
When working with daily data, scale 1 means 2–4 day dynamics; Scale 2 indicates 4–8-day
dynamics.; Scale 3 represents 8–16 day dynamics; Scale 4 indicates 16–32 day dynamics;
Scale 5 means 32–64 day dynamics; and Scale 6 corresponds to 64–128 day dynamics [21].
Scales 1 and 2 can be regarded as short-term, Scales 3 and 4 are medium-term, and Scales 5
and 6 are long-term (Table 1).

Table 1. Different time scales.

Time Scale Time Horizon (days)

D1 2–4
Short-TermD2 4–8

D3 8–16
Medium-TermD4 16–32

D5 32–64 Long-Term
D6 64–128

2.2.2. Spillover Relationship Estimation Using the GARCH-BEKK Model

GARCH-BEKK [23] is widely used to study volatility spillover in financial mar-
kets [5,26–28]. One of the strengths of this model is that there are no restrictions on the
correlation structure between the variables [25]. This study used GARCH-BEKK to measure
the spillover relationship between stocks and the chosen one-time lag. The GARCH-BEKK
model applied in this study is as follows:

Mean equation:

Rt(j) =
[

R1,t(j)
R2,t(j)

]
=

[
µ1(j)
µ2(j)

]
+

[
ϕ11 ϕ12
ϕ21 ϕ22

][
R1,t−1(j)
R2,t−1(j)

]
+

[
ε1,t(j)
ε2,t(j)

]
(3)

where Rt(j) is a (2× 1) vector of the logarithmic return of Stocks 1 and 2 at time t
in scale j, ε1,t(j) and ε2,t(j) are the random errors at time t in scale j, and ε(t)

∣∣Ωt−1 =
[ε1,t(j), ε2,t(j)]′ ∼ N{0, Ht(j)} , and µ1(t) and µ2(t) are the long-term drift coefficients of
Stocks 1 and 2 in scale j.

Variance equation:

Ht(j) = C′ C + A′εt−1(j)ε′t−1(j)A + B′Ht−1(j)B (4)

C =

[
c11 0
c21 c22

]
, A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
(5)

where C is a (2 × 2) constant matrix for lower triangular, Ht(j) is the conditional variance-
covariance matric at scale j, A and B are the coefficients of, respectively, the conditional
residual matrix and the conditional covariance matrix. Diagonals a11, a22, b11, and b22
represent the effects of own previous shocks and volatility. Off-diagonals a12, a21, b12, and
b21 mean shocks and volatility between two stocks.

The BHHH algorithm of the maximum likelihood estimation method was used to
estimate the model. The conditional log likelihood function is as follows:

L(θ) = −Tln(2π)− 1
2 ∑T

t=1

[
ln|Ht(θ)|+ εt(θ)

′H−1
t εt(θ)

]
(6)

where T is the number of observations and θ is the vector of the parameters to be estimated.
As mentioned above, a12 and b12 are the shocks and volatility, respectively, between

two stocks. a12 is the shock effect (ARCH effect) from stock 1 to stock 2, and b12 is the
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volatility transmission (GARCH effect) from stock 1 to stock 2 [23,36]. The shock effect
and volatility transmission can be demonstrated by the absolute values of a12 and b12.
This study explores the total spillover effect between stocks; therefore, the total volatility
spillover effect from stock 1 to stock 2 can be calculated by summing |a12| and |b12|, as
discussed in previous studies [27,37,38]. The formula is as follows:

Spillover12 = |a12|+ |b12| (7)

2.2.3. Heterogeneous Spillover Network of an Industry Chain

An industry chain network is revealed by constructing a heterogeneous network.
In this case, the nodes are stocks in the lithium-ion battery industry chain. The edges
are spillover relations. The weight of an edge is the spillover strength, as obtained in
Section 2.2.2, and the direction of an edge indicates the spillover direction. The color
represents the industry chain attribute of the stock. Green represents upstream, ted means
midstream, and yellow is downstream. The stocks in purple are classified into more than
one link. Six spillover networks are constructed. Figure 1 shows the spillover network of
the lithium-ion battery industry chain in Scale 1. The network indexes were applied to
analyze the spillover features.

Entropy 2022, 24, x FOR PEER REVIEW 5 of 18 
 

 

where T is the number of observations and θ is the vector of the parameters to be esti-
mated.  

As mentioned above, a  and b  are the shocks and volatility, respectively, be-
tween two stocks. a  is the shock effect (ARCH effect) from stock 1 to stock 2, and b  
is the volatility transmission (GARCH effect) from stock 1 to stock 2 [23,36]. The shock 
effect and volatility transmission can be demonstrated by the absolute values of a  and b . This study explores the total spillover effect between stocks; therefore, the total vola-
tility spillover effect from stock 1 to stock 2 can be calculated by summing |a | and |b |, 
as discussed in previous studies [27,37,38]. The formula is as follows: Spillover = |a | + |b | (7)

2.2.3. Heterogeneous Spillover Network of an Industry Chain  
An industry chain network is revealed by constructing a heterogeneous network. In 

this case, the nodes are stocks in the lithium-ion battery industry chain. The edges are 
spillover relations. The weight of an edge is the spillover strength, as obtained in Section 
2.2.2, and the direction of an edge indicates the spillover direction. The color represents 
the industry chain attribute of the stock. Green represents upstream, ted means mid-
stream, and yellow is downstream. The stocks in purple are classified into more than one 
link. Six spillover networks are constructed. Figure 1 shows the spillover network of the 
lithium-ion battery industry chain in Scale 1. The network indexes were applied to analyze 
the spillover features. 

 
Figure 1. The spillover network of stocks in the lithium-ion battery industry in Scale 1. The nodes 
are stocks in the lithium-ion battery industry chain. The edges are spillover relations. The weight of 
an edge is the spillover strength, as obtained in Section 2.2.2, and the direction of an edge indicates 
the spillover direction. The colors represent the industry chain attribute of the stock. Green repre-
sents upstream, red means midstream, and yellow is downstream. The stocks in purple are classi-
fied into more than one link. 

(1) Stock sensitivity  
The sensitivity of a stock measures how sensitive the stock is to fluctuations of other 

stocks in the industry chain. It can be calculated by the total spillover strength it receives 
from others.  S(j) = ∑ w,   (8)

Figure 1. The spillover network of stocks in the lithium-ion battery industry in Scale 1. The nodes are
stocks in the lithium-ion battery industry chain. The edges are spillover relations. The weight of an
edge is the spillover strength, as obtained in Section 2.2.2, and the direction of an edge indicates the
spillover direction. The colors represent the industry chain attribute of the stock. Green represents
upstream, red means midstream, and yellow is downstream. The stocks in purple are classified into
more than one link.

(1) Stock sensitivity
The sensitivity of a stock measures how sensitive the stock is to fluctuations of other

stocks in the industry chain. It can be calculated by the total spillover strength it receives
from others.

S(j) = ∑N−1
i=1,i 6=j wij (8)

where S(j) is the sensitivity strength of stock j and wij is the quantity of spillover from i to j.
(2) Stock influence
The influence of a stock is the total spillover strength it sends to others, which can be

defined as follows:
I(j) = ∑N−1

i=1,i 6=j wji (9)
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where I(j) is the influence strength of stock j and wji is the quantity of spillover from j to i.
(3) Stock intermediary
The intermediary ability of a stock can be measured by betweenness centrality. The

formula is as follows:

B(i) = ∑n
j ∑n

k Tjk(i), j 6= k 6= i, j < k, Tjk(i) = Pjk(i)/Pjk (10)

where B(i) is the betweenness centrality of stock I, Tjk(i) is the probability that stock i is on
the shortest path from stock j to stock k, Pjk(i) is the shortest path with stock i and Pjk is the
number of shortest paths, m is the number of stocks, and n is the number of shortcut paths
between stock j to stock k.

(4) Structure entropy of influence, sensitivity, and intermediary
Structure entropy is an index combing network analysis and entropy theory. It is

widely applied to measure heterogeneity within a network index [7,39,40]. The influence
structure entropy, sensitivity structure entropy, and intermediary structure entropy are
calculated to respectively depict differences of influence, sensitivity, and intermediary
among stocks in a network on different time scales [41]. The formulas are as follows:

Influence structure entropy = −∑n
j=1(

I(j)/I) ln(I(j)/I) (11)

Sensitivity structure entropy = −∑n
j=1(

S(j)/S) ln(S(j)/S) (12)

Intermediary structure entropy = −∑n
j=1(

B(j)/B) ln(B(j)/B) (13)

where I is the sum of influence of all the stocks, S is the sum of sensitivity of all the stocks,
and B is the the total intermediary of all the stocks.

(5) Network influence range and strength
The network influence range is the average of the stocks’ influence ranges, which is

measured by the out degree.

Netinrange =
1
N ∑N

m=1 ∑N−1
i=1,i 6=j eji (14)

where N is the number of stocks in the network and eti is the relationship between j and i.
If there is a spillover relation from j to i, eji = 1; if not, eji = 0.

The network influence strength is the average of the stocks’ influence index, as calcu-
lated using Formula (9). The formula is:

Netinstr =
1
N ∑N

j=1 I(j) (15)

where N is the number of stocks in the network and I(j) is the influence of stock j.
(6) Maximum spanning tree
The maximum spanning tree is applied to extract the main paths of spillover transmis-

sion. It comprises a tree of all nodes with a maximum weight sum [42]. A similar concept,
named minimum spanning tree, comprises a tree of all nodes with a minimum weight sum.
In some financial networks constructed by distance, short distance (small weight) means
high similarity, so a minimum spanning tree is applied [43,44], while in other cases, includ-
ing this study, larger weights are prioritized. In this study, we sought to extract the paths
which convey the most information. As such, we focused on the edges with larger weights.
Researchers typically extract maximum spanning trees according to edges with larger
weights [45–47]. As for the extraction process, the difference between the aforementioned
kinds of trees is that the minimum spanning tree chooses the edges according to ascending
order of weight, while the maximum spanning tree does so according to descending order.
Many algorithms can be used to calculate the minimum spanning tree, and all of them can
be easily transformed to calculate the maximum spanning tree [48]. This study used the
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Kruskal algorithm to extract the maximum spanning tree as follows [48]: First, the edges
of the spillover network were sorted into decreasing order according to their spillover
strength. We then added the first edge to the maximum spanning tree. Next, we added
the next edge to the tree if and only if it did not form a cycle in the current tree without
considering the direction of the edges. If the tree had N−1 edges, the process ended and
the maximum spanning tree was obtained. Otherwise, the previous step was repeated.

3. Empirical Results and Discussion
3.1. Overall Spillover Network Features on Distinct Time Scales

Network features, namely, the number of edges, network influence range, and network
influence strength of different time scales, are shown in Figure 2. The indexes of the
original time series are also displayed as benchmarks, shown as broken lines. The abscissa
represents each scale. The left ordinate represents the network influence range or strength,
and the right ordinate indicates the number of edges.
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number of edges.

The overall trend of the number of edges was consistent with the network influence
range, which first increased at Scale 2, then decreased at Scale 3, and finally continued
to increase, exceeding the original level. As for the network influence strength, it was
consistent with the trend of the influence range and edge number from Scale 1 to Scale 3,
but it decreased continuously from Scale 4 to Scale 6 and remained lower than the original
network. Although the network influence ranges from Scale 4 to Scale 6 were expanding and
became higher than the original level, the network influence strength index was decreasing
and eventually fell below the original level. This implies that in the medium-term and
long-term, the range of risk and volatility transmission among stocks was expanding while
the intensity became weaker over time.

The range and strength of Scale 2 were more extensive than in the original network.
In addition, this was the scale with the highest network influence strength and the only
scale that exceeded the influence strength of the original network. This indicated that the
intensity of the risk and volatility transmission of Scale 2 was the strongest. High risk
means potentially higher returns [4], so Scale 2 is suitable for those who are willing to
take more risks to gain higher returns. In contrast, Scales 5 and 6, which are long-term,
showed the lowest network intensity. This corresponds with the widely accepted notion
that long-term investments are more stable [14]. Therefore, Scales 5 and 6 are more suitable
for risk avoiders.
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3.2. Influence between Two Links on Distinct Time Scales

The spillover strength between two links of the industry chain on different time
scales is shown in Figure 3. The ordinate and the abscissa indicate the links of upstream,
midstream, and downstream. Stocks belonging to more than one link were classified to the
corresponding links, so the number of stocks in upstream, midstream, and downstream
were 16, 27, and 18. The numbers of stocks in distinct links were different, so the relative
spillover strength, i.e., the average spillover strength of the stocks in one link relative to
another, was used to compare the influence of one link upon another. This was obtained by
the total spillover strength from link A to link B divided by the number of stocks in link A.
The color of each block in the figure represents the relative spillover strength of the stocks
from the link in the ordinate to the link in the abscissa; the lower the value, the colder the
color. For example, for the left bottom block in Figure 3a, the abscissa is upstream and
the ordinate is downstream, so this block indicates the relative spillover strength from the
downstream to the upstream. The color of this block is the hottest in Figure 3a, indicating
that the average spillover influence of stocks from the downstream to the upstream was
the highest in the original data.
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Figure 3. Influence between two links in different time scales. The ordinate and the abscissa indicate
the links of upstream, midstream, and downstream. The color of each block in the figure represents
the relative spillover strength of the stocks from the link in the ordinate to the link in the abscissa; the
lower the value, the colder the color.

The average spillover influence of stocks in different links on each time scale can
be found by referring to each column. Participants who focus on a certain link can pay



Entropy 2022, 24, 1108 9 of 17

attention to the average influence of stocks in different links. For instance, in Time scale 2
(Figure 3c) for upstream, the average spillover influence from the downstream stocks was
the largest. The average spillover influence from the downstream stocks was the strongest
for the midstream. As for downstream, the average spillover influence from the upstream
stocks was the largest. Therefore, upstream and midstream market participants should pay
special attention to changes in downstream stocks, while downstream participants should
focus on changes in upstream stocks.

Overall, we can founds that the spillovers between links on distinct time scales show
different features. Therefore, participants concerned with varying horizons could obtain
more targeted information by referring to the corresponding time scale, indicating the
necessity of multiscale studies. The blocks on the diagonal line from the bottom left to the
top right in each time scale are not the hottest in each column, except the three blocks from
downstream to downstream in the original time series, Scales 5 and 6. This means that
except for the downstream in the original time series, Scales 5 and 6, the most extensive
average influence was from the stocks in another link rather than those in Link A. This
showed that in most cases, on average, a particular link is more sensitive to changes of
stocks in other links in the lithium-ion battery industry. This is consistent with our previous
research investigating the spillover relationships in the electric vehicle industry chain
without considering multiple time scales [11]. Therefore, attention should be paid to other
links; this reflects the importance of a whole-industrial-chain perspective.

3.3. Influence, Sensitivity, and Intermediary of Stocks on Distinct Time Scales

This section explores three attributes: sensitivity, influence, and intermediary of stocks
in the industry chain on six time scales. The structure entropy of sensitivity, influence, and
intermediary from Scale 1 to 6 are displayed in Figure 4. The abscissa represents each time
scale, and the ordinate represents the structure entropy value.
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As shown in Figure 4, the intermediary structure entropy increases from Scale 1 to
Scale 6, indicating that the intermediary becomes more and more evenly distributed over
time. The influences structure entropy and sensitivity structure entropy showed similar
trends, with a sharp drop in Scale 3, especially for influence structure entropy. This means
that the distribution of influence and sensitivity in Scale 3 is the most inhomogeneous
among all time scales. The stocks showed relatively noticeable differences in terms of
influence and sensitivity, and as such, would be a rather good choice for investment
portfolios seeking to hedge against risks.

In detail, Figure 5 shows six three-dimensional scatter plots from Time scales 1 to 6.
The dots in the plot are stocks. The X axis is the ranking of sensitivity among the stocks in
descending order. The Y axis is the influence ranking, and the Z axis is the intermediary
ranking. The color of the stock represents the industrial chain link attribute. Green
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represents upstream, red indicates midstream, and yellow means downstream. Purple
stocks are belong to more than one link. The number near the stock is the stock ID. The
name of each stock can be found in the Appendix A.
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means downstream. Purple stocks belong to more than one link. The number near the stock is the
stock ID. The names of the stocks can be found in the Appendix A.

Overall, the distributions of stock features are different from Scale 1 to Scale 6. From
an industry chain perspective, as shown in Table 2, it is interesting that stocks belonging
to more than one link have the strongest influence, on average, from Scale 1 to Scale 5.
This implies that expanding business across the links, known as vertical integration, could
enhance the degree of influence within the industry chain.
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Table 2. The average influence of stocks with different industry chain attributes.

Chain Attribute Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Upstream 12.2 22.6 11.0 10.3 4.9 2.3
Midstream 12.8 21.8 11.6 10.1 6.1 3.1
Downstream 12.1 22.8 11.8 12.2 7.4 3.4
More than one link 13.3 24.0 16.4 12.7 8.3 3.1

There were stocks with high rankings in all three aspects in Scales 1, 2, and 3. No
such stock existed on Scales 4 to 6. This means that in Scales 1, 2, and 3, a small number
of stocks play essential roles in all three aspects. In Scale 1, the stock near (0,0,0) was
45 CHUANGXIN in midstream, ranking first in terms of influence, sensitivity, and interme-
diary. The rankings of 45 CHUANGXIN were also relatively high in Scale 2, ranking first in
influence, 7th in sensitivity, and 13th in intermediary. Meanwhile, 45 CHUANGXIN is a
leading supplier of lithium-ion battery diaphragms. In the first half of 2021, the company
shipped about 1.2 billion square meters of wet lithium battery diaphragm, making it the
world’s largest supplier and giving it the world’s largest market share [49]. In Scale 2,
23 SHANDONG SHIDA SHENGHUA CHEMICAL GROUP appeared around the (0,0,0)
corner, with rankings of 5, 7, and1, respectively (midstream). This company is a leading
producer of electrolytes for lithium-ion batteries [50]. Its predecessor was a school-run
enterprise at the China University of Petroleum (East China), a national “double first-class”
discipline construction university. Globally, it is the only company that can simultaneously
provide electrolyte solvent, solute, and additive products for lithium-ion batteries [51]. In
Scale 3, the top stock was 16 DFD (6,1,1), which was both midstream and downstream.
DFD has independently developed preparation technique for high-purity crystal lithium
hexafluorophosphate. The purity, quality, stability, and other indicators of the product are
better than those produced elsewhere domestically, making it essential in the lithium-ion
battery chain [52]. Recently, the company also accelerated the layout of the downstream
lithium-ion battery field.

Table 3 demonstrates the typical stocks in terms of influence, sensitivity, and in-
termediary. In Scale 1, 45 CHUANGXIN and 47 SINOMINE were shown to be highly
influential and sensitive. As mentioned above, 5 CHUANGXIN had the highest interme-
diary; therefore, market participants should pay close attention to this stock. As shown
in Section 3.1, Scale 2 is suitable for risk seekers because of its high spillover strength. In
Scale 2, 33 DYNANONIC, 48 WEIHUA, and 49 YONGXING MATERIAL were shown to
have the highest sensitivities. DYNANONIC produces nanometer lithium iron phosphate,
which is a type of anode material [53], while 48 WEIHUA and 49 YONGXING MATERIAL
supply Li-ion battery materials [54,55]. In general, higher risk means higher returns, so risk
seekers in Scale 2 could choose these stocks.

As shown in Section 3.1, the risk is lower in Scales 5 and 6. The stocks with the
lowest sensitivity are shown in Table 2. Interestingly, in Scale 5, 45 CHUANGXIN is the
antepenultimate stock in terms of sensitivity. This contrasts sharply with the top-ranking
enterprise in Scales 1 and 2. Moreover, 2 BAOLI NEW, the most influential player in Scale 6,
has influence rankings of 57th, 34th, 47th, 50th, and 9th from Scales 1 to 5. It was also the
antepenultimate stock in terms of sensitivity in Scale 6. This indicates that 2 BAOLI NEW,
which has a low level of influence on other scales, has the most influence in Scale 6 and
is not easily influenced by other stocks due to its low sensitivity. The main products of
BAOLI NEW are battery management systems (BMS), power batteries, and energy storage
battery packs [56].

As for the intermediary, we found that although some stocks do not have strong
influences, they also play important roles as intermediaries. In situations of significant
change, media stocks can be controlled to reduce fluctuations. For instance, in Scale 2,
55 CTM and 46 ZANGGE MINING ranked 11th and 33rd, respectively, in terms of influence,
while they were still essential because they play mediating roles. CTM primarily produces
copper, cobalt, and nickel, i.e., critical raw materials for the downstream new energy vehicle
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industry [57]. ZANGGE MINING also supplies battery-grade lithium carbonate, placing it
upstream in the lithium-ion battery chain.

Table 3. Typical stocks terms of in influence, sensitivity, and intermediary.

Influence

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

rank ID ID ID ID ID ID

1 45 45 16 30 16 2
2 43 24 3 17 14 26
3 47 57 43 14 30 20

Sensitivity

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

rank ID ID ID ID ID ID

1 45 33 27 32 27 52
2 5 48 53 39 54 53
3 47 49 48 34 53 15
55 9 36 2 7 45 2
56 24 4 14 9 22 42
57 4 30 4 2 21 26

Intermediary

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

rank ID ID ID ID ID ID

1 45 23 16 52 7 34
2 20 55 43 30 8 5
3 43 46 48 22 9 17

3.4. Main Transmission Paths on Different Time Scales

The main transmission paths on different time scales were extracted using a maximum
spanning tree, shown in Figure 6. The colors of the nodes represent the industry chain
attributes of the stock. Green means the stock belongs to the upstream, red indicates
midstream, yellow represents downstream, and purple nodes indicated that the stock
belongs to more than one link in the industry chain. The edge color indicates the source
stock’s corresponding industry chain attribute in the spillover relationship.

Overall, the main transmission paths on different scales show different characteristics.
There were two main clusters in Scale 4, while in Scale 1, chain distribution was observed.
The stocks on the central paths contain different industry chain features on different scales.
In Scale 3, the downstream stocks are in the central position, while in other cases, they tend
to be scattered around the margins. In Scale 5, the stocks on the central path belonging to
more than one link in the industry chain. This implies that the structures, key players, and
industry chain attributes in the main transmission paths have significant differences over
different time scales.

The maximum or minimum spanning tree is most commonly used to simplify complex
financial networks [1]. The entire network will be more effectively controlled if these critical
paths are controlled [4], i.e., the spillover relations on the main path of the tree can be
controlled to cut off risk transmission. Taking Scale 2 as an example, if 45 CHUANGXIN
undergoes severe fluctuation, the relationships among 45 CHUANGXIN and 48 WEIHUA
or 49 YONGXING MATERIALS can be cut to control the risk transmission.
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4. Conclusions

Aiming to offer more targeted information to market participants who wish to focus
on distinct time scales or links in the industry chain, this study combined the method of
GARCH-BEKK, heterogeneous network, and wavelet analysis to reveal the distinguishing
spillover features of stocks on different time scales from an industry chain perspective. The
findings can be summarized as follows:

(1) Investors could choose investment time horizons according to the risk transmission
on distinct scales. For investors preferring to take more risks to gain higher returns, scale 2
(4–8 days) is a good option. The risk transmission among stocks in time scale 2 (4–8 days)
has the highest spillover strength, and therefore, it is the most active and risky. In contrast,
for conservative investors, the long term (32–64 days and 64–128 days) is preferred. The
spillover relations in Scales 5 and 6 are the most significant, but the spillover strengths are
the lowest. This means that in the long term (32–64 days and 64–128 days), the connections
of stocks are greater, while the intensities of interactions are the lowest. Therefore, investors
could use this information to choose a suitable investment time horizon.

(2) Participants who focus on a particular link should also be aware of the impact of
the stock price changes within this link. As for downstream, in the long term, stock in
the same link has, on average, the greatest effect. Related participants who focus on the
downstream in the long term should keep a close eye on downstream stock price changes.
In most cases, a certain link is more sensitive to stock changes in other links. Except for the
three blocks from downstream to downstream in the original time series in Scales 5 and 6,
the blocks on the diagonal line from the bottom left to the top right in each time scale are
not the hottest. Therefore, attention should also be paid to other links in the industry.
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(3) The influence, sensitivity, and intermediary of stocks in the industry chain on six
time scales were explored. Overall, Scale 3 (8–16 days) was found to be a relatively good
choice for investment portfolios seeking to hedge against risk, because it has the lowest
influence structure and sensitivity structure entropies. From Scales 1 to 5, on average, stock
belonging to more than one link has the highest influence value. This implies that vertical
integration could increase the degree of influence in the industry chain. Some stocks play
essential roles in all three aspects, i.e., influence, sensitivity, and intermediary, from Scales 1
to 3; these are leading stocks in their field. The volatility of stocks with strong influence
should be closely monitored. As for intermediary, in case of significant changes, media
stocks with high intermediary ability can be assessed to reduce fluctuations. Investors can
use sensitivity to select stocks. Risk seekers could choose stocks with high sensitivity, such
as 33 DYNANONIC, 48 WEIHUA, or 49 YONGXING MATERIAL in Scale 2. Risk avoiders
should pick stocks with lower sensitivity, such as 2 BAOLI NEW, 42 GREAT SOUTHEAST,
or 26 FULIN PM in Scale 6.

(4) Risk transmission can be controlled by identifying the important spillover rela-
tionships within the main paths, such as those from 45 CHUANGXIN to 48 WEIHUA and
49 YONGXING MATERIALS. The structures, key players, and industry chain attributes
on the main transmission paths show considerable differences on different time scales.
Market participants should keep a close eye on the corresponding time scale. For instance,
the yellow stocks are in the margin positions in most cases except for Scale 3, where they
are central.

In summary, this study proposed a research framework to study the spillover relation-
ships among stocks in the industry chain on different time scales using GARCH-BEKK,
heterogeneous network analysis, and wavelet analysis methods. The findings could pro-
vide various market participants who are focused on different time scales in one industry
with pertinent information. Nonetheless, it should be noted that spillover among stocks
is dynamic. Future analyses will be conducted considering this dynamic characteristic in
order to explore the changes in the described features over time.
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Appendix A

Table A1. Stocks in the lithium-ion battery industry chain.

ID Name Industry Chain Attribute Stock Code

1 GGEC downstream 002045.SZ
2 BAOLI NEW downstream 300116.SZ
3 CAMEL GROUP downstream 601311.SH
4 DESAYBATTERY downstream 000049.SZ
5 GREAT POWER downstream 300438.SZ
6 TOPBAND downstream 002139.SZ
7 AUCKSUN downstream 002245.SZ
8 GXHT downstream 002074.SZ
9 VISION GROUP downstream 002733.SZ
10 SUNWODA downstream 300207.SZ
11 JIAWEI ENERGY downstream 300317.SZ
12 GANFENGLITHIUM upstream & downstream 002460.SZ
13 CATL downstream 300750.SZ
14 SMARTER ENERGY downstream 600869.SH
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Table A1. Cont.

ID Name Industry Chain Attribute Stock Code

15 EVE downstream 300014.SZ
16 DFD midstream & downstream 002407.SZ
17 NARADA POWER SOURCE downstream 300068.SZ
18 JSGT midstream 002091.SZ
19 CAPCHEM midstream 300037.SZ
20 NBSS up & mid & downstream 600884.SH
21 TINCI midstream 002709.SZ
22 YONGTAI TECHNOLOGY midstream 002326.SZ

23 SHANDONG SHIDA SHENGHUA
CHEMICAL GROUP midstream 603026.SH

24 ZJJH midstream 600160.SH
25 TONZE midstream 002759.SZ
26 FULIN PM midstream 300432.SZ
27 JIANGTE MOTOR upstream & midstream 002176.SZ
28 XTEMD midstream 002125.SZ
29 GEM upstream & midstream 002340.SZ
30 GHKJ midstream 002741.SZ
31 EASPRING midstream 300073.SZ
32 FENGYUAN midstream 002805.SZ
33 DYNANONIC midstream 300769.SZ
34 RONBAY TECHNOLOGY midstream 688005.SH
35 BEIT RUI midstream 835185.BJ
36 NATIONS midstream 300077.SZ
37 XFH midstream 300890.SZ
38 KEDA midstream 600499.SH
39 HNZK ELECTRIC midstream 300035.SZ
40 PUTAILAI midstream 603659.SH
41 SINOMATECH midstream 002080.SZ
42 GREAT SOUTHEAST midstream 002263.SZ
43 CANGZHOU MINGZHU midstream 002108.SZ
44 SENIOR midstream 300568.SZ
45 CHUANGXIN midstream 002812.SZ
46 ZANGGE MINING upstream 000408.SZ
47 SINOMINE upstream 002738.SZ
48 WEIHUA upstream 002240.SZ
49 YONGXING MATERIALS upstream 002756.SZ
50 YAHUA GROUP upstream 002497.SZ
51 ZHEJIANG TIANTIE INDUSTRY upstream 300587.SZ
52 TLC upstream 002466.SZ
53 YOUNGY upstream 002192.SZ
54 TMD upstream 000762.SZ
55 CTM upstream 600711.SH
56 HUAYOU COBALT upstream 603799.SH
57 HANRUI COBALT upstream 300618.SZ
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