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ABSTRACT

In model-based systems engineering, system architectures often
have to make compromises to meet hard constraints of functional
and extra-functional requirements while optimizing for a target
objective. Design space exploration (DSE) techniques have been
developed to automatically propose candidate architectures over an
extremely large design and configuration space. (1) Meta-heuristic
exploration algorithms are often used to provide practical, best-
effort solutions for DSE, but they lack any guarantees of complete-
ness or optimality. (2) Logic synthesis based approaches may offer
strong theoretical guarantees, but frequently face scalability issues.
In the paper, we propose two logic solver-based approaches to eval-
uate complex design spaces by using partial models in order to
find an optimal solution with respect to performability objectives.
One approach uses performability analysis as a post-filtering of
valid system architecture candidates, while the other approach uses
performability analysis for guiding the actual search over partial
models. We evaluate both approaches on an interferometry mission
architecture case study using view transformations for performa-
bility analysis and compare our approach with a well-known DSE
framework based on meta-heuristic search.
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1 INTRODUCTION

Context. Model-based systems engineering has been widely used
to manage complexity when designing critical cyber-physical sys-
tems (CPS). Architecture modeling languages, such as SysML, Pal-
ladio [55], Amilia [6], and domain specific languages are used to
design system architectures, configurations, and deployments on
heterogeneous computing and communication infrastructures [79].

Domain-specific standards, such as AUTOSAR [7] in the auto-
motive industry (with more than 500 well-formedness constraints)
and ARINC 653 [3] in the avionics domain prescribe strict design
rules in addition to the functional requirements (e.g. critical and
non-critical components should not be mixed). Fortunately, check-
ing well-formedness constraints over complex system models can
be carried out in a scalable way [78].

Furthermore, engineers often need to make major compromise
to satisfy possibly contradicting extra-functional requirements and
functional constraints. In particular, performability [77] goals are
affected by both performance (which necessitate an efficient alloca-
tion of resources) and dependability (which necessitate redundancy)
characteristics of the system, while the actual resource allocation
can also be limited by design rules or functional constraints.

However, the mathematically precise analysis of system-level
extra-functional properties [31] necessitates to automatically derive
analysis models in various modeling formalisms (such as process
algebra [32], Markov chains and Stochastic Petri nets [58, 61]) by
complex model transformations [18, 29, 30, 35, 76] from system
models. Moreover, sophisticated backend solvers (such as PEPA
[32], PRISM [49]) need to be used to actually carry the analysis of
such extra-functional properties and then back-annotate the results.
Problem statement. The large number of possible system config-
urations each with highly varying extra-functional characteristics
poses a major challenge to find the most suitable system architec-
ture in an early design phase [20]. Engineers can manually inspect
only a handful subset of candidate architectures. Therefore, various
automated design space exploration (DSE) tools have been developed
for system architecture synthesis to assist in finding viable candidate
architectures that satisfy all functional and extra-functional con-
straints while optimizing for a target objective. DSE tools tackling
this challenge are broadly classified into two categories:
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(A) (Meta-)heuristic techniques, such as genetic algorithms or
multi-objective optimization [1, 6, 13, 27, 28, 55], can support a
wide variety of analyses directly inside the DSE process to derive
near-optimal design candidates. However, they do not guarantee
a complete (exhaustive) enumeration of the design space and the
optimality of the generated candidates [43]. Moreover, encoding
hard constraints either requires custom soft constraints, objective
functions and mutation operators or it could significantly degrade
the performance or scalability of the exploration [72].

(B) Logic solver based DSE techniques (e.g., [38, 41]) have guar-
anteed soundness and completeness. They usually allow encoding
complex logical hard constraints and logical formulas or graph
patterns [15, 48, 71, 78] and may provide an explanation when the
synthesis task is unsatisfiable. However, purely logical constraints
cannot capture most extra-functional requirements that rely on an
external numerical solver to analyze. Thus, solvers have to be specif-
ically extended for optimization tasks, such as in [11, 51] to handle
both logical and numerical constraints. Unfortunately, for complex
extra-functional analysis tasks, such optimizing solvers are often
unavailable. In such cases, a post-filtering based DSE approach can
be used [25] where (i) logic solvers derive well-formed candidate
architectures, which are then (ii) mapped to analysis models and
finally (iii) investigated by dedicated analysis tools one by one to
select good design candidates (without optimality guarantees).

Recently logic solvers based on partial models have offered a scal-

able solution for graph constraints [71], attribute constraints [68]
or scope constraints [56] by abstract graph reasoning [64, 65] along
refinement. Abstract interpretation has been used for performance
analysis in [33], but without incorporating functional constraints.
However, lifting the analysis of both functional and extra-functional
properties from concrete models to abstract models during design
space exploration has remained an open challenge.
Objectives and contributions. This paper provides two logic-
solver based architecture synthesis techniques to automatically
derive system models that (a) satisfy both functional and extra-
functional constraints and (b) optimize the system architecture
with respect to performability objectives. The first approach applies
post-filtering on valid design candidates derived by a graph solver
to carry out performability analysis using an external stochastic
analyzer. The second approach carries out abstract performability
analysis on partial design candidates by introducing conservative
approximations to fill uncertain or incomplete information when
calling the external analysis tool. The specific contributions of the
paper include:

e As a conceptual basis, we extend the partial model [26, 71]
formalism to incorporate performability metrics (Section 3.2).

e We introduce a view transformation over partial models of
system architectures to derive Continuous-Time Markov Chain
(CTMC) reward models that conservatively approximate
extra-functional properties for future design decisions. In
particular, we extend a graph solver based on partial models
with extra-functional propagation (Section 3.3) operators to
incorporate CTMC analysis results into the partial models.

e We provide a prototype tool implementation on top of open-
source software tools, namely, the VIATRA Generator [69]
graph solver and the PRISM [49] stochastic model checker.
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The tool is available in the accompanying artifact at https:
//doi.org/10.5281/zenodo0.6974248.

o We evaluate the performance of the two approaches (Section 4)
and compare it to a meta-heuristic synthesis approach in the
context of a case study from the NASA JPL [37].

2 SYSTEM ARCHITECTURE SYNTHESIS
2.1 Motivating case study

In our paper, we study the architecture synthesis challenge in the
context of a complex case study introduced in [37] by NASA JPL
engineers who used the MOMoT DSE tool [27] which exploits meta-
heuristic search to create candidates for satellite constellations that
can collect scientific data for early mission planning.

A satellite mission architecture consist of a ground station equip-
ped to receive data from satellites. Each satellite has a type (i.e.,
3U, and 6U CubeSat or small satellites), they can be equipped with
various communication subsystems operating at different band-
width (Ka, X or UHF band), and optionally, with an interferometry
payload to make measurements.

Satellites need to forward measurement data to the ground sta-
tion either directly or indirectly via another satellite, thus an appro-
priate communication topology needs to be designed. Each satellite
must use one communication subsystem to downlink data and it
can optionally be equipped with another one for relaying purposes.
The ground station must be reachable from every satellite, and the
topology of the communication must be acyclic.

The main objective is to maximize the scientific coverage

ci(n) = (1 - %) +0.05%, (1)

i.e,, the amount of data gathered by the n installed payloads and
successfully relayed to the ground station, of the mission given a
fixed observation time ¢ and a component budget.

To study the effects of failure processes on the architecture syn-
thesis, we assume that exponential failure rates are attached to the
components as reliability information. The performability metric
computes the expected coverage given the occurrence of compo-
nent failures within the observation time window;, i.e.,

E[C:(n)] = ) P

i=2

i payloads have working
downlink at time ¢

} W) @

2.2 High-level overview

We propose two model synthesis approaches to generate system
architecture candidates subject to hard logical (functional and extra-
functional) constraints while optimizing for performability metrics.
Conceptually, our approach combines partial model refinement [56,
68] with view transformations to derive a performability model
investigated by performability analysis. Figure 1 illustrates the
architecture of the proposed approaches.
As inputs, our system architecture synthesis relies on

e an (A) initial partial model to be extended, which is either
the most general (maximally uncertain) partial model, or
contains the architecture elements that are required to be
present in all generated solutions;
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Figure 1: Overview of architecture synthesis

¢ (B) functional constraints to restrict valid system mod-
els to be compliant with a metamodel and a set of well-
formedness (WF) constraints;

e (C) cost constraints expressed as type scope bounds or
linear inequalities to provide an upper bound on the size of
the model; and

¢ a (D) performability objective captured either as an opti-
mization goal or a threshold thr to be satisfied.

Our framework derives either an optimal system architecture
that has the highest obtainable performability value, or a near-
optimal candidate architecture with performability metric over
some user-defined threshold thr. In either case, each derived candi-
date satisfies all WF constraints and stays within the cost bounds.

o If the problem is feasible, a (E) generated design candidate
will be derived as output.

e If no near-optimal solution exists above the specified thresh-
old, the synthesis task is infeasible and a (F) proof of in-
feasibility will be provided. For optimization problems, a
(F) proof of optimality can be provided.

Our approach is parametric in the model transformation V that
derives the performability analysis models from the design candi-
dates amenable to performability analysis. While we provide such a
transformation in the paper, our overall synthesis can be combined
with other existing performability analysis approaches. We provide
two approaches by combining a graph solver with partial model
refinement with transformation-driven performability analysis:

e Approach 1: Whenever the generator obtains a valid con-
crete model, performability analysis is executed as post-
filtering to further restrict the generated candidates.

e Approach 2: Partial view model transformations V; (P) and
V,(P) are used to conservatively estimate lower and upper
bounds for performability metrics by initiating performabil-
ity analysis on partial design candidates.

The remainder of this section introduces further details for Ap-
proach 1, while section 3 elaborates on Approach 2.

2.3 Hard constraints for system models

2.3.1 Metamodel and well-formedness constraints. We will rely on
a general-purpose or domain-specific systems modeling language to
represent system model serving as candidate architectures. We as-
sume that such languages are defined by (1) a metamodel to capture
the vocabulary of the system modeling language with classes and
references, while (2) consistent (valid) systems models also have
to satisfy well-formedness (WF) constraints. On a technical level,
we rely on metamodels of Eclipse Modeling Framework (EMF) [74],
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Figure 2: Metamodel and sample error pattern for case study

and WF constraints (and constraint validations) implemented using
the VIATRA Query [78] language and technology.

Similarly to [68], we rely on first-order logic (FOL) to uniformly
formalize (a) the constraints associated with the systems modeling
language, (b) additional design rules, and (c) extra functional re-
quirements. This is the case for many constraint languages widely
used in model-driven engineering, such as OCL constraints [70] and
graph patters [78]. For example, if the system modeling language
can describe the physical and functional system architecture and
their allocations, FOL constraints can capture whether all functions
are allocated to physical components in a valid manner.

Definition 2.1. A metamodel is a FOL signature (X, o), where the
set of symbols ¥ includes unary class C; and existence ¢ and binary
reference R; and equivalence ~ symbols, and a: ¥ — N is the arity
function a(C;) = a(e) = 1, a(Rj) = a(~) = 2.

Each class symbol Cy, ..., C, € X corresponds to an EClass and
each reference symbol Ry, ..., R, € ¥ corresponds to an EReference.
We use the existence symbol ¢ to reason about whether a given
component is present in the architecture model and the equivalence
symbol ~ to reason about whether two components may be merged
into one or a component may be split into different instances.

A theory T is a set of FOL predicates 7 = {¢1,..., ¢} that
capture the hard constraints for design candidate as error patterns,
i.e., valid candidate architectures should satisfy none of ¢;.

Example 2.2. Figure 2 shows the metamodel for the case study
adapted from [56]. We extended the metamodel with a fallback ref-
erence to model redundant communication links between satellites.

On the right side of the figure, we depict the error pattern

¢ = Jx: KaComm(x) A Jy: XComm(y) A target(x,y),
which forbids connecting incompatible communication subsystems.

2.3.2  Cost constraints. The compromises between performance
and dependability characteristics are interpreted within the context
of some cost bounds (budget) which restrict the number and the type
of components used in candidate architectures. First, we determine
a model scope (model size) within which near-optimal or optimal
design candidates are sought.

Moreover, we use linear inequality bounds [56] to encode cost
constraints in the form of ¥, ex, cost(C;)-#C; < U, where cost(C;)
is the cost of a component of type C;, #C; is the number of objects of
class C;, and U is the available budget. These inequalities generalize
type scope bounds [38] of the form L < #C; < U, which refer to
the number of instances of a given class.
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In the following, we will assume that all WF and cost constraints
are hard constraints, i.e., they are part of the theory 7.

2.4 Partial models and refinement

2.4.1 Partial models. We recap the concept of partial models to
explicitly encode unknown or uncertain parts of a model [71] (i.e.,
design decisions yet to be made). We use 3-valued logic, where
the usual 1 (true) and 0 (false) values are extended with a third
1/2 (unknown) value that encodes uncertainty.

Definition 2.3 ([71]). A partial model is a FOL structure P =
(Op, Ip) over signature (X, &), where Op is a finite set of objects,
and Zp is an interpretation function with Ip(g): Og(g) — {1,0,1/2}
for all symbols ¢ € 2.

Partial model objects o with Zp(¢€)(0) = Zp(~)(0,0) = 1/2 (po-
tentially existing and possibly equal with themselves) are multi-
objects [56], which may represent multiple concrete model elements
in regular instance models.

FOL predicates ¢ can be evaluated on a partial model P yielding
[ellp € {1,0,1/2} according to the rules of 3-valued logic [71]. A
partial model P is logically consistent with the theory 7, written as
PEeT,if [@i]p # 1 for all error predicates ¢; € 7.

A partial model M = (Opy, 1) is concrete if Iy; contains only
1 and 0 values. Concrete models correspond to regular instance
models that represent candidate architectures.

Example 2.4. Figure 3 shows three partial models P;, Py, P3. Ref-
erences with 1and 1/2 logic values are depicted as solid and dashed
lines, respectively, while 0 references are omitted. For example,
in Py, Ip (~)(newx, newx) = Ip (subsys)(Sz, newx) = 1/2 and
Ip, (subsys) (S, C2) = 1. Objects with dashed outlines have un-
certain existence, i.e., 7p, (£)(newx) = 1/2, which makes newy into
a multi-object representing all XComm instances to be added.

2.4.2  Partial model refinements. Partial model refinements gradu-
ally add information to partials models to reduce uncertainty, as a
designer would incorporate design decisions into the model. Our
approach derives candidate architectures along such refinements.

The information ordering > of logic values [71] specifies that 1/2
may be refined into either 1 or 0, while other logic values must stay
unchanged, ie, (X > Y) & (X =1/2) vV (X =7Y).

Definition 2.5 ([56]). The function abs: Og — Op is a refinement
from partial model (Op, Zp) to the partial model (Op, 1), written
as P >gps Q, if (i) for all p € Op with Zp(e)(p) = 1, we have some
q € Og with abs(q) = p; and (ii) for all ¢ € X and q1,...,qq(¢)
Tp(c)(abs(1) ., ab5(du(e)) = Tp(q1 - Ga(c)).

We may use P > Q to simplify notation.

Graph solvers derive consistent concrete models M via a se-
quence of refinements Py > P; > --- > M. It can be shown [71]
that inconsistencies can be detected early during refinement, i.e.,
lilp; = 1implies [¢;] s = 1 for any error pattern ¢; € 7. Such
inconsistent partial models can be discarded by backtracking, reduc-
ing the number of partial models explored during model synthesis.

Example 2.6. Figure 3 shows two refinements P1 >4, P2 and
P2 >aps, P3.In Py, absi (L) = abs;(newy) = newy, i.e., the multi-
object new| representing all new Payload instances was split to cre-
ate a new Payload L;. As a result, #new| , the number of remaining
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Payload objects allowed by the cost constraints in 77, also decreased
from 2 to 1. In P3, abs; is the identity function, i.e., no new objects
were created. However, the new reference Zp, (fallback)(Cs, C1) = 1
violates a WF constraint ¢y, that forbids cycles in the communi-
cation topology ([¢10p]p, = 1), which makes P5 inconsistent.

2.5 Transformations for performability analysis

Performability requirements necessitate a compromise between
the performance and dependability characteristics of the system [77].
They can evaluated by stochastic modelling, such as Continuous-
Time Markov Chain (CTMC) reward models, where the CTMC
describes the dependability attributes of the system, while the
achieved performance is captures by the reward structure. In ar-
chitecture based performability analysis [10, 45], a CTMC analysis
model A is derived from the architecture model M by a (unidi-
rectional) view transformation A = V(M). The transformation V
constructs A by composing performability model fragments that
describe the extra-functional characteristics of each of the com-
ponent instances in M. Afterwards, a stochastic analysis tool A
analyzes A to obtain a performability metric value m = A(A) by
numerical solution or simulation. As a result, the performability of
architecture M is evaluated as A(V (M)).

In this paper, we encode CTMC analysis models in the PRISM
language [49] and solve them with the PRISM model checker tool.

Example 2.7. Figure 4 shows a concrete model M for a candidate
architecture, a visual representation of the analysis model V (M),
and the corresponding PRISM code for a CTMC reward model.

We introduce exponentially distributed failure times for satellites
(Spacecraft) and communication subsystems (CommSubsys). Each
SmallSat has a mean time to failure (MTTF) of 70 hours (failure rate

of Agmallsat = 71—0 ﬁ), while each XComm connected to a satellite

has an MTTF of 13 hours (Axcomm = % holur)' Based on these
reliability attributes and c; from (1), the performability analysis
A(V(M)) determines the value of the performability metric (2).

The analysis model V(M) is depicted as a Static Fault Tree (SFT).

ures of satellites and communication subsystem. The Spacecraft Si
can successfully transmit, represented by the gate Tri, if the target
OR fallback of its transmitting CommSubsys can receive the trans-
mitted data. It can operate and gather data (Oni) if itself (Si) and
its transmitting CommSubsys is fault-free and it can transmit the
acquired data (Tri). Lastly, a CommSubsys (Cj) may receive data
(Rci) if both it and its spacecraft are operational. The performance
metric can be computed from the number of operational satellites
online that are equipped with a Payload (On1, On2, On3). Note that
the top event corresponds to the correct operation of the system to
facilitate computing the performability metric, as opposed to the
more usual faulty top event.

In the PRISM model, there is a module that contains a bool
variable for each basic event. The stochastic commands, starting
with the [] symbol, set the variables to false whenever a failure
occurs according to the failure rate 1. We omitted the stochastic
command for Cg, because we model CommSubsys on the ground
as always fault-free. The gates of the fault tree were mapped to
formula expressions. The rewards structure "utility" measures the
system performance according to C; in (2).
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Figure 3: Example refinements of partial models: P; > P, and P, > P3
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Figure 4: Architecture (instance) model, fault tree and corresponding PRISM analysis model

To obtain the expected value of C; as the performability metric
for a mission time of t = 1 hour, we run the immediate reward query
R{"utility"}=?[I = 1] in PRISM.

3 ABSTRACT PERFORMABILITY ANALYSIS
3.1 Exploration overview

Figure 5 shows an overview of architecture synthesis for Approach
2, where abstract performability analysis is fully integrated into
state space exploration. Our framework explores a state space of
partial models along refinements to derive either a feasible concrete
solution or a proof of infeasibility consisting of partial models that
were pruned during the exploration. Novel components proposed
in this paper were highlighted in bold in the figure. In particular,
the generator has the following components:

(1) Decision and unit propagation rules introduce new infor-
mation into the partial model. A decision step explores a possible
design decision (i.e., the addition of a new component instance or a
new connection between existing components). Unit propagation
rules incorporate the logical consequences of WF constraints after a
decision according to the semantics of 3-valued logic following the
set of rules in [71], which were proven to be sound and complete.
We avoid executing decisions that violate cost constraints by object
scope analysis [56], which compares the size of the model to the
type scope bounds.

(2) Constraint evaluation uses an incremental graph query
engine [78] to over- and under-approximate the WF constraints on
the partial model [71]. Partial models that surely violate some WF
constraint are inconsistent and are discarded by backtracking.

(3) State coding based on graph shapes [64] avoids repeatedly
exploring isomorphic partial design candidates.

(4) Extra-functional propagation is a new component to
ensure the synthesis of near-optimal or optimal candidates: The
(5) PM to analysis model transformation constructs analysis
models from partial models to under- and over-approximate the
achievable values of the performability metric by calling PM view
transformations either (Approach 1) when a concrete model is
reached or (Approach 2) after each decision step. We evaluate the
analysis method by the PRISM Model Checker [49] as an (6) Ex-
ternal analysis tool. By (7) Interpreting the analysis results,
refined bounds for the achievable values of the performability met-
ric are obtained for the PM. If this range falls outside the prescribed
threshold, the PM is infeasible and is pruned by backtracking.

These components are coordinated by a (8) State space ex-
ploration strategy that explores the potential refinements of the
initial PM according to a best-first heuristic search. The heuris-
tic is computed from the number of remaining potential WF con-
straint violations in the PM and the lower bound of the achievable
performability objective to prioritize design candidates with high
performability values. To ensure completeness, refinements are ex-
plored exhaustively until either each PM is pruned by backtracking
or a feasible solution is found. The pruned PMs serve as a formal

proof of infeasibiltiy or optimality.
For space considerations, we provide further details exclusively
for the novel components of our framework in the sequel.

3.2 Partial models for performability analysis

First, we extend partial models to track the required or achievable
value of the performability metrics in architecture synthesis.
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Figure 5: Overview of architecture synthesis with abstract performability analysis

Definition 3.1. A partial model with performability objective is
a triple P = (Op, Ip, uip), where (Op, Ip) is a partial model (see
Definition 2.3), and pp C R is a real interval.

Definition 3.2. Function absis a refinement from P = (Op, Ip, up)
to Q = (Og. I, pg) if (i) it is a refinement between the partial
models (Op, Zp) and (Op, Ip) (Definition 2.5), and (ii) po S pp,
i.e., refinement cannot relax the performability objective.

The interval pp contains the desired values of the performability
objective. A concrete model M = (OnZnr, pinr) is performability
consistent with the view transformation V if ypy; = {A(V(M))}
is the singleton interval containing the performability metric of M
determined by analysis. Therefore, if P > M and M is performability
consistent, then we must have A(V (M)) € pp.

M is consistent if it is both logically consistent with the theory
7 (Section 2.4.1) and performability consistent with V. During
model generation, we aim to obtain concrete models M that are
both consistent and refinements of the initial partial model Pjp;;.

The initial partial model Pyt = (Op,,,, Ip,,;> IP,,;;) May be set
to contain model elements that must be present in all design can-
didates. Alternatively, we may set Pjpn;; to the most general partial
model for the signature (X, &) according to [56]:

e We let Op, . contain a new multi-object newc, for each con-
crete class symbol C; € X with Ip,, (Ci)(newc,;) = 1and
Ip,.(e)(newc,) = Ip, . (~)(newc,, newc,) = 1/2; and

o for any other symbol ¢ € ¥ and objects 01,...,04(¢) € Op,»
we set Ip, . (¢)(o1, ..., oa(g)) =1/2.

In synthesis problems with a threshold thr for the performability
objective, we set yp, , = [thr,+0c0) to only obtain refinements as
solutions that are over the threshold. By setting this threshold thr to
0, one can initiate state space exploration for a regular optimization
problem aiming to find the optimal design candidate.

3.3 Extra-functional propagation

In the extra-functional propagation step, we obtain new bounds of
the achievable values of the performability metric for some partial
model P = (Op, Ip, up) being considered. We incorporate the new
information into the partial model by a refinement P > P’.

Extra-functional propagation uses view transformations (VT) over
partial models to derive (concrete) performability analysis models
from partial model P. Upper V, and lower V; partial model VTs
are conservative approximations of view transformation V.

Definition 3.3. Upper ‘V,, and lower V; partial model VTs con-
servatively approximate the view transformation V over the sig-
nature (%, ) and the theory 7 if for all partial models P over
(2, @) and concrete models M with P > M and M £ 7, we have
A(Ve(P)) < A(V(M)) < A(Vu(P)).

Estimates from partial model VTs shrink along refinement: if
P> Q, then A(Vy(P)) < A(Ve(Q)) < A(Vu(Q)) < A(Vu(P)).
In particular, for a concrete and consistent model M, we always
have A(Vi(P) = ACV(M) = A(Vu(M)).

Given a pair of conservative partial model VTs V;, V,,, then extra-
functional propagation P = (Op, Ip, up) > P’ = (Op, Ip, jp) de-
rives a new partial model with pj, = up N [A (Vi (P)), A(Vyu(P))].

Thanks to conservativeness, the propagation does not remove
any potential valid design candidates: if P > M for some consistent
concrete model M, then we also have P’ > M.

The role of the refined interval y17, in the design candidate syn-
thesis process is twofold: Firstly, the lower bound of the interval is
incorporated as a heuristic into the best-first state space exploration
to prioritize partial models where a high value of the performability
metric is likely to be achievable. Secondly, partial design candidates
with pp, = 0 can be pruned outright, since they are unable to achieve
a performability metric in the desired interval pp.

Example 3.4. In Figure 3, extra-functional propagation is applied
after the decision step which insert a new Payload instance in
refinement P; > Py, which tightens the upper bound of the interval
pp, from 0.01389 to 0.01382.

3.4 Conservative concretization with relaxation

In Approach 2, the partial model VTs (Vy,Vy,) may be derived
from the concrete view transformation V in various domain- or
problem-specific ways. However, the choice of these VTs may have
a significant impact on the performance of DSE. If the estimates
A(V,(P)) and A(V,(P)) are not tight enough, the generator will
have to explore a larger fraction of the state space, because it cannot
detect the infeasibility of partial solutions early for pruning. There-
fore, in this section, we provide guidelines for designing V;, V.
We introduce the upper C, and lower C; conservative concretiza-
tion operators that derive concrete models M, = C, (P) and My =
Cr(P) as refinements P > M, and P > My, respectively. We relax
the functional WF constraints and cost constraints of the theory 7.
In general, M, and M, might not be consistent w.r.t. 7, but we may
nevertheless execute the view transformation V on them to obtain
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performability analysis models. Then we set Vu(P) = V(Cu(P))
and V;(P) = V(C;(P)). Therefore, in order to make V; and V,,
conservative, we must ensure that the performability metrics as-
sociated with the concrete (but not necessarily consistent) models
M, = Cy(P) and M; = C;(P) over- and under-approximate, respec-
tively, the performability metrics associated with any concerete
and consistent refinement M of P, i.e.,

A(V(Ce(P))) < A(V(M)) < A(V(Cu(P))).

Informally, given a component dependency model, one may
construct C; and Cy, if V is monotonic in the following sense: the
value of the performability metrics is not decreased by

(1) adding new components without new dependencies;

(2) replacing a component with a more reliable one; or

(3) replacing common causes of failure with independent com-
ponents providing the same service

This is the case, e.g., for static fault trees (SFT) [40] as dependability
models where the performability metric computed according to the
number of operational components, because STFs cannot contain
negations. Therefore, the assumptions hold for our interferometry
mission architecture case study.

If the assumptions (1)—(3) hold, we may obtain M, = C,(P) by

e adding new components to P up to cost bounds allowed by
P (even by violating WF constraints) according to (1);

o if there are any unmet required or optional dependencies in
the model, satisfing them with new independent components
(even violating WF and cost constraints) with the highest
possible reliability according to (2) and (3); and

e concretizing the model by replacing any remaining 1/2 values
in I, with 0.

For the lower concretization M, = C;(P), we simply set 1/2 values
in Iy, to 0, leaving any component dependencies unmet.

Example 3.5. Figure 6 shows the upper conservative concretiza-
tion C, (P2) of P, from Figure 3. Objects and references added by
concretization are shown in italic.

Since cost constraints enforce #new| < 1in P, (at most one new
Payload can be added), C,, has added a new instance L. Instead of
connecting Ly to the existing S, it also added a new SmallSat S3 (the
most reliable available Spacecraft) and a new XComm Cs3 (the most
reliable available CommSubsys), potentially violating other cost
constraints. The target and fallback references of C3 are connected
directly to Cg, the most reliable path to the GroundStation. Likewise,
the fallback reference of C, was connected to Cy.

The concretization rules C, above that create most reliable, but
not necessarily consistent architecture possible from a partial model
are to be provided as a parameter for the generator.

MODELS ’22, October 23-28, 2022, Montreal, Canada

3.5 Soundness and completeness

Soundness. Our architecture synthesis methods are sound, i.e., if a
near-optimal design candidate M is output, it satisfies the theory
7 of functional WF constraints and cost constraints (M £ 7"), as
well as the prescribed threshold (A(V (M)) > thr).

For optimization problems, we guarantee §-optimality, i.e., for
any concrete and consistent P > M’, we have A(V(M)) +§ >
A(V(M’)). This avoids numerical instability issues, where the
external stochastic analysis tool ‘A would return noisy (within an
error bound of §) analysis results for solutions with equal performa-
bility metrics due to the underlying numerical computations.
Completeness. The complete enumeration of design candidates
within the (finite) model scope spanned by the cost constraints relies
on the completeness of the decision and propagation rules in [71].
The conservativeness of the partial model view transformations
ensures that we do not prune any potential solutions even after
extra-functional propagation, which maintains completeness.

If a near-optimal design candidate is sought, the synthesis stops
at the first feasible solution. In optimization problems, we adapt a
technique from optimizing SMT solvers [11, 51]. After a solution
M* is found, we update each remaining partial model P in the state
space by pp, = pup N [A(V(M*)) + 3, +00), i.e., any further solution
must improve on the performability metric of M* by at least J.
Infeasible problems. If no feasible solution is found, our approach
degrades gracefully by retrieving partial models that were pruned
during extra-functional propagation. Such partial models represent
design candidates that (a) may have consistent refinements, i.e.,
were not pruned during constraint evaluation, and (b) got closest
to the desired performability objective value before pruning. By
covering the design space of consistent models, these pruned partial
candidates constitute a formal proof of infeasiblity.

4 EVALUATION

We carried out an experimental evaluation to answer the following
research questions:

(RQ1) How does the performance of our approaches compare to
meta-heuristic techniques to derive optimal architectures?

(RQ2) How do various exploration steps contribute to exploration
time when generating near-optimal system architecture can-
didates of increasing size?

4.1 Measurement setup

4.1.1 Case studies. We aim to evaluate the performance of various
approaches proposed in the paper in the context of the complex
satellite case study defined in [37]. In the original setting (referred to
as SAT), satellite constellations are constructed without redundancy,
i.e. communication subsystems can only transmit data to a single
target communication subsystem.

In addition, we extended the original challenge to include re-
dundancy in the communication topology by adding an alternative
outgoing link to each communication subsystems as a fallback. This
redundant setup necessitates the extra well-formedness constraint
requiring that the target and fallback links need to connect to dif-
ferent communication subsystems located on different satellites.
This extended setup is referred to as SAT+FB.
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Various components used in architecture synthesis in both cases
have a predefined price. A SmallSat costs $2,900K, a Cube6U costs
$650K while a Cube3U costs $150K. In addition, a communication
subsystem costs $100K and each satellite is required to have at least
one of such communication subsystem. Each payload allocated to
satellite costs $50K. While the original study [37] used a non-linear
cost function, we turn it into a linear form by taking the maximum
possible costs for each component.

As further constraints on total cost and model size, we used the
following restrictions: (1) Small models with at least 8 (minimal
functional size) and up to 10 components (excluding the root ele-
ment) had a cost limitation of $5,000K, (2) Medium models with at
least 8 and up to 20 components had an upper cost limit of $9,000K,
and (3) Large models up to 30 components had a cost limitation
of $15,000K. These cost limits are aligned with the actual costs
of satellite architectures reported in [37], and large models are of
equivalent size with the largest models derived by MOMoT in the
original study (with a runtime of 6 hours).

4.1.2  Compared approaches. As a baseline for our experiments, we
have selected MomoT, which is the DSE tool using meta-heuristic
search used also in the original study [37]. As in [37], we replaced
the default settings of the eMOEA algorithm with tournament se-
lection, one point crossover, transformation placeholder mutation and
transformation variable mutation. Moreover, we configured MomoT
with a transformation length of 180, and set population size to 500.

We followed [12] in encoding multiplicity constraints in the
preconditions of transformation rules. The remaining 11 hard con-
straints that could not be captured in this way were passed to
Momor as constraint functions.

The MomoTt implementation selects a candidate solution if all
hard constraints are satisfied, then it executes the view transforma-
tion and uses the same PRISM solver (in identical configuration) to
calculate performability metrics. Then the search is guided by the
value of this extra-functional metric.

We compare the performance of both Approach 1 (ApPRrR1)
and Approach 2 (APPR2), where the actual implementations are
integrated into the open source Viatra Generator [69] tool. APPR1
searches a well-formed model (randomly) and then it executes the
view transformation and calls the PRISM solver on this concrete
candidate model. APPR2 repeatedly calls PRISM during the search
for approximating upper and lower bounds as guidance hints.

For all three approaches, we evaluate the value of the performa-
bility metric reached within a given time limit of 20 minutes (fol-
lowing the evaluations of other solver-based approaches, e.g. [8,
51, 67, 71, 73]). We repeated every measurement 30 times [82], and
report the individual results of each run, as well as the medians of
the 30 runs (highlighted with bold lines).

A full replication package is available at https://doi.org/10.5281/
zenodo.6974248.

4.1.3  Execution setup. Each measurement was executed with 6 CPU
cores and a 32 GiB memory limit. The graph generator and the
PRISM 4.6 analysis tool ran on openjdk 11.0.11. For MoMoT, we
had to downgrade openjdk to 1.8.0_312 due to compatibility issues.
Each run was carried out in a separate JVM.
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4.2 RQ1: Performance comparison

The performability results of the three approaches on small, medium
and large models models (respectively) are depicted in the three
left-most columns in Figure 7. The 1st row corresponds to the SaT
case while the 2nd row represents the SAT+FB case.

MowmoT was unable to find any consistent models in any of the
investigated scenarios withing the time bounds. We expect that this
is due to the large number of complex (global) hard constraints in
the domain [37, 56]. By relaxing some of these constraints, MomoT
would likely derive solutions, although, for a simplified problem.

For small models, both ApPR1 and APPR2 derived solutions with
near-identical performability values. Moreover, the best architec-
ture was derived by APPR2 earlier (in less amount of time) than by
APPR1 in the SAT case.

For medium models, in the SAT case, APPR2 lags behind APPR1,
but eventually reaches similar performability values. In the SAT+FB
case, APPR2 falls behind in the media performability value due to
several runs failing to produce any valid design candiates, even
though several runs do indeed find solutions quickly with identical
performability values as APPR1.

For large models, only APPR1 was able to consistently provide
valid solutions within the time limit, while APPR2 was only able to
do so in 3 and 2 our of 30 runs in the SAT and SAT+FB cases studies,
respectively. The models found be APPR2 had lower performability
values. We will carry out a more detailed root cause analysis of
these results as part of the next research question.

RQ1: In case of small models, both approaches provided valid
system architectures with good performability values. For large
models, APPR1 was the only scalable solution. Both APPR1 and
APPR2 outperformed the baseline MomMoT solution.

4.3 ROQ2: Runtime analysis

To further investigate the internal behavior of APPR1 and APPR2,
the right-most column of Figure 7 depicts the median of runtime
used for each exploration step for models of different size. The 1st
row shows the SAT case while the 2nd row shows the SAT+FB case.

In case of APPR1, decision and unit propagation steps dominate
execution time for all model sizes, followed by exploration time,
and a significant increase in state coding time for large models.
Since the external PRISM checker is called only for valid system
architectures that satisfy all the hard constraints, its overall runtime
is still negligible for APPR1 even in case of large models.

On the other hand, in case of APPR2, the execution time is in-
creasingly dominated by the performability analysis time of the
external PRISM checker. In fact, for large models (where APPR2
mostly failed to find a solution within the given time limit), ex-
ecution is almost exclusively spent by PRISM. For small models,
performability analysis takes a few milliseconds, but for large mod-
els, each run takes several seconds, which becomes prohibitively
expensive to be used for guiding the search.

RQ2: Internal steps of the underlying graph solver dominate
the runtime for APPR1, while the total runtime of performability
analysis by PRISM is negligible. The runtime of external PRISM-
based performability analysis dominates the runtime for APPR2,
causing a major scalability limitation for large models.
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Note that the results in the context of our performability case

studies are substantially different compared to existing results [56,
68] where external solvers were effectively used with partial models
for guiding the search during model generation (in the presence of
only hard constraints). We believe that the essence of these findings
can be summarized in the following guideline.
Guideline: Using external analyzer tools as heuristics to guide
design space exploration for partial models along conservative
approximations is an effective technique if (1) the runtime of the
external analyzer is a small fraction of total execution time, and
(2) it scales well with increasing model size. Otherwise, external
analysis tools should be used by post-filtering consistent (concrete)
models that already satisfy all hard constraints.

4.4 Threats to validity

Internal validity. The baseline of our measurements is based dom-
inantly on the MOMoT configuration used in the original case study
[37]. While we investigated several search algorithms prior to the
experiments and choose the most promising one, a better perfor-
mance could still be obtained by various settings of the MOMoT
DSE tool. A non-linear cost constraint used in the original paper
would be unlikely to increase the performance of MOMoT. We could
reduce the variance in the measurement results by increasing the
number of runs. Moreover, Approach 2 could possibly scale better
with tighter over- and under-approximations.

External validity. The generalizability of our results is limited by
our choice of case studies, which are conceptually very different
challenges, but they are from the same domain. Unfortunately, ex-
isting case studies used by other DSE tools exclude performability
analysis, thus we opted for showcasing optimal architecture synthe-
sis in the context of a complex engineering challenge originating
from NASA researchers. However, our approach can in principle be
executed on other domains by providing the appropriate metamodel,
FOL constraints, and view transformations. While the proposed
approaches can be parametrized by the actual view transformations

that derive the analysis models, one would likely obtain different
results in case of extra-functional properties other than performa-
bility. Furthermore, other meta-heuristic search algorithms may
perform differently than the one used as our baseline.

Construct validity. While both of our approaches are theoretically
complete, we did not manage to find an actual proof of optimality
within the time limit. Thus, there is no guarantee that an optimal
architecture has been synthesized.

5 RELATED WORK

5.1 Architecture-based stochastic analysis

Methods for the construction of stochastic analysis models are wide-
spread in the evaluation of reliability, availablity, dependability, and
performance metrics architecture models, especially for component-
based design [10, 45]. Underlying analyis formalisms include fault
trees [29, 30, 40, 80], Markov chains [46], queuing networks [47],
and Generalized Stochastic Petri Nets (GSPN) [9, 18, 52, 53, 59]. It
would be possible to adapt these transformations to serve as the
view transformation in our approach.

Meedeniya et al. [57] proposed an evaluation approach for un-
certain architectures based on random sampling. In contrast, our
approach can generate the refinements of an uncertain architecture
exhaustively along with performability metrics.

5.2 Meta-heuristic approaches

Meta-heuristic approaches rely on search algorithms like simu-
lated annealing [21], tabu search [34], or evolutionary algorithms
like NSGA-II [22] and eMOEA [23]. They support extensible anal-
yses [62], such as reliability and performability analyses [81], as
well as multi-objective optimization. But, they provide no com-
pleteness guarantees and may fail to provide globally optimal so-
lutions [43, 44]. We can classify these approaches whether they
map the architectures to some genotype vector before DSE to allow
the easy formulation of search and mutation operators, or directly
work with graph-based representations, such as MBSE artifacts.
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Approaches with explicit points of variability. By introducing
a fixed number of explicit points of variability into a system model,
such as the number of redundant component instances and the
possible allocations of functions, a genotype vector for systems
models can be constructed [55]. ArcheOpteryx [5] and AQOSA [50]
provide DSE for AADL in this manner, while PerOpteryx [14] tar-
gets the Palladio Component Model and offers a framework for
attaching component-level redundancy and other system configu-
ration parameters to genotypes [55]. GDSE [66] provides a general
framework for translating genotypes back to system models.

EvoChecker [28] introduces variability points directly into a
stochastic model described in the PRISM [49] language. RODES [16]
extends this approach to the synthesis of robust stochastic models.

While these approaches offer scalability due to the fixed-length,
domain-specific genotype encoding, such encodings are not di-
rectly applicable for problems with a variable number of objects and
connections, such as communication network topologies.
Graph-based approaches. Graph-based techniques use graph
transformations [2] or refactorings to generate candidate designs
as graph models. They either rely on model-based search, where a
graph model is being mutated, or rule-based search, where solutions
are encoded as a sequence of graph transformation operations [39].

MOMOoT [27] and MDEOptimiser [13] rely on the Henshin model
transformation language [75] for model-based exploration. WF
constraints pose a challenge for such approaches: they are either
handled by relaxing hard constraints into soft constraints or by
encoding them in the transformation rules. Burdusel et al. [12]
proposed the automated generation of transformation rules that
preserve a limited class of WF constraints (multiplicity constraints).
PLEDGE [73] combines evolutionary search with SMT solving to
preserve WF constraints over object attributes.

VIATRA-DSE [1, 36] is a rule-based DSE tool that relies on the
Viatra [78] language. However, synthesizing long chains of model
transformations might be challenging in the presence of logical
WF constraints; e.g., the effectiveness of evolutionary crossover
operators is diminished compared to mutation operators [1]. SHEP-
hERd [19] and EASIER [6] aim to derive sequences software archi-
tecture refactorings according to extra-functional criteria.

In contrast, our approach can directly satisfy logical WF con-
straints without having to encode them into transformation rules.
This makes it suitable for use in design spaces with only a few
solutions, such as those investigated in [81].

5.3 Solver based approaches

Solver based techniques for generating models include constraint
programming, such as in UMLtoCSP [15] and DesertFD [24], SAT
solving, such as in Alloy [38] and CoBaSA [54], and Satisfiability
Module Theory (SMT), such as in FORMULA [41]. As a benefit, can
provide a complete exploration of the design space.

As a weakness, the supported metrics and objectives is limited
by the input language and the supported background theories [42].
For supported theories, optimizing SMT solvers provide capabilities
for finding globally optimal solutions [11, 51]. Alternatively, the
Guided Improvement Algorithm [63] can explore optimal solutions
as long as the metric of interest can be formalized with SMT. The
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AUTOFocus3 tool [25] combines SMT-based DSE with the visualiza-
tion of solutions to select design candidates according to complex
objectives after they have been generated by the solver.

Cortellessa et al. [18] investigated the improvement of extra-
functional properties of software architectures with JTL bidirec-
tional model transformations [17]. A refactoring is applied to the
analysis model that is known to improve the performance metric,
which allows synthesizing improved architectures even though the
used solver lacks direct support for performance evaluation.

However, scalability of may be limited in the case of graph-like
synthesis problems [71]. Tableau-based reasoning for graphs has
been proposed in [4, 60, 67], but these approaches lack the support
for extra-functional properties. Recently, partial modeling [64, 65]
based graph generation was proposed [71] as an implementation of
a DPLL [42] decision procedure for graph models. The refinement
unit [68] paradigm allowed extending this approach to linear in-
equality constraints [56], attribute constraints [68], and geometrical
constraints [8]. In this context, our approach provides a refinement
unit for performability constraints.

6 CONCLUSIONS

In this paper, we addressed to problem of design space exploration
by architecture synthesis in the presence of hard constraints (func-
tional and extra-functional), and performability as an optimiza-
tion target. We proposed two alternative approaches that innova-
tively combine graph model generation techniques along partial
model refinement with performability analysis carried out by the
PRISM stochastic model checker. One approach first synthesizes
a valid concrete model as candidate architecture which satisfies
all hard constraints, and then it uses a view transformation on
this candidate model to derive a performability model amenable
to analysis. The other approach proposed conservative under- and
over-approximations of achievable performability values by repeat-
edly calling the back-end stochastic analyzer. We have highlighted
that key theoretical properties (such as soundness, 5-optimality or
completeness) hold for our architecture synthesis approach.

We carried out experimental evaluation in the context of a com-
plex case study where DSE techniques have been used by NASA
engineers for early mission planning for satellite constellations [37].
Our results show that the first approach scales better when deriving
larger models, while the second approach may find the best design
in a shorter amount of time. Nevertheless, both approaches showed
significantly better performance than the meta-heuristic search
based baseline used in [37].

As an important finding (and limitation related to recent results
[56, 68]), partial model refinement can be effectively combined
with external analysis tools for design space exploration when
the analysis runtime is a small fraction of total exploration time.
Otherwise, post-filtering by analyzing only valid concrete models
that satisfy all hard constraints provides better scalability.
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