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Abstract: In this study, causalities of COVID-19 across a group of seventy countries are analyzed 
with effective transfer entropy. To reveal the causalities, a weighted directed network is constructed. 
In this network, the weights of the links reveal the strength of the causality which is obtained by 
calculating effective transfer entropies. Transfer entropy has some advantages over other causality 
evaluation methods. Firstly, transfer entropy can quantify the strength of the causality and secondly 
it can detect nonlinear causal relationships. After the construction of the causality network, it is 
analyzed with well-known network analysis methods such as eigenvector centrality, PageRank, and 
community detection. Eigenvector centrality and PageRank metrics reveal the importance and the 
centrality of each node country in the network. In community detection, node countries in the net-
work are divided into groups such that countries in each group are much more densely connected. 
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1. Introduction 
Investigating causality and information flow between systems is an important area 

of research in the literature. To evaluate causality and information flow between systems, 
time series data generated by these systems are utilized. The most widely used causality 
analysis method in the literature was proposed by Granger [1] and is known as Granger 
causality. Following Granger, many causality tests are proposed in the literature by au-
thors such as Toda–Yamamoto [2] and Hatemi-J [3] in their own causality tests. Further-
more, in the literature, many nonlinear causality analysis methods are presented [4–7]; 
however, all these methods are based on a hypothesis-testing procedure. In these proce-
dures, a test statistic is computed and, according to the value of this statistic, the existence 
of causality is determined. Therefore, these methods do not measure the strength of cau-
sality with a numerical value. A new information-theory-based causality measure, trans-
fer entropy, can measure the strength of the causality [8,9] and can also detect nonlinear 
causality relationships. In this study, a causality network is constructed using COVID-19 
data from seventy countries and effective transfer entropy. The obtained network is a 
weighted directed network where the directions of links reflect the directions of causality 
relationships, and the weights of the links indicate the strength of the causalities measured 
with effective transfer entropy. In the transfer entropy methodology, two kinds of entropy 
type have been utilized in the literature. These are Shannon entropy and Rényi entropy. 
Rényi entropy has a free parameter which is denoted by q. When q→1, Rényi entropy 
converges to Shannon entropy. In this study, we utilized Shannon entropy in our transfer 
entropy calculations because Shannon entropy is more basic and does not require the se-
lection of a free parameter which complicates the results. In the literature, there are many 
applications of Rényi entropy-based transfer entropy methodology [10–14]. Ultimately, 
we chose the transfer entropy methodology for the following reasons: First, unlike other 
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causality assessment methods, transfer entropy not only detects whether there is causality 
but also measures the strength of this causality. Second, transfer entropy can detect non-
linear relations. Third, in the literature, this methodology is successfully applied to many 
time series from different fields and its usefulness is proven. Fourth, there is a reliable 
software for computing transfer entropy.  

After the construction of the causality network, this network is analyzed with net-
work analysis methods such as eigenvector centrality, PageRank, and community detec-
tion. Eigenvector centrality and PageRank measure importance and centrality of nodes by 
assigning a numerical value to each node. In community detection, nodes in the network 
are divided into groups such that, in each group, the nodes are much more densely con-
nected. 

2. Materials and Methods 
2.1. Transfer Entropy 

Transfer entropy is an information-theory-based method to quantify information 
flow and causality between two systems. The concept of transfer entropy was inde-
pendently formalized by both Thomas Schreiber [8] and Paluš et al. [9]. In the literature, 
in order to measure the interdependence between two systems, mutual information is 
purposed by Shannon and Weaver [15]. However, mutual information does not reveal 
dynamical and directional information. Transfer entropy possess properties of mutual in-
formation but also reflects dynamics of information flow (causality). Transfer entropy is 
based on Shannon entropy. Shannon entropy measures the average number of bits re-
quired to encode a discrete random variable, 𝐼, possessing the probability distribution 𝑝(𝑖) and is expressed with the following formula: 𝐻 = − 𝑝(𝑖)𝑙𝑜𝑔 𝑝(𝑖) (1)

To obtain optimal encoding based on entropy, the probability distribution 𝑝(𝑖) must 
be known. The amount of bits which will be coded if a different distribution is utilized, 
such as when 𝑞(𝑖) is measured using Kullback entropy, is defined with the following 
formula [16]: 𝐾 = − 𝑝(𝑖)𝑙𝑜𝑔 𝑝(𝑖) /𝑞(𝑖) (2)

Additionally, Kullback entropy for conditional probabilities is expressed with the 
following formula: 𝐾 | = 𝑝(𝑖, 𝑗)𝑙𝑜𝑔 𝑝(𝑖|𝑗)𝑞(𝑖|𝑗),  (3)

If the two systems, assumed to be independent, corresponded, then Kullback entropy 
becomes: 𝑀 = 𝑝(𝑖, 𝑗)𝑙𝑜𝑔 𝑝(𝑖, 𝑗)𝑝(𝑖)𝑝(𝑗) (4)

If transition probabilities are used instead of static probabilities, a dynamic structure 
can be revealed. For this, it is assumed that the system can be expressed by a Markov 
process of order 𝑘 . This means that state 𝑖  is independent of state 𝑖 . In other 
words, 𝑝(𝑖 |𝑖 , … , 𝑖 ) = 𝑝(𝑖 |𝑖 , … , 𝑖 , 𝑖 ) . We note that 𝑖( ) =(𝑖 , … , 𝑖 ). As a result, if the previous states are given an average number of bits re-
quired to encode an additional state, it is called the entropy rate and computed with the 
following formula: ℎ = − 𝑝 𝑖 , 𝑖( ) log 𝑖 , 𝑖( )  (5)
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In the expression above, 𝑝 𝑖 , 𝑖( ) = 𝑝(𝑖( )) 𝑝(𝑖( )) . To analyze information 
flow between systems, the entropy rate given above is generalized to more than one sys-
tem by using following expression: 𝑝 𝑖 , 𝑖( ) = 𝑝(𝑖 |𝑖( ), 𝑗( )) (6)

According to the expression above, if there is no information flow from 𝐽 to 𝐼, the 
state of 𝐽 will not affect the transition probabilities of 𝐼. If the expressions above are com-
bined, then transfer entropy can be defined with the following formula: 𝑇 → = 𝑝(𝑖 , 𝑖( ), 𝑗( ))𝑙𝑜𝑔 𝑝(𝑖 |𝑖( ), 𝑗( ))𝑝(𝑖 |𝑖( ))  (7)

The transfer entropy calculation described above has a deficiency for small samples. 
For small samples, the calculated transfer entropies are biased. To solve this problem, the 
concept of effective transfer entropy is suggested by Marschinski and Kantz [17]. To cal-
culate an effective transfer entropy time, a series of observations from system 𝐽 are shuf-
fled. From this shuffled data, a transfer entropy is calculated. Then, the transfer entropy 
obtained from the shuffled data is subtracted from the transfer obtained from the original 
data. This method can be expressed as follows: 𝐸𝑇 → (𝑘, 𝑙) = 𝑇 → (𝑘, 𝑙) − 𝑇 → (𝑘, 𝑙) (8)

In the expression above, 𝐸𝑇 → (𝑘, 𝑙)  denotes effective transfer entropy and 𝑇 → (𝑘, 𝑙) denotes transfer entropy calculated from shuffled data. With this shuf-
fling procedure, the dependencies in 𝐽 and between 𝐼 and 𝐽 are eliminated. If the sam-
ple size is increased, 𝑇 → (𝑘, 𝑙) approaches zero. Therefore, 𝑇 → (𝑘, 𝑙) dis-
plays the impact of a small sample size. 

The statistical significances of calculated transfer entropies can be evaluated by using 
a block bootstrap method suggested by Dimpfl and Peter [18]. This method generates the 
p-values and transfer entropy distribution for the null hypothesis where there is no infor-
mation flow. 

To be used in the calculation of transfer entropy, data should be discrete. Data should 
be discretized if it is not discrete. To convert a continuous dataset to a discrete dataset, a 
procedure called symbolic recoding can be used. In this procedure, continuous data are 
partitioned into bins and each value in the continuous data is assigned to a bin. To perform 
this procedure, the bounds of the bins should be determined. If these boundaries are de-
termined as 𝑞 , 𝑞 , … , 𝑞  (𝑞 < 𝑞 < ⋯ < 𝑞 ), a continuous time series, 𝑦 , can be made 
discrete by a symbolic recoding method, as described by following expression. 

𝑆 = ⎩⎪⎨
⎪⎧ 1                    𝑓𝑜𝑟 𝑦 ≤ 𝑞2          𝑓𝑜𝑟 𝑞 < 𝑦 ≤ 𝑞⋮𝑛 − 1     𝑓𝑜𝑟 𝑞 < 𝑦 ≤ 𝑞𝑛                            𝑓𝑜𝑟 𝑦 ≥ 𝑞  (9)

At the end of this procedure, each value in the continuous data is assigned to a num-
ber between 1 and n. 

2.2. Network Analysis 
In the field of network analysis, several metrics which describe the properties of net-

works are proposed by Jackson [19] and Newman [20]. In this context, some metrics de-
scribe networks’ macrostructure and some metrics describe nodes’ micro properties. Ex-
amples of these micro metrics are centrality measures. Centrality measures quantify cen-
trality and the importance of nodes by assigning a value to each node. There are many 
centrality measures proposed in the literature. Some examples are degree centrality, 
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closeness centrality, betweenness centrality, closeness centrality, eigenvector centrality, 
and PageRank. In this work, we discuss eigenvector centrality and PageRank. Another 
network analysis method is community detection. In community detection, nodes of the 
network are partitioned into communities such that, in each community, the nodes are 
densely connected. 

2.2.1. Eigenvector Centrality 
The most basic centrality measure is degree centrality. Degree centrality only takes 

into account the number of edges that a node has. However, the importance of a node’s 
neighbors can be different. Eigenvector centrality takes these differences into account. If a 
node’s neighboring nodes have high centrality (importance), then this node’s centrality 
(importance) should be high too. Eigenvector centrality is proposed by Bonacich [21]. The 
eigenvector centrality of a node 𝑥  is proportional to the sum of its neighbors’ centralities. 
Eigenvector centrality can be expressed in the formula below: 𝑥 = 𝜅 𝑥      

 
(10)

In the expression above, 𝜅  is the proportionality constant. The expression above 
can be rewritten using adjacency matrix 𝐴  of the network, as below: 

𝑥 = 𝜅 𝐴 𝑥  (11)

This expression can be stated in matrix notation, as below: 𝐀𝐱 = 𝜅𝐱 (12)

In the expression above, 𝐱 is the eigenvector of the adjacency matrix 𝐀, and its ele-
ments are the centrality values. 

2.2.2. PageRank 
PageRank is a centrality metric which constitutes the core algorithm of Google’s 

search engine [22]. PageRank is associated with eigenvector centrality and designed for 
directed networks. To determine the centrality of a node, the PageRank algorithm takes 
three different factors into account. These are the number of nodes that link to the target, 
the PageRank centrality of the linking nodes, and the link propensity of the linking nodes. 
PageRank is calculated with the following formula: 𝐱 = (𝐈 − 𝛼𝐀𝐃 𝟏) 𝟏𝟏 (13)

In the expression above, 𝛼 is a positive constant, 𝟏 is the uniform vector (1,1,1, … ), 𝐃 is a diagonal matrix with the elements 𝐷 = max (𝑘 , 1) (𝑘  is the outdegree of the 
node), 𝐀 is the adjacency matrix, and 𝐈 is the identity matrix. 

2.2.3. Community Detection 
Blondel et al. [23] proposed an algorithm for community detection in large networks. 

This algorithm is also known as the Louvain algorithm. This algorithm consists of two 
phases, namely the modularity optimization and community aggregation phases. These 
two phases are iteratively repeated until a convergence. In the first phase, modularity op-
timization, each node is assigned to a different community. Then, each node, 𝑖, and its 
neighbors, 𝑗, are considered, and an evaluation is preformed to determine whether or not 
modularity will increase if node 𝑖 is assigned to the community of 𝑗. If so, then node 𝑖 is 
assigned to the community of 𝑗 so that the increase in modularity is maximized. This 
process is repeated until there is no gain in modularity. The increase in modularity when 
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node 𝑖 is assigned to a community, 𝐶, is denoted with ∆𝑄 and computed with the fol-
lowing formula: 

∆𝑄 = ∑  + 𝑘 ,2𝑚 − ∑  + 𝑘2𝑚 − ∑  2𝑚 − ∑  2𝑚 − 𝑘2𝑚  (14)

In the expression above: ∑  denotes the sum of the weight for links in the commu-
nity 𝐶; ∑  denotes the sum of the weight for links in relation to nodes in the community 𝐶; 𝑘  denotes the sum of the weight for links connected to node 𝑖; 𝑘 ,  denotes the sum 
of the weight for links from node 𝑖 to nodes in the community 𝐶; and 𝑚 denotes the 
sum of the weight for all links in the network. 

In the second step, community aggregation, nodes falling in the same community are 
treated as a single node and a new network is constructed whose nodes comprise the 
communities from the previous phase. Then, the first step of modularity optimization is 
executed on the new network. These phases are carried out iteratively until the commu-
nity structure does not change. 

3. Results 
In this study, we used effective transfer entropy to create a causality network that 

comprised COVID-19 data from seventy countries. This network is a weighted directed 
network where the weights of the links correspond to the strength of causality. The links 
are measured using effective transfer entropy. After constructing the causality network, 
we analyzed it using network analysis methods such as eigenvector centrality, PageRank, 
and the Louvain community detection algorithm. 

The data used in this study were obtained from the World Health Organization 
(WHO). The data contain daily new cases for COVID-19 from seventy different countries 
and cover dates between 3 January 2020 and 7 January 2022 [24]. WHO data for COVID-
19 are organized as a table. In this table, the rows indicate days and the columns indicate 
variables, such as country code, country, new cases, cumulative cases, new deaths, and 
cumulative deaths. In this study, we use the new cases data from this data table. We pre-
sent summary statistics for the daily new cases data from each country in Appendix A. 
Transfer entropy calculations are performed with the RTransferEntropy package of R soft-
ware [11]. Network analysis and visualization are performed using the Gephi [25] and 
igraph packages of R software [26].  

The parameters for transfer entropy calculations are determined as follows: Markov 
orders for time series are set at one; the number of bootstrap replications used in the eval-
uation of statistical significance for transfer entropies is set at 300; the number of shuffles 
used in the calculation of effective transfer entropies is set at 100; and the quantiles used 
in discretization processes are set at 5% and 95%. For transfer entropy to be applicable, 
the time series must be stationary. We take the first difference from the daily new cases 
time series to ensure that the time series are stationary. With augmented Dickey–Fuller 
tests, we verified that the different time series are stationary. 

A graph of the constructed causality network is presented in Figure 1. In this net-
work, only statistically significant transfer entropies are plotted. To improve the visibility, 
Figures 2 and 3 are presented with some arcs filtered according to their weights. In Figure 
2, only the arcs whose weights are greater than 0.05 are plotted, and in Figure 3, only the 
arcs whose weights are greater than 0.06 are plotted. Therefore, in these figures, only the 
most important causalities are presented. Arrows showing the directional arcs are better 
seen in these additional figures. High-definition image files of Figures 1–3 and a Pajek 
network data file of our causality network are  provided in the Supplementary Materials 
section. The obtained causality network is a directed weighted network. Directions in the 
network indicate the directions of causality, and weights in the network reflect the 
strength of the causality measured with effective transfer entropy. As seen in Figure 1, 
there is a giant component and an isolated small component in the network. The small 
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component includes the following countries: Egypt, Iraq, Iran, Kuwait, Lebanon, Libya, 
Pakistan, Qatar, Saudi Arabia, the Syrian Arab Republic, and Tunisia. Notably, these are 
Islamic countries. There are causalities between these Islamic countries but there are no 
causality relationships between these Islamic countries and other countries. This is a novel 
and interesting finding of our study. 

 
Figure 1. Causality network among seventy countries for COVID-19 using effective transfer en-
tropy. 
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Figure 2. Filtered causality network: Only arcs whose weights are greater than 0.05 are plotted. 

 
Figure 3. Filtered causality network: Only arcs whose weights are greater than 0.06 are plotted. 

After drawing the causality network graph, we investigated the centrality of the 
countries using eigenvector centrality and PageRank methods. Initially, we calculated ei-
genvector centrality and PageRank metrics for node countries with Gephi software. How-
ever, we found calculated metrics unreliable. For this reason, we recalculated these met-
rics by using the igraph package of R software. R software version used is 3.6.3. R software 
is created by R Core Team. R software belongs to R Foundation for Statistical Computing 
which is settled in Vienna, Austria. R software is sourced from The Comprehensive R 
Archive Network (cran.r-project.org) web site. In this web site R software is downloaded 
from a mirror in Denizli, Turkey. Since igraph is more mature than Gephi, igraph is more 
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reliable. The recalculated centrality levels of the countries are presented in Table 1. In Ta-
ble 1 higher eigenvector centrality and PageRank values correspond to higher centrality 
and importance of the node countries. We also investigated the community structure in 
the network. To determine communities, we employed the Louvain algorithm proposed 
by Blondel et al. [23]. In the causality network, we detected four distinct communities. 
These communities are presented in Table 2. Countries in each community are much more 
densely connected. 

Table 1. Centrality of node countries. 

Country Eigenvector 
Centrality PageRank Country Eigenvector 

Centrality PageRank 

Albania (AL) 0.524989 0.022080 Kuwait (KW) 0.148186 * 0.008484 
Armenia 

(AM) 
0.452463 0.014274 Kazakhstan 

(KZ) 
0.048409 0.009110 

Azerbaijan 
(AZ) 

0.522331 0.017451 Lebanon (LB) 0.181019 * 0.003974 

Bosnia and 
Herzegovina 

(BA) 
0.718292 0.021916 

Lithuania 
(LT) 0.474880 0.016001 

Bangladesh 
(BD) 

0.028208 0.008227 Luxembourg 
(LU) 

0.839533 0.026285 

Belgium (BE) 0.537333 0.017652 Libya (LY) 0.628994 * 0.011452 

Bulgaria (BG) 0.473694 0.016037 North Mace-
donia (MK) 

0.384132 0.014058 

Brazil (BR) 0.200907 0.016291 Mongolia 
(MN) 

0.117887 0.010454 

Belarus (BY) 0.296759 0.014259 Mexico (MX) 0.273776 0.015344 

Canada (CA) 0.288521 0.013702 
Malaysia 

(MY) 0.048075 0.010252 

Switzerland 
(CH) 0.592722 0.021829 

Netherlands 
(NL) 0.465379 0.017194 

Chile (CL) 0.125363 0.016200 Norway (NO) 1.000000 0.033528 
China (CN) 0.010420 0.003341 Nepal (NP) 0.020155 0.005171 
Colombia 

(CO) 
0.040071 0.005974 New Zealand 

(NZ) 
0.253361 0.010018 

Costa Rica 
(CR) 

0.194700 0.020956 Peru (PE) 0.079954 0.006499 

Cuba (CU) 0.029443 0.009441 Pakistan (PK) 0.123575 * 0.007852 
Czechia (CZ) 0.374990 0.013695 Poland (PL) 0.797845 0.024624 

Germany 
(DE) 0.584266 0.019286 Portugal (PT) 0.495055 0.018178 

Denmark 
(DK) 0.472643 0.015801 Qatar (QA) 0.088225 * 0.012552 

Estonia (EE) 0.434803 0.014688 
Romania 

(RO) 0.609940 0.020255 

Egypt (EG) 0.071470 * 0.009371 
Russian Fed-
eration (RU) 0.598568 0.021318 

Spain (ES) 0.364177 0.017179 
Saudi Arabia 

(SA) 0.117345 * 0.013353 

Finland (FI) 0.578325 0.021833 Sweden (SE) 0.518638 0.020728 
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France (FR) 0.287441 0.013241 Slovenia (SI) 0.960990 0.029255 
United King-

dom (GB) 0.252125 0.011740 Slovakia (SK) 0.524288 0.018905 

Greece (GR) 0.634762 0.023944 
Syrian Arab 

Republic (SY) 0.144949 * 0.010396 

Croatia (HR) 0.949647 0.029384 
Thailand 

(TH) 0.093885 0.012641 

Hungary 
(HU) 0.738304 0.023563 

Tajikistan 
(TJ) 0.010324 0.004028 

Indonesia 
(ID) 0.029716 0.008124 Tunisia (TN) 0.565851 0.008409 

Ireland (IE) 0.232775 0.009269 Turkey (TR) 0.307547 0.014783 
Iraq (IQ) 1.000000 * 0.012495 Tanzania (TZ) 0.059911 0.004068 
Iran (IR) 0.552977 * 0.009154 Ukraine (UA) 0.364791 0.013043 

Japan (JP) 0.076052 0.009334 Uzbekistan 
(UZ) 

0.007412 0.003278 

Kyrgyzstan 
(KG) 

0.003818 0.004563 Venezuela 
(VE) 

0.060501 0.005083 

Korea (KR) 0.543237 0.023837 Vietnam (VN) 0.340229 0.009294 
* Eigenvector centrality values for Egypt, Iraq, Iran, Kuwait, Lebanon, Libya, Pakistan, Qatar, Saudi 
Arabia, Syrian Arab Republic, and Tunisia are calculated from subnetwork. 

Table 2. Community affiliation of node countries. 

Community 1 Community 2 Community 3 Community 4 
Armenia (AM) Albania (AL) Egypt (EG) Bangladesh (BD) 

Azerbaijan (AZ) Belarus (BY) Iraq (IQ) Brazil (BR) 
Bosnia and Herze-

govina (BA) China (CN) Iran (IR) Chile (CL) 

Belgium (BE) Czechia (CZ) Kuwait (KW) Colombia (CO) 
Bulgaria (BG) Germany (DE) Lebanon (LB) Costa Rica (CR) 
Canada (CA) Denmark (DK) Libya (LY) Cuba (CU) 

Switzerland (CH) Estonia (EE) Pakistan (PK) Indonesia (ID) 
Luxembourg (LU) Spain (ES) Qatar (QA) Japan (JP) 
North Macedonia 

(MK) Finland (FI) Saudi Arabia (SA) Kyrgyzstan (KG) 

Netherlands (NL) France (FR) Syrian Arab Republic 
(SY) Kazakhstan (KZ) 

Norway (NO) United Kingdom (GB) Tunisia (TN) Mongolia (MN) 
Poland (PL) Greece (GR)  Mexico (MX) 

Romania (RO) Croatia (HR)  Malaysia (MY) 
Sweden (SE) Hungary (HU)  Nepal (NP) 
Turkey (TR) Ireland (IE)  Peru (PE) 

Ukraine (UA) Korea (KR)  Thailand (TH) 
Venezuela (VE) Lithuania (LT)  Tajikistan (TJ) 

 New Zealand (NZ)  Uzbekistan (UZ) 
 Portugal (PT)  Vietnam (VN) 

 Russian Federation 
(RU) 

  

 Slovenia (SI)   
 Slovakia (SK)   
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 Tanzania (TZ)   

4. Conclusions 
In this study, we constructed a causality network for COVID-19 including seventy 

countries. In this construction, an information-theory-based causality measure, transfer 
entropy, is utilized. Transfer entropy has some advantages over other causality tests such 
that it is able to measure the strength of the causality and can detect nonlinear causality 
relationships. After drawing the causality network, we analyzed it by using centrality 
measures such as eigenvector centrality and PageRank. We computed the eigenvector cen-
trality and PageRank for each country and presented them in a table. Additionally, we 
analyzed the community structure in the causality network and detected four distinct 
communities in the network.  

One finding of our study is that there are two clusters: Islamic countries and other 
countries. In the causality network, we constructed 1637 directed arcs, and for each arc 
there is a weight value which reveals the strength of the causality. However, it is impos-
sible for us to present these 1637 weight values in our main text. Therefore, we supplied 
a Pajek network file in the Supplementary Materials section. The Pajek network file we 
supplied contains 1637 weight values, each corresponding to an arc of the network. Epi-
demiologists can learn several lessons from our results. For example, in the causality net-
work, if there is a strong causality between one country and another, this means that the 
first country strongly spread coronavirus to the second country. In this case, the second 
country could take additional measures against the first, highly contagious country. Epi-
demiologists can also use data in our causality network to simulate the spread of corona-
virus across countries. In our study, we also presented the centrality of countries in the 
causality network. Countries with high centrality values are hubs for the spread of coro-
navirus. Therefore, additional measures can be taken in these hub countries to prevent 
spread of the coronavirus worldwide. Moreover, we detected four communities in our 
network. These communities reveal strongly connected countries in terms of the spread 
of coronavirus, and the transmission rates of the coronavirus between these countries is 
intense. Finally, our results portray the spreading structure of the coronavirus among 
countries and will be very useful for epidemiologists. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/e24081115/s1, We provided following files in our supple-
mentary materials compressed zip file. The Pajek network file of Figure 1 is supplied as “Pajek Net-
work File of the Causality Network.net” file. A high-definition PDF file of Figure 1 is supplied as 
“Figure 1. Causality network.pdf”. High-definition EPS files of Figure 2 and Figure 3 are supplied 
as “Figure 2. Filtered causality network.eps” and “Figure 3. Filtered causality network.eps”. 
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Appendix A 

Table A1. Summary statistics for daily new cases data for each country. 

Country 1.Q Median Mean 3.Q Max Country 1.Q Median Mean 3.Q Max 
AL 18 149 292 520 1648 KW 52 527 576 886 2246 
AM 103 273 469 629 2603 KZ 310 926 1462 1766 10,897 
AZ 101 352 842 1215 5048 LB 34 627 1008 1519 6154 
BA 38 260 404 644 2154 LT 17 372 729 1216 3926 
BD 350 1372 2160 2657 16,230 LU 14 79 150 184 2131 
BE 441 1512 2999 3017 27,867 LY 0 440 533 748 4322 
BG 65 332 1046 1709 6816 MK 29 162 313 465 1725 
BR 9213 25,322 30,368 46,896 150,106 MN 0 19 533 878 3963 
BY 229 944 958 1650 2170 MX 1958 3917 5475 7161 25,346 
CA 518 2156 3254 4233 52,548 MY 39 1357 3773 5153 24,599 
CH 154 927 1968 2264 31,336 NL 498 2714 4413 6620 24,700 
CL 864 1770 2469 3733 36,179 NO 54 262 572 596 8385 
CN 26 50 181 107 15,152 NP 108 422 1129 1481 9317 
CO 1511 5016 7092 10,142 33,594 NZ 0 3 19 11 222 
CR 85 588 786 1207 3173 PE 985 2391 3150 4850 13,326 
CU 22 98 1319 1057 9907 PK 505 1308 1767 2754 6884 
CZ 121 510 3420 5438 27,937 PL 257 758 5695 9068 35,251 
DE 812 4652 10,079 14,030 76,414 PT 306 690 2091 2512 39,570 
DK 111 494 1249 991 28,283 QA 136 211 347 440 2355 
EE 10 126 339 526 2300 RO 217 1144 2484 3528 18,863 
EG 136 511 529 870 1774 RU 6333 10,758 14,427 22,784 41,335 
ES 1774 5376 9406 10,996 136,047 SA 96 390 769 1146 4919 
FI 45 206 415 474 9921 SE 276 784 1869 2721 17,320 
FR 1118 5878 14,813 19,806 329,558 SI 18 247 651 1042 4518 
GB 1734 6591 19,042 30,923 218,705 SK 18 164 1165 1746 15,278 
GR 54 866 1932 2434 50,182 SY 6 50 69 92 442 
HR 52 278 1013 1380 9058 TH 5 83 3061 3624 23,418 
HU 11 208 1743 2046 27,830 TJ 0 0 24 41 407 
ID 435 3184 5795 6217 56,757 TN 12 397 995 1454 9823 
IE 125 437 1235 1285 23817 TR 2766 8402 13,297 21,706 68,413 
IQ 554 2229 2851 4315 13,515 TZ 0 0 42 0 24,307 
IR 2245 6151 8437 11,414 50,228 UA 574 2564 5022 7961 27,377 
JP 179 851 2369 2579 26,050 UZ 57 212 271 408 974 

KG 44 104 252 334 1965 VE 184 523 606 1009 1939 
KR 63 438 893 1108 7850 VN 1 8 2505 1046 39,132 
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