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Abstract: This study examined the association between pressure injuries and complexity of abdominal
temperature measured in residents of a nursing facility. The temperature served as a proxy measure
for skin thermoregulation. Refined multiscale sample entropy and bubble entropy were used to
measure the irregularity of the temperature time series measured over two days at 1-min intervals.
Robust summary measures were derived for the multiscale entropies and used in predictive models
for pressure injuries that were built with adaptive lasso regression and neural networks. Both types
of entropies were lower in the group of participants with pressure injuries (n = 11) relative to the
group of non-injured participants (n = 15). This was generally true at the longer temporal scales,
with the effect peaking at scale τ = 22 min for sample entropy and τ = 23 min for bubble entropy.
Predictive models for pressure injury on the basis of refined multiscale sample entropy and bubble
entropy yielded 96% accuracy, outperforming predictions based on any single measure of entropy.
Combining entropy measures with a widely used risk assessment score led to the best prediction
accuracy. Complexity of the abdominal temperature series could therefore serve as an indicator of
risk of pressure injury.

Keywords: refined multiscale entropy; sample entropy; bubble entropy; complex adaptive system;
pressure ulcer; machine learning; body temperature

1. Introduction

Pressure injuries, or pressure ulcers, are caused primarily by extended exposure to
pressure [1] and modified by the tissue’s tolerance to pressure [2]. Sustained high pressure
can lead to decreased blood flow, occlusion of blood vessels and lymphatic vessels, and
tissue ischemia [3]. In the conceptual model developed by Braden and Bergstrom [2], a
tissue’s tolerance to pressure is affected by both extrinsic and intrinsic factors. Extrinsic
factors include moisture, friction, and shear. Intrinsic factors include undernutrition;
decreased arteriolar pressure; and other hypothetical factors such as interstitial fluid flow,
emotional stress, smoking, and skin temperature. The etiology of pressure injuries continues
to be an active area of research (e.g., [4]) complemented by advances in understanding the
biomechanics of aging and wound healing [5] and in the role of skin microclimate [6].

Variations in skin temperature have been used in laboratory and clinical studies as a
measure of the perfusion in the papillary dermis [7–9]. Methods for measuring microvas-
cular blood flow include laser Doppler flowmetry [10], optical coherence tomography
(e.g., [11,12]), and thermal infrared imaging (e.g., [13]). In the context of thermal infrared
imaging research, it has been reported that it is possible to measure the effect of local
blood circulation on skin temperature [14]. Peripheral vasoconstriction conserves heat by
preventing heat loss from convection and radiation at the skin surface, whereas vasodi-
lation increases blood flow and heat flow from the core to the epidermis [15]. Assuming
that peripheral vasodilation and vasoconstriction behave like other organ systems under
autonomic control, skin temperature under usual conditions should be highly irregular;
i.e., variations in the skin temperature should be complex. Skin temperature can thus play
a role as a proxy measure of the thermoregulatory function.
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In the scientific framework of complex adaptive systems, the complexity of physiolog-
ical variables arises from continuous adjustments to stimuli in order to maintain stability,
and high complexity is a sign of youth and good health [16–18]. Measuring the complexity
via entropy measures of skin temperature is thus a reflection of thermoregulatory properties
of the skin, offering one way to quantify skin function. Skin failure has been implicated in
propensity for pressure injuries [19], and the speed of skin temperature recovery following
the relief of pressure from an externally applied indenter has been found to predict risk
of pressure injuries [20,21]. Liao et al. [22] studied the complexity of blood flow oscilla-
tions with multiscale entropy [23] under a set of experimental conditions. Local heating
and cooling of the skin were found to have distinct multiscale entropy signatures in the
phase of reactive hyperemia that followed the release of pressure on the skin tissue. A
word about the terminology surrounding complexity is in order here, because there are
two main definitions of complexity [24]. Algorithmic complexity equates complexity to
randomness or irregularity, which is the sense in which we use the term in this article.
In contrast, self-generated complexity links the concept of complexity to the generation of
meaningful structures.

In a previous study, Rapp et al. [25] broke new ground in reporting the association
found between decreased multiscale entropy of abdominal skin temperature and the risk of
pressure injuries. The main limitation of the study was that only three participants devel-
oped pressure injuries during the follow-up period. In another study, secondary analysis
of data collected during a multinational randomized controlled trial [26] revealed that the
fractal dimension of physical activity, a measure of its complexity, was a distinguishing
factor between facility residents with pressure injuries and controls who were matched on
the basis of several risk factors [27].

Despite advances in mattress technologies in recent years that have improved the
pressure distribution in bed, incidence of pressure injuries has remained a concern in
the US and elsewhere [26,28]. North American and European estimates of the associated
economic burden are high: the median treatment cost is in excess of ten thousand dollars
per incidence [29–31]. The Braden scale [32] is an efficient, well-studied, and widely used
survey instrument to assess the risk of pressure injuries in hospitals and nursing facilities.
However, it is not perfect, and the development of new approaches to improve assessment
of the risk of pressure injury is an important goal that aligns well with the broader goals of
personalized healthcare. Improved risk assessment offers the potential to provide targeted
assignment of limited staffing resources in nursing facilities, and reduces the incidence of
pressure injuries, along with the high cost of treating them.

The primary purpose of this study was to examine the association between pressure
injuries and multiscale entropy of abdominal temperature. A guiding heuristic principle in
the science of complex biological systems is that a state of reduced disorder is associated
with disease or frailty from aging. Aligned with this postulate, the study hypothesis was
that the incidence of pressure injuries would be elevated in participants with lower levels
of multiscale entropy. Apart from contributing new, stronger evidence for a previously
tentative finding [25], this study adds several innovations. Refined multiscale entropy [33]
was used to improve some deficiencies of multiscale entropy. Bubble entropy [34] was
added as a complement to sample entropy [35] because the two entropies differ sharply in
their approach to evaluating the disorderliness of a time series. Robust summary measures
of refined multiscale entropy were subsequently developed to reduce the dimensionality,
and machine learning methods were used to predict pressure injuries on the basis of
entropy values.

2. Methods
2.1. Study Design and Data Collection

The design was a prospective cohort study with time series measurements made over
48 h after participant enrollment. Skin was examined at baseline and weekly thereafter
to detect occurrence and stage of pressure injury, over a period of three weeks. Residents
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were recruited from an urban nursing facility with 50-bed capacity. Informed consent
was required before enrollment in the study, in accordance with procedures approved
by the Committee for Protection of Human Subjects at The University of Texas Health
Science Center and policies of the nursing facility. The recruitment target was set at n = 40
based on consideration of power and the prevalence of pressure injuries. Using Poisson
modeling based on the preliminary study [25], it was estimated that the target would yield
an >0.5 chance of observing 6 or more pressure injuries in the study. Assuming the least
prevalence in that range, along with the standardized effect size, d = 1.13, estimated from
the preceding study, power was found to exceed 0.80. The power was calculated in G*Power
3.1 [36] for a one-sided t-test design with α = 0.05.

The study was impacted by the COVID-19 pandemic, and it was terminated after a
futile wait of >18 months for the nursing facility to reopen for research activities. At the
time of termination, n = 28 participants had been recruited. However, the goal of 6 or more
participants been found with pressure injuries was easily exceeded, and there were 12 such
participants in the study sample.

Residents of the nursing facility who were age 70 or older were eligible to participate
in the study. Eligible participants either had a pressure injury or were at risk of developing
a pressure injury, indicated by Braden scale score ≤ 16. Other eligibility criteria included
the ability to understand and provide informed consent. Exclusion criteria included an
active infection indicated by body temperature elevated above 99.5 ◦F.

Those who were at risk but did not develop a pressure injury during the study period
will be referenced as control cases from here on, and the others will be referred to as pressure
injury cases. Note that unlike common usage, control does not refer to healthy controls in
this study. The control group here could be considered an at-risk control group.

Initial assessment of a new study participant included a skin examination and as-
sessment of the pressure injury risk with the Braden scale. The temperature monitoring
device was taped to the abdomen using water-resistant, hypoallergenic medical tape, ap-
proximately three inches to the left or to the right of the navel. The monitoring device was
removed approximately 48 h later, and temperature data were downloaded to a secure
server. Age, sex, and race of the participant; medications; number of comorbidities; de-
mentia; and vascular conditions were noted by the Research Nurse, and vital signs were
measured. Occurrence of pressure injury was monitored over the study’s duration in con-
trol cases, and injury stage was monitored in pressure injury cases. Data were maintained
in a secure REDCap database.

2.2. Primary Measures

Skin temperature was measured with iButton high-density temperature loggers (Maxim
Integrated, San Jose, CA, USA). The model DS1922L iButton has accuracy of ±0.5 ◦C in the
range −40 to +85 ◦C. More importantly for the entropy estimation, it has 11-bit resolution
of 0.0625 ◦C, and sufficient memory for 4096 logged values. At 1-min intervals, the iButton
thermochron could log temperatures for up to 2.84 days. The iButton is approximately
dime-sized, weighs only 3.3 grams, and was well-tolerated by participants for the 48-h
measurement duration.

The Braden scale [32] for measuring pressure injury risk is composed of 6 subscales:
sensory perception, activity, mobility, nutrition, moisture, friction/shear. The subscales are
scored 1 to 4, except for the friction/shear subscale, which is scored 1 to 3. The range of the
total score is 6 to 23. The Braden scale differentiates risk categories based on the total score,
ranging from very high risk below 10 to no risk above 18. The scale has widespread use,
and interrater reliability has been reported to be high. There is also satisfactory evidence of
validity and reliability [37].

Head-to-toe skin assessments were made by the study research nurse using established
criteria [38]. A stage 1 pressure injury involves a persistent, nonblanchable erythema over
a bony prominence in a light-skinned individual or red, blue, or purple hues in dark skin
present at the same site on two consecutive days. A stage 2 injury has breaks in the skin,
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such as blisters or abrasions; a stage 3 injury has exposed subcutaneous tissue; and a stage
4 injury has exposure that extends into muscle or bone. Interrater reliability between the
study Clinical Consultant and Research Nurse was assessed prior to study commencement;
the mean was 0.87 (range: 0.85, 0.90).

2.3. Entropy Measures

Sample entropy [35] is a widely used measure of entropy for time series data. Stable
estimates can be produced on relatively short series lengths >10m, where m is the embedding
dimension. Sample entropy (SampEn) is the negative natural logarithm of the conditional
probability that epochs of length m that match point-wise within a tolerance r also match at
the next point. Higher values of SampEn indicate smaller likelihood of continued matching
of a pattern of size m at the (m + 1)th point.

Multiscale entropy [23] was proposed to extend and improve the application of Sam-
pEn at temporal scales longer than the scale set by the sampling interval of the time series.
The simple averaging used for coarse-graining in multiscale entropy is known to have poor
properties as a low-pass filter. Refined multiscale entropy [33] uses a Butterworth filter to
improve the elimination of fast temporal scales, providing a flat response in the passband,
with fast roll-off and elimination of side lobes in the stopband. Refined multiscale entropy
additionally counteracts artificial shrinking of entropy at longer scales by updating the
tolerance r as a percentage of the standard deviation of the filtered series rather than that of
the original series.

In this study, refined multiscale SampEn was estimated for each abdominal tempera-
ture series using the EntropyHub library [39] that has been developed for use with multiple
programming languages, including Python, which was used here. A sixth-order Butter-
worth filter with cutoff frequency 1/2τ for timescale τ was used for low-pass filtering
of the time series. Although the original introduction of multiscale entropy involved the
calculation of SampEn at each scale, EntropyHub has made it easy to expand and apply
the notion of multiscale entropy to other types of entropy measures that were introduced
later [40].

Bubble entropy [34] evolved from permutation entropy [41], which is based on the
number of steps needed to sort the embedded sequence in ascending or descending or-
der. This approach sets it apart from the tolerance based pattern matching approach of
SampEn. Therefore, we supplemented the entropy measures with the refined multiscale
bubble entropy. A similar approach was adopted in a study that used sample entropy and
permutation entropy to improve classification of fever from body temperature signals [42].

Bubble entropy (BubbEn) is calculated from the conditional Rényi entropy of the
probability distribution of number of swaps needed to sort the embedded sequences using
the well known bubble sort algorithm. BubbEn at embedding dimension m is a normalized
difference of the conditional Rényi entropies at m and m + 1 dimensions. Like SampEn,
BubbEn has been shown to converge at short series lengths. Moreover, BubbEn has only
one parameter, m, and estimated values have less sensitivity to the choice of m than other
entropies [34].

Time series lengths were sufficient to investigate SampEn for embedding dimensions
m = 2, 3. The tolerance parameter for SampEn was investigated for values r = 0.10, 0.15, 0.20,
which represent fractions of the standard deviation of the time series for pattern matching.
BubbEn was calculated for embeddings m = 2 to 10. The longest temporal scale for
investigation of refined multiscale entropies was set to τ = 25 min so that the time series
lengths were >100 times the maximum scale, on average.

2.4. Temperature Time Series

The iButton temperature sensor was in continuous logging mode after a software
reset that was typically carried out a few hours before data collection began. Times of
mounting and removing the temperature sensor on or off the participant’s abdomen were
noted as part of the protocol. Sensor on and off times were further fine tuned by tracking
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changes in the pattern of autoregressive behavior of the time series, detected with the ADTK
package [43] for Python, which was executed in the Google Colaboratory environment. See
Figure 1 for an example that shows one cluster of anomalies near the on time and another
cluster of anomalies near the off time. Sections of the time series between the rightmost
anomaly in the on cluster and ending 30 min prior to the first anomaly of the off cluster were
selected for further analysis with the entropy methods described in Section 2.3. Stationarity
is required for assessment of entropy [44], which was assessed with the augmented Dickey–
Fuller test for the unit root [45]. Linear detrending was sufficient to achieve stationarity in
all but three cases, for which removal of the circadian rhythm with a simple cosine fit was
used to minimize changes to the structure of the series.

Figure 1. Temperature time series data are shown over a period of 68 h, along with detected
autoregressive anomalies that aided in identification of the active section with abdominal temperature
measurements.

The median length of the selected series was 2800 (46.7 h), and the interquartile range
was 2630 (43.8 h) to 2826 (47.1 h). One series was of substantially shorter duration (24.0 h)
than all others due to unexpected hospitalization of the participant for a reason unrelated
to the study. Two temperature series were discarded due to errors in executing the software
reset of loggers. Useful temperature data were available for 15 of 16 control cases and 11 of
12 pressure injury cases.

Summary measures of time series were calculated with the aim of studying any
differences in distributions between pressure injury and control groups. The median
was used as a measure of the central tendency of abdominal temperature, along with the
interquartile range (IQR) as a measure of dispersion. The trimmed 95% range between the
2.5th and 97.5th percentiles was also examined as a simple proxy measure of the amplitude
of circadian variation.

2.5. Data Analysis and Models
2.5.1. Summary Measures of Multiscale Entropy

The refined multiscale entropy measures described in Section 2.3 resulted in a series of
SampEn and BubbEn values at each scale per participant. One approach for shrinking the
parameter space for statistical modeling would be to select the particular scales for each
type of entropy that provide the highest power to discriminate between the injury groups.
However, such a measure arising from a single scale may have a degree of stochasticity
that could make it a feature of the sample. Aiming to find summary measures of multiscale
entropy that are more generalizable, even if they might result in loss of statistical power,
we focused on two properties that span a range of scales: shape of the entropy-scale curve,
and a measure of the magnitude associated with the curve.

The simplest measure of the shape is the slope of the curve centered between any two
specified scales. For example, in the Taylor series approximation of a function in calculus,
an extension along the first derivative, or slope, serves as the first order approximation,
followed by a contribution from the second derivative, which is related to curvature, and
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then on to smaller terms arising from higher-order derivatives. We define the scaling
exponent as the slope of the entropy curve on the logarithmic scale:

Scaling Exponent(s) =
d En(τ)
d ln(τ)

∣∣∣∣
s

(1)

where En(τ) denotes either SampEn or BubbEn at scale τ. The slope is evaluated at scale
s, which was selected to maximize the effect size of pressure injury, conditional upon
spanning at least five consecutive scales. In practice, the scaling exponent is estimated
by the parameter resulting from a regression of entropy on the logarithmic scale, which
necessitates the selection of optimal limits s1 and s2 for the scale range. While these ranges
could also vary under sampling, the inclusion of entropic structure across many scales
makes this measure more robust than selecting a single scale.

Area under the curve (AUC) between any two specified scales is a natural measure
of the magnitude of entropy that spans more than one scale. We define the requisite AUC
measure by

Requisite AUC(s1, s2) =
∫ s2

s1

En(τ) dτ (2)

where En(τ) denotes either SampEn or BubbEn at scale τ. The limits of the integration
range, s1 and s2, were selected by maximizing the effect size of pressure injury conditional
upon spanning at least three consecutive scales to enhance robustness.

It may be worth noting that these summary measures can be calculated independently
for each individual without needing to know weights or parameters that could depend on
other individuals. For example, principal components can only be calculated on the entire
collection of individuals, rendering them dependent on sampling. The scaling exponent
and requisite AUC measures are independent of sampling, and they need only a single time
series for their estimation. The analysis was scripted in the R programming language [46],
and it was executed in an RStudio environment [47].

2.5.2. Simple Bivariate Models

The differences in the means of the refined multiscale SampEn and BubbEn between
pressure injury and control groups were assessed at each scale from the standardized effect
size, d, and with two-sample Welch t-tests. Since this was an exploratory study rather
than a confirmatory one, we did not control the family-wise error rate for multiple tests.
The emphasis was on the effect sizes rather than p-values. Differences between groups of
the scaling exponent and requisite AUC of multiscale SampEn and BubbEn, discussed in
Section 2.5.1, were assessed in a similar manner.

Finding a difference in the mean of an entropy measure between pressure injury
and control groups does not automatically guarantee that reversal of the dependent and
independent variables will lead to a satisfactory model for predicting pressure injury from
measurements of the entropy. Since any practical application of finding an appreciable
difference in entropies would be geared toward prediction of the risk of pressure injury, we
modeled it explicitly with machine learning methods that are described next.

2.5.3. Predictive Models

Two types of predictive models for pressure injuries are presented. One type of model
is more traditional in the sense that it provides inferences about the links between pressure
injury and the predictors, and the other type is focused more on prediction accuracy than
inference. Generalized regression uses shrinkage methods and incorporates validation
sets in the model construction and evaluation process. Adaptive lasso regression with
leave-one-out cross-validation was used for term selection [48]. Adaptive lasso regression
is a type of generalized regression that penalizes regression coefficients based on their
size, shrinking some of the coefficients to zero, trading bias for reduced variance in the
estimates [49,50]. Lasso regression is immune to multicollinearity, and it is known to work
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well even when there are large number of predictors relative to the size of the dataset,
making it suitable for this study with its limited sample size. A second lasso step was
used to explore the second-order interaction terms of all terms that were left in the model
after the first run. The second type of predictive model was a neural network, which was
restricted to have only a single hidden layer and no more than two nodes to minimize the
risk of overfitting [51]. Models were built with 5-fold cross-validation, and the selection of
activation functions for the nodes is described in Section 3.3.2. Adaptive lasso regression
and neural models were built and executed using JMP Pro (version 15.2).

3. Results
3.1. Sample Description

Distributions of demographic variables, history of comorbidities, body weight, vital
signs, and Braden Scale score assessed at baseline are shown in Table 1. Descriptive statistics
are displayed for the sample, in addition to being split by the pressure injury status. The
control and pressure injury groups are defined in Section 2.1; briefly, control cases did not
develop a pressure injury during the study period. The table includes the descriptions of
summary measures of the time series temperature data. Among participants with pressure
injuries, the maximum stage of injury observed during the study period was close to
uniformly distributed across stages: n = 3 for stages 1 and 2, n = 4 for stage 3, and n = 2
for stage 4. The location of injury was uniformly distributed with n = 3 each for sacrum or
coccyx, ischial tuberosity, heel, and other location.

Table 1. Distribution of participant demographics and covariates by pressure injury group.

Characteristic Control 1 Pressure Injury 1 Total 1

(n1 = 16) (n2 = 12) (n = 28)

Age (y) 78 (66, 83) 74 (68, 82) 75 (67, 82)
Sex:

Male 7 (44%) 8 (67%) 15 (54%)
Female 9 (56%) 4 (33%) 13 (46%)

Race:
Black 8 (50%) 7 (58%) 15 (54%)
White 8 (50%) 5 (42%) 13 (46%)

Num. Comorbidities 8 (5, 10) 8 (6, 9) 8 (6, 9)
Unknown 0 2 2

Dementia 3 (19%) 1 (8%) 4 (14%)
Vascular Disease 12 (75%) 10 (83%) 22 (79%)
Treated Vasc. Dis. 12 (75%) 9 (75%) 21 (75%)
Heart Rate (bpm) 81 (68, 90) 69 (63, 81) 77 (66, 89)
Blood Pressure (mm-Hg)

Diastole 75 (65, 81) 72 (60, 78) 73 (64, 80)
Systole 137 (124, 154) 132 (119, 141) 136 (122, 144)

Temperature (◦F) 98.2 (97.9, 98.6) 97.6 (97.1, 98.1) 98.0 (97.5, 98.4)
BMI (kg/m2) 28.2 (25.1, 37.6) 25.7 (21.3, 32.1) 27.2 (24.5, 33.6)
Weight (lb) 184 (145, 225) 168 (141, 220) 169 (144, 222)
Braden Scale Score 15.5 (15, 16) 14 (13, 15.8) 15 (14, 16)
Time Series Summary

Median (◦C) 35.1 (34.4, 35.9) 35.1 (34.2, 35.9) 35.1 (34.3, 35.9)
Interquartile Range (◦C) 1.1 (0.8, 1.3) 0.9 (0.8, 1.3) 1.0 (0.8, 1.3)
Trimmed Range (◦C) 3.1 (2.3, 3.6) 3.0 (2.4, 3.9) 3.0 (2.4, 3.6)
Unknown 1 1 2

1 Median (interquartile range) or n (%).

3.2. Multiscale Entropy and Pressure Injuries
3.2.1. Scale Structure of Entropies

Refined multiscale SampEn tended to increase over temporal scales from 1 to 25 min,
as shown in Figure 2. The embedding dimension was m = 3, and tolerance parameter
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r = 0.15. The rate of increase was faster at the lower scales, particularly in the control
group, and decreased at higher scales. The mean SampEn level tended to be lower in the
pressure injury group relative to the control group at scales exceeding 7 min. The pattern
was similar for embedding dimension m = 2 and variations of ±0.05 in r, but m = 3 and
r = 0.15 yielded an excellent distinction between the control and pressure injury groups.

Refined multiscale BubbEn tended to increase over temporal scales from 4 to 25 min,
as shown in Figure 3 for embedding dimension m = 3. The rate of increase of BubbEn had a
transition point near the 11-min scale, beyond which the mean entropy flattened out in the
pressure injury group, whereas it continued to increase in the control group. The pattern
was similar for embedding dimension m = 2, but m = 3 yielded excellent distinction
between the control and pressure injury groups. BubbEn was also explored for m > 3,
being up to 10. At these higher values of m, the effect size of pressure injury appeared to be
more stochastic across scales, whereas there was a more stable scale structure for m ≤ 3.

Scale

0 5 10 15 20 25

M
e
a
n
(S

a
m

p
E

n
)

0.00

0.25

0.50

0.75

1.00

1.25

Control Injury

Figure 2. Refined multiscale sample entropy (m = 3, r = 0.15) at temporal scales ranging from 1 to
25 min. Error bars depict the standard error in the control and pressure injury groups.
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0.80

Control Injury

Figure 3. Refined multiscale bubble entropy (m = 3) at temporal scales ranging from 1 to 25 min.
Error bars depict the standard error in the control and pressure injury groups.
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3.2.2. Comparison of Entropies by Pressure Injury Group

Comparisons of the mean entropy levels at each scale between control and pressure
injury groups showed a generally increasing effect size over scales, peaking at 22 and 23 min
for SampEn and BubbEn, respectively. Cohen’s d effect size, defined by the difference in
means measured in standard deviation units, is shown against scale in Figure 4. Due to
the limitation of sample size, only large effects, d > 0.9, were statistically significant in
inference with the independent samples t-test. Nevertheless, the extent of consecutive
scales with d > 0.5 suggest robustness of the pressure injury effect on entropy levels.

Scale

0 5 10 15 20 25

E
ff

e
c
t 

s
iz

e
 (

d
)

-0.5

0.0

0.5

1.0

1.5

BubbEn

SampEn

Figure 4. Effect sizes, i.e., standardized mean differences (Cohen’s d) between control and pressure
injury groups, at each temporal scale for refined multiscale sample entropy and bubble entropy. Filled
circles indicate effects that satisfied p < 0.05.

The scaling exponent and requisite AUC measures that summarize the refined multiscale
SampEn and BubbEn curves for a participant were calculated as outlined in Section 2.5.1. The
scaling exponent for the SampEn curve was derived by regressing entropy for a given
participant on centered scales spanning from 5 to 10 min, and the scaling exponent for
BubbEn spanned from 1 to 25 min. The specified scale ranges were obtained by a systematic
search based on optimizing the effect size due to pressure injury. The use of centering on
the logarithmic scale implies that the scaling exponents represent the parameter values
at the centers of the ranges, which were located at 7.1 min for SampEn and 5.0 min for
BubbEn. The equisite AUC spanned the range between 22 and 24 min for SampEn and 21
to 23 min for BubbEn, which includes the scale with peak effect for either type of entropy.
The comparison of these summary measures between injury groups is shown in Table 2.
The table includes the peak effect at the single scale. An unexpected bonus was that the
scaling exponent for SampEn displayed a larger pressure injury effect than the best single
scale, thereby providing a desirable combination that captured the scaling structure of the
multiscale entropy along with increased statistical power.
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Table 2. Mean differences in entropy measures between control and pressure injury groups. The
scaling exponent and requisite AUC measures are described in Sections 2.5.1 and 3.2.2.

Characteristic Eff. Size Difference 95% Conf. Int. pd Lower Upper

SampEn
Single scale (τ = 23) 1.46 0.310 0.134 0.486 0.001
Scaling exponent 1.53 1.113 0.522 1.704 <0.001
Requisite AUC 1.38 0.628 0.248 1.009 0.003

BubbEn
Single scale (τ = 22) 0.99 0.050 0.005 0.096 0.033
Scaling exponent 1.04 3.079 0.624 5.534 0.016
Requisite AUC 0.82 0.081 0.008 0.170 0.035

3.3. Prediction of Pressure Injuries
3.3.1. Generalized Regression Models

Pressure injury outcome was predicted with a series of generalized regression models
ranging from simple bivariate models to fully adjusted models. Adaptive lasso regression
was used for all models with incorporation of leave-one-out cross-validation. This resulted
in generally improved performance over logistic regression, particularly for the multivariate
models. Table 3 summarizes bivariate models that predicted pressure injury from each
of four summary measures of refined multiscale entropies and the Braden scale score,
considered one at a time. The model performance, assessed by area under the receiver
operating characteristic (ROC) curve, generally tracked the order of effect sizes displayed
earlier in Table 2.

Table 3. Bivariate adaptive lasso regression models for pressure injury predicted separately by each
of the entropy measures and by the Braden scale score. Models are arranged in ascending order of
area under ROC curve.

Model AUROC a Term OR b 95% Conf. Int. (OR) pLower Upper

B1 0.727 BubbEn req. AUC 6.3 × 10 −4 2.9 × 10 −7 1.4 0.061
B2 0.740 Braden Score 0.47 0.26 0.84 0.012
B3 0.782 BubbEn scaling exp. 0.70 0.55 0.88 0.003
B4 0.807 SampEn req. AUC 3.9 × 10 −2 8.3 × 10 −3 0.18 <0.001
B5 0.861 SampEn scaling exp. 0.15 0.05 0.42 <0.001

a Area under ROC curve. b Odds ratio.

Model B2 serves as a reference with the Braden scale score as the sole predictor. The
area under the ROC curve was 0.740, and accuracy for predicting controls was 94.1%,
whereas only 58.3% of pressure injuries were correctly predicted with the classification
threshold set at probability >0.5. Changing the classification threshold to 0.4 switched the
imbalance to the opposite end: accuracy was 75.0% for pressure injuries, but only 47.1%
for controls.

In contrast, model B5, based on predictions from the SampEn scaling exponent, had
better balance and smoother changes in accuracy upon altering the classification threshold.
When pressure injuries were predicted by probability >0.5, accuracy was 80.0% for controls
and 90.9% for correct prediction of pressure injury cases. However, we note that predictions
on the basis of individual entropy measures are capped by area under the ROC curve of
0.86, which leaves some room for improvement with multivariate models.

Next, we present and evaluate multivariate models that incorporated the summary
measures of entropies and controlled for covariates. The models are summarized in Table 4.
Model M1 was the culmination of a process that started with inclusion of all summary
measures of entropies. The adaptive lasso regression with leave-one-out cross-validation
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did not eliminate any of the four entropy measures from the set of predictors. Interaction
terms were explored in the second step and found to be unnecessary. Model performance
improved relative to the bivariate models, as indicated by the area under the ROC curve,
0.940. When pressure injury cases were classified with a threshold, probability >0.5, the
accuracy was 80.0% for prediction of injuries and 86.7% for non-injuries. The overall
misclassification rate was 16.0%. Decreasing the classification threshold to 0.30 yielded
100% accuracy for pressure injury cases, and the overall misclassification rate stayed at
16.0%.

Table 4. Multivariate adaptive lasso regression models for pressure injury predicted by entropy measures
(model M1), or after adjusting for all covariates, including the Braden scale score (model M2).

Model AUROC a Term OR b 95% Conf. Int. (OR) pLower Upper

M1 0.940 BubbEn scaling exp. 0.58 0.36 0.93 0.025
SampEn scaling exp. 0.21 0.05 0.88 0.033
SampEn req. AUC 0.19 3.7 × 10 −2 1.02 0.053
BubbEn req. AUC 1.6 × 10 −9 1.2 × 10 −18 2.05 0.058

M2 0.967 Braden Score 0.25 0.12 0.54 <0.001
BubbEn scaling exp. 0.68 0.49 0.95 0.024
SampEn scaling exp. 0.25 7.5 × 10 −2 0.85 0.026
BubbEn req. AUC 6.8 × 10 −2 1.7 × 10 −7 2.6 × 104 0.682
SampEn req. AUC 0.88 0.20 3.9 0.867

a Area under ROC curve. b Odds ratio.

Model M2 resulted from a procedure that was identical to that of model M1, except
that it included any covariates measured at the baseline that were potentially different in the
groups. Covariates included the Braden scale score, sex, BMI, dementia, vascular disease,
heart rate, and the median and trimmed range of the temperature time series. The Braden
scale score was the only covariate that was retained along with the entropy measures that
are listed in Table 4. Second-order interaction terms were found to be unnecessary. The
model’s performance was very good, as indicated by the area under the ROC curve of
0.94. When pressure injury cases were classified with a classification threshold of 0.5, the
accuracy was 100% for prediction of non-injuries, and the overall misclassification rate was
8.0%.

3.3.2. Neural Models

Neural models provided improved classification accuracy over the generalized re-
gression models. Neural networks were restricted to a single hidden layer, and 5-fold
cross-validation was used in model development to mitigate the risk of overfitting. Since
the sample size was small, further precaution was taken to restrict the number of predictors
to only the most effective ones that were indicated by the generalized regression models
discussed in Section 3.3.1.

In the first neural model N1, pressure injuries were predicted from SampEn and
BubbEn scaling exponents. The model had two nodes with a hyperbolic tangent activation
function for one node and a Gaussian function for the other node. The area under the
ROC curve was 0.946, and the classification accuracy was 100% for controls and 90.9% for
pressure injuries; the overall misclassification rate was 4.0%. The corresponding threshold
for classification was 0.5. Comparison of the accuracy of the adaptive lasso regression
model M1 and neural model N1 is shown in Figure 5.

Addition of the Braden scale score as the third predictor in model N2 resulted in a
perfect ROC area measure of 1.0 with 100% accuracy for predicting controls and pressure
injuries. This model had a single layer with two nodes with a hyperbolic tangent activation
function for one node and a Gaussian function for the other node. For network diagrams,
parameter estimates, and other information, see Appendix A and Supplementary Material.
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Figure 5. Accuracy of classification by adaptive lasso (model M1) and neural network (model N1)
for prediction of pressure injury from the SampEn scaling exponent and BubbEn requisite AUC.
Accuracy is shown separately for predicting pressure injury cases (red) and control cases (blue).

4. Discussion

A primary motivating factor behind the introduction of multiscale entropy was to
reconcile apparent violations of a basic premise of the science of complex adaptive systems:
higher complexity is generally indicative of a healthier system [23]. Although it may be
violated at some scales, the basic truth behind this premise is made evident only when
entropy is measured at temporal scales other than the one set by the choice of sampling
frequency. For example, atrial fibrillation can lead to high entropy in the beat-to-beat series
at short timescales but not at longer timescales. In this study, we found similar behavior for
the refined multiscale SampEn and BubbEn of abdominal skin temperature. Participants
without pressure injuries tended to have higher levels of entropy than participants with
pressure injuries, but this was generally true only at temporal scales that were several times
larger than the 1-min sampling period.

The differences in the mean entropy levels at the longer scales had large effect sizes
due to pressure injury, consistent with the only other study on this topic that reported an
effect size of roughly the same magnitude, d > 1, for multiscale SampEn of abdominal
skin temperature [25]. That study included only three participants with pressure injuries,
focused on a single measure of entropy, and included participants at low risk of pressure
injuries. The new measurements of complexity in eleven participants with pressure injuries
contribute stronger evidence that lower levels of SampEn and BubbEn are associated with
the injury state. Moreover, this association was observed despite the exclusion of low-risk
participants in the present study.

The need to maximize the observations of relatively few participants with pressure
injuries was an important factor in the study design. Had the study been limited to
observations of new pressure injuries in the three-week follow-up time, it would have been
far too restrictive. Allowing participants to enter the study with a pre-existing pressure
injury provided valuable data on participants with pressure injuries, at the expense of
losing the ability to examine the causal structure. Therefore, the present study cannot
conclude that loss of entropy precedes the development of pressure injuries. However, the
previous study by Rapp et al. [25] had an exclusively longitudinal design, and its findings
suggest that low entropy preceded the development of pressure injuries by a few days to a
few weeks. A more resource-intensive study will be necessary to follow large numbers of
participants over longer periods of time to make firmer judgments about causality.

The addition of refined multiscale BubbEn was found to be a useful complement to
the refined multiscale SampEn. Large effects were observed for the differences in means
between groups of the SampEn scaling exponent (d = 1.53), SampEn requisite AUC
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(d = 1.38), and BubbEn scaling exponent (d = 1.04). Despite having a smaller effect size
than SampEn on a bivariate basis (see Table 2), in multivariate regression models it was
the scaling exponent of BubbEn that edged out the scaling exponent of SampEn as the best
predictor of pressure injuries (see Table 4). These two predictors can be thought of roughly
as measures of the shape of the multiscale SampEn curve and the multiscale BubbEn
curve, with the caveat of being restricted to certain scales that are discussed in Section 2.5.1.
The neural models further confirmed that the scaling exponents of SampEn and BubbEn
performed well together as predictors of pressure injury, yielding an overall 96% accuracy
for the prediction of pressure injury and non-injury cases. This level of accuracy was
unmatched by any single measure, regardless of whether it arose from SampEn or BubbEn.

Use of machine learning methods to predict pressure injuries on the basis of entropy
measures resulted in models that performed well, with areas under the ROC curve not
less than 0.94 for generalized regression with the adaptive lasso method and for the
neural model. These models were superior to predicting pressure injuries on the basis of
Braden scale scores alone. The predictors that were rejected by generalized regression are
also noteworthy. Summary measures of abdominal temperature, including measures of
variation such as the interquartile range and the trimmed range, did not differ between
pressure injury and control groups. Entropy measures derived from the time series data
were therefore crucial to detecting the pressure injury effect that could not be detected with
simple measures of dispersion.

However, the best predictive models resulted from combining the entropy measures
and the Braden scale score. Areas under the ROC curve for these models exceeded 0.96
for the generalized regression with the adaptive lasso method and for the neural network.
A major advantage of the Braden scale is that it is in widespread use in nursing facilities.
Therefore, combining this widely used score with experimental entropy measures derived
from abdominal skin temperature might be the most straightforward and sensible next step
to judge the risk of pressure injuries for residents of nursing facilities.

Nevertheless, it must be noted that the study design was such that it could introduce
bias in the Braden scale score. The scoring was done by the research nurse on many of the
participants with the knowledge that they had pressure injuries, creating the possibility of
implicit bias in the scoring. The entropy measures, on the other hand, were calculated from
sensor measurements, which made them immune to any subjective bias.

Entropy measures are not without their disadvantages. Roughly 42 h of temperature
series data collection may be needed to obtain good estimates of entropies up to the scale
at 25 min, which was the approximate location of the largest effect sizes. Alternatively, to
estimate the most effective summary measure of multiscale entropy found in this study,
the scaling exponent of the SampEn curve between scales 5 and 10 min, roughly 17 h
of data collection may be needed. Measurement of entropy, therefore, involves a much
longer duration than scoring the Braden scale, making it a process that is unlikely to be
tolerated by all patients or residents of a facility. This should also demand patience from the
staff or healthcare providers to wait for risk assessment to be completed from the entropy
measurement.

The wide variety of entropy metrics that have been developed [40] can be both an
advantage and a challenge. In this study, we used sample entropy and bubble entropy
advantageously; however, we cannot rule out the possibility that there could be a different
combination of entropies that provides more power to predict pressure injuries. The
susceptibility to noise of various entropy metrics is another challenge. For instance, it
has been shown in the context of heart period data that permutation entropy, closely
related to bubble entropy, is more susceptible to the introduction of broad band noise
than coarse-grained entropy [52]. Further studies of the impact of noisy temperature
measurement on entropy levels could be helpful for assessing conditions under which they
can be reliable measures.

Despite some limitations that we noted, entropy measures hold promise as objectively
measured predictors of the risk of pressure injuries. The proposed underlying mechanism
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is that the entropies provide an assessment of the orderliness of temperature fluctuations
that are linked to changes in the blood flow in the skin tissue. The fluctuations that occur on
the timescales of a few minutes to about thirty minutes appear to be of prime importance.
In healthier skin, the blood flow is likely to be more adaptive and variable, responding
more dynamically to changes in surface pressure and temperature. The corresponding
entropy level is therefore likely to be higher than in a state of unhealthy blood flow and/or
thermoregulation. The lower state of health of the skin thermoregulation, in turn, is likely
to raise the probability of the person experiencing a pressure injury when their skin is
subjected to external stress.

It is known from laser Doppler flowmetry that there are a few characteristic oscillations
in human peripheral blood flow [53]. While these oscillations were found at fast timescales
(<2 min) in relation to the timescales pertinent to the present study, it suggests that there
could be more structure present at slower timescales. This structure could arise from an
interplay between the autonomic nervous system and the vascular system, and mirrored
in corresponding structures in the temperature signal. Evidence for the interplay comes
from studies of baroreflex that sometimes include assessment of peripheral resistance that
tends to be under sympathetic control [54] and studies of oscillations arising from such
control (e.g., [55]). It is also known that vasomotion diminishes with advancing age, and
persistent obstruction of blood flow through the microvasculature can lead to the formation
of microthrombi, which further obstructs blood flow [56,57]. Inspection of the power
spectral density calculated with the Welch method [58] indicated that there were some
differences in the spectral distribution between the two groups. The pressure injury group
had >40% more power at several timescales (inverse frequency) between 2.4 and 9.1 min.
It may be noteworthy that this interval includes the central points of the scale range for
calculation of the spectral exponents of SampEn and BubbEn. In contrast, the control group
had >75% more power at several timescales between 17.1 and 102.9 min. Overall, the power
spectral density suggests that there was a shift of power from slower to faster timescales
in the injury group. Such a shift could result in higher periodicity at timescales that are
faster (smaller) than 10 min, approximately. It is plausible that this could lead to reduction
in the irregularity of abdominal temperature that is detected by lowered entropy. However,
this interpretation about the shift in the frequency structure is necessarily speculative and
only serves as a hypothesis for a future study that will ideally be done with concurrent
measurements of blood flow.

It may be worth noting that our approach based on evaluation of the irregularity
of abdominal skin temperature as a proxy measure of skin thermoregulation is not to be
confused with approaches that monitor skin temperature localized to the most commonly
anticipated wound locations, such as the sacrum. Relative differences in skin temperature
between zones can give an early indication of a developing pressure injury [59–62]. Local-
ized approaches can result in early detection of pressure injuries, but they require clinicians
or nursing facility staff to frequently scan several suspect areas for thermal imaging, which
can be labor intensive. The approach presented in this study of using abdominal tempera-
ture monitoring to assess system-wide status of skin thermoregulation holds the promise
of a low impact on staff workload, which is important in a climate of global shortages of
health care providers.

One avenue for future studies could focus on establishing the causal pathway through
laboratory studies or numerical simulations of blood flow, tissue thermodynamics, and
tissue mechanics. Another avenue is from the risk assessment perspective for which longi-
tudinal studies with longer follow-up times are required. The sample size of such a study
would need to be large to offset the relatively low occurrence of pressure injuries. If low
entropy levels of abdominal temperature precede the development of pressure injuries,
it would make a strong case for regular monitoring of residents in nursing facilities or
elsewhere. In such a study, it would be desirable to include blood flow monitoring and mea-
surements of peak pressure in common bed postures for the participants. This would allow
studying the link between temperature and blood flow and yield a better understanding of
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the frequency structures of these signals. The combination of risk assessment studies and
engineering studies could also point the way to a treatment that can be offered to normalize
the blood flow during a phase of high risk of pressure injury that might have been identified
from the skin temperature measurements. For example, electrical stimulation has been
proposed to increase periwound skin blood flow for nonhealing pressure injuries [63],
which suggests a possibility that it could be used more effectively during an identified
high-risk period before the injury is manifested.
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Figure A1. Structure of the neural network for prediction of pressure injuries from two entropy
measures and the Braden scale score. The different colors of the nodes denote Gaussian and hyperbolic
tangent activation functions.

References
1. Kosiak, M. Etiology and pathology of ischemic ulcers. Arch. Phys. Med. Rehabil. 1959, 40, 62–69.
2. Braden, B.; Bergstrom, N. A conceptual schema for the study of the etiology of pressure sores. Rehabil. Nurs. 1987, 12, 8–12.
3. Grey, J.E.; Harding, K.G.; Enoch, S. Pressure ulcers. BMJ 2006, 332, 472–475.
4. Gefen, A.; Brienza, D.M.; Cuddigan, J.; Haesler, E.; Kottner, J. Our contemporary understanding of the aetiology of pressure

ulcers/pressure injuries. Int. Wound J. 2021, 19, 692–704. https://doi.org/10.1111/iwj.13667.
5. Blair, M.J.; Jones, J.D.; Woessner, A.E.; Quinn, K.P. Skin Structure–Function Relationships and the Wound Healing Response to

Intrinsic Aging. Adv. Wound Care 2020, 9, 127. https://doi.org/10.1089/wound.2019.1021.
6. Kottner, J.; Black, J.; Call, E.; Gefen, A.; Santamaria, N. Microclimate: A critical review in the context of pressure ulcer prevention.

Clin. Biomech. 2018, 59, 62–70. https://doi.org/10.1016/j.clinbiomech.2018.09.010.
7. Sun, P.C.; Jao, S.H.E.; Cheng, C.K. Assessing foot temperature using infrared thermography. Foot Ankle Int. 2005, 26, 847–853.

https://doi.org/10.1177/107110070502601010.
8. Kelechi, T.J.; Michel, Y. A Descriptive Study of Skin Temperature, Tissue Perfusion, and Tissue Oxygen in Patients With Chronic

Venous Disease. Biol. Res. Nurs. 2007, 9, 70–80. https://doi.org/10.1177/1099800407299424.
9. Sayre, E.; Kelechi, T.; Neal, D. Sudden increase in skin temperature predicts venous ulcers: A case study. J. Vasc. Nurs. Off. Publ.

Soc. Peripher. Vasc. Nurs. 2007, 25, 46–50. https://doi.org/10.1016/J.JVN.2007.06.002.
10. Stern, M.D.; Lappe, D.L.; Bowen, P.D.; Chimosky, J.E.; Holloway, G., Jr.; Keiser, H.; Bowman, R. Continuous measurement of

tissue blood flow by laser-Doppler spectroscopy. Am. J. Physiol.-Heart Circ. Physiol. 1977, 232, H441–H448.
11. Ratheesh, K.M.; Seah, L.K.; Murukeshan, V.M. Spectral phase-based automatic calibration scheme for swept source-based optical

coherence tomography systems. Phys. Med. Biol. 2016, 61, 7652–7663. https://doi.org/10.1088/0031-9155/61/21/7652.
12. Meleppat, R.K.; Miller, E.B.; Manna, S.K.; Zhang, P.; Pugh, E.N., Jr.; Zawadzki, R.J. Multiscale Hessian filtering for enhancement

of OCT angiography images. In Proceedings of the Ophthalmic Technologies XXIX, San Francisco, CA, USA, 2–3 February 2019;
SPIE: Bellingham, WA, USA, 2019; Volume 10858, pp. 64–70. https://doi.org/10.1117/12.2511044.

13. Ioannou, S.; Gallese, V.; Merla, A. Thermal infrared imaging in psychophysiology: Potentialities and limits. Psychophysiology
2014, 51, 951–963.

14. Ring, E.F.J.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33–R46. https://doi.org/10.1088/0967-
3334/33/3/R33.

15. Grayson, J. Responses of the microcirculation to hot and cold environments. Pharmacol. Ther. 1988, 38, 201–214.
16. Lipsitz, L.A. Dynamics of stability: The physiologic basis of functional health and frailty. J. Gerontol. A Biol. Sci. Med. Sci. 2002,

57, B115–B125.
17. Goldberger, A.L.; Peng, C.K.; Lipsitz, L.A. What is physiologic complexity and how does it change with aging and disease?

Neurobiol. Aging 2002, 23, 23–26. https://doi.org/10.1016/S0197-4580(01)00266-4.
18. Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.K.; Stanley, H.E. Fractal dynamics in physiology:

Alterations with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99, 2466–2472. https://doi.org/10.1073/pnas.012579499.
19. Langemo, D.K.; Brown, G. Skin fails too: Acute, chronic, and end-stage skin failure. Adv. Skin Wound Care 2006, 19, 206–211.
20. Meijer, J.H.; Schut, G.L.; Ribbe, M.W.; Goovaerts, H.G.; Nieuwenhuys, R.; Reulen, J.P.; Schneider, H. Method for the measurement

of susceptibility to decubitus ulcer formation. Med. Biol. Eng. Comput. 1989, 27, 502–506.



Entropy 2022, 24, 1127 17 of 18

21. van Marum, R.J.; Meijer, J.H.; Ribbe, M.W. The relationship between pressure ulcers and skin blood flow response after a local
cold provocation. Arch. Phys. Med. Rehabil. 2002, 83, 40–43.

22. Liao, F.; Yang, T.D.; Wu, F.L.; Cao, C.; Mohamed, A.; Jan, Y.K. Using Multiscale Entropy to Assess the Efficacy of Local Cooling on
Reactive Hyperemia in People with a Spinal Cord Injury. Entropy 2019, 21, 90. https://doi.org/10.3390/e21010090.

23. Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002,
89, 068102. https://doi.org/10.1103/PhysRevLett.89.068102.

24. Porta, A.; Bari, V.; Ranuzzi, G.; De Maria, B.; Baselli, G. Assessing multiscale complexity of short heart rate variability series
through a model-based linear approach. Chaos 2017, 27, 093901. https://doi.org/10.1063/1.4999353.

25. Rapp, M.P.; Bergstrom, N.; Padhye, N.S. Contribution of skin temperature regularity to the risk of developing pressure ulcers in
nursing facility residents. Adv. Skin Wound Care 2009, 22, 506–513. https://doi.org/10.1097/01.ASW.0000305496.15768.82.

26. Bergstrom, N.; Horn, S.D.; Rapp, M.P.; Stern, A.; Barrett, R.; Watkiss, M. Turning for Ulcer ReductioN: A Multisite Randomized
Clinical Trial in Nursing Homes. J. Am. Geriatr. Soc. 2013, 61, 1705–1713. https://doi.org/10.1111/jgs.12440.

27. Padhye, N.S.; Bergstrom, N.; Rapp, M.P.; Etcher, L.; Redeker, N.S. Pressure ulcer risk detection from complexity of activity. In
Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Jeju, Korea, 11–15 July 2017; Volume 2017, pp. 2304–2307. https://doi.org/10.1109/EMBC.2017.8037316.

28. da Rosa Silva, C.F.; Santana, R.F.; de Oliveira, B.G.R.B.; do Carmo, T.G. High prevalence of skin and wound care of hospitalized
elderly in Brazil: A prospective observational study. BMC Res. Notes 2017, 10, 81. https://doi.org/10.1186/s13104-017-2410-6.

29. Bauer, K.; Rock, K.; Nazzal, M.; Jones, O.; Qu, W. Pressure Ulcers in the United States’ Inpatient Population From 2008 to 2012:
Results of a Retrospective Nationwide Study. Ostomy Wound Manag. 2016, 62, 30–38.

30. Demarré, L.; Verhaeghe, S.; Annemans, L.; Van Hecke, A.; Grypdonck, M.; Beeckman, D. The cost of pressure ulcer prevention
and treatment in hospitals and nursing homes in Flanders: A cost-of-illness study. Int. J. Nurs. Stud. 2015, 52, 1166–1179.
https://doi.org/10.1016/j.ijnurstu.2015.03.005.

31. Paulden, M.; Bergstrom, N.; Horn, S.; Rapp, M.; Stern, A.; Barrett, R.S.; Watkiss, M.; Krahn, M. Turning for Ulcer Reduction
(TURN) Study: An Economic Analysis. Ont. Health Technol. Assess. Ser. 2014, 14, 1.

32. Bergstrom, N.; Braden, B.J.; Laguzza, A.; Holman, V. The Braden Scale for Predicting Pressure Sore Risk. Nurs. Res. 1987,
36, 205–210.

33. Valencia, J.F.; Porta, A.; Vallverdu, M.; Claria, F.; Baranowski, R.; Orlowska-Baranowska, E.; Caminal, P. Refined Multiscale
Entropy: Application to 24-h Holter Recordings of Heart Period Variability in Healthy and Aortic Stenosis Subjects. IEEE Trans.
Biomed. Eng. 2009, 56, 2202–2213. https://doi.org/10.1109/TBME.2009.2021986.

34. Manis, G.; Aktaruzzaman, M.; Sassi, R. Bubble Entropy: An Entropy Almost Free of Parameters. IEEE Trans. Biomed. Eng. 2017,
64, 2711–2718. https://doi.org/10.1109/TBME.2017.2664105.

35. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.
Heart Circ. Physiol. 2000, 278, H2039–2049.

36. Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power3: A flexible statistical power analysis program for the social, behavioral,
and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191.

37. Kring, D.L. Reliability and validity of the Braden Scale for predicting pressure ulcer risk. J. Wound Ostomy Cont. Nurs. 2007,
34, 399–406. https://doi.org/10.1097/01.WON.0000281656.86320.74.

38. NPUAP Pressure Injury Stages|The National Pressure Ulcer Advisory Panel—NPUAP Available online: https://npiap.com/
page/PressureInjuryStages (accessed on 31 May 2017).

39. Flood, M.W.; Grimm, B. EntropyHub: An open-source toolkit for entropic time series analysis. PLoS ONE 2021, 16, e0259448.
https://doi.org/10.1371/journal.pone.0259448.

40. Ribeiro, M.; Henriques, T.; Castro, L.; Souto, A.; Antunes, L.; Costa-Santos, C.; Teixeira, A. The Entropy Universe. Entropy 2021,
23, 222. https://doi.org/10.3390/e23020222.

41. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102.
https://doi.org/10.1103/PhysRevLett.88.174102.

42. Cuesta-Frau, D.; Miró-Martínez, P.; Oltra-Crespo, S.; Jordán-Núñez, J.; Vargas, B.; González, P.; Varela-Entrecanales, M. Model
Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy
2018, 20, 853. https://doi.org/10.3390/e20110853.

43. Arundo Analytics. ADTK (version 0.6.2). 2020. Available online: https://github.com/arundo/adtk (accessed on
1 December 2021).

44. Magagnin, V.; Bassani, T.; Bari, V.; Turiel, M.; Maestri, R.; Pinna, G.D.; Porta, A. Non-stationarities significantly distort short-term
spectral, symbolic and entropy heart rate variability indices. Physiol. Meas. 2011, 32, 1775–1786. https://doi.org/10.1088/0967-
3334/32/11/S05.

45. MacKinnon, J.G. Critical Values for Cointegration Tests; Technical Report 1227, Publication Title: Working Paper; Economics
Department, Queen’s University: Kingston, ON, Canada, 2010.

46. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2022.

47. RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2022.
48. JMP 15 Fittting Linear Models; SAS Institute Inc.: Cary, NC, USA, 2020.

https://npiap.com/page/PressureInjuryStages
https://npiap.com/page/PressureInjuryStages
https://github.com/arundo/adtk


Entropy 2022, 24, 1127 18 of 18

49. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288.
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

50. Zou, H. The Adaptive Lasso and Its Oracle Properties. J. Am. Stat. Assoc. 2012, 101, 1418–1429. https://doi.org/10.1198/
016214506000000735.

51. JMP 15 Predictive and Specialized Modeling; SAS Institute Inc.: Cary, NC, USA, 2020.
52. Porta, A.; Bari, V.; Marchi, A.; Maria, B.D.; Castiglioni, P.; Rienzo, M.d.; Guzzetti, S.; Cividjian, A.; Quintin, L. Limits of

permutation-based entropies in assessing complexity of short heart period variability. Physiol. Meas. 2015, 36, 755–765.
https://doi.org/10.1088/0967-3334/36/4/755.

53. Stefanovska, A.; Bracic, M.; Kvernmo, H. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser
Doppler technique. IEEE Trans. Biomed. Eng. 1999, 46, 1230–1239. https://doi.org/10.1109/10.790500.

54. Porta, A.; Bari, V.; Maria, B.D.; Cairo, B.; Vaini, E.; Malacarne, M.; Pagani, M.; Lucini, D. Peripheral Resistance Baroreflex During
Incremental Bicycle Ergometer Exercise: Characterization and Correlation With Cardiac Baroreflex. Front. Physiol. 2018, 9, 688.

55. Pagani, M.; Montano, N.; Porta, A.; Malliani, A.; Abboud, F.M.; Birkett, C.; Somers, V.K. Relationship Between Spectral
Components of Cardiovascular Variabilities and Direct Measures of Muscle Sympathetic Nerve Activity in Humans. Circulation
1997, 95, 1441–1448. https://doi.org/10.1161/01.CIR.95.6.1441.

56. Hodges, G.J.; Mallette, M.M.; Tew, G.A.; Saxton, J.M.; Moss, J.; Ruddock, A.D.; Klonizakis, M. Effect of age on cutaneous
vasomotor responses during local skin heating. Microvasc. Res. 2017, 112, 47–52. https://doi.org/10.1016/j.mvr.2017.03.002.

57. Mufti, A.; Maliyar, K.; Syed, M.; Pagnoux, C.; Alavi, A. Approaches to Microthrombotic Wounds: A Review of Pathogenesis and
Clinical Features. Adv. Skin Wound Care 2020, 33, 68–75. https://doi.org/10.1097/01.ASW.0000617860.92050.9e.

58. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser,
W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272.
https://doi.org/10.1038/s41592-019-0686-2.

59. Kanazawa, T.; Kitamura, A.; Nakagami, G.; Goto, T.; Miyagaki, T.; Hayashi, A.; Sasaki, S.; Mugita, Y.; Iizaka, S.; Sanada, H. Lower
temperature at the wound edge detected by thermography predicts undermining development in pressure ulcers: A pilot study.
Int. Wound J. 2016, 13, 454–460. https://doi.org/10.1111/iwj.12454.

60. Bennett, S.L.; Goubran, R.; Knoefel, F. Long term monitoring of a pressure ulcer risk patient using thermal images. In Proceedings
of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea,
11–15 July 2017.

61. Jiang, X.; Hou, X.; Dong, N.; Deng, H.; Wang, Y.; Ling, X.; Guo, H.; Zhang, L.; Cai, F. Skin temperature and vascular attributes as
early warning signs of pressure injury. J. Tissue Viability 2020, 29, 258–263. https://doi.org/10.1016/j.jtv.2020.08.001.

62. Wang, Y.; Jiang, X.; Yu, K.; Shi, F.; Qin, L.; Zhou, H.; Cai, F. Infrared Thermal Images Classification for Pressure Injury Prevention
Incorporating the Convolutional Neural Networks. IEEE Access 2021, 9, 15181–15190. https://doi.org/10.1109/ACCESS.
2021.3051095.

63. Polak, A.; Kucio, C.; Kloth, L.C.; Paczula, M.; Hordynska, E.; Ickowicz, T.; Blaszczak, E.; Kucio, E.; Oleszczyk, K.; Ficek, K.; et al.
A Randomized, Controlled Clinical Study to Assess the Effect of Anodal and Cathodal Electrical Stimulation on Periwound Skin
Blood Flow and Pressure Ulcer Size Reduction in Persons with Neurological Injuries. Ostomy Wound Manag. 2018, 64, 10–29.


	Introduction
	Methods
	Study Design and Data Collection
	Primary Measures
	Entropy Measures
	Temperature Time Series
	Data Analysis and Models
	Summary Measures of Multiscale Entropy
	Simple Bivariate Models
	Predictive Models


	Results
	Sample Description
	Multiscale Entropy and Pressure Injuries
	Scale Structure of Entropies
	Comparison of Entropies by Pressure Injury Group

	Prediction of Pressure Injuries
	Generalized Regression Models
	Neural Models


	Discussion
	Appendix A
	References

