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Facial expressions, whether simple or complex, convey pheromones that

can a�ect others. Plentiful sensory input delivered by marketing anchors’

facial expressions to audiences can stimulate consumers’ identification and

influence decision-making, especially in live streaming media marketing. This

paper proposes an e�cient feature extraction network based on the YOLOv5

model for detecting anchors’ facial expressions. First, a two-step cascade

classifier and recycler is established to filter invalid video frames to generate

a facial expression dataset of anchors. Second, GhostNet and coordinate

attention are fused in YOLOv5 to eliminate latency and improve accuracy.

YOLOv5 modified with the proposed e�cient feature extraction structure

outperforms the original YOLOv5 on our self-built dataset in both speed

and accuracy.

KEYWORDS

model optimization, object detection, attention mechanism, cascade classifier, live

streaming

Introduction

A new generation of marketing based on live streaming media through visual

and auditory impacts has increased the appeal of shopping to all members of society.

Compared with traditional marketing approaches, live marketing conveys richer sensory

cues to consumers through real-time interactions, influencing their perceptions and

willingness to purchase products. This live marketing can be considered as an investment

in consumers’ experience through the sensory cues of digital media (Chen et al., 2021).

The visual experience delivered to consumers by live demonstrations plays a vital

role in consumers’ attention. The facial expressions of anchors selling products are

frequently a crucial area where audiences allocate their visual attention, directly affecting

their emotions and perceptions (Simmonds et al., 2020). Exploring the important

role that facial expression cues play in consumer perception, judgment, and purchase

intention provides a theoretical contribution to the emerging field of sensory marketing.
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Most cutting-edge facial expression recognition and detection

algorithms are limited to available standard facial expression

datasets in the laboratory, but facial expression detection is

more complicated because of various backgrounds and lighting

in actual live streaming scenarios. When deploying these

deep learning models on embedded/mobile terminals, real-time

detection is difficult on the limited available CPU and GPU

resources. Therefore, a strictly accurate and quick detection

model is fundamental to analyzing sensory marketing and

encounters significant challenges.

Recognizing other people’s facial expressions and

understanding their emotional implications is an advanced

human ability that processes the rich information captured by

their visual system. The increasing use of machine vision and

neural networks makes it possible for machines to acquire the

same capability to help achieve self-cognition. In Li et al. (2020),

the automatic facial expression detection method combining

local binary pattern (LBP) features and the attention mechanism

had high detection accuracy. However, the experimental

data are all derived from standard facial expressions in a

laboratory environment, which is hard to simulate facial

expression changes in reality. Mollahosseini et al. (2016)

first applied the inception layer architecture to the network

and successfully realized facial expression detection across

datasets to generalize the model. Because of insufficient feature

extraction, it cannot compete with other complex convolutional

neural networks (CNNs). Practicality becomes the primary

factor for model development, considering the continuous

increases in the demands of facial expression detection. Sudha

et al. (2015) released a facial expression detection system for

installation on a mobile phone. However, because of the high

computational complexity and insufficient GPU capability,

the task of real-time detection is difficult. Pei and Shan (2019)

utilized a deep convolutional network (DNN) to probe the

facial micro-expressions of students during a class period. By

decomposing the frames of the actual course video, detecting

the facial markers of the students, and extracting the optical

flow features, the monitoring of students’ attention in class was

realized. Because of the excessive computational consumption

required by optical flow feature extraction, the detection delay

was apparent, and cannot meet the needs of real-time detection.

In summary, although many investigators have performed

significant research on facial expression detection, there are

still problems such as deficient datasets, limited computing

resources, and insufficient model feature extraction in specific

applications. This paper proposes an improved object detection

model based on the above research. First, we provide a variety

of samples for model training after data preprocessing. Then, we

choose the typical one-stage detector YOLOv5 as the benchmark

network and use the Ghost module (Han et al., 2020) to

replace the backbone feature extraction. Additionally, we add

coordinate attenuation (CA) (Hou et al., 2021) for backbone

feature strengthening, which focuses the limited computational

resources on the object regions. The experiments show that the

proposed model can achieve optimal precision while reducing

the model to approximately half its original size.

The key contributions of this work are as follows:

• A dataset of anchor facial expressions is established, filling

the data gap for live-streaming facial expression detection.

• A two-step cascade classifier and recycler is designed for

filtering images to effectively remove invalid samples with

missing and incomplete faces in live videos.

• A lightweight and high-precision anchor facial expression

detection model is presented. We integrate the Ghost

module and CA into YOLOv5 to realize detection accuracy

and speed improvements.

The remainder of this paper is structured as follows.

In Section Related work, we provide an overview of the

evolution of the YOLO network and the development of the

attention mechanism. Section Data preprocessing develops a

data preprocessing methodology to collect facial expression data

from Chinese live streaming marketing videos, and Section The

improved YOLOv5 algorithm presents the improved YOLOv5

model. A set of comparison experiments and analyses between

our model and others for objective evaluation are provided in

Section Experiments. Finally, Section Conclusions and future

work concludes the work and explores future research priorities.

Related work

Lightweight but efficient feature extraction architecture

contributes toward better and faster progress in YOLO.

In the following subsections, we revisit the basics of the

YOLO network. In particular, we analyze the corresponding

techniques concerning deep learning. We introduce how the

attention mechanism provides an alternative for enhancing

model performance.

Feature extraction in YOLO

Overall, the object detection algorithm for facial expression

consists of two main procedures: feature extraction and feature

classification. Because the classification effectiveness depends on

the features produced by the extraction procedure, it is vital

to design an efficient feature extraction structure. Before deep

learning was involved in this task, traditional methods such as

the Gabor wavelet (Kyperountas et al., 2010), LBP (Ojala et al.,

1996), and optical flow (Yacoob and Davis, 1996) methods were

used to extract the appearance features in images. However,

these methods possess significant limitations, such as excessive

computation and constrained feature definition.
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Over the years, convolutional neural networks (CNNs)

have nearly completely replaced traditional feature extraction

methods as the mainstream framework and machine vision

methods because of their outstanding feature expression

capabilities. Thus, the performance of the best object detector

has improved steadily over time. It is well-known that simply

stretching the width and depth of the network does not

improve the network performance directly and effectively. On

the contrary, this approach resulted in a series of problems

involving high computational complexity, overfitting tendency,

and gradient divergence. The Inception module of GoogLeNet

(Szegedy et al., 2015) combined different convolution layer

sizes and pooling operations to improve the size-adaptability

of the network. They also added a 1×1 convolutional kernel

to decrease the dimensionality of feature layers, significantly

reducing the model’s complexity. The innovative network

design of GoogLeNet laid the foundation for the research on

lightweight convolutional neural networks. YOLOv1, proposed

by Redmon et al. (2016), was based on the network structure

of GoogLeNet but replaced the Inception module with 1×1

reduced layers and 3×3 convolutional layers. It is a lightweight

design framework that facilitates a high-speed image inference

speed. However, the location accuracy in YOLOv1 was lower

than for another classical object detection algorithm, R-CNN

(Girshick et al., 2014). Redmon and Farhadi (2017) designed

Darknet-19 in YOLOv2 by combining the advantages of

networks such as VGG16 (Simonyan and Zisserman, 2014).

YOLOv2 has better performance than YOLOv1, even though

the network was lighter. With the introduction of ResNet (He

et al., 2016), YOLOv3 incorporated the residual structure and

expanded the former network into Darknet-53, which consisted

of many 1 × 1 and 3 × 3 convolutional layers (53 layers in

total) stacked consecutively. The residual structure can alleviate

the problems of gradient explosion and gradient dispersion

caused by the deepening of the network, while the feature

pyramid network (FPN) (Lin et al., 2017) was introduced to

enhance feature fusion. Because there was still a gap between

YOLOv3 and the faster R-CNN, YOLOv4 (Bochkovskiy et al.,

2020) was developed to provide further enhancements. Based

on extensive experiments, diverse detection techniques were

tried using YOLOv4 to provide a possible solution to the

mismatch between inspection accuracy and speed. However,

with the continuous advance of algorithms, YOLOv5 completely

superseded YOLOv4 because of its ultra-fast real-time object

detection speed. Initially, YOLOv5 provided four different

network structures (YOLOv5x, YOLOv5l, YOLOv5m, and

YOLOv5s). By controlling the width and depth of the extracted

features, the network can meet different object detection

arrangement needs. As shown in Figure 1, YOLOv5x has the

highest detection accuracy, which is attributed to its wider and

deeper feature maps under the same experimental conditions,

even though it has more parameters, higher model complexity,

and longer detection times. Conversely, YOLOv5s has the

FIGURE 1

Performance of di�erent YOLOv5 networks. The experimental

dataset is COCO128, and the experimental environment is the

Jetson Nano edge computing device. FPS is the number of

images that can be detected per second; Precision is the

detection accuracy (mAP@0.5); the Size units are MB.

lightest network and the fastest detection speed but the lowest

detection accuracy, making it suitable for real-time detection

applications with higher detection speed requirements.

Attention mechanism in object detection

The concept of attention mechanism was first pointed out in

the academic literature (Mnih et al., 2014) as vision attention in

a neural network model to adaptively process image regions at

high resolution.

Subsequently, the attention mechanism demonstrated

its advanced interpretability in natural language processing,

renewing intense interest by researchers and significantly

impacting machine vision tasks. The attention mechanism

can be conveniently embedded in deep learning networks as

a structure that can reinforce feature information to increase

detection accuracy. Fundamentally, it is a process of allocating

higher weights to the object regions of interest to carry

out a dynamic transfer of limited computational resources.

The lightweight Squeeze-and-Excitation (SE) attention

(Iandola et al., 2016) allowed the network to assign different

weights to each channel, emphasizing the important features

containing rich information and diminishing unimportant

features through squeezing and expanding operations.

Convolutional block attention module (CBAM) (Woo et al.,

2018) is a bi-directional concentration method that performs

global average pooling in the spatial dimension and global

maximum pooling in the channel dimension. Nevertheless,

good multi-object detection makes it equally necessary for
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the attention mechanism to calculate the ratio of global

average pooling to global maximum pooling. Miao et al.

(2022) established a novel cross-contextual attention-guided

network (CCAGNet). They introduced 3 different attention

mechanisms to guide the network for learning area focusing

by simultaneously considering contextual information about

multiple areas, including adjacent, intersection, spatial, and

channel areas. While the extra burden of this operation is

minor for a large network, the success cannot be copied in a

lightweight network.

CA was made-to-measure for mobile networks, as presented

by Hou et al. (2021). Unlike CBAM, which forces channel

compression, CA adaptively reduces the channel dimension in

the structure’s bottleneck at a reasonable rate to avoid the loss of

important information. At the same time, CA can furnish more

comprehensive spatial information through two complementary

one-dimensional global pooling blocks, which is more favorable

for optimizing feature extraction structures.

Data pre-processing

Most images in static facial expression databases are by

researchers deliberately making standard facial expressions

in their laboratory settings. However, such images are not

conducive to the dynamic understanding of different degrees of

facial expressions in videos, such as FER-2013 (Giannopoulos

et al., 2018) and AFEW (Yu and Zhang, 2015). By contrast, it has

been shown that datasets composed of video sequences such as

CK+ and MMI contain the dynamic multiple facial expression

changes that are more suitable for dynamic recognition and

detection of facial expressions in videos (Pantic et al., 2005;

Lucey et al., 2010). This paper selects multiple live videos

of four anchors as the data source for a self-built dataset

to bridge the gap of facial expression data in live streaming

media scenes. However, it is challenging to construct complex

data present to the classifier even for the same anchor while

avoiding over-fitting because of varying scenes, makeup styles,

and lighting.

Because there are many invalid frames with missing and

partially obscured faces in a video, we established a cascade

classifier to objectively and effectively filter the picture frames.

The filtered images constitute a live streaming facial expression

database, and facial expression classification and location

annotation are performed on these images.

Two-step cascade classifier and recycler

Not all frames are equally important in a complete live

video. There are situations in which the anchors leave the

live room, show product details using zoomed-in views, and

turn to interact with participants during a live broadcast.

Therefore, the corresponding video frames fail to provide

sufficient feature information for facial expression training and

detection, indicating that it is necessary to distinguish missing

and obscured faces and profiles that may occur at any time in

the video.

The cascade classifier based on the AdaBoost algorithm

(Viola and Jones, 2001) is one of the most commonly

used facial detection algorithms and has a reputation for

high-speed detection. The process of establishing a classical

cascade classifier consists primarily of two parts: the training

of weak classifiers and the cascading of strong classifiers

(Luo, 2005; Oliveira et al., 2005). The weak classifiers are

trained iteratively to obtain the optimal weak classifiers with

appropriate thresholds, and then the AdaBoost algorithm

combines these optimal weak classifiers to generate the

strong classifier.

The strong classifier generation formula can be expressed as

h(α) =

{

1
∑T

t=1 θtht(α) ≥
1
2

∑T
t=1 θt

0 otherwise
(1)

where θt is the error rate of the weak classifier, ht is the

feature classifier with the lowest error rate, and T represents the

number of optimal weak classifiers. Then, we combine the strong

classifiers with high detection rates into the final filtered cascade

classifier through cascading operations.

When performing object detection, the cascade classifier

applies Haar-like features (Lienhart and Maydt, 2002) to

quantify facial features as characteristic vectors and computes

multi-scale and multi-region feature values for the input

image. Because this switching process requires tremendous

computation, we adopt the integral image to quickly find the

pixel sum of all regions in the image. The computational process

of the integral image can be defined as

S(α,β) = 6α′<α,β ′<β I(α,β) (2)

where I(α,β) denotes the pixel value at (α,β) and S(α,β) is the

sum of all pixels in the direction of the upper left corner of the

original image (α,β).

Compared with the feature values in the strong classifier,

the next round of judgment to achieves the effect of filtering

classification only when the threshold of calculated values is

satisfied. However, because the threshold division of the strong

classifier affects both the high pinpoint rate and misjudgment

probability, the recognition accuracy of cascade classifiers

remains coarse.

To ensure that each clip in the final database retains

complete facial information, we establish a two-step cascade

classifier and recycler for detecting facial contours and details

in stages to remove invalid frames in videos quickly and

accurately. First, we used positive and negative face sample

training data and five characteristic features to obtain cascade

classifiers for recognizing faces, left eyes, right eyes, noses,
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FIGURE 2

Data preprocessing algorithm. First, the images of face region and five senses are trained separately to obtain each cascade classifier. Then these

cascade classifiers are combined to form a two-step cascade classifier and recycler. Finally, the two-step cascade classifier and recycler rejects

the invalid images in two stages.

and mouths, respectively. Then, these cascade classifiers were

further cascaded to form a two-step cascade classifier and

recycler with double insurance. In the first stage, the cascading

classifier removes the images without a face region and otherwise

retains the filtered images for pending processing. In the

second stage, the cascade classifier group recognizing the five

senses is utilized to further filter the images retained in the

first stage. In this regard, these cascade classifiers can be

abstracted as the judgment nodes of the decision tree, where only

images with all the above characteristic features are judged as

acceptable to keep while the others are not. The resulting two-

step cascade classifier and recycler is formulated as shown in

Figure 2.

Relying on the two-step cascade classifier and

recycler, a processed facial expression database of live

streaming media scenes emerges quickly, providing

helpful feature samples for model training and inference.

The methodological approach proposed appears to

be advantageous for improving the precision of

the model.

Facial expression classification

After filtering the dataset, the pictures must be classified and

labeled manually. In this paper, the anchors’ facial expressions

are divided into four categories significant for exploring the

emotional cues conveyed by anchors to consumers (refer to

Figure 3 for examples). These four categories are Attentive,

Happy, Excited, and Funny, described as follows:

• Attentive: the exhibition of facial expression when

anchors interpret the details of the product professionally

and intently.

• Happy: smiling facial expressions presented by anchors to

win consumers’ preferences.

• Excited: anchors’ enthusiastic and laughing facial

expressions that drive consumers’ emotions and stimulate

their desire to buy.

• Funny: deliberate negative facial expressions by the anchor,

such as dislike, sadness, and anger, to create a sense

of contrast and an entertaining and funny atmosphere.
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A B C D

FIGURE 3

Sample diagrams of facial expression classifications: (A) Attentive; (B) Happy; (C) Excited; (D) Funny.

These expressions are relatively rare and contain the same

intention, so we group them into a single category.

The improved YOLOv5 algorithm

YOLOv5s, the lightest version of YOLO, is selected as the

baseline network to be improved in this paper. Based on this,

both improvements to weight and precision are made to achieve

a balance between speed and accuracy.

The network architecture of the original YOLOv5s is

composed of four main parts: the Input, Backbone, Neck,

and Prediction layers. The images first pass through the Input

layer, where some of the same methods from YOLOv4 remain

(e.g., mosaic data enhancement and auto-learning bounding

box anchors). Then, the Backbone uses focus downsampling,

the improved cross stage partial (CSP) structure, and the

spatial pyramid pooling (SPP) structure to extract the feature

information of pictures. In the Neck, YOLOv5’s “double tower

tactic,” i.e., the path aggregation network (PAN) (Liu et al., 2018)

and FPN, are used to strengthen feature fusion successfully.

Finally, the Prediction layer draws up the prediction information

of images (i.e., coordinate information of bounding boxes,

prediction confidence, and classes of an object).

The original YOLO network still suffers from several

limitations because of high computational requirements and

inadequate feature extraction in the Backbone. Our improved

network aims to optimize the mismatch between reduced weight

and high accuracy. The GhostNet (Han et al., 2020), referring to

C3Ghost and Ghostconv, is selected for incorporation into the

Backbone, and CA (Hou et al., 2021) is chosen to enhance the

attention of the network. The improved YOLOv5 framework is

illustrated in Figure 4.

Lightweight structure: GhostNet

To obtain a more lightweight implementation, we

modify the original model by using a lightweight network

model, GhostNet, which dramatically reduces the number of

computational parameters by eliminating redundant feature

maps. GhostNet primarily consists of a two-step process of

integrating the original convolution: (i) generation of partial

feature maps with fewer convolution kernels; (ii) a simple linear

transformation of feature maps to obtain additional Ghost

feature maps. These two sets of feature maps are stitched to

output together. Figure 5 illustrates the transformation process

of the feature maps.

GhostBottleNeck is composed of two different GhostConv

layers (see Figure 6A). The first GhostConv plays a vital role in

the expansion of channels, whereas the second GhostConv is

used for matching output by cutting channels. In addition, when

the stride is 2, depthwise-separable convolution (DWConv) can

convert the shape of the feature map. Within the GhostConv

structure (see Figure 6B), the feature map first undergoes a 1 ×

1 point convolution for cross-channel feature extraction, where

the number of channels is reduced to half of the original in this

case. Then, feature extraction across feature points is performed

by a 5 × 5 DWConv, and the other half is obtained. The final

output is a concatenation of the results generated by these

two parts.

Based on GhostBottleNeck, we constitute a new C3Ghost

module to replace the original C3 module in the YOLOv5

network and replace the Conv of the original YOLOv5

by GhostConv. These modifications guarantee a more

lightweight implementation while reducing the convolutional

layer parameters.

Attention mechanism: Coordinate
attention (CA)

Motivated by the goal of maintaining high accuracy

with a smaller model size, we incorporate CA into the

benchmark network of YOLOv5, which considers not only the

relationship between channels but also the location information

in feature space. Incorporating CA allows the neural network

to obtain larger area information while avoiding a larger

overhead introduction.
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FIGURE 4

Improved YOLOv5 framework. C3Ghost replaces the C3 module, and Ghostconv replaces Conv in the original network. In addition, CABlock is

placed before the SPPF module.

The main task of CA is to encode channel attention

by aggregating features in two directions. This contributes

to retaining location information along one direction and

capturing long-term dependencies along the other direction,

complementing feature information and enhancing the

expression capability of objects of interest. CA can be divided

into two consecutive processes: coordinate information

embedding and coordinate attention generation (see Figure 7).

Coordinate information embedding

In general, when generating channel attention, the spatial

information is usually decoded by two-dimensional global

pooling, but it also comes with the absence of location

information. Two parallel one-dimensional feature encodings

are added to solve this problem, incorporating spatial coordinate

information into the generated attentionmaps. Specifically, with

a given feature tensor, CABlock uses two different pooling

kernels of size (H, 1) and (1,W) to encode the feature descriptors

in the horizontal and vertical directions, respectively, as shown

in Equations (3) and (4):

zhc (h) =
1

w
6
0≦α≦W

xc(h,α) (3)

zwc (w) =
1

H
6
0≦β≦h

xc(β ,w) (4)
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FIGURE 5

The process of traditional convolution and Ghost convolution: (A) the original convolution process; (B) the convolution structure specific to

GhostNet.

FIGURE 6

Network structure of (A) GhostBottleNeck and (B) Ghost

convolution.

where h and w represent the height and width of feature maps,

respectively, xc is the input feature map of x in channel c,

and zhc (h) and zwc (w) are the directional awareness of xc in

the horizontal and vertical directions, respectively. The above

transformations result in a pair of complementary direction-

aware feature maps, allowing CA to maintain long-term

reliance on one spatial direction and preserve accurate location

information in the other, leading to a higher concentration of

attention on the located area.

Coordinate attention generation

After obtaining the position information in two directions,

the features are concatenated, convolved, and activated

sequentially to obtain the feature map f , generated by

f = RELU(conv1×1(concat[z
h, zw])) (5)

The feature tensors f h and fw are obtained after separating the

features of f in theH andW directions and then making a 1× 1

convolution on them to obtain the matchable attention weights

gh and gw, computed as

gh = σ (conv1×1(f
h)) (6)

gw = σ (conv1×1(f
w)) (7)

where σ is the activation function.

The final feature map y with weighted attention is obtained

by individually weighting each value of the initial feature
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FIGURE 7

CA attention mechanism.

TABLE 1 Dataset category statistics.

Attentive Happy Excited Funny Total

Train 423 426 373 309 1,531

Validation 77 76 66 57 276

Test 136 131 125 106 498

tensor x.

yc(α,β) = xc(α,β)× ghc (α)× gwc (β) (8)

where yc denotes the feature map of xc after weighting.

CA is added to the backbone network of YOLOv5,

maintaining the model detection at high accuracy with only a

few computational cost, demonstrating the effectiveness of CA

for network improvement.

Experiments

Dataset and experimental environment

In this paper, the proposed model is tested and trained

with a self-constructed dataset. The facial expressions of anchors

in this dataset are divided into four categories (attentive,

happy, excited, and funny), totaling 2,395 images. The size

of these images is 540 × 1,080. After data preprocessing,

the database possesses more distinct facial features, favoring

the improved model for a more advanced feature extraction

process. Table 1 shows the classification and distribution of

the dataset.

We deploy the improved model in a laboratory

hardware system consisting of an NVIDIA GeForce RTX

3070 GPU, AMD Ryzen 7 5800X CPU, deep learning

framework with PyTorch, and hardware acceleration with

CUDA 12.0.

Experimental results

Analysis of experimental results

For the accurate and objective validation of the improved

model, we perform a series of comparative experiments on the

self-constructed dataset. The experimental results are evaluated

using the criteria of mAP, weights, GFLOPs, parameters,

and accuracy density. mAP is a common measure of neural

network accuracy with the model precision measured by

mAP@0.5 and mAP@0.5:0.95 (Borisyuk et al., 2018). Weights,

GFLOPs, and parameters measure models’ size, complexity, and

computational volume, respectively. Furthermore, in a recent

benchmark test, a new indicator for performance measurement

called the accuracy density was proposed (Bianco et al., 2018),

defined as the accuracy divided by the number of parameters.

The accuracy density can visually represent the balance between

the parameters and accuracy of targeted models, so we adopt

this criterion to evaluate the comprehensive performance of

the model.

The test results are listed in Table 2. The mAP values

of both models are maintained above 98%, proving that

the data preprocessing preserves rich facial features in the

images, enhancing the feature extraction ability of our models.

Compared with the original model, the size and complexity of

the improved model are reduced by about one-half, and the

network parameters are reduced by 47.2%. Moreover, although

mAP@0.5:0.95 declines slightly, the accuracy of the proposed

model is significantly elevated, as reflected by being 0.4%
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TABLE 2 Comparison of experimental results of the original and proposed models.

Model mAP@0.5 (%) mAP@0.5:0.95 (%) Weights (MB) GFLOPs Parameters (M) Accuracy density

YOLOv5 98.4 84.9 15.4 15.8 7.020913 14.015271

YOLOv5_ Ghost_CA 98.8 84.5 8 8.1 3.708425 26.642038

FIGURE 8

The mAP histories of the original and proposed YOLOv5 models: (A) mAP@0.5; (B) mAP@0.5:0.95.

FIGURE 9

The losses of the original and improved YOLOv5 models: (A) cls_loss; (B) box_loss; (C) obj_loss.

higher in mAP@0.5 and 52.6% higher in accuracy density,

demonstrating the improved model’s validity.

In addition, we record the values of mAP@0.5 and

mAP@0.5:0.95 for each iteration of the training process

and illustrate the relevant graphs in Figure 8. The orange and

green curves depict the accuracy of the proposed and original

YOLOv5 models, respectively. Our model presents distinctly

faster convergence.

We also record the loss values of the training model to

calculate the difference between the predicted and true model

values, including cls_loss for supervising category classification,

box_loss for measuring error between prediction and calibration
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frames, and obj_loss for detecting the presence of objects in a

grid. In Figure 9, the blue curves represent the loss value of our

model, and the orange curves represent the loss value of the

original model. Both curves demonstrate the faster convergence

and lower losses of our proposed model.

To demonstrate the detective speed of our proposed

model, we record the results with respect to the test set.

As shown in Table 3, the inference time of our model for

an image is 8.1ms, which is 0.6 lower than that of the

original model. And the FPS for YOLOv5_Ghost_CA is

more than YOLOv5. Through our improvement, under the

premise that the model accuracy is slightly improved, our

model size is reduced by nearly half and detection speed is

also improved.

Ablation experiments

To verify the rationality and indispensability of each

section within the improved model, we split the Ghost and

CA into separate experiments to assess the individual parts

of the model. We perform the experimental evaluations

of the YOLOv5 model by adding only Ghost and only

CA, respectively.

Table 4 shows that the influences of Ghost to YOLOv5 by a

linear transformation to generate Ghost featuremaps is effective,

significantly reducing network redundancy and diminishing

computational complexity. However, it results in a lower mAP

value. To address this shortcoming, we choose CA to improve

the model detection accuracy. Compared to the original model,

the accuracy improves by 0.3% in map@0.5 after adding CA,

making up for the loss incurred by the Ghost module. Therefore,

it is desirable to incorporate CA and Ghost together into the

YOLOv5 model. The experimental results unexpectedly verify

our conjecture.

TABLE 3 Model testing results.

Model Inference time (ms) FPS

YOLOv5 8.7 115

YOLOv5_Ghost_CA 8.1 123

Comparative experiments

To demonstrate the uniqueness of CA, we conduct a series of

comparative experiments. The results are illustrated in Table 5.

We compare CA with other lightweight attention methods,

including the extensively adopted SE and CBAM. Under the

same experimental conditions, we add them separately to the

YOLOv5 network, which was modified by Ghost previously.

As shown in Table 5, the network model’s interpolation

performance is improved to various degrees by adding the

attention module. Comparing the influences of the three

attention mechanisms, we find that SE brings little accuracy

improvement because it only considers the channels. In

addition, the accuracy of the proposed model is significantly

enhanced, as reflected by 0.4% higher mAP@0.5 and 52.6%

higher accuracy density than the original model, demonstrating

the improved model’s validity.

The benefit of CBAM for this model is a 0.4% increase in

mAP@0.5, but it is still not the best choice for improvement.

First, it captures only local information. Second, it employs the

most model parameters since large convolution kernels exist

inside the module. In addition, CA employs two complementary

one-dimensional global pools to establish long-term spatial

dependencies with more comprehensive global information.

Therefore, unlike SE, which negatively impacts the network,

CA has a 0.4% improvement in mAP@0.5 and 0.3% in

mAP@0.5:0.95. At the same time, the mAP@0.5 of CA is 0.2%

higher than CBAM while employing fewer model parameters.

The feature learning effects of these three attention methods

can be compared by visualizing the feature maps of training

results using class activation mapping (CAM) (Selvaraju et al.,

2017), which not only verifies whether the model overmatches

targets but also reveals whether the prediction results are based

on image features or backgrounds. From Figure 10, it can be

concluded that the allocation of SE is too scattered, so it fails

TABLE 5 The results of the comparison test.

Model mAP@0.5 mAP@0.5:0.95 Parameters

(M)

YOLOv5_Ghost_SE 98.4 84.2 3.700201

YOLOv5_Ghost_CBAM 98.6 84.3 3.716683

YOLOv5_Ghost_CA 98.8 84.5 3.708425

TABLE 4 Comparison results of ablation experiments.

Model mAP@0.5 mAP@0.5:0.95 Weights (MB) GFLOPs Parameters (M)

YOLOv5 98.4 84.9 15.4 15.8 7.020913

YOLOv5_Ghost 98.3 84.6 7.9 8.1 3.683817

YOLOv5_CA 98.7 84.8 14.6 15.9 7.045521
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FIGURE 10

Visualization of learning e�ects for di�erent attention mechanisms combined with the YOLOv5 model: (A) SE; (B) CBAM; (C) CA.

to distinguish well between the facial and background areas.

Moreover, although CBAM can focus more on the facial region

in the picture, the target range expands greatly. By contrast, CA

can precisely focus on the regions of five facial sensory organs,

facilitating better learning of facial features.

Conclusions and future work

In this paper, we have intensively researched efficient

feature extraction structure and introduced new methods

into the YOLOv5 network for facial expression detection

in live streaming video. The training of the improved

YOLOv5 comprises two stages. First, a two-step cascade

classifier and recycler design is constructed to discriminate

and remove invalid images from video, and a live stream

facial expression dataset is established. Then, GhostNet and

CA are included in the training and inference of YOLOv5

to optimize the network. The experimental results have

objectively justified that the improved model is superior for

various evaluation criteria, such as complexity, precision, speed,

and size.

Future areas for valuable research on accuracy ascension

and latency alleviation still exist. Disposition on limited-

resource devices such as mobile terminals and embedded

kits can help extend the structure to other detection

and recognition tasks. Furthermore, people mostly receive

multimodal data while viewing live streams, including visual,

audio, and bullet screen. Compared to only visual frames,

it is worthwhile to use multimodal data to understand

facial expressions. We plan to include voice and text

as well as facial expressions because these also provide

valuable emotional cues for purchasing intention in live

stream scenarios.
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