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Abstract: Parameter calibration is critical for self-localization based on dead reckoning in the control
of intelligent vehicles such as autonomous driving. Most traditional calibration methods for robotics
control based on dead reckoning rely on data collection with specially designed paths. For the
calibration of parameters in the control of intelligent vehicles, the design of such paths is considered
impossible due to the complexity of road conditions. To solve this problem, an optimization-based
dead reckoning calibration scheme is introduced in this research using the differential global posi-
tioning system to obtain the actual positions of the intelligent vehicle. In this scheme, the difference
between the positions obtained through dead reckoning and the positions obtained through the dif-
ferential global positioning system is selected as the optimization objective function to be minimized.
An adaptive quantum-inspired evolutionary algorithm is developed to improve the quality and effi-
ciency of optimization. Experiments with an intelligent vehicle were also conducted to demonstrate
the effectiveness of the developed calibration scheme. In addition, the newly introduced adaptive
quantum-inspired evolutionary algorithm is compared with the classic genetic algorithm and the
classic quantum-inspired evolutionary algorithm using eight benchmark test functions considering
computation quality and efficiency.

Keywords: adaptive quantum-inspired evolutionary algorithm; dead reckoning; intelligent vehicle;
optimization; parameter calibration

1. Introduction

The development of intelligent vehicles, particularly autonomous cars, has attracted
considerable attention from both academics and industries. Without human operations,
an intelligent vehicle can be driven autonomously in various complex environments by
perceiving the surrounding world with its onboard sensors such as laser radars, cameras,
and navigation and localization devices. A highly accurate and reliable localization ser-
vice plays an important role for an autonomous car. Unfortunately, the existing vehicle
localization techniques still cannot fully satisfy these requirements.

Presently, localization using the Global Positioning System (GPS) is the most widely
used method. The positioning accuracy of civilian GPS can reach 15–20 m (95%) after the
USA government removed the selective availability constraints in 2000 [1]. In this method,
however, signals of at least four satellites need to be received synchronously and the GPS
receiver requires an unobstructed view of the sky. Therefore, the accuracy of GPS can
be degraded severely when the receiver works in poor signal areas such as underpasses,
high buildings, tunnels, and city canyons [2]. A real-world field test conducted in London
showed that GPS positioning errors in some cases could be offset from the true position
by more than 50 m [3]. In order to overcome the limitations of GPS technology, the dead
reckoning (DR) method is often used to provide localization services for vehicles without
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using external observations. Dead reckoning can be used to obtain the positions of a
vehicle by the information obtained from wheel encoders (odometer), inertial navigation
systems [4,5], LIDAR [6], or cameras [7]. However, due to the quality in the measurements
with vehicle sensors, both systematic errors and random errors are brought into DR. The
accuracy of DR localization can be degraded significantly after a period of time. In general,
the random errors, which are mainly caused by rough ground and wheel slippages, can be
reduced by combining DR and other sensors such as GPS and gyroscopes [8–11]. Systematic
errors are usually caused by manufacturing and installation errors of the odometry sensors.
For intelligent vehicles, the systematic errors are the major error sources when it runs on
smooth road surfaces [6]. In this research, only systematic errors are considered in the
calibration scheme for DR localization.

Considerable methods have been developed in the past to reduce DR systematic
errors. In this research area, Borenstein and Feng [4] introduced an effective calibration
scheme called UMBmark for measuring and compensating systematic odometry errors in
two-wheeled differential drive mobile robots. In this scheme, the robot was programmed
to travel along a path in a square of 4 by 4 m2, and the errors between initial and final
positions were used to calibrate the robot kinematic parameters. Antonelli et al. [12] de-
veloped a method based on the least-squares technique to calibrate the odometer in a
differential drive robot. In this method, the kinematic equations were defined as linear
relations between the unknown parameters and the motion inputs to the odometer’s mea-
surements, and then the least-squares method was applied to find the optimal calibration
parameters. Lee et al. [13] extended the UMBmark to two-wheel differential mobile robots
by considering the coupled effect of diameter and wheelbase errors, and developed a new
guideline for the calibration experiments. For a car-like mobile robot, Lee et al. [14] devel-
oped a method for the calibration of tread and wheel diameters using erroneous ending
positions obtained from odometry. Dogruer [15] developed a multiple model adaptive
estimation (MMAE) algorithm and a least squares estimation (LSE) method to estimate
the unknown parameters of an odometer. McKerrow and Ratner [16] introduced a scheme
to calibrate the kinematic parameters of a four-wheel robot by using an odometer and
ultrasonic range sensors. Paulo and Bijan [17] developed a method for odometer calibration
and error propagation identification in the control of mobile robots using a laser interfer-
ometer. Martinelli [18] introduced a calibration approach for identifying two parameters
that characterize the translational and rotational systematic components for a mobile robot
with a synchronous-drive system. Lundquist et al. [19] developed a particle filter-based
method to estimate the tire radii which were considered crucial for dead reckoning-based
positioning. Li et al. [20] proposed a navigation map-aided dead reckoning correction
method to obtain precise positioning information for advanced driving assistance systems.
Takeyama et al. [7] proposed the method of using the time-series tightly coupled integration
of satellite Doppler shift and IMU to estimate the heading error for visual odometry-based
dead reckoning. Belhajem et al. [21] presented a method which combined the extended
Kalman filter (EKF) with machine learning techniques, neural networks, or support vector
machines to improve the accuracy of vehicle position estimation. Our previous research
also presented a dead reckoning error correction scheme based on the extended Kalman
filter and map matching [22].

Although considerable results have been achieved, all these developed methods intro-
duced above are effective for small mobile robots with special kinematic models. In these
methods, the robots were programmed to move along predefined test tracks in calibration
experiments. For a real-size intelligent vehicle, however, it is impossible to drive it along a
predefined road path due to the large errors in the vehicle’s mechanical systems. In this
research, the differential global positioning system (DGPS) is used to get the actual posi-
tions of the driving path, and an optimization-based DR calibration scheme is introduced
to reduce the systematic errors associated with the DR localization. In this optimization
model, the diameter of the left rear wheel, diameter of the right rear wheel, and heading
of the gyroscope are considered as the calibration parameters to reduce the localization
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errors in the DR. An adaptive quantum-inspired evolutionary algorithm (AQIEA) is de-
veloped to improve the optimization quality and efficiency. Two road tests with different
scales were conducted to demonstrate the effectiveness of the developed method. In addi-
tion, the newly developed adaptive quantum-inspired evolutionary algorithm (AQIEA)
is compared with the classic genetic algorithm (CGA) and the classic quantum-inspired
evolutionary algorithm (CQIEA) using eight benchmark test functions. The results show
that the new AQIEA can provide the best computation quality and efficiency among the
three algorithms.

The rest of this paper is organized as follows. The optimization-based dead reckoning
calibration scheme is introduced in Section 2. The adaptive quantum-inspired evolutionary
algorithm is presented in Section 3. Parameter calibration for an intelligent vehicle through
experiments based on the developed AQIEA for DR is explained in Section 4. A compari-
son among the three optimization algorithms is presented in Section 5. Conclusions are
provided in Section 6.

2. An Optimization-Based Dead Reckoning Calibration Scheme
2.1. Dead Reckoning

Figure 1 shows the kinematic model of a real-size IV on a 2D plane. With a given initial
start position (usually obtained through a GPS), DR can be used to estimate the vehicle’s
momentary positions based on the heading and displacement information obtained from
on-board sensors. In this research, the DR sensors include a gyroscope and two wheel
encoders for obtaining heading information and displacement information, respectively.

Figure 1. The dead reckoning localization process.

For the sampling period of t, the DR position of the vehicle can be calculated by
xt+∆t = xt + ∆d cos(θt + ∆θ/2)
yt+∆t = yt + ∆d sin(θt + ∆θ/2)
θt+∆t = θt + ∆θ

(1)

where xt, yt, and θt are the coordinates of the vehicle along the x-direction and y-direction
in the Cartesian coordinate system and the heading of the vehicle at time t, respectively. ∆d
is the displacement during the sampling period between t and t + ∆t, calculated by

∆d =
∆dr + ∆dl

2
(2)
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where ∆dr(l) is the incremental travel displacement for the right (left) rear wheel during the
sampling period. ∆dr(l) is calculated by

∆dr(l) =
∆Nr(l)

Rr(l)
πDr(l) (3)

where ∆Nr(l) is the number of increment encoder pulses of the right (left) rear wheel during
the sampling period, Rr(l) is the encoder resolution of the right (left) rear wheel in the unit
of pulses per revolution, and Dr(l) is the nominal diameter of right (left) rear wheel.

∆θ is the heading change during the sampling period calculated by

∆θ = wt∆t (4)

where wt is the angle change rate of the vehicle at time t measured by an onboard gyroscope.

2.2. Modeling of Systematic Errors for Dead Reckoning

As mentioned before, two kinds of errors, systematic errors and random errors, in-
fluence the accuracy of dead reckoning. The sources leading to systematic errors include
differences between wheel diameters, deviations of wheel diameters from nominal diam-
eters, the misalignment of wheels, and so on. The random errors usually come from the
uncertainties about the effective wheelbase, the limited resolution and sampling rate of
encoders, and influences of the driving environment, such as a rough road surface, wheel
slippage, and so on.

When the vehicle is driven on the road, the various dead reckoning errors can be
described as follows: 

∆d̃r = ∆dr + ε1

∆d̃l = ∆dl + ε2

θ̃t = θt + ε3

(5)

where ε1 and ε2 are the errors that, respectively, need to be compensated for the incremental
displacements of the right rear wheel and left rear wheel, and ε3 is the error that needs
to be compensated for the heading of the vehicle. Unlike the stochastic nature of random
errors, the systematic errors are determined from the geometry of the specific vehicle and
they usually do not change during the vehicle’s motion. Therefore, the systematic errors
can be compensated through the parameter calibration process. According to the kinematic
model of the intelligent vehicle, three dominant systematic error sources are identified,
i.e., the differences between the actual wheel diameters and the nominal diameters, and
the gyroscope’s initial installation error due to misalignment of the gyroscope with the
longitudinal axis of the vehicle. Thus, the DR systematic errors of the vehicle can be
described as follows: 

∆d̃r = ∆dr + c1

∆d̃l = ∆dl + c2

θ̃t = θt + c3

(6)

where c1 and c2 are the parameters to compensate the diameters of the right and left
rear wheels, respectively, and c3 is the parameter to compensate the misalignment of the
gyroscope with the longitudinal axis of the vehicle. It should be noted that when the
vehicle wheels are replaced or the gyroscope is reinstalled, the calibration process should
be conducted again.

After calibration, Equation (1) can be rewritten as follows:
x̃t+∆t = x̃t +

∆d̃r+∆d̃l
2 · cos(θ̃t + ∆θ̃/2)

ỹt+∆t = ỹt +
∆d̃r+∆d̃l

2 · sin(θ̃t + ∆θ̃/2)
θ̃t+∆t = θ̃t + ∆θ

(7)
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2.3. Optimization Model for Parameter Calibration in Dead Reckoning

Figure 2 gives the process of parameter calibration based on the proposed dead
reckoning calibration method. It should be noted that the differential GPS (DGPS) is only
used for the calibration process and the initialization of DR localization.

Figure 2. Optimization-based dead reckoning calibration scheme.

To calibrate DR, the positioning data obtained from a high accuracy DGPS are used as
the correct positions. The difference between the data from the DGPS and DR is considered
as the positioning error, and it is calculated by

Ei(c1, c2, c3, pGPS
i , pDR

i )

=
√
(xGPS

i − x̃i)
2
+ (yGPS

i − ỹi)
2 i = 1, 2, · · · , N

(8)

where Ei is the difference between the DR’s estimated position pDR
i and the DGPS’s position

pGPS
i at the i-th time point, and N is the total number of sample points.

To identify the optimal calibration parameters of DR, an optimization model is formu-
lated as:

min
w.r.t.c1,c2,c3

M

s.t.
cL

1 ≤ c1 ≤ cU
1

cL
2 ≤ c2 ≤ cU

2
cL

3 ≤ c3 ≤ cU
3

(9)

where cL
1 , cU

1 , cL
2 , cU

2 , cL
3 , and cU

3 are the lower and upper limits of c1, c2, and c3, respectively,
and M is the optimization objective function related to positioning errors to be minimized.
The ranges of c1, c2, and c3 are usually determined by real measurements; in this study,
their ranges were set as [−1, 1], [−1, 1], and [−2, 2], respectively. To identify the optimal
calibration parameters, two different optimization objective functions are tested. They
are the maximum positioning error and the mean positioning error considering all the
positioning data:

M = max
w.r.t.i

Ei or M =
1
N

N

∑
i=1

Ei (10)

3. Optimization Based on an Adaptive Quantum-Inspired Evolutionary Algorithm
3.1. Process of the Adaptive Quantum-Inspired Evolutionary Algorithm

In this work, an adaptive quantum-inspired evolutionary algorithm (AQIEA) is in-
troduced to solve the optimization problem defined in Equation (9). Figure 3 gives the
flowchart of the AQIEA. In this algorithm, first a population of solutions is initialized.
Each individual in this population is evaluated based on the fitness measure which is
defined by the optimization objective function. In this work, a DR subroutine is used to
calculate the optimization objective function evaluation measure. The individuals in the
population are subsequently evolved using updating operations and mutation operations.
When the optimization criteria are satisfied, the best individual in the population is selected
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as the optimal solution. Otherwise, the individuals need to be evolved again to generate
better solutions.

Figure 3. Optimization process based on AQIEA.

3.2. Classic Quantum-Inspired Evolutionary Algorithm

The quantum-inspired evolutionary algorithm (QIEA) was introduced to improve
optimization capabilities and has been employed to solve many different types of problems
such as the 0–1 knapsack problem [23], stochastic job shop scheduling problem [24], neuro-
fuzzy controller design problem [25], and function optimization problem [26].

QIEA was developed based on the principles and concepts in quantum computing,
such as qubits and the superposition of states. In QIEA, qubit chromosomes, instead of
binary, numeric, or symbolic chromosomes, are used to model optimization solutions. A
qubit is the basic information unit in a two-state quantum computer. A qubit might be
in the state |0〉 or state |1〉, or in any linear superposition of the two states because of the
advantage that a qubit can represent a linear superposition of state |0〉 and state |1〉. Here,
|•〉 is the Dirac bracket notation.

A qubit is defined as:
|ϕ〉= α|0〉+β|1〉 (11)

where |ϕ〉 is a qubit state, and α and β are complex numbers to specify the probability
amplitudes of the states |0〉 and |1〉, respectively. |α|2 is the probability of outcome |0〉,
and |β|2 is the probability of outcome |1〉. The α and β satisfy the following condition:∣∣∣α∣∣∣2+∣∣∣β∣∣∣2 = 1 (12)

If a system has m qubits, the system can present 2m states at the same time. However,
in the act of observing the m qubits, the outcome is a single state. In the QIEA, an individual
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is composed of m qubits, and one qubit is defined by a pair of probability amplitudes
[

α
β

]
.

Thus, an individual with m qubits is defined by

q =

[
α1 α2 . . . αi . . . αm
β1 β2 . . . βi . . . βm

]
(13)

where q is an individual in the population, and |αi|2 + |βi|2 = 1, i = 1, 2, . . . , m. The
advantage of this representation is that an individual can represent any superposition of
states. For example, an individual with three qubits can be represented as follows: 1√

2
1
2

√
3

2
1√
2

√
3

2
1
2

 (14)

It can be used to represent eight different states in this system: |000〉, |001〉, |010〉, |011〉,
|100〉, |101〉, |110〉, and |111〉, and probabilities of these states are calculated as: 3

32 , 1
32 , 9

32 ,
3

32 , 3
32 , 1

32 , 9
32 , and 3

32 , respectively. After decoding the qubits to classic bits, the real values
can be obtained by

x = xL +
(b1b2b3 . . . bn)decimal

2n − 1
(xU − xL) (15)

where x is the decoded real value, xU and xL are its lower and upper bounds, n is the length
of the qubits for x, and (b1b2b3 . . . bn)decimal is decimal value of the classic bits (b1b2b3 . . . bn).

The evolution of QIEA is conducted through quantum operations on the qubits of
individuals in the population. These quantum operations are usually called quantum gates.
A quantum gate is a reversible gate represented by a unitary operator U acting on the
qubit basis states. A unitary operator satisfies U+U = UU+, where U+ is the Hermitian
adjoint of U. Although many quantum gates have been developed for quantum computing,
only a quantum rotation gate is used in QIEA to update individuals during the evolution
process. The quantum rotation gate UR(θ) is applied to update the probability amplitudes
of quantum qubits in each individual to improve the quality of individuals in a population.
U(θi) is defined by a matrix:

UR(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(16)

where θ is the rotation angle.

For example, a qubit
[

αi
βi

]
in an individual can be updated by a quantum rotation

gate using [
α′i
β′i

]
= UR(θi)

[
αi
βi

]
(17)

where
[

α′i
β′i

]
is the qubit after quantum rotation gate operation, and θi is the rotation angle

determined by
θi = s(αiβi)∆θi (18)

where s(αiβi) is the sign of θi, and ∆θi is the magnitude of the rotation angle. In the
traditional QIEA, ∆θi is selected based on experience and experiments. Different ∆θi values
for different cases are stored in a lookup table [23]. During the evolution process in QIEA,
the lookup table is searched to identify the proper value for a specific qubit. ∆θi is a key
parameter in QIEA that influences computation quality and efficiency. When ∆θi is too
small, the algorithm may need too many iterations to converge into the optimal solution.
When ∆θi is too large, the solutions may be trapped into divergent locations or lead to a
premature convergence to a local optimum.
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3.3. The Adaptive Quantum-Inspired Evolutionary Algorithm

In this research, the classic quantum-inspired evolutionary algorithm (QIEA) has been
modified to an adaptive quantum-inspired evolutionary algorithm (AQIEA) to improve
optimization quality and efficiency.

3.3.1. Adaptive Population Updating Operation

In the classic QIEA, the population is primarily updated by the quantum rotation gate.
The values of the rotation angles, however, are very difficult to select. Even though some
rotation angles can be selected from the lookup tables, the values of these rotation angles
are not changed during the population evolution process. Inspired by Xiong et al. [27], in
this research, an adaptive QIEA (AQIEA) with a change of rotation angle in the evolution
process is introduced to improve the quality and efficiency of the QIEA.

It has been found that when an individual is away from the optimal solution, a large
value should be selected for the rotation angle to change the individual quickly towards
the optimal solution. When an individual is close to the optimal solution, a small value
should be selected for the rotation angle to avoid the individual moving away from the
optimal solution. Based on this idea, an adaptive method is introduced in this research to
adjust the value of the rotation angle in the optimization process. The magnitude of the
rotation angle is calculated by

∆θi =

{
θmax − (θmax − θmin)

f− fave
fmax− fave

f > fave

θmax f ≤ fave
(19)

where θmax and θmin are two positive real numbers (0.001π ≤ θmin < θmax ≤ 0.5π). f max is
the maximum fitness in the current population, fave is the average fitness of the individuals
in the current population, and f is the fitness of the selected individual. Figure 4 illustrates
the adaptive change of the rotation angle magnitude of the quantum rotation gate. If the
fitness of the selected individual is smaller than or equal to the average fitness of the current
population, the magnitude of the rotation angle is selected as a constant θmax. If the fitness
of the selected individual is larger than the average fitness of the current population, the
magnitude of the rotation angle is then selected based on the value of f. When f = f max, ∆θi
is selected as θmin.

Figure 4. Adaptive change of rotation angle magnitude of quantum rotation gate.

The sign of the rotation angle is determined by

s(αiβi) =


sgn((o∗i − c)αiβi) αiβi 6= 0

0 αi = 0 and o∗i = 1 or βi = 0 and o∗i = 0
±1 other

(20)
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where sgn(•) is the sign function, oi* is the observed state (0 or 1) of the i-th qubit of the best
individual, and c is a positive real number between 0 and 1. Equation (19) can be proved
as follows.

Proof. Assume ri* is the i-th qubit of the best individual, ri is the i-th qubit of the selected
individual as shown in Figure 5 in the polar plot, and these qubits are represented as

r∗i =

[
α∗i
β∗i

]
, ri =

[
αi
βi

]
(21)

The observed states for the two states ri* and ri are defined by oi* and oi, respectively.
�

Figure 5. Polar plot of quantum rotation gate for qubit.

The possible direction of the rotation angle is decided as follows:
(1) When oi* = 0 and oi = 1: if αiβi > 0, since ri lies in the I or III quadrant, s(αiβi)

should be negative (i.e., −1) to increase the probability amplitudes of |0〉; if αiβi < 0, since
ri lies in the II or IV quadrant, s(αiβi) should be positive (i.e., +1) to increase the probability
amplitudes of |0〉; if αi = 0, since ri lies on the |1〉 axis, both +1 and −1 of s(αiβi) can increase
the probability amplitudes of |0〉, so s(αiβi) is selected as ±1; if βi = 0, since ri lies on the |0〉
axis, the probability amplitudes of |0〉 are 1, so s(αiβi) is selected as 0.

(2) When oi* = 1 and oi = 0: if αiβi > 0, since ri lies in the I or III quadrant, s(αiβi) should
be +1 to increase the probability amplitudes of |1〉; if αiβi < 0, since ri lies in the II or IV
quadrant, s(αiβi) should be −1 to increase the probability amplitudes of |1〉; if αi = 0, since
ri lies on the |1〉 axis, the probability amplitudes of |1〉 are 1, so s(αiβi) is selected as 0; if
βi = 0, since ri lies on the |0〉 axis, both +1 and −1 of s(αiβi) can increase the probability
amplitudes of |0〉, so s(αiβi) is selected as ±1.

(3) When oi* = 0 and oi = 0: if αiβi > 0, since ri lies in the I or III quadrant, s(αiβi)
should be negative (i.e., −1) to increase the probability amplitudes of |0〉; if αiβi < 0, since
ri lies in the II or IV quadrant, s(αiβi) should be positive (i.e., +1) to increase the probability
amplitudes of |0〉; if αi = 0, since ri lies on the |1〉 axis, both +1 and −1 of s(αiβi) can increase
the probability amplitudes of |0〉, so s(αiβi) is selected as ±1; if βi = 0, since ri lies on the |0〉
axis, the probability amplitudes of |0〉 are 1, so s(αiβi) is selected as 0.

(4) When oi* = 1 and oi = 1: if αiβi > 0, since ri lies in the I or III quadrant, s(αiβi) should
be +1 to increase the probability amplitudes of |1〉; if αiβi < 0, since ri lies in the II or IV
quadrant, s(αiβi) should be −1 to increase the probability amplitudes of |1〉; if αi = 0, since
ri lies on the |1〉 axis, the probability amplitudes of |1〉 are 1, so s(αiβi) is selected as 0; if
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βi = 0, since ri lies on the |0〉 axis, both +1 and −1 of s(αiβi) can increase the probability
amplitudes of |0〉, so s(αiβi) is selected as ±1.

Table 1 shows the summary based on the above discussions. It is found from Table 1
that the sign of the rotation angle is determined based on oi*, αi, and βi, but not oi. This is
because when oi* = 1, the probability amplitudes of |1〉 should be increased, no matter if
the value of oi is 0 or 1. Similarly, when oi* = 0, the probability amplitudes of |0〉 should be
increased, no matter if the value of oi is 0 or 1.

Table 1. Summary of signs for the rotation angle.

oi oi*
s(αiβi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0

1 0 −1 +1 ±1 0
0 1 +1 −1 0 ±1
0 0 −1 +1 ±1 0
1 1 +1 −1 0 ±1

The summary given in Table 1 can be simplified to the summary shown in Table 2.
The sign in Equation (18) is obtained based on Table 2. For example, if αiβi > 0 and oi* = 0,
the s(αiβi) is obtained as −1 according to Table 2.

Table 2. Simplified summary of signs for the rotation angle.

oi*
s(αiβi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 −1 +1 ±1 0
1 +1 −1 0 ±1

3.3.2. Adaptive Mutation Operation

To avoid being trapped into local optimal locations and to improve global searching
ability, an adaptive quantum mutation operation is introduced in this work in the AQIEA.
For a selected individual in the population, the mutation operation is conducted based on
a mutation probability:

pm =

{
pmax − (pmax − pmin)

f− fave
fmax− fave

i f f > fave

pmax f ≤ fave
(22)

where pmax and pmin are two small positive real values between 0 and 1. When an individual
is selected for mutation, two random positions in the individual are selected and the two
qubits are mutated by a quantum-not gate. A quantum-not gate UX is defined by a matrix:

UX =

[
0 1
1 0

]
(23)

For example, a qubit
[

αi
βi

]
in an individual can be mutated by a quantum-not gate through

[
α′i
β′i

]
= UX

[
αi
βi

]
=

[
βi
αi

]
(24)

where
[

α′i
β′i

]
is the qubit after quantum-not gate operation. Obviously, the quantum-not gate

operation is used to swap the probability amplitudes of the two quantum states |0〉 and |1〉.
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3.3.3. The Procedures in AQIEA

With the proposed adaptive quantum rotation and mutation operations, the proposed
quantum-inspired evolutionary algorithm can effectively enhance the population diversity
and further accelerate the convergence speed and avoid being trapped in the local optimal.
The detail procedures in AQIEA are described as follows (Procedure 1).

Procedure 1. Procedure of AQIEA.

Begin Proc

(1) Set t = 0, initialize the population Q(t) by assigning each pair of αi and βi in each individual
in Q(t) as 1/

√
2 , representing that each qubit has the same probabilities to be observed as

|0〉 and |1〉 at the initialization step;
(2) Create a set of binary strings P(t) for representing the observing states of Q(t) based on the

Procedure 2 (Procedure of decoding);
(3) Evaluate all binary strings in P(t);
(4) Store the best solution among all binary strings in P(t) as P*;
(5) While (termination condition is not satisfied) do

(i) Increase t’s value by t = t + 1;
(ii) Create a set of binary strings P(t) for representing the observing states of Q(t) based

on the Procedure 2;
(iii) Evaluate all binary strings in P(t);
(iv) Select the best solution among all binary strings in P(t), and compare it with the P*.

If this best solution is better than P*, replace P* with this best solution; otherwise,
keep P* unchanged;

(v) Update individuals in Q(t) with the quantum rotation gate based on the Procedure 3
(Procedure of population updating);

(vi) Apply mutation operation to individuals in Q(t) based on the Procedure 4
(Procedure of mutation operation).

End while
End Proc

The decoding of a quantum individual into a classic bit individual is conducted based
on the following Procedure 2.

Procedure 2. Procedure of decoding.

Begin Proc
For (each qj(t) in Q(t))

(1) Initialize a binary string Pj(t) as a null list for representing the observing state of qj(t);
initialize a decimal list Cj(t) as a null list for representing the selected values of parameters
in optimization solution in the individual;

(2) For (each pair of αi and βi in qj(t))

(i) Generate a random number r between 0 and 1;
(ii) If r ≥ |αi|2, the corresponding observing state of the qubit is 1; otherwise, the

observing state is 0. Add the observing state to Pj(t).

End for

(3) Convert the binary string Pj(t) to a decimal list Cj(t) with values of parameters in an
optimization solution based on Equation (15).

End for
End Proc

The adaptive population updating operation is conducted using the following Procedure 3.
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Procedure 3. Procedure of population updating.

Begin Proc
For (each qj(t) in Q(t))
For (each pair of αi and βi in qj(t))

(i) Calculate ∆θi and s (αiβi) based on Equations (19) and (20), respectively;
(ii) Update αi and βi based on Equations (16)–(18).

End for
End for
End Proc

The adaptive mutation operation is conducted using the following Procedure 4.

Procedure 4. Procedure of mutation operation.

Begin Proc
For (each qj(t) in Q(t))

(1) Generate a random number r between 0 and 1;
(2) If r < pm, where pm is calculated from Equation (22), generate two random mutation

positions p1 and p2 in qj(t). If p1 6= p2, conduct mutation operations to the qubits in positions
of p1 and p2 based on Equation (24); otherwise, do nothing;

(3) Otherwise, do nothing.

End for
End Proc

4. Identification of the Optimal Calibration Parameters for Dead Reckoning Based on
the AQIEA
4.1. Experimental Setup for Dead Reckoning

The intelligent vehicle experimental platform, “Intelligent Pioneer II” (Figure 6) devel-
oped by the Intelligent Vehicle Research Center, Hefei Institutes of Physical Science (HIPS),
was used to carry out the dead reckoning experiments. Two wheel encoders that were
mounted on the two rear wheels of the vehicle were used to provide the odometry read-
ings, and the DGPS sensor (NovAtel SPAN-CPT), a tightly coupled GPS/INS integrated
navigation system, was used to provide real-time positioning information for calculation of
the localization errors and to initialize the dead reckoning system.

Figure 6. “Intelligent Pioneer II” intelligent vehicle experimental platform.

The nominal parameters of the vehicle and the sensors are given in Table 3.

4.2. Identification of the Optimal Dead Reckoning Calibration Parameters Based on the AQIEA

It should be noted that unlike traditional DR calibration methods such as UMBmark [4],
the calibration path in this work was selected from normal suburb roads. Because the
considered optimization parameters for the calibration are the compensation values to
the left rear wheel, right rear wheel, and vehicle heading, the designed calibration path
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should contain enough scenarios (including both left and right turns) and enough mileage.
To calibrate the DR, a calibration path needs to be selected as shown in Figure 7. The
yellow arrows in the figure mean the driving directions and route. The total length of the
calibration path was about 6 km.

Table 3. The nominal parameters of the vehicle and the sensors.

Parameter Name Value

Rr Resolution of encoder for rear right wheel 4000 pulses/r
Rl Resolution of encoder for rear left wheel 4000 pulses/r
Dr Nominal diameter of right rear wheel 0.637 m
Dl Nominal diameter of left rear wheel 0.637 m

Figure 7. The selected calibration path.

During the experiment, the vehicle was driven along the selected path, and the
positioning data (i.e., longitude, latitude, and heading) of the vehicle from the DGPS
and the pulse readings from the two wheel encoders and the gyroscope were recorded
simultaneously. Because the two different kinds of data from the DGPS and the DR were
in different coordinate systems (i.e., DGPS in the WGS84 coordinate system and DR in
the Cartesian coordinate system), these data had to be converted into the same coordinate
system. In this work, the longitude and latitude from the DGPS were converted into the
Cartesian coordinate system by {

xgps
t = R cos(ϕm

t )∆λt
ygps

t = R∆ϕt
(25)

where R = 6,371,004 m is the radius of the earth, (xgps
t , ygps

t ) is the vehicle’s position at time
t in the Cartesian coordinate system, and ∆λt and ∆ϕt are the differences of the longitude
and latitude between the initial position and the position at time t, respectively. ∆λt, ∆ϕt,
and ϕt

m are defined by 
∆λt = λt − λ0
∆ϕt = ϕt − ϕ0

ϕm
t = ϕt+ϕ0

2

(26)

where (λ0, ϕ0) and (λt, ϕt) are the initial position and the position at time t in the WGS84
coordinate system, respectively. The units of λ0, ϕ0, λt, and ϕt are radians.

After the data were collected, the maximum error and mean error considering all the
positions were selected as the objective functions to build the two optimization models. For
each optimization model, each of the three calibration parameters (i.e., c1, c2, and c3) was



Entropy 2022, 24, 1128 14 of 21

encoded by 20 qubits and so each individual was encoded by 60 qubits, the AQIEA was
run 10 times, and the termination condition for the two optimization models was set as
10,000 generations.

For the first optimization model to minimize the maximum error, the optimal cali-
bration parameters were obtained as: c1 = 0.642 m, c2 = −0.455 m, and c3 = 0.377◦. The
maximum positioning error was obtained as 4.7398 m. For the second optimization model to
minimize the mean error, the optimal calibration parameters were obtained as: c1 = 0.177 m,
c2 = 0.020 m, and c3 = 0.425◦. The mean positioning error was obtained as 1.6838 m.

Figure 8 (the y-axes are plotted with logarithmic scale) gives the errors along the
selected calibration path for the three different DR positioning datasets, i.e., DR without pa-
rameter calibration, DR with parameter calibration through minimization of the maximum
error, and DR with parameter calibration through minimization of the mean error. From the
figure, it is can be found that, compared to the result of DR without parameter calibration,
the DR with the parameter calibration through two different optimization models can
improve the positioning accuracy significantly. From the figure, it can also be seen that
the DR data with the parameter calibration through minimization of the mean error can
provide the best results. Thus, the calibration parameters obtained through minimization
of the mean error were selected as the final calibration parameters.

Figure 8. Errors along the test path for the three different DR localization methods.

4.3. Experiments for Dead Reckoning with Error Compensation

Two different dead reckoning experiments with different scales of the road paths were
conducted to evaluate the effectiveness of the developed calibration scheme. The first road
path was about 16 km, and the second one was about 43 km. In these two experiments,
the same calibration parameters that were obtained as explained in Section 4.2 were used
in the dead reckoning model, and the DGPS was just used for obtaining the headings of
the vehicle and the error calculations. The DR self-localization was conducted in real time
during the driving processes.

The reference trajectory (DGPS) and estimated trajectory for the two tests are given
in Figures 9 and 10, respectively. During the two experiments, some road segments were
repeated twice to test the repeatability of the positioning accuracy (which is similar to
the closure error) of the calibrated dead reckoning-based positioning method. From the
experimental results, it was found that the maximum repeated error of positioning accuracy
was about 1 m for the 16 km test and 3 m for the 43 km test.
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Figure 9. The reference trajectory and estimated trajectory of the first test (about 16 km).

Figure 10. The reference trajectory and estimated trajectory of the second test (about 43 km).

The comparison between the reference velocities (DGPS) and the estimated velocities
during the two tests are given in Figures 11 and 12, respectively. From the results, it was
found that the mean velocity errors were reduced to 0.110 m/s and 0.070 m/s for the tests
of 16 km and 43 km, respectively. It should be noted that the large maximum errors were
due to the random noises.

Figure 11. The comparison between reference velocities and estimated velocities during the first test
(about 16 km).
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Figure 12. The comparison between reference velocities and estimated velocities during the second
test (about 42 km).

The positional errors are given in Figures 13 and 14 (the y-axes are plotted with
logarithmic scale), respectively. From the experimental results, it can be found that the
maximum errors reached up to 200 m during the 16 km and 42 km field tests. After
the calibrated parameters were applied, the maximum and mean errors were reduced
significantly. For the 16 km test, its mean error and maximum error were reduced to
3.905 m and 9.371 m, respectively. For the 42 km test, its mean error and maximum error
were reduced to 5.916 m and 15.380 m, respectively. It should be noted that the curve shapes
of DR errors follow different patterns due to the change of the vehicle’s driving direction.
When the driving direction is not changed, the DR errors may be increased continuously.
When the driving direction is changed or driving on driving on a trajectory where there are
loop routes, such as the selected test trajectories in this study (e.g., Figures 7, 9 and 10), the
DR errors can be reduced. The detailed analysis can be consulted in reference [4].

Figure 13. The positional errors of the first test (about 16 km).

From the above experimental results, it can be concluded that the developed method
can be used to calibrate the dead reckoning parameters to reduce the systematic errors
effectively. With this method, the dead reckoning can be used as an alternative high
accuracy localization tool when the GPS is out of service.
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Figure 14. The positional errors of the second test (about 43 km).

5. Comparative Study for the AQIEA
5.1. Benchmark Functions

To further demonstrate the quality and efficiency of the newly developed AQIEA opti-
mization method, the AQIEA was compared with the classic genetic algorithm (CGA) [28]
and the classic quantum-inspired evolutionary algorithm (CQIEA) [23]. Eight benchmark
functions were selected to evaluate the performance of these three algorithms. The search
spaces of the first four functions (f 1~f 4) are 2-dimensional and the search spaces of the
other four functions (f 5~f 8) are 30-dimensional. Table 4 gives the detailed descriptions of
the eight benchmark functions. In this table, D is the dimension of the search space, R is
the value range of each variable, and O is the optimal value under the given constraints.

Table 4. Benchmark test functions.

No. Function Formulation D R O

f 1 De-Jong’s function f1 = 100(x2
1 − x2)

2
+ (1− x1)

2 2 [−2.048, 2.048] 0

f 2 Goldstein–Price function

f2 = [1 + (x1 + x2 + 1)2(19− 14x1+

3x2
2 − 14x2 + 6x1x2) + 3x2

2]

[30 + (2x1 − 3x2)
2(18− 32x1+

12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

2 [−100, 100] 3

f 3 Schaffer’s F6 function f3 = 0.5 + sin2
√

x2
1+x2

2−0.5

[1+0.001(x2
1+x2

2)]
2 2 [−100, 100] 0

f 4 Easom’s function
f4 = − cos(x1) cos(x2)

exp[−(x1 − π)2 − (x2 − π)2]
2 [−100, 100] −1

f 5 Sphere function f5 = ∑n
i=1 x2

i 30 [−5.12, 5.12] 0

f 6 Griewank function f6 = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos( xi√
i
) + 1 30 [−600, 600] 0

f 7 Ackley function
f7 = −20 exp(−0.2

√
1
n ∑n

i=1 x2
i )−

exp[ 1
n ∑n

i=1 cos(2πxi)] + 20 + e
30 [−32, 32] 0

f 8 Rastrigin function f8 = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12, 5.12] 0

5.2. Results for Comparative Study

To test these benchmark functions, the specific parameters for the three algorithms
must be given. Table 5 provides parameter settings for these three algorithms. It should be
noted that to keep the manuscript more concise, the quantum rotation angles in CQIEA
were omitted and can be consulted in reference [23]. Because the complexities of the eight
functions are different, different maximum iterations were selected to obtain the best results.
In this comparative study, the maximum generations were selected as 5000 for functions
f 1~f 4, and the maximum generations were selected as 10,000 for functions f 5~f 8.
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Table 5. Main parameters for comparing the three algorithms.

Parameter CGA CQIEA AQIEA

Population size 60 10 10

Maximum generation 5000 for f 1~f 4
10,000 for f 5~f 8

5000 for f 1~f 4
10,000 for f 5~f 8

5000 for f 1~f 4
10,000 for f 5~f 8

Crossover rate 0.7 / /

Mutation rate 0.01 / pmax = 0.1,
pmin = 0.01

Quantum rotation angle / Given in [23] θmax = 0.05π,
θmin = 0.001π

All the three algorithms were implemented in MATLAB running on a computer with
the Intel Core i3-3129M (dual cores 2.4G) CPU and the RAM of 2 GB. Due to the stochastic
nature of the evolutionary algorithm, each algorithm was run 30 times for each benchmark
function. Table 6 gives the experimental results of the three algorithms. In this table,
the best value, the worst value, the mean value, the standard deviation, and the mean
computation time considering the 30 runs for each of the test function using each of the
evolutionary algorithms are provided.

From Table 6, we can see that the adaptive quantum-inspired evolutionary algorithm
(AQIEA) developed in this research nearly provides the best computation quality and
efficiency among the selected three algorithms. The AQIEA takes the shortest time because
it needs a smaller population size than CGA to achieve the optimization results, and
unlike CQIEA, it does not need to search the lookup table for conducting the quantum
rotation operations.

Table 6. Experimental results of the three algorithms.

Test Function Performance
Algorithms

AQIEA CGA CQIEA

f 1

Best value 1.0004 × 10−10 1.0004 × 10−10 8.2224 × 10−8

Worst value 8.0830 × 10−2 1.9749 × 10−1 1.0000
Mean value 7.3313 × 10−3 5.0742 × 10−2 7.9007 × 10−2

Standard deviation 1.7405 × 10−2 6.4377 × 10−2 2.5115 × 10−1

Mean time (s) 15.8 30.2 25.3

f 2

Best value 3.0000 3.0000 3.0000
Worst value 8.4600 × 101 5.7482 × 105 6.1677 × 107

Mean value 9.0448 1.9191 × 104 2.0560 × 106

Standard deviation 1.6197 × 101 1.0494 × 105 1.1261 × 107

Mean time (s) 13.9 30.4 28.8

f 3

Best value 1.8190 × 10−8 1.8190 × 10−8 1.8190 × 10−8

Worst value 9.6583 × 10−3 1.2439 × 10−1 1.2439 × 10−1

Mean value 5.9255 × 10−3 1.4411 × 10−2 1.0522 × 10−2

Standard deviation 4.5687 × 10−3 3.0204 × 10−2 2.1957 × 10−2

Mean time (s) 19.9 57.2 25.8

f 4

Best value −1.0000 −1.0000 −1.0000
Worst value −1.0000 −4.6552 × 10−7 0.0000
Mean value −1.0000 −9.6631 × 10−1 −3.3333 × 10−2

Standard deviation 0.0000 1.8251 × 10−1 1.8257 × 10−1

Mean time (s) 13.6 30.0 28.9

f 5

Best value 1.6051 × 10−5 4.1621 1.2827 × 10−4

Worst value 2.5806 × 10−2 7.3858 2.1318 × 10−1

Mean value 1.3603 × 10−3 5.8291 7.9335 × 10−3

Standard deviation 4.6669 × 10−3 8.3242 × 10−1 3.8769 × 10−2

Mean time (s) 277.2 374.4 637.2
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Table 6. Cont.

Test Function Performance
Algorithms

AQIEA CGA CQIEA

f 6

Best value 6.2675 × 10−5 1.6512 × 101 1.9451 × 102

Worst value 1.8752 × 10−5 2.6707 × 101 9.4725 × 101

Mean value 4.6470 × 10−5 2.2313 × 101 3.4142 × 101

Standard deviation 4.5904 × 10−5 2.3307 2.1200 × 101

Mean time (s) 270.5 382.6 614.7

f 7

Best value 3.3597 × 10−1 9.0554 9.99160
Worst value 4.3268 1.0766 × 101 1.9265 × 101

Mean value 2.1113 1.0020 × 101 1.3341 × 101

Standard deviation 7.8542 × 10−1 4.2962 × 10−1 2.5355
Mean time (s) 347.7 373.9 657.9

f 8

Best value 8.1957 4.0974 × 101 6.6567 × 101

Worst value 2.4041 × 101 8.5433 × 101 8.7187 × 101

Mean value 1.3444 × 101 6.2210 × 101 7.9928 × 101

Standard deviation 3.9940 1.1466 × 101 5.1744
Mean time (s) 328.6 356.7 643.1

From the experimental results, it can be found that by applying the adaptive quantum
rotation operation and the adaptive quantum mutation operation, the developed AQIEA
can effectively prevent the optimization results from being trapped into divergent locations
or premature convergence to local optimums. Due to the search ability of the proposed
algorithm, it is very effective at optimizing the error function for dead reckoning to obtain
optimal calibration parameters.

6. Conclusions

The developed method aims at reducing systematic errors of dead reckoning-based po-
sitioning for intelligent vehicles. In this study, an adaptive quantum-inspired evolutionary
algorithm-based dead reckoning calibration scheme was proposed. Real road experiments
were conducted to evaluate the effectiveness of the developed method and the experiment
results show that the maximum error and average error of dead reckoning can be reduced
significantly. With this method, the dead reckoning can be used as an alternative high
accuracy localization tool when the GPS is out of service. Advantages of the developed
method are summarized as follows:

(1) The newly developed dead reckoning positioning parameter calibration scheme is
effective at compensating the systematic errors in dead reckoning. In addition, the de-
sign of a special calibration path is not required in this method for the calibration experiment.

(2) The developed adaptive quantum-inspired evolutionary algorithm is effective at
identifying the optimal calibration parameters for the dead reckoning.

(3) The adaptive quantum rotation operation and the adaptive quantum mutation opera-
tion introduced in this research are effective at improving the computation quality
and efficiency of the quantum-inspired evolutionary algorithm.

The developed calibration method was only tested on paved road with a smooth
surface and only systematic errors of dead reckoning were considered. Additional tests
will be conducted on different road conditions and an improved method which considers
both systematic errors and random errors will be developed in the future. Moreover, for
the proposed adaptive quantum-inspired evolutionary algorithm, a multi-objective version
will be developed in the future.
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