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Abstract: This paper researches the fixed-time leader-following consensus problem for nonlinear
multi-agent systems (MASs) affected by unknown disturbances under the jointly connected graph.
In order to achieve control goal, this paper designs a fixed-time consensus protocol, which can offset
the unknown disturbances and the nonlinear item under the jointly connected graph, simultaneously.
In this paper, the states of multiple followers can converge to the state of the leader within a fixed
time regardless of the initial conditions rather than just converging to a small neighborhood near the
leader state. Finally, a simulation example is given to illustrate the theoretical result.
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1. Introduction

Over the years, multi-agent systems have been widely considered in many fields
because of their advantages of low cost and high efficiency [1–4]. As everyone knows,
the consensus problem is a vital one in the field of cooperative control of multi-agent
systems, which is the basis for the study of other cooperative control problems.

In the study of consensus problems, convergence rate is often regarded as an important
performance index to measure the excellence of the designed control protocol. Therefore,
in terms of convergence rate, the consensus problem of MASs can be divided into the
asymptotic consensus, the finite time consensus and the fixed-time consensus generally.
Firstly, the asymptotic consensus problem can be achieved when time approaches infin-
ity [5,6]. However, in practical application, it is often expected that each agent can reach
consensus within a limited time. Then, the finite time consensus comes into being. Com-
pared with the asymptotic consensus, the convergence speed of the finite time consensus is
obviously faster, which possesses stronger robustness and higher control precision [7–13].
However, the finite time consensus still has obvious limitations; that is, its convergence
time is related to the initial values. In order to solve the limitation of finite time consensus
of MASs, Polyakov first proposed the concept of the fixed-time stability in 2012 [14]. On the
basis of retaining the advantages of the finite time consensus, the convergence time of
multi-agent systems is independent of the initial value.

Furthermore, due to its obvious advantages, the research of fixed-time consensus
has developed rapidly in recent years. Firstly, work [15] studied the fixed-time consensus
problem for simple second-order integrator multi-agent systems. Moreover, work [16]
studied the second-order system with disturbances whose upper bounds were known,
and it designed an observer-based distributed fixed-time consensus protocol. Moreover,
work [17–19] researched the fixed-time consensus problem of first-order nonlinear systems.
Among them, work [18] studied the fixed-time consensus problem of nonlinear multi-agent
systems subjected to external disturbances and employed adaptive methods to solve the
external unknown disturbances and nonlinear problems. In addition, work [20] proposed
an adaptive protocol based on high-order observer, which is applied to study the fixed-time
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leader-following consensus of high-order nonlinear systems, where the nonlinear term
satisfied the Lipschitz condition and the Lipschitz constant was known. All of the above
are studied under the fixed graph, and there are many studies on the fixed-time consensus
under the switching graph. In 2018, work [21] studied the double integrator system under
a jointly connection graph, and they adopted distributed protocol to make MASs achieve
fixed-time consensus. Furthermore, work [22] studied the problem of fixed-time random
consensus of multi-agent systems and designed a series of non-Lipschitz protocol under
fixed topology and switching topology, respectively. In addition, work [23] proposed
a backstepping distributed control model to design a fixed-time state observer, which
could solve the formation problem of multiple UAVs. On the basis of the backstepping
method, work [24] introduced a neural network and designed a novel fixed-time adaptive
protocol to solve the fixed-time consensus problem of nonlinear multi-agent systems under
switching graph. In addition, work [25] uses fuzzy logic control to make higher-order
systems achieve practical consensus in a fixed time. However, if a deep learned recurrent
type-3 fuzzy system is further combined, the uncertainty modeling of nonlinear systems
can be better solved on the basis of the above papers, as mentioned in [26].

Overall, the research of the fixed-time consensus problem needs further improvement.
In terms of the dynamics of MASs, many existing achievements do not consider the non-
linear multi-agent systems with disturbances [14,17,20,27–29], which is relatively limited.
In terms of the communication graphs, most of the studies in the literature related with
the fixed-time consensus focused on fixed graphs, while there is not enough research on
switching topology [21,22,30].

Inspired by the literature above, this paper studies the fixed-time leader-following
consensus of nonlinear multi-agent systems for a jointly connected graph, which is a more
difficult system than the one used in [17,18,29]. Then, since the jointly connected graph is
not always connected, a novel fixed-time consensus protocol based on a pointed assumption
is designed, which can solve both nonlinear terms and unknown disturbances. In this
paper, the states of multiple followers can converge to the state of the leader within a fixed
time regardless of the initial conditions rather than just converging to a small neighborhood
near the leader state. Eventually, the feasibility of the fixed-time consensus protocol is
proved strictly by using Lyapunov stability lemma and classical matrix theory.

The remaining sections of this paper are divided as follows. Some important lemmas
and the basic algebraic graph theory used in this paper are introduced in Section 2. Section 3
is dedicated to describe the main results of this paper, which consists of three sections,
namely problem formulation, the design of the fixed-time consensus protocol, and the
corresponding stability analysis. Section 4 uses MATLAB for simulation verification. The
conclusion is given in Section 5.

2. Preliminaries
2.1. Notations

Notations R, R+, Rnand Rn×n represent the real number set, positive real number
set, n-dimensional real vector space and n× n matrix, respectively. Then, the symbol 1
is the column vector of n× 1 with all elements 1. In is the n-dimensional identity matrix.
Define x = [x1, x2, . . . , xn]T ∈ Rn, i = 1, . . . , n, xr = [x1

r, . . . , xn
r]T , r ∈ R, and sign(x) =

[sign(x1), sign(x2), . . . , sign(xn)]T , where sign(·) is sign function; that is,

sign(φ) =


1, φ > 0

0, φ = 0

−1, φ < 0.

The main notations used in this article are shown in Table 1 below.
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Table 1. Main notations table.

Notations

R The real number set
R+ The positive real number set

Rn×n n-dimensional real vector space
1 The column vector of n× 1 with all elements 1
In The n-dimensional identity matrix

sign(·) The sign function
λmin(·) The smallest eigenvalue of the matrix
λmax(·) The largest eigenvalue of the matrix

2.2. Definition and Lemmas

For the convenience of the following description, this section makes unified definitions.

Definition 1. For ∀x = [x1, . . . , xn] ∈ Rn, p-norm is defined as

‖x‖p
p = |x1|p + |x2|p + · · ·+ |xn|p,

where p > 0.

The following lemmas are required in this paper. In the meanwhile, they play a crucial
role in analyzing the fixed-time consensus of MASs.

Consider the following nonlinear system

ẋ(t) = f (t, x), x(0) = x0, (1)

where x ∈ Rn, f (·) : R+ × Rn → Rn is a nonlinear function. The solution of (1) can be
understood in terms of Filippov if f (t, x) is not continuous. Assume that the origin is an
equilibrium point of (1).

Lemma 1 ([14,31]). If there exists a continuous radial unbounded positive definite function V(x),
such that V̇(x) ≤ −K1Vp(x)− K2Vq(x), where constant K1, K2 > 0, p > 1, 0 < q < 1, then
the origin of system (1) is globally fixed-time stable, where the settling time function T could be
estimated as T ≤ Tmax := 1

K1(p−1) +
1

K2(1−q) . Furthermore, if p = 1 + 1
µ , q = 1− 1

µ , where

µ > 1, then the upper bound of convergence time is represented as Tmax := πµ

2
√

K1K2
.

Lemma 2 ([32]). For any vector x ∈ Rn, the following inequality holds

‖x‖p ≤ ‖x‖r ≤ n
1
r−

1
p ‖x‖p.

where 0 < r < p.

Lemma 3 ([32]). For any x ∈ R+, y ∈ R+, then

√
xy ≤ x + y

2
.

Lemma 4 ([33]). For a directed graph, if there is a directed spanning tree whose root is a leader,
the Laplacian matrix L associated with the directed graph has only one eigenvalue of 0, the other
eigenvalues are positive, and the eigenvector of 0 eigenvalue is 1.

2.3. Algebraic Graph Theory

A graph is represented by G = (V , E ,A), where V = {v1, v2, . . . , vn} is a node set,
E ⊆ V × V is an edge set, and A is the adjacency matrix. If (vj, vi) ∈ E , then the agent vj
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can obtain information from the agent vi. For an edge (vj, vi), node vi is called the parent
node of vj, vj is called the child node of vi, and vi is a neighbor of vj. An adjacency matrix
associated with the graph G is defined asA = [aij] ∈ Rn×n, where aij > 0, when (vj, vi) ∈ E ;
aij = 0, otherwise. Note that aij represents the weight for the edge (vj, vi). The Laplacian
matrix is defined as L = [Lij] ∈ Rn×n, where Lii = ∑i 6=j aij and Lij = −aij, i 6= j. In
addition, the Laplacian matrix is expressed as L = D −A, where D = diag{d1, d2, . . . , dn}
is a degree matrix with di = ∑n

j=1 aij.
In addition, a directed graph is called a strong connected graph if any node has a

directed path to other nodes. It is worth noting that a connected graph is the premise of
studying the consensus problem. For a directed graph, if a node vi can reach any other node
through a directed path, the communication topology is said to have a directed spanning
tree with vi as the root node.

A switching graph can be described by Gσ(t) = (Vσ(t), Eσ(t),Aσ(t)), where σ(t): R→ P
and P is a finite set. The communication graph proposed in this paper is a switching graph
with jointly connectivity, that is, consider a series of infinite sequences consisting of con-
tinuous time intervals [ti, ti+1), i = 0, 1, . . . , n, where t0 = 0, ti+1 − ti ≤ T, and T is a
positive constant, while let N σ(t)

i represent the neighbor set of the i-th agent at different
time intervals. Then, each interval [ti, ti+1) can consist of an integer pi continuous sub-time
intervals [t0

i , t1
i ), . . . , [tj

i , tj+1
i ), . . . , [tp1−1

i , tpi
i ), where t0

i = ti, tpi
i = ti+1, tj+1

i − tj
i ≥ S, and S

is a positive constant. The Laplacian matrix Lσ(t) associated with the jointly connected
graph Gσ(t) is represented by

Lσ(t) =

[
0 0n×1

Lσ(t)
2 Lσ(t)

1

]
.

3. Main Results
3.1. Problem Formulation

Consider that the system contains n+1 agents, numbered 0, . . . , n, respectively, in which
agent 0 is the leader and the other agents are followers. The dynamics of the leader is
described by

ẋ0(t) = u0 + f (t, x0). (2)

The dynamics of the i-th agent is represented by

ẋi(t) = ui + f (t, xi) + di(t), i = 1, . . . , n, (3)

where x0 ∈ Rn, u0 ∈ Rn, xi ∈ Rn and ui ∈ Rn represent the state of a leader, the control
input of a leader, the state of the i-th follower and the control input of the i-th follower,
di(t) ∈ Rn represents the uncertain disturbances, f (t, x0) and f (t, xi): R+ × Rn → Rn is
the continuous nonlinear function. Without losing generality, this paper defaults that the
leader cannot receive information from the followers, and only part of the followers can
receive the state information of the leader.

Assumption 1. The disturbance di(t) of each agent is continuously differentiable and uniformly
bounded, i.e., di(t) ≤ ‖di(t)‖∞.

Assumption 2. The leader has a non-zero control input u0, and u0 has the known upper bound,
i.e., u0 ≤ ‖u0‖∞.

Assumption 3. For any xi, xj ∈ Rn, there exists known positive constant θ, such that

‖ f (t, xi)− f (t, xj)‖ ≤ θ‖xi − xj‖.
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Assumption 4. Consider a series of infinite sequences consisting of continuous time intervals
[ti, ti+1), i = 0, 1, . . . , n, where t0 = 0, ti+1 − ti ≤ T, and T is a positive constant, while N σ(t)

i
represents the neighbor set of the i-th agent at different time intervals. Furthermore, the entire interval
[ti, ti+1) can consist of an integer pi contiguous sub-time intervals [t0

i , t1
i ), . . . , [tj

i , tj+1
i ), . . . , [tpi−1

i , tpi
i ),

where t0
i = ti, tpi

i = ti+1, tj+1
i − tj

i ≥ S, and S is a positive constant. Moreover, the subgraph does
not need to have a directed spanning tree with the leader as the root node at each sub-time interval,
the jointly connected graph Gσ(t) =

⋃pi−1
j=0 G

j
i contains a directed tree in each time interval [ti, ti+1),

and a leader is a root node.

The control objective of this paper is to design a control protocol ui such that n
followers (3) can converge to the leader state (2) in a finite time under the jointly connected
graph, and the convergence time is independent of the initial state of the system; that is,
for any initial value xi(0), there exists a fixed time Tmax, such that

lim
t→Tmax

‖xi(t)− x0(t)‖2 = 0, ∀t > Tmax.

In order to achieve the above control objective, the aforementioned assumptions
should be satisfied.

3.2. Fixed-Time Consensus Protocol

As mentioned above, the aim of this paper is to study the fixed-time consensus for
systems (2) and (3). Therefore, in each time interval [ti, ti+1), the control protocol for each
follower is designed

ui(t) = − α

[
n

∑
j=1

aij(xi − xj) + ai0(xi − x0)

](1−b)

− β

[
n

∑
j=1

aij(xi − xj) + ai0(xi − x0)

](1+b)

− γsign

(
n

∑
j=1

aij(xi − xj) + ai0(xi − x0)

)
, (4)

where α, β, γ > 0, 0 < b < 1, and b = 2q
2q+1 , q = 1, . . . , n. Then, the first two terms of (4)

are dedicated to solve nonlinear terms and ensure that the systems (2) and (3) achieve the
fixed-time consensus, while the last term is employed to eliminate unknown disturbances.

Let ei(t) = xi(t) − x0(t), i = 1, . . . , n. By substituting (4) into systems (2) and (3),
the dynamics of the error system can be obtained

ėi(t) = − α

(
n

∑
j=1

aij(ei(t)− ej(t)) + aσ(t)
i0 ei(t)

)1−b

− β

(
n

∑
j=1

aσ(t)
ij (ei(t)− ej(t)) + ai0ei(t)

)1+b

− γsign

(
n

∑
j=1

aij(ei(t)− ej(t)) + ai0ei(t)

)
+ di(t) + f (t, xi)− f (t, x0)− u0, (5)
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Let E = [e1(t), . . . , en(t)]T . We can obtain the compact form of (5) as follows

Ė = − α

(
(Lσ(t)

1 ⊗ In)E
)1−b

− β

(
(Lσ(t)

1 ⊗ In)E
)1+b

− γsign

(
(Lσ(t)

1 ⊗ In)E
)
− 1⊗ u0

+ F(t, x)− F(t, x0) + D, (6)

where F(t, x) = [ f (t, x1), . . . , f (t, xn)]T , F(t, x0) = [ f (t, x0), . . . , f (t, x0)]
T , D = [d1(t), . . . ,

dn(t)]T . According to Lemma 4, Lσ(t)
1 is a positive define matrix.

Theorem 1. Under Assumptions 1–4, the multi-agent systems (2) and (3) can achieve the fixed-
time consensus under the control protocol (4), and the settling time T can be estimated as

T =
1

α( 1
2 λmin((L

σ(t)
1 )−1))

b−2
2 · b

2

+
1

β( 1
2 λmin((L

σ(t)
1 )−1))

−b−2
2 · b

2

, (7)

where α = α− 1
2 nθ‖((Lσ(t)

1 )−1 ⊗ Id)‖2, β = βn−
b
2 − 1

2 nθ‖((Lσ(t)
1 )−1 ⊗ Id)‖2.

Proof. Consider the following Lyapunov function candidate

V(E) = 1
2
ET(Lσ(t)

1 ⊗ In)E , (8)

Since Lσ(t)
1 is a positive define matrix, i.e., Lσ(t)

1 > 0, thus, V(E) is positive definite and
continuously differentiable. Clearly, the derivative of (8) is shown below

V̇(E) = ET(Lσ(t)
1 ⊗ In)Ė . (9)

Substituting (6) into (9), we have

V̇(E) = − αET(Lσ(t)
1 ⊗ In)((Lσ(t)

1 ⊗ In)E)1−b

− βET(Lσ(t)
1 ⊗ In)((Lσ(t)

1 ⊗ In)E)1+b

− γET(Lσ(t)
1 ⊗ In)sign((Lσ(t)

1 ⊗ In)E)

+ ET(Lσ(t)
1 ⊗ In)[F(t, x)− F(t, x0)]

− ET(Lσ(t)
1 ⊗ In)(1⊗ u0) + ET(Lσ(t)

1 ⊗ In)D. (10)

Combining the above (10) with Definition 1, the following inequality is obtained

V̇(E) = − α‖((Lσ(t)
1 ⊗ In)E)‖2−b

2−b

− β‖((Lσ(t)
1 ⊗ In)E)‖2+b

2+b

− γET(Lσ(t)
1 ⊗ In)sign((Lσ(t)

1 ⊗ In)ET)

+ ET(Lσ(t)
1 ⊗ In)[F(t, x)− F(t, x0)]

− ET(Lσ(t)
1 ⊗ In)(1⊗ u0) + ET(Lσ(t)

1 ⊗ In)D. (11)
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By using assumptions, it follows from (11) that

V̇(E) ≤ − α‖((Lσ(t)
1 ⊗ In)E)‖2−b

2−b

− β‖((Lσ(t)
1 ⊗ In)E)‖2+b

2+b

+ ET(Lσ(t)
1 ⊗ In)[F(t, x)− F(t, x0)]

− (γ− ‖(1⊗ u0)‖∞ − ‖di(t)‖∞)‖(Lσ(t)
1 ⊗ In)E‖1. (12)

Through selecting sufficiently large γ, such that γ ≥ ‖(1 ⊗ u0)‖∞ + ‖di(t)‖∞, (12) can
transform into

V̇(E) ≤ − α‖((Lσ(t)
1 ⊗ In)E)‖2−b

2−b

− β‖((Lσ(t)
1 ⊗ In)E)‖2+b

2+b

+ ET(Lσ(t)
1 ⊗ In)[F(t, x)− F(t, x0)], (13)

where the nonlinear term ET(Lσ(t)
1 ⊗ In)[F(t, x)− F(t, x0)] can be rewritten by Assumption 3

and Lemma 2

ET(Lσ(t)
1 ⊗ In)[F(t, x)− F(t, x0)]

≤‖(Lσ(t)
1 ⊗ Id)E‖‖F(t, x)− F(t, x0)‖

≤nθ‖(Lσ(t)
1 ⊗ In)E‖2‖E‖2. (14)

Let ξ = [ξ1, . . . , ξn]T = (Lσ(t)
1 ⊗ Id)E ; thus, (14) can turn into

nθ‖(Lσ(t)
1 ⊗ In)E‖2‖E‖2

≤nθ‖((Lσ(t)
1 )−1 ⊗ In)‖2‖ξ‖2

2. (15)

Combining Lemma 3, (15) can be written as

nθ‖((Lσ(t)
1 )−1 ⊗ In)‖2‖ξ‖2

2

≤nθ‖((Lσ(t)
1 )−1 ⊗ In)‖2

‖ξ‖2−b
2 + ‖ξ‖2+b

2
2

. (16)

Moreover, (13) can further change

V̇(ξ) ≤ − α‖ξ‖2−b
2−b − β‖ξ‖2+b

2+b

+ (ξ)T [F(t, x)− F(t, x0)]. (17)

Furthermore, the following inequality can be obtained by substituting (16) into (17)

V̇(ξ) ≤ − α‖ξ‖2−b
2−b − β‖ξ‖2+b

2+b

+
1
2

nθ‖((Lσ(t)
1 )−1 ⊗ In)‖2‖ξ‖2−b

2

+
1
2

nθ‖((Lσ(t)
1 )−1 ⊗ In)‖2‖ξ‖2+b

2 . (18)

According to 2− b < 2 and 2 + b > 2, and Lemma 2 gives us that

‖ξ‖2−b ≥ ‖ξ‖2, (19)

‖ξ‖2+b ≥ n
1

2+b−
1
2 ‖ξ‖2. (20)
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Therefore,

‖ξ‖2−b
2−b ≥ ‖ξ‖

2−b
2 , (21)

‖ξ‖2+b
2+b ≥ n1− 2+b

2 ‖ξ‖2+b
2 . (22)

Then, (18) can be further changed from (21) and (22) above

V̇(ξ) ≤ − α‖ξ‖2−b
2 − βn1− 2+b

2 ‖ξ‖2+b
2

+
1
2

nθ‖((Lσ(t)
1 )−1 ⊗ In)‖2‖ξ‖2−b

2

+
1
2

nθ‖((Lσ(t)
1 )−1 ⊗ In)‖2‖ξ‖2+b

2

=−
(

α− 1
2

nθ‖((Lσ(t)
1 )−1 ⊗ In)‖2

)
‖ξ‖2−b

2

−
(

βn−
b
2 − 1

2
nθ‖((Lσ(t)

1 )−1 ⊗ In)‖2

)
‖ξ‖2+b

2 . (23)

Selecting suitable α and β, such that α − 1
2 nθ‖((Lσ(t)

1 )−1 ⊗ In)‖2 > 0 and βn−
b
2 − 1

2 nθ‖
((Lσ(t)

1 )−1 ⊗ In)‖2 > 0, then

V̇(ξ) ≤ −α‖ξ‖2−b
2 − β‖ξ‖2+b

2 , (24)

where α = α− 1
2 nθ‖((Lσ(t)

1 )−1 ⊗ In)‖2, β = βn−
b
2 − 1

2 nθ‖((Lσ(t)
1 )−1 ⊗ In)‖2.

Moreover, (8) can be rewritten as

V(ξ) =
1
2

ξT((Lσ(t)
1 )−1 ⊗ In)ξ

≤1
2

λmin((L
σ(t)
1 )−1)‖ξ‖2

2. (25)

Thus, (24) can be given a new expression as follows

V̇(ξ) ≤ − α‖ξ‖2−b
2 − β‖ξ‖2+b

2

=− α[
1
2

λmin((L
σ(t)
1 )−1)]

b−2
2 ((

1
2

λmin(L
σ(t)
1 )−1)‖ξ‖2

2)
2−b

2

− β[
1
2

λmin((L
σ(t)
1 )−1)]

−b−2
2 ((

1
2

λmin(L
σ(t)
1 )−1)‖ξ‖2

2)
2+b

2

=− α[
1
2

λmin((L
σ(t)
1 )−1)]

b−2
2 (V(ξ))

2−b
2

− β[
1
2

λmin((L
σ(t)
1 )−1)]

−b−2
2 (V(ξ))

2+b
2 . (26)

Then, let K1 = α( 1
2 λmin((L

σ(t)
1 )−1))

b−2
2 and K2 = β( 1

2 λmin((L
σ(t)
1 )−1))

−b−2
2 ; thus, (26) can

be shown as follows

V̇(ξ) ≤ −K1V(ξ)
2−b

2 − K2V(ξ)
2+b

2 . (27)

From (27), V̇(ξ) ≤ 0; thus, V̇(ξ) is a decreasing function. Therefore, there exists
limt→∞ V(ξ), that is, V(ξ) is bounded. While (Lσ(t)

1 )−1 and In is bounded in (27), thus,

ξ is also bounded. For ξ = (Lσ(t)
1 ⊗ In)E , where Lσ(t)

1 and In is bounded, thus, E is also
bounded. In addition, since u0 is bounded, Ė is bounded by combining (6), thus ξ̇ is
also bounded. Conclusively, since the relative information between agents is bounded,
the control protocol ui(t) is bounded.
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Overall, using the above definition, we can obtain that K1, K2 > 0, 2−b
2 and 2+b

2 are all
even power. Combining (27) and Lemma 1, the fixed-time consensus problem of (2) and (3)
is solved, and the estimated value of the settling time is

T ≤ Tmax :=
1

α[ 1
2 λmin((L1)−1)]

b−2
2 · b

2

+
1

β[ 1
2 λmin((L1)−1)]

−b−2
2 · b

2

. (28)

The flow chart of the fixed-time control algorithm in this section is shown in Figure 1 below.

Figure 1. The fixed-time control algorithm.

4. Simulation

This section verifies the validity of the theoretical results through a simulation example.
Consider four agents, one of which acts as the leader and is numbered 0, and the other
three act as followers and are numbered 1–3. The dynamics of the four agents is shown in
(2) and (3). Choose interval [ti, ti+1) and pi = 3; namely, interval [ti, ti+1) is divided into
three sub-intervals [t0

i , t1
i ), [t

1
i , t2

i ), [t
2
i , t3

i ), t0
i = ti, t3

i = ti+1, the subgraph of each sub-time
interval is shown in Figures 2–4. The jointly connected graph of the three subgraphs is
shown in Figure 5.
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Figure 2. Subgraph G1
σ(t) in sub-interval [t0

i , t1
i ).

Figure 3. Subgraph G2
σ(t) in sub-interval [t1

i , t2
i ).

Figure 4. Subgraph G3
σ(t) in sub-interval [t2

i , t3
i ).

Figure 5. The jointly connected graph Gσ(t) in time interval [ti, ti+1).

Furthermore, the initial value of the leader is x0 = 9, and the initial value of the
followers is xi = [7, 8, 10]T , while the adjacency matrix Aσ(t) and the Laplacian matrix
Lσ(t) associated with Figure 5 are shown in (29) and (30). In addition, the nonlinear term
of the leader is described by f (t, x0) = sin(x0), and the nonlinear terms of followers
are described by f (t, x1) = 0.1sin(x1), f (t, x2) = 0.2sin(x2) and f (t, x3) = 0.3sin(x3),
respectively. Uncertain disturbances are regarded as d1(t) = sin(t), d2(t) = 2sin(t) and
d3(t) = 3sin(t), respectively. Finally, let α = 0.6, β = 0.8, b = 0.44 and γ = 3.

Aσ(t) =


0 0 0 0
1 0 1 0
0 1 0 1
1 0 1 0

. (29)

Lσ(t) =


0 0 0 0
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

. (30)
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In the multi-agent systems composed of four agents, under the control (4), the states
of the followers successfully converge to that of the leader agent within a fixed time
independent of the initial value, as shown in Figure 6. The trajectories of consensus errors
ei and the control inputs of each followers ui are given by Figures 7 and 8, respectively.
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Figure 6. The states trajectories of the agents x0, x1, x2, x3.
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Figure 7. Trajectories of consensus errors ei.
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Figure 8. The control inputs ui.

5. Conclusions

In this paper, we research how to achieve fixed-time leader-following consensus for
nonlinear multi-agent systems under a jointly connected graph. In addition, the system is
affected by unknown disturbances. Compared with other studies in the literature on the
fixed-time consensus problem, the advantage of this paper is that the unknown nonlinearity
and unknown disturbances in the multi-agent systems can be solved under the jointly
connected graph, simultaneously. Finally, this paper uses Matlab to carry out numerical
simulation, which provides with a more intuitive proof of the theoretical part. In the
future, the fixed time consensus problem of high-order nonlinear multi-agent systems can
be solved.
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