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Abstract: This paper is devoted to the characterization of spectrum candidates with a new tree
structure to be the spectra of a spectral self-similar measure µN,D generated by the finite integer
digit set D and the compression ratio N−1. The tree structure is introduced with the language of
symbolic space and widens the field of spectrum candidates. The spectrum candidate considered by
Łaba and Wang is a set with a special tree structure. After showing a new criterion for the spectrum
candidate with a tree structure to be a spectrum of µN,D, three sufficient and necessary conditions
for the spectrum candidate with a tree structure to be a spectrum of µN,D were obtained. This result
extends the conclusion of Łaba and Wang. As an application, an example of spectrum candidate
Λ(N,B) with the tree structure associated with a self-similar measure is given. By our results, we
obtain that Λ(N,B) is a spectrum of the self-similar measure. However, neither the method of Łaba
and Wang nor that of Strichartz is applicable to the set Λ(N,B).
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1. Introduction

Let µ be a probability measure on Rd with compact support K. We say that µ is a
spectral measure if there exists a countable set Λ ⊂ Rd such that the set of exponential
functions EΛ := {exp 2πi〈λ, x〉 : λ ∈ Λ} is an orthogonal basis of L2(µ). In this case,
Λ is called a spectrum of µ and (µ, Λ) is called a spectral pair. In particular, if µ is the
normalized Lebesgue measure restricted on K, we say K is a spectral set.

In [1], Fuglede introduced the notion of a spectral set in the study of the extendability
of the commuting partial differential operators and raised the famous conjecture: K is
a spectral set if and only if K is a translational tile. Although the conjecture was finally
disproven for the case that K ⊂ Rd with d ≥ 3 and is still open for Rd with d ≤ 2, it
has led to the development of harmonic analysis, operator theory, tiling theory, convex
geometry, etc.

In 1998, Jorgensen and Pedersen [2] discovered the first singular, non-atomic spectral
measure—the middle-forth Cantor measure—and proved the middle-third Cantor measure
is not a spectral measure. Following this discovery, there has been much research on
the spectrality of self-similar (or self-affine) measures and Moran-type self-similar (or
self-affine) measures (see for example [3–21] and the references therein).

Consider the iterated function system (IFS) {φj}
q
j=1 given by

φj(x) =
1
N
(x + dj),
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where N is an integer with |N| > 1 and D = {dj}
q
j=1 is a finite subset of R. It is well known

(see [22] or [23]) that there exists a unique probability measure µN,D satisfying

µN,D(E) =
1
q

q

∑
j=1

µN,D(φ
−1
j (E)), for Borel set E of R.

The measure µN,D is called the self-similar measure of the IFS {φj}
q
j=1 and is supported on

the set

T(N, D) =
{ ∞

∑
k=1

dk N−k : dk ∈ D, k ≥ 1
}

,

which is the attractor of {φj}
q
j=1. Given a finite set S ⊂ Z with ]S = ]D, we say ( 1

N D, S) is

a compatible pair if the matrix [ 1√
q exp(2πi d

N s)]d∈D,s∈S is a unitary matrix. In other words,
(δ 1

N D, S) is a spectral pair. For a finite set A in R,

δA :=
1
]A ∑

a∈A
δa,

where δa is the Dirac measure at a. Write

Λ(N, S) =

{
k

∑
j=0

sjN j : k ≥ 0, sj ∈ S

}
.

Using the dominated convergence theorem, Strichartz [24] proved that µN,D is a spectral
measure with a spectrum Λ(N, S) under the conditions that (δ 1

N D, S) is a spectral pair with
0 ∈ S and the Fourier transform of δ 1

N D does not vanish on T(N, S). By using the Ruelle
transfer operator, Łaba and Wang in [3] removed the condition that the Fourier transform
of δ 1

N D does not vanish on T(N, S). Furthermore, they obtained the following conclusion:

Theorem 1. (Łaba and Wang). Let N ∈ N with |N| > 1, D ⊂ Z with 0 ∈ D, and gcd(D) =
1, 0 ∈ S ⊂ Z. If ( 1

N D, S) is a compatible pair, then (µN,D, Λ(N, S)) is not a spectral pair if and
only if there exist integers m > 1, {sj}m−1

j=0 ⊂ S and {ηj}m−1
j=0 ⊂ Z\{0} such ηj+1 = N−1(ηj + sj)

for 0 6 j 6 m− 1, where ηm := η0, sm := s0.

It is well known that to prove the spectrality of the invariant measure µN,D, the first
key step is to construct a suitable spectrum candidate. In this process, the set Λ(N, S) =
S + NS + N2S + · · · (finite sum) is the natural spectrum candidate to be considered. Form
Theorem 1, we conclude that Λ(N, S) is not a spectrum of µN,D if and only if there is a
periodic orbit {ηj}m−1

j=0 ⊂ Z\{0} under the dual IFS {ψi(x) = 1
N (x + si) : si ∈ S}. The

following example implies that the natural spectrum candidate has a weak point. When
D = {0, 1}, the invariant measure µ2,D is just the Lebesgue measure on the unit interval
with the unique spectrum Z. However, Λ(2, {0, 1}) = N 6= Z in this case. In other words,
the natural candidate Λ(2, {0, 1}) is not a spectrum of µ2,D. Actually, any set with form
S + 2S + 22S + · · · (finite sum) is not a spectrum of µ2,D. In this case, one needs to consider
the spectrum candidate with a more general form S1 + NS2 + N2S3 + · · · (finite sum),
where ( 1

N D, Si) are compatible pairs. Moreover, it is well known that a spectral self-similar
(or self-affine) measure has more than one spectrum in general. The results in [7,9–11] show
that one may consider spectrum candidates with a tree structure. It is worth mentioning
that Li [16] obtained a simplified form of Theorem 1. To the best of our understanding,
partial results have been obtained in the case of a higher-dimensional space. Developing
the method in [3], Dutkay and Jorgensen [14] obtained a sufficient condition for the spectral
pair of self-affine measures, and Li [19] obtained a necessary condition for the natural
spectrum candidate to be a spectrum of a self-affine measure.



Entropy 2022, 24, 1142 3 of 20

Motivated by the above results, we considered a class of spectrum candidates with a
tree structure (defined in Section 2) and obtained three necessary and sufficient conditions
for such spectrum candidates not to be the spectra of µN,D (Theorem 2), which generalizes
Łaba and Wang’s result.

The most difficult part of the proof of Theorem 2 is that the first statement implies
the second. For this purpose, we show a new criterion for Λ to be a spectrum of µN,D.
As an application, we give an example involving a self-similar measure µ and a spectrum
candidate Λ(N,B) with a tree structure in Section 4. By Theorem 2, we obtain (µ, Λ(N,B))
is a spectral pair. However, neither the criterion of Łaba and Wang (Theorem 1) nor that of
Strichartz [24] is applicable to this set Λ(N,B).

2. Preliminaries

In this section, we shall recall some basic properties of spectral measures and introduce
the tree structure using symbolic space.

Let µ be a probability measure on R. The Fourier transform of µ is defined by

µ̂(ξ) =
∫

e−2πiξx dµ(x), x ∈ R.

We write Z(µ̂) = {ξ : µ̂(ξ) = 0}. For a discrete set Λ ⊂ R, write EΛ = {exp(2πixλ) :
λ ∈ Λ} for a family of exponential functions in L2(µ). Then, EΛ is an orthogonal family of
L2(µ) if and only if

Λ−Λ ⊂ Z(µ̂) ∪ {0}.

Define
QΛ(ξ) = ∑

λ∈Λ
|µ̂(λ + ξ)|2, x ∈ R.

By using the Parseval identity, Jorgenson and Pederson ([2]) obtained the following basic
criterion for the orthogonality of EΛ in L2(µ).

Proposition 1. The exponential function set EΛ is an orthogonal set of L2(µ) if and only if
QΛ(ξ) ≤ 1 for all ξ ∈ R, and EΛ is an orthogonal basis of L2(µ) if and only if QΛ(ξ) = 1 for all
ξ ∈ R.

Given a finite set D ⊂ R, we call

mD(ξ) =
1
]D ∑

d∈D
exp(2πiξd), ξ ∈ R

the mask of D. It is clear that it is just the Fourier transformation of the uniform probability
measure on D.

Definition 1. For two finite subsets D and S of R with the same cardinality m, we say (D, S) is a
compatible pair if [ 1√

m
exp(2πids)

]
d∈D,s∈S

is a unitary matrix.

The following conclusion is well known.

Lemma 1. For two finite subsets D and S ofRwith the same cardinality m, the following statements
are equivalent:

(i). (D, S) is a compatible pair;
(ii). mD(s1 − s2) = 0 for any s1 6= s2 ∈ S;
(iii). ∑s∈S|mD(ξ + s)|2 = 1 for any ξ ∈ R.
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In other words, (D, S) is a compatible pair if and only if S is a spectrum of the uniform
probability measure on D.

Let N be an integer with |N| > 1 and D = {dj}
q
j=1 a finite subset of Z with 0 ∈ D. We

denote by µN,D the unique invariant measure with respect to the IFS {φj(x) = 1
N (x + dj) :

1 ≤ j ≤ q} with equal probability weights, i.e.,

µN,D =
1
q

q

∑
j=1

µN,D ◦ φ−1
j .

In the sequel, we write µ = µN,D for simplicity. Thus, we have

µ̂(ξ) =
∞

∏
j=1

mD(N−jξ), ξ ∈ R.

For k ≥ 1, we write

µ̂k(ξ) =
k

∏
j=1

mD(N−jξ), ξ ∈ R. (1)

Write Y(mD) = {ξ ∈ R : mD(ξ) = 1}. When gcd(D) = 1, we have

Y(mD) = {ξ ∈ R : |mD(ξ)| = 1} = Z. (2)

Now, we introduce the tree structure. First, we recall some basic notation of symbolic
space. Given a positive integer q > 1, write Σq = {0, 1, · · · , q − 1}. Let Σ∗ =

⋃∞
n=0 Σn

q

stand for the set of all finite words, where Σ0
q = {ϑ} denotes the set of empty words.

The length of a finite word σ is the number of symbols it contains and is denoted by |σ|.
The concatenation of two finite words σ and σ′ is written as σσ′. We say σ is a prefix of σσ′.
Given σ = σ1σ2 · · · σn ∈ Σ∗ and 1 ≤ k ≤ n, write σ|k = σ1 · · · σk. The following definition
will bring convenience to us.

Definition 2. A sequence of finite words {In}n≥1 ⊂ Σ∗ is called increasing if for any n ≥ 1, In is
a prefix of In+1 and |In+1| = |In|+ 1.

Let C be a mapping from Σ∗ to Z satisfying C(ϑ) = 0 and C(I) = 0 if I ends with the
symbol 0. It induces a family of mapping F = {FI}I∈Σ∗ defined by

FI : Σ∗ −→ Z,

J 7−→ C(I J|1) + NC(I J|2) + · · ·+ N|J|−1C(I J),

where I J|i is the concatenation of I and J|i for 1 ≤ i ≤ |J|. We write F(J) = Fϑ(J)
for convenience. By a simple deduction, we have the following consistency: for any
I, J, K ∈ Σ∗,

FI(J) + N|J|FI J(K)

=C(I J|1) + · · ·+ N|J|−1C(I J) + N|J|C(I JK|1) + · · ·+ N|JK|−1C(I JK)

=FI(JK).

Definition 3. We say a countable set Λ ⊂ R has a (C,F ) tree structure if there exists a mapping
C and an associated family of mappings F defined in the above paragraph such that

Λ =
⋃

I∈Σ∗
{F(I)}.
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For I ∈ Σ∗, let SI = {C(Ii) : i ∈ Σq}. According to the definition of the mapping C,
we have C(I0) = 0 ∈ SI .

Remark 1. Given a sequence of finite sets S = {Sn}n≥1, if SI = Sn+1 for any I ∈ Σn(n ≥ 0),
we obtain

Λ = S1 + NS2 + N2S3 · · · .

In particular, if Sn = S for n ≥ 1, we obtain

Λ = S + NS + N2S · · · ,

which is just the case considered by Łaba and Wang in [3].

In this paper, we consider a countable set Λ as a spectrum candidate satisfying the
following three conditions:

(C1). Λ has a (C,F ) tree structure.
(C2). For any I ∈ Σ∗, ( 1

N D, SI) is a compatible pair.
(C3). The set S̃ =

⋃
I∈Σ∗ SI is bounded.

Remark 2. Since we only assume that ( 1
N D, SI) is a compatible pair with SI = {C(Ii) :

i ∈ Σq}, the map C may not be a maximal mapping defined in [8] (Definition 2.5) even if
D = {0, 1, · · · , q− 1}.

Now, we exploit some basic properties of Λ satisfying the conditions (C1), (C2), and
(C3). The first one is the uniqueness of the tree representation.

Proposition 2. Let N ∈ Z with |N| > 1 and D ⊂ Z with 0 ∈ D and gcd(D) = 1. Assume
that a countable set Λ satisfies the conditions (C1), (C2), and (C3). Then, for any I ∈ Σ∗q and
J, K ∈ Σn

q with n > 0, we have FI(J) = FI(K) if and only if J = K.

Proof. We just prove the necessity. Suppose there exist I ∈ Σ∗q and J 6= K ∈ Σn
q with n > 1

such that FI(J) = FI(K). Let l be the smallest integer with J|l 6= K|l . From FI(J) = FI(K), it
follows that

Nl−1C(I J|l) + · · ·+ Nn−1C(I J) = Nl−1C(IK|l) + · · ·+ Nn−1C(IK),

which implies C(I J|l) ≡ C(IK|l)( mod N). Noting C(I J|l), C(IK|l) ∈ SI J|l−1
, we obtain

( 1
N D, SI J|l−1

) is not a compatible pair, which is a contradiction to the condition (C2).

Proposition 3. Let N ∈ Z with |N| > 1 and D ⊂ Z with 0 ∈ D and gcd(D) = 1. Assume that
a countable set Λ satisfies the conditions (C1), (C2), and (C3). Then, E(Λ) is an orthogonal set of
L2(µ).

Proof. Given α 6= β ∈ Λ, there exist two finite words I, J ∈ Σ∗ such that

α = F(I), β = F(J).

If |I| 6= |J|, we add symbol 0 in the end of I or J to obtain |I| = |J|. Without loss of
generality, we assume that I, J ∈ Σn

q for some integer n. Let l be the smallest positive integer
satisfying I|l 6= J|l . Recall that F(I|l) = C(I|1) + NC(I|2) · · ·+ Nl−1C(I|l). Then, there
exists an integer z0 such that

N−l(F(I|l)− F(J|l)) =
1
N
(C(I|l)− C(J|l)) + z0.
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By virtue of the condition (C2), we know that ( 1
N D, SI|l−1

) is a compatible pair. Noting that
both C(I|l) and C(J|l) belong to SI|l−1

, we obtain

mD(N−l(F(I|l)− F(J|l))) = mD(
1
N
(C(I|l)− C(J|l) + z0) = mD(

1
N
(C(I|l)− C(J|l))) = 0.

This leads to

µ̂(α− β) = µ̂(F(I)− F(J))

=
l−1

∏
j=1

mD(N−j(F(I)− F(J)))mD(N−l(F(I|l)− F(J|l)))
∞

∏
j=l+1

(N−j(F(I)− F(J)))

=0.

For any I ∈ Σ∗q and k > 1, define

ΛI = {FI(J) : J ∈ Σ∗} and Λk
I := {FI(J) : J ∈ Σk

q}.

We write Λk := Λk
ϑ for simplicity. It is clear that

Λk
I ( Λk+1

I .

From the condition (C2) and Lemma 1(ii), it follows that E(Λk
I ) is an orthogonal set

of L2(µk). By (2), we obtain #Λk
I = qk. Noting the fact that dim(L2(µk)) = qk, we conclude

that E(Λk
I ) is an orthogonal basis of L2(µk). In other words, Λk

I is a spectrum of µk. By
Lemma 1, we have

∑
λ∈Λk

I

k

∏
j=1
|mD(N−j(ξ + λ))|2 = ∑

λ∈Λk
I

|µ̂k(ξ + λ)|2 ≡ 1, ∀ ξ ∈ R. (3)

In fact, we have the following conclusion.

Proposition 4. Let N ∈ Z with |N| > 1 and D ⊂ Z with 0 ∈ D and gcd(D) = 1. Assume that
a countable set Λ satisfies the conditions (C1), (C2), and (C3). Then, QΛ(ξ) ≡ 1 if and only if
QΛI (ξ) ≡ 1 for any I ∈ Σ∗,

Proof. By virtue of Λϑ = Λ, the sufficiency is obvious.
Next, we prove the necessity. Given n ≥ 1 and I ∈ Σn

q , write BI = {ξ + F(I) : ξ ∈
[0, 1]} and B̃I = {N−n(ξ + F(I)) : ξ ∈ [0, 1]}. It is easy to see that both BI and B̃I are
compact sets. Noting the fact that µ̂n can be extended to be an entire function on the
complex plane, µ̂n has at most finitely many zero points in BI . On the other hand, recall that

Λ =
⋃

I∈Σn
q

⋃
J∈Σ∗

(F(I) + NnFI(J)), n ≥ 1.

Noting the fact that every integer is a period of mD, we have µ̂n(ξ + F(I J)) = µ̂n(ξ + F(I))
for any I ∈ Σn

q and J ∈ Σ∗q . Hence,
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QΛ(ξ) = ∑
λ∈Λ
|µ̂n(ξ + λ)|2|µ̂(N−n(ξ + λ))|2

= ∑
I∈Σn

q

∑
J∈Σ∗
|µ̂n(ξ + F(I))|2|µ̂(N−n(ξ + F(I) + NnFI(J)))|2

= ∑
I∈Σn

q

|µ̂n(ξ + F(I))|2 ∑
J∈Σ∗
|µ̂(N−n(ξ + F(I)) + FI(J))|2

= ∑
I∈Σn

q

|µ̂n(ξ + F(I))|2QΛI (N−n(ξ + F(I))).

(4)

In combination with (3), this means QΛI (ξ) takes 1 on except at most finitely many points
in B̃I , which implies QΛI (ξ) ≡ 1 by using the continuity of QΛI (ξ).

In the end of this section, we define the dual IFS {Φs(x) = 1
N (x + s) : s ∈ S̃}, which

plays an important role in what follows. Let T be the invariant set of the IFS, i.e.,

T =
⋃
s∈S̃

Φs(T).

Define Z(µ̂, T) = Z(µ̂) ∩ T, which stands for the zero point set of µ̂ on T. It is clear that
p := #Z(µ̂, T) is finite.

3. Main Theorem

In this section, we will give our main results involving three equivalent statements.
To prove the most difficult part of the proof, we prepared several lemmas including a new
criterion for a spectrum candidate with a tree structure to be a spectrum of a self-similar
measure. At the end of this section, we show that the new criterion is just a sufficient and
necessary condition, which is stated as a corollary .

Theorem 2. Let N ∈ Z with |N| > 1 and D ⊂ Z with 0 ∈ D and gcd(D) = 1. Assume that
a countable set Λ satisfies the conditions (C1), (C2), and (C3). Then, the following statements
are equivalent:

(i). (µ, Λ) is not a spectral pair.
(ii). There exists a finite word I ∈ Σ∗ such that infξ∈T QΛI (ξ) = 0.
(iii). There exist a finite word J ∈ Σ∗, a sequence of nonzero integers {βl}l≥1 ⊂ Z, \{0} and a

sequence of increasing finite words {Ji1 · · · il}l≥1 ⊂ Σ∗, which has a prefix J such that, for
any l ≥ 1, we have βl+1 = 1

N (βl + C(Ji1 · · · il)).

We shall divide the proof into three parts (iii)⇒ (i), (i)⇒ (ii), and (ii)⇒ (iii).
First, we prove (iii)⇒ (i), which plays a key role in the proof of (i)⇒ (ii).

Proof of Theorem 2 (iii)⇒ (i). We shall prove QΛJ (β1) = 0. Thus, from Proposition 4,
the conclusion follows.

Given λ ∈ ΛI , there exists a positive integer m > 1 and L ∈ Σm
q such that

λ = FI(L) ∈ Λm
I .

Since the sequence {βl}l≥1 is nonzero, the sequence of integers {C(Ji1 · · · il)}l>1 has in-
finitely many nonzero terms. Thus, there exist infinitely many terms l with il 6= 0. Take
an integer r > m with ir 6= 0. Write λ∗ := FJ(K) ∈ Λr

J . According to Proposition 2 and
ir 6= 0, we have λ 6= λ∗ and λ ∈ Λm

J ⊂ Λr
J . From βk+1 = N−1(βk + C(Ji1 · · · ik))(k > 1), it

follows that
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β1 + λ∗ =N(β2 + C(JK|2) + NC(JK|3) + · · ·+ Nr−2C(JK))

= · · ·
=Nrβr+1 ∈ NrZ,

which implies |µ̂r(β1 + λ∗)|2 = 1. Noting (3) and λ 6= λ∗, we have

1 6|µ̂r(β1 + λ∗)|2 + |µ̂r(β1 + λ)|2 6 ∑
γ∈Λr

J

|µ̂r(β1 + γ)|2 = 1,

Thus, we obtain |µ̂r(β1 + λ)| = 0. Hence,

|µ̂(β1 + λ)| = 0, ∀ λ ∈ ΛJ .

It follows that QΛJ (β1) = ∑λ∈ΛJ
|µ̂(β1 + λ)|2 = 0.

The following three lemmas play key roles in the proof of Theorem 2 (i)⇒ (ii). First,
we show a new criterion for Λ to be a spectrum of µ.

Lemma 2. Let N ∈ Z with |N| > 1 and D ⊂ Z with 0 ∈ D and gcd(D) = 1. Assume that
a countable set Λ satisfies the conditions (C1), (C2), and (C3). If there exists a positive number
c > 0 such that, for any ξ and I ∈ Σ∗, there is λξ,I ∈ ΛI satisfying

|µ̂(N−|I|(ξ + F(I)) + λξ,I)| ≥ c,

then (µ, Λ) is a spectral pair.

Proof. Suppose (µ, Λ) is not a spectral pair. Then, there exists ξ0 ∈ T such that QΛ(ξ0) < 1.
Recall that Λn = {C(J|1) + NC(J|2) + · · ·+ Nn−1C(J) : J ∈ Σn

q} for n ≥ 1. We write
Qn(ξ0) := ∑λ∈Λn |µ̂(ξ0 + λ)|2. By virtue of limn→∞ Λn = Λ and Λn ⊂ Λn+1 for n ≥ 1,
we obtain

lim
n→∞

Qn(ξ0) = QΛ(ξ0) and Qn(ξ0) 6 Qn+1(ξ0).

Given a positive number ε with ε < 1
2 (1−QΛ(ξ0)), there exists an integer M > 1 such that

QΛ(ξ0)− ε 6 QM(ξ0) 6 Qn(ξ0) 6 QΛ(ξ0) < 1, ∀ n > M. (5)

By (1), we have
lim

m→∞
µ̂m(ξ0 + λ) = µ̂(ξ0 + λ), ∀ λ ∈ Λ.

In combination with (5), we have a positive integer K > M + 1 such that

∑
λ∈ΛM

|µ̂K(ξ0 + λ)|2 6 ∑
λ∈ΛM

|µ̂(ξ0 + λ)|2 + ε 6 QΛ(ξ0) + ε.

According to (3), we have ∑λ∈ΛK |µ̂K(ξ0 + λ)|2 = 1. Thus,

∑
I∈ΣK

q \ΣM
q

|µ̂K(ξ0 + F(I))|2 = ∑
λ∈ΛK

|µ̂K(ξ0 + λ)|2 − ∑
λ∈ΛM

|µ̂K(ξ0 + λ)|2

> 1−QΛ(ξ0)− ε > 0.
(6)

For any I ∈ ΣK
q \ΣM

q , there exists λξ0,I ∈ ΛI such that

|µ̂(N−K(ξ0 + F(I)) + λξ0,I)| > c. (7)
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Write Λ̃ = {F(I) + NKλξ0,I : I ∈ ΣK
q \ΣM

q , λξ0,I ∈ ΛI}. It is clear that Λ̃ ⊂ Λ. Since
( 1

N D, SI) is a compatible pair for any I ∈ Σ∗, C(I) = 0 if and only if the finite word I ends
with the symbol 0. Then, we have

ΛM ∩ Λ̃ = ∅.

In combination with (5)–(7), we obtain

QΛ(ξ0) = ∑
λ∈Λ
|µ̂(ξ0 + λ)|2

≥ ∑
λ∈ΛM

|µ̂(ξ0 + λ)|2 + ∑
λ∈Λ̃

|µ̂(ξ0 + λ)|2

= ∑
λ∈ΛM

|µ̂(ξ0 + λ)|2 + ∑
I∈ΣK\ΣM

|µ̂(ξ0 + F(I) + NKλξ0,I)|2

= ∑
λ∈ΛM

|µ̂(ξ0 + λ)|2 + ∑
I∈ΣK\ΣM

|µ̂K(ξ0 + F(I))|2|µ̂(N−K(ξ0 + F(I)) + λξ0,I |2

> QΛ(ξ0)− ε + c2 ∑
I∈ΣK\ΣM

|µ̂K(ξ0 + F(I))|2

> QΛ(ξ0)− ε + c2(1−QΛ(ξ0)− ε).

Letting ε→ 0, we obtain
0 > c2(1−QΛ(ξ0)),

which is a contradiction to QΛ(ξ0)) < 1.

To use Lemma 2, we need the following lemma, which implies that, under some
conditions for any point in T, there exists a path that escapes from Z(µ̂, T).

Lemma 3. Let N ∈ Z with |N| > 1 and D ⊂ Z with 0 ∈ D and gcd(D) = 1. Assume
that a countable set Λ satisfies the conditions (C1), (C2), and (C3) and infξ∈T QΛI (ξ) > 0 for
any I ∈ Σ∗q . If Z(µ̂, T) 6= ∅ and for any α ∈ Z(µ̂, T) and I ∈ Σ∗, there exists no K ∈ Σ∗

with α + FI(K) = 0, then for any ξ ∈ T, there exist two nonnegative integers w and v with
1 6 v 6 p + 1 and a finite word J = j1 · · · jw+v ∈ Σ∗q satisfying the following property:

If w = 0, we have

0 < |mD(N−l(ξ + FI(J|l)))| < 1, 1 6 l 6 v,

and |µ̂(N−v(ξ + FI(J)))| > 0;
If w > 0, we have

mD(N−l(ξ + FI(J|l))) = 1, 1 6 l 6 w,

0 < |mD(N−l(ξ + FI(J|l)))| < 1, w + 1 6 l 6 w + v,

and |µ̂(N−w−v(ξ + FI(J)))| > 0.

Proof. First, we shall prove the existence of w. If T ∩Z = ∅, we take w = 0. If T ∩Z 6= ∅,
since ( 1

N D, SI) is a compatible pair, by Lemma 1(iii), there exists j1 ∈ Σq such that

|mD(N−1(ξ + FI(j1)))| > 0. (8)

If |mD(N−1(ξ + FI(j1)))| < 1, we take w = 0. If |mD(N−1(ξ + FI(j1)))| = 1, also by
Lemma 1(iii), there exists j2 ∈ Σq such that

|mD(N−2(ξ + FI(j1 j2)))| > 0.
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If |mD(N−2(ξ + FI(j1 j2)))| < 1, we take w = 1. When |mD(N−2(ξ + FI(j1 j2)))| = 1,
the process goes on. Under the process, we claim that there exists a finite sequence of
symbols {jn}w

n=1 ⊂ Σq such that

mD(N−l(ξ + FI(j1 · · · jl))) = 1, ∀ 1 6 l 6 w,

and
0 < |mD(N−w−1(ξ + FI(j1 · · · jw+1)))| < 1, ∀ jw+1 ∈ Σq. (9)

Otherwise, there exists an infinite sequence {jl}l>1 ⊂ Σq such that mD(N−l(ξ + FI(j1 · · · jl)))
= 1 for l > 1. By (2) and the hypothesis of the lemma, we have N−l(ξ + FI(j1 · · · jl)) ∈
Z\{0}. According to the proof of Theorem 2(iii)⇒ (i), we obtain QΛI (ξ) = 0, which is a
contradiction to the condition infξ∈T QΛI (ξ) > 0 for any I ∈ Λ∗.

Next, we shall prove the existence of v. We write J̃ := j1 · · · jw and η := N−w(ξ +
FI( J̃)), where J̃ = ϑ, FI( J̃) = 0 and η = ξ when w = 0. In what follows, we define a
sequence of sets {Yn}n≥0 by induction on n. Define Y0 = {ϑ}, and

Yn := {L ∈ Σn
q : L|n−1 ∈ Yn−1, 0 < |mD(N−n(η + FI J̃(L)))| < 1}, n ≥ 1.

We have the following claim.

Claim: For n ≥ 1, we have #Yn > 2n.

Proof. When n = 1, since ( 1
N D, SI J̃) is a compatible pair, there exist two symbols l1 6= l2 ∈

Σq such that
0 < |mD(N−1(η + FI J̃(lk)))| < 1, 1 6 k 6 2.

Thus, we obtain #Y1 > 2. Suppose the inequality #Yn > 2n holds as n = k. Let
n = k + 1. For any L ∈ Yk, it is clear L|1 ∈ Y1. By (9), we obtain N−1(η + FI J̃(L|1)) 6∈ Z.

Thus, N−k(η + FI J̃(L)) 6∈ Z. Since ( 1
N D, SI J̃L) is a compatible pair, there exist at least two

symbols l1 6= l2 ∈ Σq such that

0 < |mD(N−n−1(η + FI J̃(Llk)))| < 1, 1 6 k 6 2.

By the arbitrariness of L ∈ Yk, we obtain #Yn+1 > 2n+1. Hence, the claim follows by induction.
Together with Proposition 2, the above claim implies

#{N−p−1(α + FI J̃(L) : L ∈ Yp+1} = #Yp+1 > 2p+1 > p.

Thus, by p = ]Z(µ̂, T), there exists a finite word L ∈ Yp+1 such that

|µ̂(N−p−1(η + FI J̃(L)))| > 0.

Let v > 1 be the smallest positive integer such that |µ̂(N−v(η + FI J̃(L)))| > 0 for some

L = l1 · · · lv. By taking J = J̃l1 · · · lv, we finish the proof.

Lemma 4. If T ∩Z 6= ∅, then there exists α1 > 0 such that, for any integer sequence {θi}i>1 ⊂
T ∩Z, we have

∞

∏
i=1
|mD(xi)| > α1,

where xi ∈ B(θi, N−i).
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Proof. For any θ ∈ T ∩ Z, we have mD(θ) = 1. On the other hand, the mask function
mD can be extended to an entire function on the complex plane. Thus, mD is uniformly
continuous on any compact set. Hence, there exists a positive number c1 such that

|1−mD(x)| = |mD(θ)−mD(x)| 6 c1|x− θ|, ∀ x ∈ {ξ + y : ξ ∈ T, |y| ≤ 1}.

Given a sequence {θi}i>1 ⊂ T ∩Z, we have

|mD(xi)| > 1− c1|xi − θi| > 1− N−ic1, ∀ xi ∈ B(θi, N−i), i > 1.

It is clear that there exists a positive integer K > 0 such that, for k > K, we have N−kc1 < 1
2 .

Note an elementary inequality:

1− x > e−2x, 0 ≤ x 6
1
2

.

Then, we have

∞

∏
i=1
|mD(xi)| =

K

∏
i=1
|mD(xi)|

∞

∏
i=K+1

|mD(xi)|

>(
1
2
)K

∞

∏
i=K+1

e−2c1 N−i

=(
1
2
)Ke∑∞

i=K+1 −2c1 N−i

=(
1
2
)Ke
−2c1

1
NK (N−1) =: α1 > 0

(10)

for all xi ∈ B(θi, N−i). The proof is complete.

Proof of Theorem 2(i)⇒ (ii). We expect to obtain a contradiction after assuming

inf
ξ∈T

QΛI (ξ) > 0, ∀ I ∈ Σ∗q . (11)

We shall prove that there is a positive number c > 0 such that, for any ξ ∈ T and
I ∈ Σ∗, there exists λξ,I ∈ ΛI satisfying

|µ̂(N−|I|(ξ + F(I)) + λξ,I)| ≥ c.

If Z(µ̂, T) = ∅, then µ̂(ξ) has a positive lower bound on compact set T. Write
c := infξ∈T |µ̂(ξ)| > 0. For any ξ ∈ T and I ∈ Σ∗q , take λξ,I = 0 ∈ ΛI . Noting N−|I|(ξ +
F(I)) ∈ T, we have

|µ̂(N−|I|(ξ + F(I)))| > c.

From Lemma 2, it follows that (µ, Λ) is a spectral pair, which is a contradiction to
the hypothesis.

Next, we focus on the case Z(µ̂, T) 6= ∅. We shall deal with two cases.
Case i. For any η ∈ Z(µ̂, T) and I ∈ Σ∗, there exists J ∈ Σ∗ such that

η + FI(J) = 0. (12)

By |µ̂(0)| = 1, there exists a positive number δ with 0 < δ1 < 1 such that

|µ̂(x)| > 1
2

, ∀ x ∈ B(0, δ1). (13)
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Write δ := min{δ1, d
4}, where d denotes the smallest distance between different points in

Z(µ̂, T) ∪ (T ∩Z), i.e., d := min{|x− y| : x 6= y ∈ Z(µ̂, T) ∪ T ∩Z}.
We denote the set of points that has a positive distance from the zero points of µ̂(ξ) in

T by

P := T\

 ⋃
θ∈Z(µ̂,T)

B(θ, δ)

.

It is clear that P is a compact set and α0 := infξ∈P|µ̂(ξ)| > 0. Write α := min{ 1
2 α1, α0}. Given

ξ ∈ T and I ∈ Σ∗, define ξ̃ = N−|I|(ξ + F(I)).
If ξ̃ ∈ P, we take λξ,I = 0. Then,

|µ̂(N−|I|(ξ + F(I)) + λξ,I)| = |µ̂(ξ̃)| ≥ α0 ≥ α. (14)

If ξ̃ /∈ P, by the definition of P, there exists a unique θ ∈ Z(µ̂, T) ⊂ T\{0} such that
ξ̃ ∈ B(θ, δ). According to (12), there exists J ∈ Σ∗ such that

θ + FI(J) = 0. (15)

Take λξ,I = FI(J). Then, we have

N−l(ξ̃ + FI(J|l)) ∈ B(N−l(θ + FI(J|l)), N−lδ), 1 ≤ l ≤ |J|. (16)

On the other hand, by (15), we have

N−l(θ + FI(J|l)) ∈ Z∩ T, 1 ≤ l ≤ |J|.

In combination with Lemma 4 and (16), this leads to

|J|

∏
l=1
|mD(N−l(θ + FI(J|l)))| > α1. (17)

Furthermore, by (16) we have

N−|J|(ξ̃ + FI(J)) ∈ B(N−|J|(θ + FI(J)), N−|J|δ) ⊂ B(0, δ1).

Then, by (13), we have |µ̂(N−|J|(ξ̃ + FI(J)))| ≥ 1
2 . Together with (17), this inequality

implies

|µ̂(N−|I|(ξ + F(I)) + λξ,I)| =|µ̂(ξ̃ + FI(J))|

=
|J|

∏
l=1
|mD(N−l(θ + FI(J|l)))||µ̂(N−|J|(ξ̃ + FI(J)))|

>
1
2

α1

>α.

(18)

Case ii: There exist η∗ ∈ Z(µ̂, T) and I ∈ Σ∗ such that, for any J ∈ Σ∗, we have

η∗ + FI(J) 6= 0. (19)

Recall that S̃ =
⋃

I∈Σ∗ SI and p = ]Z(µ̂, T). Let

U :=
p+1⋃
l=1

{
N−l(θ + λ) : λ ∈ S̃ + NS̃ + · · ·+ Nl−1S̃, θ ∈ Z(µ̂, T) ∪ (T ∩Z)

}
.
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Furthermore, we write

V = {x ∈ U : |mD(x)| 6= 0} and W = {x ∈ V : |µ̂(x)| 6= 0}.

It is clear W ⊂ V ⊂ U ⊂ T. Since ( 1
N D, SI) is a compatible pair for any I ∈ Σ∗, we obtain

V 6= ∅.
Next, we shall prove W 6= ∅.
Claim 1: There exists a ∈ S̃ such that

0 < |mD(N−1(η∗ + a))| < 1.

Proof. If T ∩Z = ∅, then we have sup{|mD(η)| : η ∈ T} < 1 by noting that T is compact.
A trivial fact that N−1(η∗ + a) ∈ T for any a ∈ S̃ implies the claim is true.

When T ∩ Z 6= ∅, suppose the claim is false. Since ( 1
N D, SI) is a compatible pair,

by Lemma 1(iii) for η∗ ∈ Z(µ̂, T), there exists j1 ∈ Σq such that mD(N−1(η∗ + FI(j1))) = 1.
By (2) and (19), we obtain N−1(η∗ + FI(j1)) ∈ (T ∩Z)\{0}. Furthermore, there exists j2 ∈
Σq such that mD(N−2(η∗+ FI(j1 j2))) = 1, which implies N−2(η∗+ FI(j1 j2)) ∈ (T∩Z)\{0}.
Repeating this process, we obtain a sequence of symbols {jl}l>1 ⊂ Σq such that

N−l(η∗ + FI(j1 · · · jl)) ∈ (T ∩Z)\{0}, l > 1.

By a similar argument in the proof of Theorem 2(iii)⇒ (i), we obtain QΛI (η
∗) = 0, which

implies a contradiction to (11). The claim is proven.
Next, we define a sequence of set {Yn}n≥0 by induction on n. Let Y0 := {η∗}, and

Yn := {N−1(η + a) : 0 < |mD(N−1(η + a))| < 1, η ∈ Yn−1, a ∈ S̃}, n > 1.

By a similar argument in the proof of the claim in Lemma 3, we obtain #Yn ≥ 2n for
1 ≤ n ≤ p + 1. On the other hand, for any η ∈ Yp+1, there exists λ ∈ S̃ + NS̃ + · · ·+ NpS̃
such that η = N−p−1(η∗ + λ) and 0 < |mD(η)| < 1, which implies Yp+1 ⊂ V. Then, we
conclude

#V > #Yp+1 > 2p+1 > p.

Recall that p is the number of zero points of µ̂(ξ) on compact T. Then, we obtain W 6= ∅.
Noting that W ⊂ V ⊂ U and U is a finite set, it is obvious that both W and V are finite

sets. Write

α2 := min{|mD(η))| 6= 0 : η ∈ V} > 0,

α3 := min{|µ̂(η)| 6= 0 : η ∈W} > 0.

Then, there exists a positive number δ2 > 0 such that, for any η ∈ V and ω ∈W, we have

|mD(x)| > 1
2

α2, ∀ x ∈ B(η, δ2), (20)

|µ̂(x)| > 1
2

α3, ∀ x ∈ B(ω, δ2). (21)

Write δ̃ := min
{

δ1, δ2, d
4

}
. We let P̃ := T\

(⋃
θ∈Z(µ̂,T) B(θ, δ̃)

)
denote the set of points that

has a positive distance (at least δ̃) from the zero points of µ̂(ξ) in T. It is clear that P̃ is a
compact set and α4 := infξ∈P̃|µ̂(ξ)| > 0. We write

α̃ := min{α1
α3

2
(

α2

2
)p+1, α4},

where α1 comes from Lemma 4.
Given ξ ∈ T and I ∈ Σ∗q , write ξ̃ := N−|I|(ξ + F(I)).
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If ξ̃ ∈ P̃, we take λξ,I = 0 ∈ ΛI . Then, we have

|µ̂(N−|I|(ξ + F(I)) + λξ,I)| = |µ̂(ξ̃)| > α4 > α̃. (22)

If ξ̃ /∈ P̃, there exists θ ∈ Z(µ̂, T) such that ξ̃ ∈ B(θ, δ̃). If there exists J ∈ Σ∗ such that

θ + FI(J) = 0,

we take λξ,I = FI(J). Then, by a similar argument as (18), we have

|µ̂(N−|I|(ξ + F(I)) + λξ,I)| ≥ α. (23)

If there is no J ∈ Σ∗ such that
θ + FI(J) = 0,

by Lemma 3, there exist two integers 0 6 w < ∞, 1 6 v 6 p + 1 and a finite word
J := j1 · · · jw+v ∈ Σ∗q such that when w = 0, we have

0 < |mD(N−l(θ + FI(J|l)))| < 1, 1 6 l 6 v, (24)

and |µ̂(N−v(θ + FI(J)))| > 0; when w > 0, we have

mD(N−l(θ + FI(J|l))) = 1, 1 6 l 6 w, (25)

0 < |mD(N−l(θ + FI(J|l)))| < 1, w + 1 6 l 6 w + v, (26)

and |µ̂(N−w−v(θ + FI(J)))| > 0.
Take λξ,I := FI(J). In the case w = 0, since ξ̃ ∈ B(θ, δ̃), it is obvious that

N−l(ξ̃ + FI(J|l)) ∈ B(N−l(θ + FI(J|l)), N−l δ̃), 1 6 l 6 v. (27)

Noting that θ ∈ Z(µ̂, T) ∪ (T ∩Z), by (24), we obtain

N−l(θ + FI(J|l)) ∈ V, 1 6 l 6 v.

Together with (20) and (27), the above inequality implies

|mD(N−l(ξ̃ + FI(J|l)))| >
α2

2
, 1 6 l 6 v. (28)

Furthermore, since N−v(θ + FI(J)) ∈ V and |µ̂(N−v(θ + FI(J)))| > 0, we have N−v(θ +
FI(J)) ∈W and N−v(ξ̃ + FI(J)) ∈ B(N−v(θ + FI(J)), N−v δ̃). From (21), it follows that

|µ̂(N−v(ξ̃ + FI(J|l)))| >
α3

2
. (29)

In combination with (28), this yields

|µ̂(N−|I|(ξ + F(I)) + λξ,I)| =|µ̂(ξ̃ + λξ,I)|

=
∞

∏
i=1
|mD(N−i(ξ̃ + FI(J)))|

=
v

∏
i=1
|mD(N−i(ξ̃ + FI(J))||µ̂(N−v(ξ̃ + FI(J)))|

>
α3

2
(

α2

2
)p+1

>α̃.

(30)
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In the case w > 0, we shall divide the product into three parts

|µ̂(N−|I|(ξ + F(I)) + λξ,I)|

=
∞

∏
i=1
|mD(N−i(ξ̃ + FI(J)))|

=
w

∏
i=1
|mD(N−i(ξ̃ + FI(J)))|

w+v

∏
i=w+1

|mD(N−i(ξ̃ + FI(J)))||µ̂(N−w−v(ξ̃ + FI(J)))|.

(31)

By (2) and (25), we have

N−l(θ + FI(J|l)) ∈ T ∩Z, 1 6 l 6 w. (32)

Noting ξ̃ ∈ B(θ, δ̃), we have

N−l(ξ̃ + FI(J|l)) ∈ B(N−l(θ + FI(J|l)), N−l δ̃), 1 6 l 6 w.

Thus, by (10), we obtain
w

∏
l=1
|mD(N−l(ξ̃ + FI(J|l)))| > α1. (33)

By (32), we have N−w(θ + FI(J|w)) ∈ Z(µ̂, T) ∪ (T ∩Z). Then, by (26), we have

N−l(θ + FI(J|l)) ∈ V, w + 1 6 l 6 w + v

and
N−l(ξ̃ + FI(J|l)) ∈ B(N−l(θ + FI(J|l)), N−l δ̃), w + 1 6 l 6 w + v. (34)

By (20) and (21), we obtain

|mD(N−l(ξ̃ + FI(J|l)))| >
α2

2
, w + 1 6 l 6 w + v, (35)

and
|µ̂(N−w−v(ξ̃ + FI(J)))| > α3

2
.

Together with (31), (33), and (35), the above inequality yields

|µ̂(N−|I|(ξ + F(I)) + λξ,I)| ≥ α1(
α2

2
)p+1 α3

2
≥ α̃. (36)

In combination with (14), (18), (22), (23), (30), and (36), by Lemma 2, we obtain (µ, Λ) is a
spectral pair, which is a contradiction to our hypothesis. We finish the proof of (i)⇒ (ii) in
Theorem 2.

Finally, we shall prove Theorem 2 (ii)⇒ (iii).
Since T is compact, there exists ξ∗ ∈ T such that QΛI (ξ

∗) = 0. Write

X := {ξ ∈ T : µ̂(ξ) = 0 and mD(ξ) 6= 0}.

It is clear that 0 /∈ X. Since ( 1
N D, SI) is a compatible pair, by Lemma 1, there exists an

integer j ∈ Σq with mD(
1
N (ξ∗ + FI(j))) 6= 0. Noting that

0 = QΛI (ξ
∗) = Σλ∈ΛI |µ̂(ξ

∗ + λ)|2 ≥ |mD(
1
N
(ξ∗ + FI(j)))|2|µ̂( 1

N
(ξ∗ + FI(j)))|2,

we obtain µ̂( 1
N (ξ∗ + FI(j))) = 0. By virtue of ξ∗ ∈ T, we have 1

N (ξ∗ + FI(j)) ∈ T. Hence,
X is nonempty.
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Next, we define a sequence of the subset of X by induction on n. Define X0 := {ξ∗}
and

Xn+1 := {N−n−1(ξ + FI(J)) ∈ X : N−n(ξ + FI(J|n)) ∈ Xn, J ∈ Σn+1
q }, n ≥ 0.

We have the following conclusion.
Claim 2: #Xn+1 > #Xn, n > 0.

Proof. When n = 0, by the definition of QΛI (ξ
∗), we have

0 = QΛI (ξ
∗) = ∑

j1∈Σq

|mD(N−1(ξ∗ + FI(j1)))|2 ·QΛI j1
(N−1(ξ∗ + FI(j1))).

Noting that ( 1
N D, SI) is a compatible pair, Lemma 1(iii) implies that there exists at least

one symbol j1 ∈ Σq such that |mD(N−1(ξ∗ + FI(j1)))| > 0, which implies QΛI j1
(N−1(ξ∗ +

FI(j1))) = 0. Hence, we have µ̂(N−1(ξ∗ + FI(j1))) = 0. This leads to #X1 > #X0. Suppose
Claim 2 holds for n = k− 1. Then, Xk is nonempty. For any y ∈ Xk, there exists J̃ ∈ Σk

q

such that y = N−k(ξ∗ + FI( J̃)) and

k

∏
i=1
|mD(N−i(ξ∗ + FI( J̃|i)))| > 0.

By (1) and (4), we have

0 = QΛI (ξ
∗) = ∑

J̃∈Σk
q

k

∏
i=1
|mD(N−i(ξ∗ + FI( J̃|i)))|2 ·QΛI J̃

(N−k(ξ∗ + FI( J̃))).

Then, we obtain QΛI J (N−k(ξ∗ + FI( J̃))) = 0. By a similar argument, we have

0 =QΛI J̃
(N−k(ξ∗ + FI( J̃)))

= ∑
jk+1∈Σq

|mD(N−k−1(ξ∗ + FI( J̃ jk+1)))|2 ·QΛI J̃ jk+1
(N−k−1(ξ∗ + FI( J̃ jk+1))).

Noting that ( 1
N D, SI J̃) is a compatible pair, by Lemma 1(iii), there exists at least one symbol

jk+1 ∈ Σq such that
|mD(N−k−1(ξ∗ + FI( J̃ jk+1)))| > 0.

Hence, QΛI J̃ jk+1
(N−k−1(ξ∗ + FI( J̃ jk+1))) = 0, which implies µ̂(N−k−1(ξ∗ + FI( J̃ jk+1))) = 0.

Thus, we obtain
N−k−1(ξ∗ + FI( J̃ jk+1)) ∈ Xk+1.

If we consider N−n−1(ξ∗ + FI( J̃ jn+1)) as a “next generation” of N−n(ξ∗ + FI( J̃)) for n ≥ 1,
Proposition 2 implies that different points of Xk have different “next generations”. Thus,
we obtain #Xk+1 > #Xk, which implies Claim 2 is true.

By noting the fact that X is a subset of the finite set Z(µ̂, T), there exists a positive
integer h ∈ N such that

#Xh+m = #Xh, m ≥ 1. (37)

From the above argument, it follows that for any y = N−n(ξ∗ + FI(j1 · · · jn)) ∈ Xn,
if there exists a symbols jn+1 ∈ Σq such that |mD(N−n−1(ξ∗ + FI(j1 · · · jn jn+1)))| > 0, then
y has a “next generation” N−n−1(ξ∗ + FI(j1 · · · jn jn+1)) ∈ Xn+1. Noting that ( 1

N D, SI j1···jn)
is a compatible pair, by Lemma 1 (iii), we have

Σjn+1∈Σq |mD(N−1(y + C(I J jn+1)))|2 = 1.
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In combination with (37), we conclude that for any n ≥ h, there exists only one symbol
jn+1 ∈ Σq such that |mD(N−1(y + C(I J jn+1))| 6= 0. In fact, |mD(N−1(y + C(I J jn+1))| = 1.
Then, we obtain

N−n−1(ξ∗ + FI(J jn+1)) = N−1(y + C(I J jn+1) ∈ Z.

Continuing the process, we obtain a sequence of symbols {jh+l}l>1 ⊂ Σq, such that

N−h−l(ξ∗ + FI(J jh+1 · · · jh+l)) ∈ Z, l > 1.

Define β1 := N−h(ξ∗ + FI(J)) and

βl := N−h−l+1(ξ∗ + FI(J jh+1 · · · jh+l−1)), l > 2.

It is clear βl ∈ Xh+l−1, which implies βl is nonzero. Thus, the sequence of nonzero integers
{βl}l>1 and the increasing sequence of finite words {J jh+1 · · · jh+l}l>1 with the prefix J
fulfill the request.

As a corollary of Lemma 2 and Theorem 2, we obtain another necessary and sufficient
condition for Λ to be a spectrum of µ.

Proposition 5. Let N ∈ Z with |N| > 1 and D ⊂ Z with 0 ∈ D and gcd(D) = 1. Assume that
a countable set Λ satisfies the conditions (C1), (C2), and (C3). Then, (µ, Λ) is a spectral pair if
and only if there exists a positive number c > 0 such that, for any ξ and I ∈ Σ∗, there is λξ,I ∈ ΛI
satisfying

|µ̂(N−|I|(ξ + F(I)) + λξ,I)| ≥ c.

Proof. The sufficiency follows from Lemma 2. We just prove the necessity here. Suppose
that (µ, Λ) is a spectral pair. By Propositions 3 and 4, we obtain, for any I ∈ Σ∗,

QΛI (ξ) ≡ 1, ξ ∈ R.

By a similar argument in the proof of Theorem 2 (i)⇒ (ii), for any ξ ∈ T and I ∈ T, there
exists λξ,I ∈ ΛI such that

|µ̂(N−|I|(ξ + F(I)) + λξ,I)| ≥ c.

We finish the proof.

4. An Example

In this section, we construct a self-similar measure and a set Λ(N,B) with a tree
structure. Neither the criterion of Łaba and Wang (Theorem 1) nor that of Strichartz ([24])
are applicable to this set Λ(N,B). However, we show that there does not exist an infinite
orbit {βl}l≥1 ⊂ Z \ {0} associated with the dual IFS (see Theorem 3), which implies
Λ(N,B) is a spectrum by Theorem 2.

Example 1. Let N = 6 and D = {0, 1, 2}. Write µ for the invariant measure associated with the
IFS {φ1, φ2, φ3} defined by

φ1(x) =
1
6

x, φ2(x) =
1
6
(x + 1), φ3(x) =

1
6
(x + 2).

Let B1 = {0, 8, 22}, B2 = {0, 22, 38}, B3 = {0, 8, 52}, and B4 = {0, 38, 52}. By Lemma 1,
a simple induction implies that ( 1

6 D, Bi) is a compatible pair for 1 ≤ i ≤ 4. Noting

1
6
(4 + 8) = 2,

1
6
(2 + 22) = 4,

1
6
(4 + 8) = 2,

1
6
(2 + 22) = 4, · · · ,
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1
6
(10 + 38) = 8,

1
6
(8 + 52) = 10,

1
6
(10 + 38) = 8,

1
6
(8 + 52) = 10, · · · ,

we see that both Λ(6, B1) and Λ(6, B4) have an infinite iterated nonzero integer sequence, where
Λ(N, S) := S + NS + N2S + · · · finite sum. Thus, by Theorem 1 or by Theorem 2, we conclude
that both Λ(6, B1) and Λ(6, B4) are not a spectrum of µ. We consider the following set defined by
{Bi : 1 ≤ i ≤ 4}.

Λ(N,B) := B1 + NB2 + N2B3︸ ︷︷ ︸
B2 and B3 repeat 1 time

+

N3B4 + N4B3 + N5B2 + N6B3 + N7B2︸ ︷︷ ︸
B3 and B2 repeat 2 times

+

N8B1 + N9B2 + N10B3 + N11B2 + N12B3 + N13B2 + N14B3 + N15B2 + N16B3︸ ︷︷ ︸
B2 and B3 repeat 22 times

+

N17B4 + N18B3 + N19B2 + · · ·+ N32B3 + N33B2︸ ︷︷ ︸
B3 and B2 repeat 23 times

+ · · · (finite sum).

(38)

According to Remark 1, it is clear that Theorem 1 cannot work. We shall show Λ(N,B) is a
spectrum of µ by Theorem 2 in the following Theorem 3. Then, we show that Strichartz’s criterion
(Theorem 2.8 in [24]) is not appropriate by proving the following Theorem 4.

Let An denote the set of coefficients of Nn(n ≥ 0) in (38). Given two integers l and k
with l > k ≥ 0, we write

Λl
k := Ak + NAk+1 + N2 Ak+2 + · · ·+ Nl−k−1 Al−1. (39)

We also write Λk := Λk
0 for simplicity. For three integers m, n, and k with 0 ≤ m < n < k,

we have

Λn
m + Nn−mΛk

n

=Am + NAm+1 + · · ·+ Nn−m−1 An−1 + Nn−m An + · · ·+ Nk−m−1 Ak−1

=Λk
m.

(40)

Theorem 3. Given nonzero integer sequence {βi}i≥1, then, for any integer M > 0, there exists an
integer i > M such that

βi+1 6= N−1(βi + ai),

for any ai ∈ Ai.

Proof. Suppose that there exists a positive integer M such that, for any i > M, we have
βi+1 = 6−1(βi + ai). Let T0 be the self-similar set generated by the dual IFS { 1

6 (x + s) : s ∈⋃4
j=1 Bj}.

According to the definition of the attractor T0, there exists a positive integer K such
that, for any i ≥ K, βi belongs to a neighborhood of T0, i.e.,

βi ∈ (−1,
53
5
).

Recall a fact that
⋃∞

i=0 Ai = {0, 8, 22, 38, 52}. Then, βK+1 = 6−1(βK + aK) with aK ∈⋃4
j=1 Bj implies βK ∈ {2, 4, 6, 8, 10}. By noting that βK+2 = 6−1(βK+1 + aK+1) with aK+1 ∈⋃4
j=1 Bj implies βK 6= 6, hence βK ∈ {2, 4, 8, 10}. If βK = 2, then

aK = 22, aK+1 = 8, aK+2 = 22, aK+3 = 8, · · · .
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Hence, {8, 22} ∩ Ai 6= ∅ for all i ≥ K, which contradicts that {8, 22} ∩ B4 = ∅ and B4 = Ai
for infinitely many i. Hence, βK ∈ {4, 8, 10}.

By a similar argument for other cases, i.e., βK ∈ {4, 8, 10}, we always obtain a contra-
diction. Then, we finish the proof.

The following result shows that Strichartz’s method (Theorem 2.8 in [24]) is not
applicable to the above set Λ(N,B).

Theorem 4. We have
lim inf

n→∞
inf

λ∈Λn
|mD(N−nλ)| = 0.

Proof. Obviously, we need only to prove that there exists a subsequence {λnk}k≥1 ⊂ Λnk

such that N−nk λnk tends to a zero point of mD as k tends to infinity. Let T0 be the attractor
of the IFS{Φj(x) = 1

6 (x + j) : j ∈ ⋃4
i=1 Bi}. Thus, we have T0 ⊂ [0, 52

5 ].
For k ≥ M, we write nk = 22k+2 + 2k + 1, and we take

βnk = 38 + 52× 6 + 38× 62 + 52× 63 + · · ·+ 38× 622k+1 ∈ Λnk
22k+1+2k−1

,

where the coefficients 38 and 52 appear alternately. By a simple deduction, we obtain

6−22k+1−2(10 + βnk ) =
4
3

. (41)

Take arbitrarily α ∈ Λ22k+1+2k−1, and write

λnk = α + 622k+1+2k−1βnk .

By (40), we obtain

λnk ∈ Λnk .

According to the definition of T0, we have

6−22k+1−2k+1α ∈ T0,

which implies |6−22k+1−2k+1α− 10| ≤ 52
5 . In combination with (41), we have

|6−nk λnk −
4
3
|

=|6−22k+1−2(6−22k+1−2k+1α + βnk )− 6−22k+1−2(10 + βnk )|

=|6−22k+1−2(6−22k+1−2k+1α− 10)|

66−22k+1−2 × 52
5

.

Noting the fact that mD(
4
3 ) = 0, we finish the proof.

5. Summary and Conclusions

In this paper, we introduced a tree structure with the language of symbolic space.
The natural spectrum candidate of a self-similar measure associated with an IFS is a set with
a special tree structure. We obtained three equivalent conclusions for Λ to be a spectrum
of a self-similar measure. One of them implies that there exists an infinite orbit with an
element of a nonzero integer associated with the dual IFS. An example involving a self-
similar measure and a spectrum candidate Λ(N,S) = S0 + NS1 + N2S2 · · · showed the
tree structure expands essentially the field of spectrum candidates.
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It is one of the most important problems to find all spectra of a spectral measure. We are
not sure that every spectrum of a self-similar measure holds a tree structure. On the other
hand, the self-similar µN,D measure has another description, µN,D = δ 1

N D ∗ δ 1
N2 D ∗ · · · . It is

obvious to ask if Theorem 2 holds for the Moran-type self-similar measure. As mentioned
in the Introduction, the version of Theorem 1 in higher-dimensional space has not been
obtained completely. It is the next research direction to prove Theorem 2 the for self-affine
measures.
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