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Abstract: This paper addresses the asynchronous stabilization problem of two typical stochastic
switching systems, i.e., dual switching systems and semi-Markov jump systems. By dual switching, it
means that the systems contain both deterministic and stochastic switching dynamics. New stability
criteria are firstly proposed for these two switched systems, which can well handle the asynchronous
phenomenon. The conditional expectation of Lyapunov functions is allowed to increase during some
unmatched interval to reduce the conservatism. Next, we present numerically testable asynchronous
controller design methods for the dual switching systems. The proposed method is suitable for the
situation where the asynchronous modes come from both inaccurate mode detection and time varying
delay. Meanwhile, the transition probabilities are both uncertain and partly accessible. Finally, novel
asynchronous controller design methods are proposed for the semi-Markov jump systems. The
sojourn time of the semi-Markov jump systems can have both lower and upper bounds, which could
be more practical than previous scenarios. Examples are utilized to demonstrate the effectiveness of
the proposed methods.

Keywords: asynchronous stabilization; Markov jump system; stochastic switching systems; control
system

1. Introduction

Switched systems, as a special class of hybrid systems, have received considerable
attention in the past few years [1,2]. It usually contains a family of subsystems and a
switching law that coordinates between them [3]. A variety of physical systems, such as
mechanical systems [4,5] and network control systems [6–9], can be well modeled by the
switched systems. Due to the abrupt and unpredictable phenomenons in real practice,
a stochastic switching law is usually adopted for the switched systems. Hence, research on
stochastic switching systems are of great practical importance [10,11]. A large number of
excellent results have been obtained for various aspects of stochastic switching systems,
such as stability analysis [12,13], controller design [14–17], state estimation [18,19], etc.

Markov jump systems are a typical class of stochastic switching systems [20–23].
The stochastic switching law is described by a Markov process. Numerous works have
been conducted on the Markov jump systems. For instance, [24] considered the problem of
state feedback stabilization for singular Markov jump systems by using the equivalent sets
technique. In [25], a sliding mode controller was designed for a Markov jump system with
digital data transmission. More recently, [10] considered the stabilization problem of a class
of Markov jump systems with generally uncertain transition rates. Namely, the transition
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probability is time-varying and governed by another deterministic switching law [26].
In fact, the system in [10] is a kind of dual switching systems [27]. By dual switching, it
means that the systems contain both stochastic and deterministic switching law. Many
practical systems can be described by dual switching systems. For example, consider a
serve motor system. The motor may work in different situations, such as no load, external
load, external inertia, etc. This can be represented by the deterministic switching. The fast
time-varying parameters, such as from stochastic disturbance, abrupt failure, and noise, can
be expressed as a stochastic switching sequence. Another application example is given by a
multi-loop networked control system suffered from failures. The stochastic failures of the
communication network can be expressed as a Markov chain, while the scheduling signal
selects which control loop is currently attended. Due to this hybrid feature, the controller
design problem becomes more difficult.

In contrast with Markov jump systems, semi-Markov jump systems, recently, have
drawn increasing attention [28–31]. It can be dated back to the work in Howard [32].
Compared with Markov jump systems, the sojourn time for the semi-Markov jump sys-
tems can satisfy various kinds of probability distributions, such as geometric distribution,
Weibull distribution, Bernoulli distribution etc. Hence, semi-Markov jump systems are able
to represent a much more general class of real systems. However, this feature gives the
transition probabilities in semi-Markov jump systems a “memory” property, which brings
significant difficulties to the stability analysis and controller design. In the earlier works on
semi-Markov jump systems, some special classes of probability distributions of sojourn
time were considered [33]. Recently, by introducing the semi-Markov kernel, [34] analyzed
the stability of semi-Markov jump linear systems. Then, an LMI-based design method
was proposed to compute the stabilizing controller gain. More recently, [11] considered
the stabilization issues of a family of semi-Markov jump systems with both lower and upper
bounds of sojourn time. This kind of system is more general and practical than the previous
works. In fact, by considering the lower bound of the sojourn time, less conservative results
could be obtained for controller design.

In real engineering, the system modes information for the switched systems is often
not fully accessible. This is the so-called asynchronous phenomena in the controller de-
sign [34–37]. This phenomena may be caused by the communication delay in the network
or the missing measurement of the mode detector. Therefore, it is a challenge issue to
design asynchronous controllers for the switched systems, especially stochastic switching
systems. Ref. [34] proposed a novel asynchronous controller design method for determinis-
tic switched systems with average dwell time. Ref. [38] addressed the asynchronous sliding
mode control problem for delayed singular Markov jump systems. An asynchronous H∞
control method was recently proposed in [39] for 2D Markov jump systems in Roesser
Model. However, few articles have paid attention to asynchronous stabilization of the dual
switching or semi-Markov jump systems.

Motivated by the above thoughts, this paper will conduct a further study on the
asynchronous stabilization problem of two typical stochastic switching systems, i.e., dual
switching and semi-Markov jump systems. The contributions are in the following points:

1. New stability criteria are proposed for the considered stochastic switching systems,
which can well handle the asynchronous phenomenon. It is noted that the Lya-
punov function is allowed to increase during some unmatched interval to reduce the
conservatism of controller design;

2. Numerically testable asynchronous controller design methods are presented for the
dual switching system. The proposed method is suitable for the situation where
the asynchronous phenomenon can come from both inaccurate mode detection and
time varying delay. Meanwhile, the transition probabilities are both uncertain and
partly accessible;

3. Novel asynchronous controller design methods are presented for the semi-Markov
jump systems. The sojourn time of the semi-Markov jump systems can have both
lower and upper bounds, which could be more practical than previous scenarios.
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The organization is as follows: Section 2 formulates the problem. Section 3 proposes the
stability and stabilization conditions for the considered two stochastic switching systems.
Examples are presented in Section 4. Section 5 concludes the paper. All the proofs are put
in the Appendix A.

2. Problem Formulation
2.1. Problem Formulation for Dual Switching Systems

Definition 1. Given the following dual switching systems.

x(k + 1) = Ag(k),r(k)x(k) + Bg(k),r(k)u(k) (1)

where x(k) ∈ Rn is the system state, u(k) ∈ Rm is the control input.
g(k) ∈ M1 = {1, 2, ..., M1} is a deterministic switching law. It is admissible with a average

dwell time τd [34]. Namely, it satisfies the following condition

Ng(k)(k1, k2) ≤ N0 + (k2 − k1)/τd (2)

where N0 ∈ N, τd > 0. Ng(k)(k1, k2) denotes the switching numbers of g(k) over the time
interval [k1, k2).

r(k) ∈ M2 = {1, 2, ..., M2} is a homogeneous Markov process defined in the probabil-
ity space (Ω,F , Pr) where Ω is the sample space, F is a σ-field, and Pr is the probability
measure. The evolution of r(k) is determined by the transition probability matrix defined as
Πν , [πνij], ∀i, j ∈ M2 with

πνij , Pr{r(k + 1) = j|r(k) = i, g(k) = ν} (3)

with ν ∈ M1, i, j ∈ M2. In practice, the transition probability could suffer from uncertainties and
may not be fully accessible. Suppose that

πνij ≤ πνij ≤ πνij.

Then, define the following setM2νi =MK
νi +MUK

νi ;MK
νi 6= ∅, i ∈ M2:

MK
νi = {j|πνij, πνij are known},

MUK
νi = {j|πνij, πνij, πνij are unknown}.

Finally, assume that for each g(k) = ν and r(k) = i, Aνi ∈ Rn×n and Bνi ∈ Rm×n are
known constant matrices.

In an ideal case, a mode-dependent state feedback controller can be considered for the
above system, i.e.,

uideal(k) = Kg(k),r(k)x(k).

However, due to the asynchronous phenomenon, the mode of the dual switching
system may not be detected exactly. In this case, we suppose that the actual control effort is
expressed as:

u(k) = Kg(k−d(k)),φ(k−τas)x(k) (4)

where d(k) ∈ N is an unknown time varying delay, such that 0 ≤ d(k) ≤ τas ≤ τd with
known upper bound τas ∈ N. φ(k) ∈ L = {1, 2, ..., L} ⊆ M2, such that

µνiϕ = Pr{φ(k) = ϕ|r(k) = i, g(k) = ν}. (5)

with ν ∈ M1, ϕ ∈ L, i ∈ M2.
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Remark 1. As shown in Figure 1, (4) can be interpreted as follows: first when the mode detector
detects the mode of the dual switching system, due to the missing measurement, the detected mode
may not be the exact current mode. Therefore, a stochastic variable φ(k) depending on (5) is
presented to describe this pheromone. Second, when the detector transmits the mode information
to the controller side, there exists a transmission delay τas. Note that we assume the deterministic
switching mode can be detected exactly. This may lie on that the deterministic g(k) has a larger
dwell time τd than the r(k). In fact, r(k) may change at every time instance, which implies that it
switches much more frequently than g(k). Hence, r(k) is more difficult to be detected, and there may
be some mismatch detection. Another reason is that since g(k) is deterministic. One can embed the
switching instances of g(k) to the detector in advance. This can improve the accuracy of detection.
Additionally, note that the proposed method can be extended to the case where g(k) is not detected
exactly.

Remark 2. Note that we have assumed that the stochastic switching r(k) represents the fast
time-varying conditions, while the deterministic switching g(k) represents the slowly time-varying
conditions. For example, consider the servo motor system, the motor may work in different situations,
such as no load, external load, external inertia, etc. This can be represented by the deterministic
switching. The fast time-varying parameters, which are from stochastic disturbance, abrupt failure,
and noise, can be expressed as a stochastic switching sequence. Note that the proposed method can
be easily extended to the case when g(k) switches more frequently than r(k). This can be performed
by dividing the slowly switching modes into more modes for r(k) intentionally.

Based on the above analysis, we present our first problem.

Problem 1. Propose a design method for the asynchronous controller (4), such that the dual
switching system (1) is mean square stable.

Figure 1. Asynchronous control in dual switching systems.

2.2. Problem Formulation for Semi-Markov Jump Systems

Definition 2. Given the following semi-Markov jump systems

x(k + 1) = Ar(k)x(k) + Br(k)u(k) (6)

where x(k) ∈ Rn and u(k) ∈ Rm are the same as Definition 1. r(k) ∈ M = {1, 2, ..., M}
is a semi-Markov process and the evolution of it is determined by a semi-Markov kernel (SMK),
i.e., [Θij(τ)], ∀i, j ∈ M with

Θij(τ) = Pr{Rn+1 = j, Sn = τ|Rn+1 = i}
= πijhij(τ)
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where i, j ∈ M, Rn represents the mode of system at n-th jump, Sn is the sojourn time between
(n − 1)th jump and nth jump. It is assumed that for the ith mode, its sojourn time Si

n has a
lower and upper bound like [11], i.e., τi ≤ Si

n ≤ τi, ∀n ∈ N with τi, τi being known constants.
πij , Pr{r(k + 1) = j|r(k) = i}, hij(τ) , Pr{Sn = τ|Rn = i, Rn+1 = j} is the sojourn-time
probability density function (PDF). Meanwhile, for mode i define function Hi(τ) = Pr{Sn ≤
τ|Rn = i}.

Similar to Section 2.1, the asynchronous controller for the above system is given by

u(k) = Kr(k−d(k))x(k) (7)

where d(k) ∈ N is an uncertain time varying delay, such that 0 ≤ d(k) ≤ τas ≤ τi, i ∈ M
with known upper bound τas ∈ N.

Remark 3. Note that here we only consider the asynchronous phenomena caused by transmission
delay. Meanwhile, we consider a small delay effect for the mode detection and a slowly switched law
for the semi-Markov jump systems. Hence, compared with the time delay, the sojourn time of the
Markov jump systems may be much larger. Please see Figure 2.

Definition 3. For the closed loop systems by Definition 2, if the state trajectories satisfy

lim
k→∞

E{||x(k)||2}|x(0),r(0)(Sn∈[τi ,τi ]|Rn=i)
= 0.

Then, the system is σ-error mean square stable where σ is defined as σ = ∑i∈M σi with σi ,
| ln(Hi(τi)− H(τi − 1))| denoting the approximation error of the ith mode.

According to the above analysis, we present our second problem.

Problem 2. such that the semi-Markov jump systems (6) are σ-error mean square stable.

Figure 2. Asynchronous control in semi-Markov jump systems.

3. Main Results
3.1. Asynchronous Controller Design for Dual Switching Systems

Substituting (4) into (1), we obtain the closed loop system:

x(k + 1) = (Ag(k),r(k) + Bg(k),r(k)Kg(k−τas),φ(k−τas))x(k)

= (Aνi + BνiKν̂ϕ̂)x(k)

= Aνν̂jϕ̂x(k) (8)

where ν̂, ν ∈ M1, j, ϕ̂ ∈ M2, Aνν̂jϕ̂ = Aνi + BνiKν̂ϕ̂.
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To handle the asynchronous phenomenon in (8), we first present the following stabil-
ity criterion.

Lemma 1. For the system (8), suppose there exists C1 Lyapunov functions Vg(k),r(k)(x(k)) : Rn →
R, g(k) ∈ M1, r(k) ∈ M2 such that for any ν̂, ν ∈ M1, j, j1, j2, ..., jτas−1, i ∈ M2,

K1(||x(k)||) ≤ Vνi(x(k)) ≤ K2(||x(k)||),

E[Vg(k+1),r(k+1)(x(k + 1))]|x(k),r(k)=[j,j1,...,jd(k)−1,i]

≤E[χ(k)Vg(k),r(k)(x(k))]|x(k),r(k)=[j,j1,...,jd(k)−1,i],

∀k ∈ N[kn, kn+1), (9)

Vν̂i(x(kn)) ≤ λVνi(x(kn)) (10)

where λ > 1; K1(·) and K2(·) are two K∞(·) functions; kn with n ∈ N denotes switching
instances for the signal g(k). r(k) is a vector of the previous system modes and given by

r(k) = [r(k), r(k− 1), ..., r(k− d(k))].

For k ∈ N∩ [kn, kn+1) χ(k) ∈ R satisfying

χ(k) =

{
α, i f r(k) 6= r(k− d(k)),
β, i f r(k) = r(k− d(k)),

(11)

with α > 1 and 0 < β < 1 being two positive constants.
Then, the system (8) is mean square stable for any switching signal g(k) with average

dwell time
τd > τ∗d = −[τas(ln α− ln β) + ln λ]/ ln β. (12)

Based on the above lemma, we have the following theorem in terms of matrix inequalities.

Lemma 2. The following statements (i)–(iii) satisfy

(iii)⇔ (ii)⇒ (i).

i) The system (8) is mean square stable with dwell switching signal g(k) satisfying (12).
ii) There exist matrices Tνν̂ijϕ̂ � 0, Pσj � 0 such that for any ν̂, ν ∈ M1, i, j, ϕ̂ ∈ M2,

∑
ϕ̂∈L

µν̂iϕ̂AT
νν̂jϕ̂PK

νjAνν̂jϕ̂

+ ∑
ϕ̂∈L

µν̂iϕ̂AT
νν̂jϕ̂PUK

νj Aνν̂jϕ̂ − χνν̂Pνj ≺ 0, (13)

PK
νj = ∑

l∈MK
νi

πνjl Pνl ,

PUK
νj =

1− ∑
l∈MK

νi

πνjl

 ∑
l∈MUK

νi

Pνl ,

Pν̂i � λPνi. (14)

where λ > 1 and χνν̂ is calculated as:

χνν̂ =

{
α, i f ν 6= ν̂,
β, i f ν = ν̂,

(15)
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with α > 1 and 0 < β < 1 being two positive constants.
(iii) There exist matrices Tνν̂ijϕ̂ � 0, Pσj � 0 such that for any ν̂, ν ∈ M1, i, j, ϕ̂ ∈ M2,[

−Tνν̂ijϕ̂ Aνν̂jϕ̂
? −Dν

]
≺ 0, (16)

M2

∑̂
ϕ=1

µν̂iϕ̂Tνν̂ijϕ̂ − χνν̂Pνj ≺ 0, (17)

Pν̂i � λPνj

where Dν = diag{Pν1 Pν2 ... PνM2},Aνν̂jϕ̂ = [
√

π̃νj1AT
νν̂jϕ̂Pν1

√
π̃νj2AT

νν̂jϕ̂Pν2 ...
√

π̃νjLAT
νν̂jϕ̂PνM2].

λ and χνν̂ are the same as statement (ii).
π̃νjl , l ∈ M2 is defined as:

π̃νjl =

{
πνjl , i f l ∈ MK

νi,
1−∑l∈MK

νi
πνjl , i f l ∈ MUK

νi .
(18)

Remark 4. It is noted that statements (ii) and (iii) are equivalent and can be both used to check
the stability of dual switching systems with asynchronous phenomenon and uncertain probability
transition rates. However, statements (iii) are in strict LMI and can be solved efficiently.

Based on the above result, we can compute the control gain in (4).

Theorem 1. For the system (8), if there exist matrices Tνν̂ijϕ̂ � 0, Pνj � 0, Qνi � 0, Kν̂ϕ̂, Gν̂ϕ̂,
such that for any ν̂, ν ∈ M1, i, j, ϕ̂ ∈ M2, κ ∈ [1, τas − 1],[

Tνν̂ijϕ̂ − Gν̂ϕ̂ − GT
ν̂ϕ̂ Bνν̂jϕ̂

? −Dν

]
≺ 0, (19)

[
χνν̂Pνj − 2χνν̂Qνν̂ijϕ̂ Qνν̂ijϕ̂

? −Tνi

]
≺ 0, (20)

Pνi � λPν̂i

where λ, χνν̂ and π̃νjl , l ∈ M2, ϕ̂ ∈ L are the same as Theorem 2. Dν = diag{Pν1 Pν2 ... PνM2},
Tνi = diag{Tνν̂ij1 Tνν̂ij2 ... Tνν̂ijM2},

Bνν̂jϕ̂ = [
√

π̃νj1((AνrGν̂ϕ̂)
T + (BνrKν̂ϕ̂)

T) ...
√

π̃νjM2((AνrGν̂ϕ̂)
T + (BνrKν̂ϕ̂)

T)],

Qνν̂ijϕ̂ = [
√

µν̂i1Qνν̂ijϕ̂
√

µν̂i2Qνν̂ijϕ̂ ...
√

µν̂iM2 Qνν̂ijϕ̂].

Then, there exists a set of stabilizing controllers, such that (1) is mean square stable for dwell
switching signal g(k) satisfying (12). The admissible controller can be given by:

Kν̂ϕ̂ = Kν̂ϕ̂G−1
ν̂ϕ̂ .

Remark 5. Compared with [25,37,38] the proposed stability criterion and controller design method
can be used to simultaneously handle dual switching dynamics (switching sequence g(k), r(k)),
mismatch mode detection (φ(k)), and mode transmission delay (τas). This is achieved by using a
multiple Lyapunov function technique (see the proof of Lemma 1). It is noted that the conditional
expectation of the Lyapunov function is allowed to increase from (9). This is more general than the
existing studies [25,37,38]. Meanwhile, different from [25,37,38], the condition for the expectation
of the Lyapunov function is not only dependent on the latest mode r(k− 1) but also on the latest τas
mode r(k− 1), ..., r(k− τas). This will bring more difficulties to the controller design.
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3.2. Asynchronous Controller Design for Semi-Markov Systems

Substituting (7) into (6), we obtain the closed loop system:

x(k + 1) = (Ar(k) + Br(k)Kr(k−τas))x(k)

= (Aj + BjKi)x(k)

= Aijx(k) (21)

where i, j ∈ M.
To handle the asynchronous phenomenon in (21), we first present the following

stability criterion.

Lemma 3. For the system (21), suppose there exists mode-dependent Lyapunov functions Vr(k)(x(k), k−
kn) : Rn → R, r(k) ∈ M, k ∈ N∩ [kn, kn+1 − 1], such that for ∀i, j ∈ M,

K1(||x(k)||) ≤ Vr(kn)(x(k), k− kn) ≤ K2(||x(k)||),

E[Vr(kn)(x(k), k− kn)]|x(k),r(kn)=j,r(kn−1)=i

≤E[ρr(kn)Vr(kn)(x(kn), 0)]|x(k),r(kn)=j,r(kn−1)=i

k ∈ N[kn + 1, kn+1 − 1], (22)

E[Vr(kn+1)
(x(kn+1), 0)]|x(k),r(kn)=j,r(kn−1)=i

−E[Vr(kn)(x(kn), 0)]|x(k),r(kn)=j,r(kn−1)=i ≤ K3(||x(k)||) (23)

where K1(·), K2(·), and K3(·) are all K∞(·) functions, ρr(kn) are finite positive constants.
Then, the system (21) is σ-error mean square stable.

Remark 6. Compared with [11,28], the condition for the expectation of the Lyapunov function is
not only dependent on the latest mode r(kn) but also on the r(kn−1). This will bring difficulties to
the controller design.

Based on the above lemma, we will present the stability criterion in terms of matrix
inequalities.

Lemma 4. Given matrices Pj(ζ) � 0, j ∈ M, ζ ∈ N∩ [0, τ j − 1], the closed loop system (21) is
σ-error mean square stable if

(Ai1 jAi2 j · · · Aiζ j)
T Pj(ζ)Ai1 jAi2 j · · · Aiζ j − ρjPj(0) ≺ 0, (24)

τ j

∑
τ=τ j

(Ai1 j · · · Aiτ j)
TPj(τ)Ai1 j · · · Aiτ j − Pj(0) ≺ 0, (25)

for any i, j ∈ M, ∀ζ ∈ N ∩ [1, τ j − 1], ∀iζ , {i1, i2, ..., iζ} ∈ Iij
ζ , ∀iτ , {i1, i2, ..., iτ} ∈ Iij

τ

where Pj(τ) = ∑M
l=1 Θjl(τ)Pl(0), Iij

χ with χ = ζ or τ are defined as follows.
If τas ≤ τi, i ∈ M,

Iij
χ ={iζ |i1 = i2 = ... = iχ−τas = j;

iχ−τas+1, iχ−τas+2, ..., iχ ∈ {i, j}} f or χ ≥ τas; (26)

Iij
χ = {iχ|i1, i2, ..., iχ ∈ {i, j}} f or 1 ≤ χ < τas. (27)
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If τas > τi, i ∈ M,

Iij
χ ={iζ |i1 = i2 = ... = iχ−τas = j;

iχ−τas+1, iχ−τas+2, ..., iχ−τas+τi ∈ {i, j};
iχ−τas+τi+1, ..., iχ ∈ M} f or χ ≥ τas; (28)

Iij
χ ={iχ|i1, i2, ..., iτi ∈ {i, j};

iτi+1, ..., iχ ∈ M} f or τas − τi + 1 ≤ χ < τas; (29)

Iij
χ = {iχ|i1, i2, ..., iχ ∈ M} f or 1 ≤ χ ≤ τas − τi. (30)

Specifically, if d(k) = τas, then
If τas ≤ τi, i ∈ M,

Iij
χ ={iζ |i1 = i2 = ... = iχ−τas = j;

iχ−τas+1 = iχ−τas+2 = ... = iχ = i} f or χ ≥ τas; (31)

Iij
χ = {iχ|i1, i2, ..., iχ ∈ {i, j}} f or 1 ≤ χ < τas. (32)

If τas > τi, i ∈ M,

Iij
χ ={iζ |i1 = i2 = ... = iχ−τas = j;

iχ−τas+1 = iχ−τas+2 = ... = iχ−τas+τi = i;

iχ−τas+τi+1, ..., iχ ∈ M} f or χ ≥ τas; (33)

Iij
χ ={iχ|i1 = i2 = ... = iτi = i;

iτi+1, ..., iχ ∈ M} f or τas − τi + 1 ≤ χ < τas; (34)

Iij
χ = {iχ|i1, i2, ..., iχ ∈ M} f or 1 ≤ χ ≤ τas − τi. (35)

Remark 7. According to whether τas ≤ τi or not, Iij
χ is defined separately. Meanwhile, as stated

in Remark 3, we mainly consider a small delay effect and slowly switched law for the semi-Markov
jump systems. Therefore, there is a high probability that τas ≤ τi, i ∈ M. Thus, (26)–(27) and
(31)–(32) are applicable.

The above result can be converted into strict LMI form.

Lemma 5. Given matrices Φj(ζ, p) � 0, Ψj(τ, q) � 0, Tijτ � 0 where i, j ∈ M; ζ, p, τ, q ∈ N
are integers lying in intervals [0, τ j − 1], [0, ζ], [τ j, τ j] and [0, τ], respectively. Then, the closed
loop system (21) is σ-error mean square stable if[

−Φj(ζ, p) AT
ip+1 jΦj(ζ, p + 1)

? −Φj(ζ, p + 1)

]
≺ 0, (36)

Φj(ζ, 0)− ρjΦj(0, 0) ≺ 0, (37)[
−Ψj(τ, τ − 1) A(τ)

? −Φ

]
≺ 0, (38)[

−Ψj(τ, q) AT
iq+1 jΨj(τ, q + 1)

? −Ψj(τ, q + 1)

]
≺ 0, (39)
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Ψj(τ, 0)− Tijτ ≺ 0, (40)

τ j

∑
τ=τ j

Tijτ −Φj(0, 0) ≺ 0 (41)

for any i, j ∈ M, ∀ζ, p, τ, q in intervals [0, τ j − 1], [0, ζ − 1], [τ j, τ j] and [0, τ − 2], respectively,

∀iζ , {i1, i2, ..., iζ} ∈ I j
ζ , ∀iτ , {i1, i2, ..., iτ} ∈ I j

τ where Iij
χ with χ = ζ or τ are defined as

Lemma 4,
Φ = diag

{
Φ1(0, 0) Φ2(0, 0) ... ΦM(0, 0)

}
,

A(τ) = [
√

Θj1(τ)AT
jjΨ1(0, 0) ...

√
ΘjM(τ)AT

jjΨM(0, 0)].

Based on the above lemma, we can compute the control gain in (7).

Theorem 2. Given matrices Φ̃j(ζ, p) � 0, Ψ̃j(ζ, q) � 0, T̃ijτ � 0, Riζ � 0, Kj, Gj where
i, j ∈ M; ζ, p, τ, q ∈ N are integers lying in intervals [0, τ j − 1], [0, ζ], [τ j, τ j] and [0, τ],
respectively. Suppose[

Φ̃j(ζ, p)− Gip+1 (AjGip+1)
T + (BjKip+1)

T

? −Φ̃j(κ, p + 1)

]
≺ 0, (42)

Φ̃j(0, 0)− ρjΦ̃j(ζ, 0) ≺ 0, (43)[
Ψ̃j(τ, τ − 1)− Gj − GT

j B(τ)
? −Φ̃

]
≺ 0, (44)

[
Ψ̃j(τ, q)− Giq+1 (AjGiq+1)

T + (BjKiq+1)
T

? −Ψ̃j(τ, q + 1)

]
≺ 0, (45)

T̃ijτ − Ψ̃j(τ, 0) ≺ 0, (46)[
Φ̃j(0, 0)− 2Qijτ Qijτ

? −T̃ i

]
≺ 0 (47)

hold for any i, j ∈ M, ∀ζ, p, τ, q in intervals [0, τ j − 1], [0, ζ − 1], [τ j, τ j] and [0, τ − 2], respec-

tively, ∀iζ , {i1, i2, ..., iζ} ∈ I j
ζ , ∀iτ , {i1, i2, ..., iτ} ∈ I j

τ where Iij
χ with χ = ζ or τ are defined

as Lemma 4,
Gl = Gl + GT

l (l ∈ M)

B(τ) = [
√

Θj1(τ)Vj

√
Θj2(τ)Vj ...

√
ΘjM(τ)Vj],

Vj = (AjGj)
T + (BjKj)

T ,

Qijτ = [Qijτ Qijτ ..., Qijτ ],

T̃ i = diag
{

T̃ijτ j
T̃ij,τ j+1 . . . T̃ijτ j

}
.

Then, there exists a set of stabilizing controllers, such that (21) is σ-error mean square stable.
The admissible controller can be given by:

Kj = KjG−1
j .

Remark 8. In contrast with the methods in [11,28–30], the proposed method has three distinguish-
ing features: (1) asynchronous stabilizing controllers are designed which fully consider the effect
of mode transmission delay. This can be seen from r(k− d(k)) in (7), which is different from the
controller in [11,28–30]; (2) it is suitable for the semi-Markov jump systems, of which the sojourn
time can have both lower and upper bounds (τi, τi in semi-Markov kernel). Note that, in order to
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handle both the sojourn time and the time delay, we have introduced the definition Iij
χ in Lemma

4. This is the key for tackle this issue; (3) some auxiliary matrix variables Tijτ are introduced to
transform (24)–(25) into (36)–(41) and (42)–(47). This may result in a simpler controller design
criterion in terms of strict LMI.

Remark 9. We have only considered the stabilization problem for semi-Markov jump systems.
However, the proposed method can be extended to solve the controller design problem under per-
formance constraints, such as mixed H∞ and passivity [3,4]. Nevertheless, note that the state
equation of the semi-Markov jump system needs to be iterated from time instant k to time k + τi to
describe the relationship between Lyapunov functions at time instant k to time k + τi. In this case,
the external disturbance terms in the system may bring some difficulties.

4. Examples

Example 1. Consider a DC motor system described in [37]. It is expressed by Definition 1.
The DC motor is driven by the traditional speed loop controller [6,40]. The state variables x1,
x2 represent the velocity and current of the DC motor, respectively.g(k) has two modes, which
represent that the DC motors are working in two conditions with different loads. r(k) has three
modes, which corresponds to (1) 0% of rotary (normal mode); (2) +20% of rotary for improving the
power (low mode); and (3) −40% of rotary for decreasing the power (medium mode). The initial
conditions are selected as x(0) = [1, 2, 1] and r(0) is randomly generated from the setM2. The
system matrices in (1) are given by: A11 =[−0.4799 5.1546 0; −3.8162 14.4732 0; 0.1399 0
−0.9255], A12 =[−1.6026 9.1632 0; −0.5918 3.0317 0; 0.0740 0 −0.4338], A13 =[0.6346 0.9178
0; −0.5056 2.4811 0; 0.3865 0 0.0982]; A21 =[−0.7 5 0; −4 14 0; 0.2 0 −1.5], A12 =[−1.5 9 0;
−0.6 3 0; 0.1 0 −0.4], A13 =[0.5 1 0; −0.5 2.5 0; 0.4 0 0.1]; B21 = B11 = [5.8705 15.5010 0]T ,
B22 = B12 = [10.2951 2.2282 0]T , and B23 = B13 = [0.7874 1.5302 0]T .

The transition probability matrices are given by:

Π1 = [0 0.4 0.6; 0.5 0 0.5; 0.7 0.3 0], Π2 = [0 0.3 0.7; 0.4 0 0.6; 0.9 0.1 0].

We also assume that these two matrices are not known exactly. The accessible informa-
tion about these two matrices are as follows:

Π1 =

 0 0.4 0.6
[0.5, 0.6] 0 ?
[0.7, 0.8] ? 0

, Π2 =

 0 [0.3, 0.4] ?
[0.4, 0.5] 0 ?

0.9 ? ?

.

The switching signal g(k) and r(k) are shown in Figure 3. It can be seen that g(k) has
an average dwell time τd = 7 and r(k) is a stochastic process. Hence, the considered system
contains both deterministic and stochastic dynamics.

In order to stabilize the DC motor system, the asynchronous controller (4) is utilized.
Let α1 = α2 = α3 = 1.1, β1 = 0.92, β2 = 0.90, β3 = 0.95, λ1 = 1.1, λ2 = 1.2, λ3 =
1.1, τas = 2 in Theorem 1. It can be verified that for this parameters 6.5 = τ∗d < τd.
Then, we can compute the mode-dependent control gain by solving the LMI in (19) and
(20). The solutions of the LMI are given by K11 = [−0.1036 − 0.4025 0.2260]T × 10−10,

K21 = [−0.1040 − 0.3813 0.2419]T × 10−10, G11 =

 0.2635 0.2114 −0.0976
0.1850 0.5070 −0.2749
−0.0570 −0.2487 0.8192

 ×
10−10, G21 =

 0.2612 0.1933 −0.0914
0.1842 0.4801 −0.2892
−0.0530 −0.2347 0.8201

× 10−10. Other modes are similar. The control

gains are given as K11 = [0.2313 − 0.8876 0.0056]T , K21 = [0.2244 − 0.8798 0.0098]T , K12 =
[0.2306 − 0.8873 0.0064]T , K22 = [0.2244 − 0.8796 0.0098]T , K13 = [0.2306 − 0.8873 0.0064]T ,
and K23 = [0.2229 − 0.8802 0.0094]T.
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By applying the proposed controller for the DC motor system, the state responses
and control effort are shown in Figures 4 and 5. We have run the simulations 100 times.
The gray lines in Figures 4 and 5 represent the trajectories of x1(k), x2(k), x3(k), and u(k)
for each simulation. The blue line is the average value of ||x(k)||2 and ||u(k)||2 for this
100 simulations which represent their expectation. It can be seen that both the expectation
and trajectories converge to zero asymptotically. This verifies the validity of Theorem 2.
We can also see that the controller has switched according to a different switching mode.
The control effort is a piecewise signal and also finally converges to zero. This implies
that the proposed controller can tolerate the mode transmission delay. In order to further
show the effectiveness of the proposed method, we take the control gain from reference [11]
where no delay and mismatch mode. In this case, K11 = [0.2463 − 0.9332 − 5.7399 ·
10−3]T , K12 = [0.1431 − 0.8488 − 1.9401 · 10−3]T , K13 = [0.0911 − 1.5242 1.7233 · 10−3]T ,
K21 = [0.2463 − 0.9332 − 5.7399 · 10−3]T , K22 = [0.1431 − 0.8488 − 1.9401 · 10−3]T , and
K23 = [0.0911 − 1.5242 1.7233 · 10−3]T . It can be seen from Figures 6 and 7 that the controller
cannot stabilize the considered system.
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Figure 3. Switching signals g(k) and r(k).
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Figure 4. State responses x1 and x2 for dual switching systems.
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Figure 5. State responses x3 and control effort u for dual switching systems.
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Figure 6. Performance comparison for state responses x1 and x2.
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Figure 7. Performance comparison for state responses x3 and u.

Example 2. Consider the system studied in [28], which has three distinct modes. This example
can be used to represent some mechatronic system with possible failures in both structure and
actuator. The three modes represent that the system suffers from different failures. The initial
conditions are selected as x(0) = [1, 2] and r(0) is randomly generated from the set M. The
system matrices in (1) are given by: A1 =[−0.36 0.69; −1.81 1.97], A2 =[0.34 0.62; −0.37 1.36],
A3 =[0.34 0.7; −0.37 1.36], B1 = [−0.1 0.1]T , B2 = [0.1 0.1]T , B3 = [0 0.1]T . We assume that
the system dynamics are subjected to a semi-Markov jump process. The transition probability matrix
is expressed as Π = [0 0.4 0.6; 0.5 0 0.5; 0.7 0.3 0]. The sojourn-time PDF [hij(τ)], ∀i, j ∈ M
is given by h11(τ) = h22(τ) = h33(τ) = 0, h12(τ) = 0.4τ−30.67−τ4!

(7−τ)!(τ−3)! , h13(τ) = 0.3τ−30.77−τ4!
(7−τ)!(τ−3)! ,
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h21(τ) = 0.9(τ−3)2.2 − 0.9(τ−2)2.2
, h23(τ) = 0.5τ−30.67−τ4!

(7−τ)!(τ−3)! , h31(τ) = 0.4(τ−3)1.3 − 0.4(τ−2)1.3
,

and h32(τ) = 0.3(τ−3)0.9 − 0.3(τ−2)0.9
. The PDF contain both Weibull and Bernoulli distributions.

The switching signal r(k) and the sojourn time Sn for each mode is shown in Figure 8.
It can be seen that both the mode Rn and the sojourn time Sn are stochastic processes. This
implies that r(k) is a semi-Markov jump process.

In order to stabilize the considered system, the asynchronous controller (7) is utilized.
Note that Theorem 2 in fact provides a set of LMIs. By solving the LMIs, one can obtain the
solution Gj. Then, the controller can be determined by Kj = KjG−1

j . We suppose that the
controller suffers from a time varying mode transmission delay d(k). Let ρ1 = ρ2 = ρ3 = 2,
τ1 = τ2 = τ3 = 3, τ1 = τ2 = τ3 = 7, τas = 2 in Theorem 2. Due to τas ≤ τi, (26)-
(27) are used for the set Iij

χ. Then, we can compute the mode-dependent control gain
by solving the LMI in (42)–(47): K1 = [7.2934 − 9.9766]T , K2 = [7.5367 − 10.4652]T ,
K3 = [7.7874 − 10.7313]T .

The computed controller is utilized for the DC motor system. In total, 100 simulations
have been conducted. As shown in Figure 9, all the trajectories have reached zero, including
the state response x(k) for each simulation and E||x(k)||2. This shows the effectiveness of
the proposed method.
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Figure 8. Switching signal r(k) and sojourn time Sn.
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Figure 9. State responses x1 and x2 for semi-Markov jump systems.

Example 3. We finally consider a DC system as Example 1 with three distinct modes. The system
dynamics is also subjected to a semi-Markov jump process. The transition probability matrix is
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expressed as Π = [0 0.4 0.6; 0.5 0 0.5; 0.7 0.3 0]. The sojourn-time PDF [ fij(τ)], ∀i, j ∈ M is

given by h11(τ) = h22(τ) = h33(τ) = 0, h12(τ) = 0.4τ−30.610−τ7!
(10−τ)!(τ−3)! , h13(τ) = 0.3τ−30.710−τ7!

(10−τ)!(τ−3)! ,

h21(τ) = 0.9(τ−1)2.2 − 0.9τ2.2
, h23(τ) = 0.5τ−10.55−τ4!

(5−τ)!(τ−1)! , h31(τ) = 0.4(τ−3)1.3 − 0.4(τ−2)1.3
, and

h32(τ) = 0.3(τ−3)0.9 − 0.3(τ−2)0.9
.

In order to stabilize the DC motor system, the asynchronous controller (7) is adopted.
We suppose that the controller suffers from a time constant delay τas = 2. Let ρ1 = ρ2 =
ρ3 = 2, τ1 = τ3 = 4, τ1 = τ3 = 7, τ2 = 1, τ2 = 5 in Theorem 2. Due to τas > τ2,
(33)–(35) are used for the set Iij

χ. Then, the mode-dependent control gain from LMI in
(42)–(47) are given by: K1 = [0.2493 − 0.8857 0.0076]T , K2 = [0.2408 − 0.8781 0.0089]T ,
and K3 = [0.2446 − 0.8832 0.0091]T . The computed controller is utilized for the DC motor
system. It can be seen from Figures 10 and11 that the state response x(k) in every simulation
and E||x(k)||2 have all reached zero. This verifies the validity of the proposed controller.
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Figure 10. State responses x1 and x2 for semi-Markov jump systems.
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Figure 11. State response x3 and control effort u for semi-Markov jump systems.

5. Conclusions

This paper focuses on the study of asynchronous stabilization of discrete time Markov
jump systems. Two classes of typical Markov jump systems are considered, i.e., dual
switching systems and semi-Markov jump systems. New stability criteria and numerically
testable controller design methods are proposed for these two stochastic switching systems,
which can well handle the asynchronous phenomenon. Future works may include extend-
ing the proposed results for more complex switched systems. Another interesting research
line is considering the control of semi-Markov jump systems under cyber-attacks [41,42].
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The additional attacks may further complex the structure of the controller, which is a
challenging issue.
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Appendix A.

Appendix A.1. Proof of Lemma 1

Proof. First, according to the property of Markov process, we have

E[Vg(k+1),r(k+1)(x(k + 1))]|x(k),r(k)=[j,j1,...,jd(k)−1,i]

=E[Vg(k+1),r(k+1)(x(k + 1))]|Υ(k)

where Υ(k) = {x(0), r(0), x(1), r(1), ..., x(k− d(k)), r(k− d(k)), ..., x(k), r(k)}.
It follows that

E{E[Vg(k+1),r(k+1)(x(k + 1))]|Υ(k)}|x(0),r(0)
=E[Vg(k+1),r(k+1)(x(k + 1))]|x(0),r(0)

where x(0), r(0) are given constants.
Therefore, (9) implies that

E[Vg(k+1),r(k+1)(x(k + 1))] ≤ E[χ(k)Vg(k),r(k)(x(k))]

where E[·] , E[·]|x(0),r(0).
Then, during the time interval [kn, kn+1), we have

E[Vg(k),r(k)(x(k))] ≤β|Is |α|Ias |E[Vg(kn),r(kn)(x(kn))]

≤βk−kl

(
α

β

)τas

E[Vg(kn),r(kn)(x(kn))]

where Is and Ias denote the unions of time intervals that r(k) = r(k − d(k)) and r(k) 6=
r(k− d(k)) respectively. |Is| and |Ias| denote the total lengths of intervals Is and Ias.

Next, by (10)–(11) and (2), we have

E[Vg(k),r(k)(x(k))]

≤βk
(

α

β

)Nσ(0,k)τas

λNσ(0,k)E[Vg(0),r(0)(x(0))].

≤
(

α

β

)N0τas

λN0 · e(ln β+ τas
τd

ln
(

α
β

)
+ ln λ

τd
)kE[Vg(0),r(0)(x(0))].
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Hence, if (12) holds, we can conclude that E[Vg(k),r(k)(x(k))] → 0 as k → +∞. This
completes the proof.

Appendix A.2. Proof of Lemma 2

Proof. (ii)⇒ (i).
Given a time interval k ∈ [kn, kn+1) and consider the following mode-dependent

Lyapunov function
Vνi = xT(k)Pνix(k).

As shown in Figure 1, we first consider the case when r(k) 6= r(k− d(k)).
Hence, we can compute the expectation in (9),

E[χ(k)Vg(k),r(k)(x(k))]|x(k),r(k)=[j,j1,...,jd(k)−1,i]

=xT(k)αPνjx(k). (A1)

E[Vg(k+1),r(k+1)(x(k + 1))]|x(k),r(k)=[j,j1,...,jd(k)−1,i]

=E[xT(k)AT
νν̂jϕ̂Pν,r(k+1)Aνν̂jϕ̂x(k)]|x(k),r(k).

Noting the asynchronous behavior described by (5), we have

E[Vg(k+1),r(k+1)(x(k + 1))]|x(k),r(k)

=xT(k)

(
M2

∑̂
ϕ=1

µν̂iϕ̂AT
νν̂jϕ̂PνjAνν̂jϕ̂

)
x(k). (A2)

where Pνj = ∑l∈M πνjl Pνl .
According to whether or not the bounds of πνjl are known or not, (A2) can be ex-

pressed as

M2

∑̂
ϕ=1

µν̂iϕ̂AT
νν̂jϕ̂PνjAνν̂jϕ̂

= ∑
ϕ̂∈L

µν̂iϕ̂AT
νν̂jϕ̂

 ∑
l∈MK

νi

πνjl Pνl

Aνν̂jϕ̂

+ ∑
ϕ̂∈L

µν̂iϕ̂AT
νν̂jϕ̂

 ∑
l∈MUK

νi

πνjl Pνl

Aνν̂jϕ̂ (A3)

Note that for l ∈ MK
νi and l ∈ MUK

νi , we have:

πνjl ≤ πνjl ,∀l ∈ MK
νi

πνjl ≤ 1− ∑
l∈MK

νi

πνjl ,∀l ∈ MUK
νi .

Hence, we can conclude that

M2

∑̂
ϕ=1

µν̂iϕ̂AT
νν̂jϕ̂PνjAνν̂jϕ̂

≺
M2

∑̂
ϕ=1

µν̂iϕ̂AT
νν̂jϕ̂PK

νjAνν̂jϕ̂ +
M2

∑̂
ϕ=1

µν̂iϕ̂AT
νν̂jϕ̂PUK

νj Aνν̂jϕ̂
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It follows that (13)⇒(9) if r(k) 6= r(k− d(k)).
By the same reasoning, we have (13)⇒(9) if r(k) = r(k − d(k)). Meanwhile, it is

obvious that (14)⇒(10). Hence, we show that if statement i) is true, then the system (8)
is mean square stable with dwell switching signal g(k) satisfying (12). This completes
the proof.

(iii)⇔ (ii).
First note that (A3) is equivalent to the following matrix inequalities.

AT
νν̂jϕ̂P̃σjAνν̂jϕ̂ ≺ Tνν̂ijϕ̂, (A4)

M2

∑̂
ϕ=1

µν̂iϕ̂Tνν̂ijϕ̂ − χνν̂Pνj ≺ 0. (A5)

where P̃νj = ∑l∈M π̃νjl Pνl .
Using the definition π̃νjl in (18), we have (A4), (A5)⇒(13). For (13)⇒(A4), (A5) since

(A3) holds, then there must exists a small constant ε, such that

M2

∑̂
ϕ=1

µν̂iϕ̂

(
AT

νν̂jϕ̂P̃σjAνν̂jϕ̂ + εI
)
− χνν̂Pνj) ≺ 0.

Let Tνν̂ijϕ̂ = AT
νν̂jϕ̂P̃σjAνν̂jϕ̂ + εI, we have (A4), (A5).

Next, by using Schur complement, (A4) is equivalent to (16). This completes the
proof.

Appendix A.3. Proof of Theorem 1

Proof. First, performing a congruence transformation to (16) by diag{GT
ν̂ϕ̂ Dν} with Dν ,

D−1
ν and using the inequalities−GT

ν̂ϕ̂Tνν̂ijϕ̂Gν̂ϕ̂ ≺ T−1
νν̂ijϕ̂−Gν̂ϕ̂−Gν̂ϕ̂, we can have (19) with

Tνν̂ijϕ̂ , T−1
νν̂ijϕ̂, Kν̂ϕ̂ , Kν̂ϕ̂Gν̂ϕ̂. Next, performing a congruence transformation to (17) by

Qνijϕ̂ and using the inequalities −Qνν̂ijϕ̂PνjQνν̂ijϕ̂ ≺ P−1
νj − 2Qνν̂ijϕ̂, we have

Qνν̂ijϕ̂Tνν̂ijϕ̂Qνν̂ijϕ̂ + χνν̂P−1
νj − 2χνν̂Qνν̂ijϕ̂ ≺ 0. (A6)

Then, by Schur complement and letting Pνj = P−1
νj , (A6)⇒(20). This completes the

proof.

Appendix A.4. Proof of Lemma 3

Proof. The proof is similar to the proof of Lemma 1. Note that, we have

E[Vr(kn)(x(k), k− kn)]|x(k),r(kn)=j,r(kn−1)=i

=E[Vr(kn)(x(k), k− kn)]|Υ(k)

E{E[Vr(kn)(x(k), k− kn)]|Υ(k)}|x(0),r(0)
=E[Vr(kn)(x(k), k− kn)]|x(0),r(0)

where Υ(k) = {x(0), r(0), ..., x(kn−1), r(kn−1), x(kn), r(kn)}.
Therefore, from (22) and (23), we can conclude that

E[Vr(kn)(x(k), k− kn)]|x(0),r(0)
≤E[ρr(kn)Vr(kn)(x(kn), 0)]|x(0),r(0)

k ∈ N[kn + 1, kn+1 − 1],
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E[Vr(kn+1)
(x(kn+1), 0)]|x(0),r(0)

−E[Vr(kn)(x(kn), 0)]|x(0),r(0) ≤ K3(||x(k)||).

This can complete the proof.

Appendix A.5. Proof of Lemma 4

Proof. Consider the following mode-dependent Lyapunov function

V(x(k), r(k), ζ) = xT(k)Pr(k)(ζ)x(k)

where ζ = k − kn. Meanwhile, let the system mode be kn−1 = i, kn = j, kn+1 = l with
i, j, l ∈ M. The proof is divided into the following cases.

Case 1). d(k) is time invariant and τas > τi.
In this case, (33)–(35) will be used for set Iij

χ. Then, suppose ζ ∈ N ∩ [τas + 1, τ j − 1].
From Figure 2, it can be seen that during time interval ζ ∈ [1, τas], the proposed state
feedback controller (7) is asynchronous with the systems mode. Meanwhile, r(k− τas) =
i when ζ ∈ [τas − τi + 1, τas]. At time interval ζ ∈ [τas + 1, τ j − 1], the controller is
synchronous with the system mode, hence, i.e., r(k− τas) = j. Therefore, the expectation in
(22) can be computed as:

E[Vr(kn)(x(k), ζ)]|x(k),r(kn)=j,r(kn−1)=i

=xT(k)
(
(Ai1 jAi2 j · · · Aiζ j)

T Pj(ζ)Ai1 jAi2 j · · · Aiζ j

)
x(k),

E[ρr(kn)Vr(kn)(x(kn), 0)]|x(k),r(kn)=j,r(kn−1)=i

=xT(k)ρjPj(0)x(k).

where iζ , {i1, i2, ..., iζ} ∈ Iij
ζ . Based on the above analysis, (24)⇒(22).

Similarly, we have (24)⇒(22) when ζ ∈ [τas − τi + 1, τas] and ζ ∈ [1, τas − τi]. In these
two situations (34) and (35) will be used for the set Iij

χ, respectively.
Next, denote the sojourn time kn+1 − kn by τ. Similar to the above analysis, we have:

E[Vr(kn+1)
(x(kn+1), 0)]|x(k),r(kn)=j,r(kn−1)=i

=E[xT(Ai1 j · · · Aiτ j)
T Pl(0)Ai1 j · · · Aiτ jx]|x(k),r(kn),r(kn−1)

=xT(k)
τ j

∑
τ=τ j

(Ai1 jAi2 j · · · Aiτ j)
TPj(τ)Ai1 jAi2 j · · · Aiτ jx(k)

where iτ , {i1, i2, ..., iτ} ∈ Iij
τ . Note that (33), (34), and (35) will be used for the set Iij

τ when
τ ∈ [τas + 1, τ j], τ ∈ [τas − τi + 1, τas] and τ ∈ [τ j, τas − τi] separately. Hence, (25)⇒(23).

Case 2). d(k) is time invariant and τas ≤ τi.
In this case, (31)-(32) will be used for set Iij

χ. Then, suppose ζ ∈ N ∩ [τas + 1, τ j − 1].
From Figure 2, the controller is asynchronous with the system mode when ζ ∈ [1, τas],
i.e., Kr(k−τas) = Ki, and synchronous when ζ ∈ [τas + 1, τ j − 1], i.e., Kr(k−τas) = Kj. There-
fore, we have

E[Vr(kn)(x(k), ζ)]|x(k),r(kn)=j,r(kn−1)=i

=xT(k)
(
Aτas

ij
T
(
Aζ−τas

jj

)
T Pj(ζ)A

ζ−τas
jj Aτas

ij

)
x(k).

Thus, we can conclude that (24) implies (22).
Similarly, we can show (24)⇒(22) when ζ ∈ [1, τas], and (25)⇒(23).
Case 3). d(k) is time varying.
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The proof in this case follows the line of the above two cases. Note that since d(k)
is time-varying, then Iij

χ will be defined by (28)–(30) when τas > τi, and (26)–(27) when
τas ≤ τi.

Appendix A.6. Proof of Lemma 5

Proof. By using Schur complement, (36) and (37) implies

Aip+1 j
TΦj(ζ, p + 1)Aip+1 j −Φj(ζ, p) ≺ 0,

1 ≤ p ≤ ζ − 1;

Φj(ζ, 0)− ρjΦj(0, 0) ≺ 0.

where ∀iζ , {i1, i2, ..., iζ} ∈ I j
ζ .

It follows that

(Ai1 j · · · Aiζ j)
TΦj(ζ, ζ)Ai1 j · · · Aiζ j − ρjΦj(0, 0) ≺ 0. (A7)

By letting Φj(ζ, ζ) = Pj(ζ), Φj(0, 0) = Pj(0), we have (36)–(37)⇒(24).
Next, we will show (38)–(41)⇒(25). First note that (25) is equivalent to(

Ai1 j · · · Aiτ j
)TPj(τ)Ai1 j · · · Aiτ j − Tijτ ≺ 0, (A8)

τa

∑
τ=τa

Tijτ − Pj(0) ≺ 0. (A9)

This can be proved by the same reasoning in the proof of (iii)⇔ (ii) in Theorem 2.
On the other hand, by Schur complement, (38)–(40) are equivalent to

AT
iq+1 jΨj(τ, q + 1)Aiq+1 j −Ψj(τ, q) ≺ 0,

τas ≤ q ≤ τ − 1,

Ψj(τ, 0)− Tijτ ≺ 0

where Ψj(τ, τ) = Pj(τ), Φj(0, 0) = Pj(0). It follows that (38)–(40)⇒(A8). Additionally, note
that (41)⇔(A9). This shows that (38)–(41)⇒(25). This completes the proof.

Appendix A.7. Proof of Theorem 2

Proof. First, performing a congruence transformation to (36) by diag{GT
ip+1

Φ̃j(ζ, p + 1)}
with Φ̃j(ζ, p+ 1) , Φ−1

j (ζ, p+ 1) and using the inequalities−GT
ip+1

Φj(ζ, p)Gip+1 ≺ Φ−1
j (ζ, p)−

Gip+1 − GT
ip+1

, we can have (42) with Φ̃j(ζ, p) = Φ−1
j (ζ, p), Kj = KjGj.

Next, we perform a congruence transformation to (38), (39) and (41) by diag{GT
j Φ̃},

diag{GT
iq+1

Ψ̃j(τ, q+ 1)} and Qiτ , respectively, where Φ̃ = Φ−1(ζ, p), Ψ̃j(τ, q+ 1) = Ψj(τ, q+

1). Then, use the inequalities−GT
j Ψj(τ, τ− 1)Gj ≺ Ψ̃j(τ, τ− 1)−Gj−GT

j ,−GT
iq+1

Ψj(τ, q)Giq+1 ≺
Ψ̃j(τ, q)− Giq+1 − GT

iq+1
and −QijτΦj(0, 0)Qijτ ≺ Φ̃j(0, 0)− 2Qijτ . We have (44)–(47)⇒(38)–

(41). This completes the proof.
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