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Abstract: The ensemble transfer entropy (TEensemble) refers to the transfer entropy estimated from
an ensemble of realizations. Due to its time-resolved analysis, it is adapted to analyze the dynamic
interaction between brain regions. However, in the traditional TEensemble, multiple sets of surrogate
data should be used to construct the null hypothesis distribution, which dramatically increases the
computational complexity. To reduce the computational cost, a fast, efficient TEensemble with a simple
statistical test method is proposed here, in which just one set of surrogate data is involved. To validate
the improved efficiency, the simulated neural signals are used to compare the characteristics of the
novel TEensemble with those of the traditional TEensemble. The results show that the time consumption
is reduced by two or three magnitudes in the novel TEensemble. Importantly, the proposed TEensemble

could accurately track the dynamic interaction process and detect the strength and the direction
of interaction robustly even in the presence of moderate noises. The novel TEensemble reaches its
steady state with the increased samples, which is slower than the traditional method. Furthermore,
the effectiveness of the novel TEensemble was verified in the actual neural signals. Accordingly, the
TEensemble proposed in this work may provide a suitable way to investigate the dynamic interactions
between brain regions.

Keywords: ensemble transfer entropy (TEensemble); ensemble local transfer entropy (teensemble);
dynamic interaction; statistical test method

1. Introduction

The brain is a highly complex system [1,2]. Multiple interconnected brain regions with
specific information processing capabilities interact to support the cognitive tasks [3,4],
and the strength and the direction of interactions change dynamically [5,6]. For example,
the dynamic interactions between the hippocampus (Hp) and posterior parietal cortex
(PPC) have been detected in mental arithmetic tasks [5]. The strength of the information
flow from the Hp to the dorsal PPC reaches the maximum during mental arithmetic. The
maximum value from the Hp to the central PPC is found in verbal memory recall. In rodent
spatial associative tasks, the information flows from Hp to the prefrontal cortex (PFC), but
the direction reverses in the sampling period [6]. Therefore, a complete description of these
interactions, in terms of both strength and directionality, is necessary to reveal the function
and the cooperative work of brain regions.

As a measurement of the information interaction between two signals, transfer entropy
(TE) is model-free and does not assume any signal or interaction structure [7,8]. Therefore,
it has been widely used in neuroscience [9–12]. However, TE is the average of information
transfer over time. Th application of a sliding window is the most common way to
explore the dynamic interaction process within and between brain regions. The neural
signals should be divided into continuous (non)overlapping segments [13] or be separated
into different epochs according to the task [14,15]; then, TE for each segment (epoch) is
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calculated. To ensure enough samples for TE estimation, the choice of window length is
usually a compromise between the estimation precision and the temporal resolution of the
dynamic process. The larger the time window, the lower the resolution.

To improve the temporal resolution, a technique (called the ensemble method) takes ad-
vantage of multiple realizations of the dynamic process [16], such as numerous recordings
of evoked or event-related potentials/fields [17,18]. By estimating TE from the ensemble
members instead of individual trials [19], it allows for a time-resolved analysis of the
interaction dynamics. Based on this technique, Gómez-Herrero and his colleagues pro-
posed a data-efficient estimator of probability densities to calculate TE from an ensemble
of realizations [20]. Additionally, Wollstadt [21] combined the ensemble method with the
TE self-prediction optimality (TESPO) estimator, which was introduced by Wibral [22] to
achieve the optimal estimation of delayed information transfer in an ensemble of indepen-
dent repetition trials. In the following, we use the ensemble transfer entropy (TEensemble)
to indicate the transfer entropy estimated from an ensemble of realizations with the TESPO
estimator. Instead of TE estimation for each trial, a single TEensemble metric value can
be accurately estimated from the ensemble members. TEensemble is not only suitable for
short-time data but also for non-stationary signals, which are commonly observed in neuro-
science. So, TEensemble can be used for analyzing the dynamic interaction processes between
neural signals.

However, the TEensemble algorithm is still at the theoretical level and cannot be applied
to the actual neural signals due to its enormous amount of calculation [21]. Firstly, to
estimate the TEensemble metric value accurately, a mutual information estimation method
proposed by Kraskov, Stogbauer, and Grassberger (KSG) is used [23]. The KSG estimator
spends most of the CPU time searching for neighbors, especially in high-dimensional
spaces. The complexity of this algorithm is O((n× N)2), where n and N are the number of
independent repetitions and the sample size in a trial, respectively. The computational com-
plexity is much larger than the methods based on partitioning the observation space (the
complexity is O(n× N)) [24]. Secondly, constructing the null hypothesis distribution in
TEensemble leads to the calculation increasing several orders of magnitude. In TE, the null hy-
pothesis distribution can be constructed by one set of surrogate data (n trials) [9]. However,
only a single metric value can be obtained from n trials in the ensemble method, so multiple
sets (usually more than 500) of surrogate data are needed to construct the null hypothesis
distribution [21]. The computational complexity of TE with KSG estimator is O(2n× N2),
but for TEensemble, the complexity is O((1 + m)× (n× N)2), where m is the number of
surrogate data sets. So, TEensemble is much more complex than TE. For a neuroscience
experiment with channel pairs (100) × the number of surrogate data sets (1000) × stimulus
conditions (4) × subjects (15), the elapsed time of TEensemble is 240 weeks [21].

One approach to reducing the time consumption for TEensemble is to use faster hard-
ware devices such as FPGA [25], graphic processing unit (GPU) [21], and computer clus-
ter [26]. TEensemble working on GPU is one of the most effective methods to alleviate
the time-consuming problem. However, TEensemble still requires extended running time
even with GPU when enormous data is involved. The experimental data in neuroscience
takes about 4.8 weeks on a single GPU (NVIDIA GTX Tian) and will take longer when it
searches for information transfer delay. However, the use of multiple GPUs puts forward
a higher requirement on computer performance. Another approach is to use the simple
estimation method. In the phase transfer entropy proposed by Lobier [27], mutual infor-
mation is estimated for phase time series using a simple binning method. This approach
effectively reduces the running time and can calculate the strength and the direction of
interaction [28–30]. However, simple discretization by partitioning the observation space
ignores the neighborhood relationship in continuous data, which may cause the loss of
important information [31], leading to the failure of mutual information estimation in
real-valued data.

Hence, to reduce the computational cost, a fast, efficient TEensemble with a simple
statistical test method is proposed here. Based on the characteristic that TEensemble is the
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average value of its local transfer entropy (teensemble), we use a simple t-test for the teensemble
of the raw data against the teensemble from the surrogate data (one set) as the statistical
test method in the novel TEensemble. Because just one set of surrogate data is used, the
time consumption of the novel TEensemble is significantly reduced. Then, we employ a
widely used neural mass model (NMM) to produce neural signals through which the
characteristics of the novel TEensemble are compared with those of the traditional method.
The results show that the time consumption is reduced by two or three magnitudes in the
novel TEensemble. Importantly, the proposed TEensemble robustly detects the strength and
the direction of interaction, and it reaches stability with the increase in the sample size,
which is slower than the traditional TEensemble. Furthermore, the novel TEensemble can track
the dynamic interaction processes between signal pairs and the effectiveness of the novel
TEensemble has also been verified in the realistic neural signals recorded from pigeons.

This paper is organized as follows: Section 2 introduces the novel TEensemble and the
NMM we used. Section 3 investigates the characteristics of the novel TEensemble on the
simulated signal pairs and the actual neural signals and compares the performance of the
novel TEensemble with that of the traditional method. Section 4 discusses the results, and
Section 5 is a conclusion.

2. Materials and Methods

In information-theoretic framework, Shannon entropy defines the measurement of
information uncertainty. For a random variable X probability distribution p(x), its Shannon
entropy is:

H(X) = −∑
x

p(x)log2 p(x) (1)

Shannon entropy can be extended to two random variables. For the X and Y probabil-
ity distribution p(x) and p(y), the joint entropy can be defined as in Equation (2):

H(X, Y) = −∑
x,y

p(x, y)log2 p(x, y) (2)

The conditional entropy in Equation (3) is the average uncertainty about x that remains
when the value of y is known:

H(X|Y ) = −∑
x,y

p(x, y)log2 p( x|y ) (3)

The mutual information between X and Y measures the reduction of one variable’s
uncertainty by the knowledge of another one:

I(X; Y) = H(X) + H(Y)− H(X, Y) = −∑
x,y

p(x, y)log2
p(x, y)

p(x)p(y)
(4)

By assuming a third random variable Z, the conditional mutual information of X
and Y is:

I(X; Y|Z ) = H(X|Z ) + H(Y|Z )− H(X, Y|Z ) (5)

Mutual information has been widely used in neuroscience [32]. However, the major
problem is that mutual information contains no directionality. Transfer entropy, which
describes the uncertainty reduction in predicting the target variable by adding the historical
information of a new variable [33], is proposed to solve this deficiency. For X and Y, TEX→Y
defines the conditional mutual information between Y and X− (historical information of X)
under Y− (historical information of Y):

TEX→Y = I(Y; X−
∣∣Y− ) = H(Y

∣∣Y− )− H(Y
∣∣X−, Y− ) (6)

Suppose (1) there is an interaction delay u between X and Y;
(2) X and Y can be approximated by a Markov process of order k and l, respectively.
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With these assumptions, TE can be rewritten in a more general form as in Equation (7):

TE(k,l)
X→Y(t, u) = I(Yt; X(k)

t−u

∣∣∣Y(l)
t−1 ) = H(X(k)

t−u, Y(l)
t−1)− H(Yt, X(k)

t−u, Y(l)
t−1) + H(Yt, Y(l)

t−1)− H(Y(l)
t−1)

= ∑yt ,x
(k)
t−u ,y(l)t−1

p(yt, x(k)t−u, y(l)
t−1)log2

p( yt

∣∣∣y(l)t−1,x(k)t−u )

p( yt

∣∣∣y(l)t−1 )

(7)

Equation (7) can be viewed as the average of information transfer over time. Based
on this, the local transfer entropy (te) is proposed [34], realizing the local or pointwise
interaction (Equation (8)):

te(k,l)
X→Y(t, u) = i(Yt; X(k)

t−u

∣∣∣Y(l)
t−1 ) = log2

p(yt

∣∣∣y(l)
t−1, x(k)t−u )

p(yt

∣∣∣y(l)
t−1 )

(8)

From Equations (7) and (8), we know that the transfer entropy is the average value of
the local transfer entropy.

2.1. Ensemble Transfer Entropy (TEensemble) and Ensemble Local Transfer Entropy (teensemble)

When independent repetition trials of an experimental condition meet the cyclo-
stationarity, these trials are taken as an ensemble of realizations, and various probability
density functions (PDFs) can be accurately estimated from the ensemble members. In this
paper, we use the subscript ensemble to indicate the ensemble transfer entropy with the TE
self-prediction optimality estimator:

TEensemble(X → Y, t, u ) = I(Yt; X(k)
t−u

∣∣∣Y(l)
t−1 )

= ∑yt(r),x
(k)
t−u(r),y

(l)
t−1(r)

p
(

yt(r), x(k)t−u(r), y(l)
t−1(r)

)
log2

p
(

yt(r)
∣∣∣y(l)t−1(r),x

(k)
t−u(r)

)
p
(

yt(r)
∣∣∣y(l)t−1(r)

) (9)

where r is the number of independent repetition trials.
When the number of repetitions is sufficient to provide the necessary amount of data

to estimate various PDFs in the time window t′ ∈ [t−, t+] reliably, the TEensemble in t′ can
be estimated:

TEensemble(X → Y, t′, u ) = I
(

Yt′ ; X(k)
t′−u

∣∣∣Y(l)
t′−1

)
= ∑yt′ (r),x

(k)
t′−u

(r),y(l)
t′−1

(r)
p(yt′(r), x(k)t′−u(r), y(l)

t′−1(r))log2

p
(

yt′(r)
∣∣∣y(l)

t′−1(r), x(k)t′−u(r)
)

p
(

yt′(r)
∣∣∣y(l)

t′−1(r)
) (10)

With these definitions in place, we can obtain the ensemble local transfer entropy
(teensemble):

teensemble(X → Y, t, u ) = i(Yt; X(k)
t−u

∣∣∣Y(l)
t−1 ) = log2

p
(

yt(r)
∣∣∣y(l)

t−1(r), x(k)t−u(r)
)

p
(

yt(r)
∣∣∣y(l)

t−1(r)
) (11)

2.2. Estimating Ensemble Transfer Entropy

A TE estimator KSG with less bias has been widely used [24]. This method is based
on the nearest neighbor estimator of Kozachenko and Leonenko [35]. The distance of k-th
nearest neighbor in the high-dimensional spaces are projected to the low-dimensional
spaces so that the deviations caused by the different spatial scales in low-dimensional
spaces are significantly reduced. In this paper, the KSG estimator is applied to TEensemble
and teensemble. Instead of searching for the nearest neighbors in the state space constructed
by the individual trial, we proceed in all repetitions [36]:
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TEensemble(X → Y, t, u ) = ψ(k) + 〈ψ
(

n
y(l)t−1(r)

+ 1
)
− ψ

(
n

yt(r)y
(l)
t−1(r)

+ 1
)
− ψ

(
n

y(l)t−1(r)x
(k)
t−u(r)

+ 1
)
〉 (12)

where ψ is the Digamma function, ψ(x) = Γ(x)−1 dΓ(x)
dx ; 〈.〉means average; n

y(l)t−1(r)
, n

yt(r)y
(l)
t−1(r)

,

and n
y(l)t−1(r)x

(k)
t−u(r)

are the number of samples falling into the strip of the marginal space y(l)t−1(r),

yt(r)y
(l)
t−1(r), y(l)t−1(r)x

(k)
t−u(r), respectively. The strip is defined by the distance to its k-th nearest

neighbors. In general, k is 4 [23]:

teensemble(X → Y, t, u ) = ψ(k) + ψ

(
n

y(l)t−1(r)
+ 1

)
− ψ

(
n

yt(r)y
(l)
t−1(r)

+ 1
)
− ψ(n

y(l)t−1(r)x
(k)
t−u(r)

+ 1) (13)

2.3. Parameter Selection

The information transfer delay u between X and Y, the embedded dimension (Markov
approximation order k and l) and embedded delay τ, have a significant impact on TEensemble
estimation. We use the TE self-prediction optimality estimator to obtain the transfer
delay [21]. When the TEensemble(X → Y, t, u ) is maximal, the assumed delay u is equal to
the true information transfer delay δ (Equation (14)) [22]. k, l, and τ are calculated by using
the Rawdgitz criterion [37]:

δ = argmaxu(TEensemlbe(X → Y, t, u )) (14)

2.4. Surrogate Data and The Improved Statistical Test Method

TEensemble is a biased estimation with no upper bound [9], so it is necessary to gen-
erate surrogate data and construct the null hypothesis distribution to test the statistical
significance of the TEensemble metric value. In the surrogate data, it is assumed that there
is no information transfer between the source variable X and the target variable Y. The
commonly used method is to shuffle X, which destroys the dependence between X and Y
while retaining the probability distribution of the variables [38]. Here, the source signals of
each independent repetition trial are separated into two segments (Figure 1). Then, these
segments are shuffled to ensure each segment is not in the same position as before. We can
obtain the surrogate data (X′, Y).
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Figure 1. Generating the surrogate data. (a) x(1), x(2), · · · , x(r) are the source signals of independent
repetition trials. Each trial is separated into two segments, these segments are shuffled in the ensemble
members to ensure each segment is not in the same position as before, and then the surrogate data
x′(1), x′(2), · · · , x′(r) in (b) are generated.

In the traditional TEensemble method, at least 500 sets of surrogate data are required to
generate and then TEensemble metrics are estimated to construct the null hypothesis distri-
bution. The null hypothesis can now be rejected or retained by comparing the TEensemble
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metric value of the raw data to the null hypothesis distribution at the 1% (5%) level of
significance [21].

Here, we modify the statistical test method in the traditional TEensemble. The t-test
is a parametrical statistical significance test, which is used to test whether there is any
difference in the mean values of two groups. Based on the characteristic that TEensemble
is the average value of teensemble [39], a t-test is performed on the teensemble values of the
raw and the surrogate data. If the null hypothesis is rejected, it indicates that there is a
significant difference between the TEensemble of the raw data and the TEensemble from the
surrogate data.

Due to its high power, the t-test has been widely used to measure the difference in
the mean values from two groups. In small samples, the t-test is valid only for data that
is normally distributed [40]. However, because of the central limit theorem, the t-statistic
is normally distributed with unit variance when the sample size is large, no matter what
distribution the data has. Thus, the t-test will always be appropriate for large enough
samples [41,42]. However, how large is large? The sample size relates to the difference in
variance and the prevalence of extreme outliers. A large body of literatures indicate that
“sufficiently large” is often less than 500 in extremely non-normally distributed data [41].

In the ensemble method, although the distributions of teensemble values (which are
estimated from the raw and the surrogate data, respectively) are non-normally distributed
(Figure S1), the samples of teensemble are often substantially larger than 500. Therefore, the
t-test is applicable to the teensemble values. We also compare the t-test and the Wilcoxon rank
sum test (Figure S2). The results of the two methods are almost the same.

2.5. Neural Mass Model

Signal pairs are generated by NMM described in [43], which simulates the connectivity
between multiple regions of interesting (ROIs) through long-range excitatory connections.
In the NMM, the average spike density of pyramidal neurons of the presynaptic area (ZX)
affects the target region by a weight factor ω and a time delay u (Equation (15)):

uY(t) = nY(t) + ωX→YZX(t− u) (15)

where n(t) is a Gaussian white noise. The superscripts X and Y are represented by the
presynaptic and target region, respectively.

Signal pairs generated by the NMM are nonlinear and have significant β (about 20 Hz)
activity. By changing the information transfer delay u and weight factor ωX→Y, ωY→X, we
obtain the simulated signal pairs with directional interaction.

We use the Trentool Matlab toolbox to estimate TEensemble and teensemble (https://github.
com/trentool/TRENTOOL3_manual (accessed on 15 November 2021)). The Matlab codes
of the NMM are available in ModelDB (http://modeldb.yale.edu/263637 (accessed on
1 January 2022)).

3. Results

In this section, we first use the simulated signal pairs to evaluate the characteristics
of the novel TEensemble, and compare the performance and time consumption of the novel
TEensemble with that of the traditional method. Then, we verified the effectiveness of the
novel TEensemble in the actual neural signals.

3.1. Results on NMM
3.1.1. The Novel TEensemble Measures the Strength and the Direction of Interaction Robustly

The simulated signal pairs (ωX→Y = 0, 10, 20, 30, 40, 50, 60, 70 ωY→X = 0, u = 20 ms,
sampling frequency = 100, trial length = 2 s) were used to investigate whether the novel
TEensemble can reliably detect the strength and the direction of interaction between brain
regions. We also explored the impact of the t-test significance p level on the results. For
each ωX→Y, 1000 simulated signal pairs were pooled together, then 100 pairs were drawn

https://github.com/trentool/TRENTOOL3_manual
https://github.com/trentool/TRENTOOL3_manual
http://modeldb.yale.edu/263637
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randomly to estimate TEensemble. This procedure was repeated 500 times and resulted in
a distribution of TEensemble values for each ωX→Y. The TEensemble metric value measured
the strength of interaction. By computing the false positive rate and the sensitivity, the
accurancy of the direction estimation for the novel TEensemble was obtained. We used the
same method that was introduced in [27] to calculate the false positive rate and the sensi-
tivity. By comparing the t-test values for teensemble of the raw and the surrogate data with
the threshold value (the t-test value at the significance p level with the freedom degree
greater than 1000), we could calculate the proportion of false positive at ωX→Y = 0 and the
sensitivity (proportion of true positive) for ωX→Y 6= 0. The threshold values were 3.0902,
2.807, 2.5756, and 2.3263, respectively, corresponding to p = 0.002, 0.005, 0.01, and 0.02.
Then, we obtained the TEensemble sensitivity values as a function of ωX→Y and the coupling
detection threshold (CDT) for 0.8 sensitivity were computed by linear interpolation. CDT
represented the smallest coupling value for which TEensemble detected 80% of the directed
interactions. Therefore, low CDT indicated that the significant interactions were detected
even for weak coupling while high CDT meant that the information transfer could be
detected only for solid coupling. We compared the false positive rate and the sensitivity
(CDT) of the novel TEensemble with those of the traditional TEensemble. In the traditional
method, 500 sets of surrogate data were used to construct the null hypothesis distribution
for each ωX→Y. The false positive rate and the sensitivity (CDT) values were obtained by
comparing the TEensemble values with the null hypothesis distribution at the significance
α level (α = 0.01,0.05).

Neural signals (EEG/MEG/LFP) are corrupted by both environmental and biological
noise [44–46]. Therefore, the analysis method we apply should be robust to noise. To
explore the influence of noise on the novel TEensemble, we added gaussian white noise
with different energies to the simulated signals. Then, the false positive rate, sensitivity,
and CDT values for coupled signal pairs with a signal-to-noise ratio (SNR) = 50, 30, 20,
10, 0, and −10 dB were calculated (the signal pairs with SNR = 50 dB were considered
noise free). Finally, we compared the performance of the novel TEensemble with that of the
traditional method.

The results showed that the TEensemble values fluctuated around 0 for ωX→Y = 0
and increased monotonically with ωX→Y from 0 to 70 (Figure 2a). Low, realistic noise
(SNR = 50, 30, 20, 10 dB) had little effect on the TEensemble values. The TEensemble values
decreased moderately when SNR was 0 dB, but for strong noise (SNR = −10 dB), the
TEensemble values reduced greatly. Figure 2b shows the distributions of the TEensemble values
for different ωX→Y when SNR was 20 dB. The distributions had some overlap, but the
overlap areas were minimal. Therefore, different ωX→Y could be distinguished from the
TEensemble values. The novel TEensemble in this work was consistent with the traditional
method for measuring the interaction strength due to the same TEensemble estimator they
used. Above all, it suggests that the novel TEensemble effectively measures the interaction
strength even in the presence of noise.

To calculate the false positive rate and the sensitivity of the novel TEensemble, the t-test
values were computed by performing a t-test for the teensemble values, which were estimated
from the raw and the surrogate data. Figure 3a shows the densities of the t-test values
for signal pairs (ωX→Y = 0) with varied SNRs. They were broadly similar and normally
distributed. The proportion of false positive was calculated by comparing the t-test values
with the threshold value. It increased with the significance p level from 0.002 to 0.02. The
false positive rate fluctuated around 0.01 when p was 0.02 and increased to 0.05 when p was
0.02 (Figure 3b). Noise had no impact on the proportion of false positive. Even if SNR was
−10 dB, the false positive rate remained at a low level.
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Figure 2. The novel TEensemble measures the interaction strength robustly. (a) TEensemble values
fluctuated around 0 when ωX→Y was 0 and increased monotonically with ωX→Y from 0 to 70.
The solid lines and shaded areas represent the mean and the variance of the TEensemble values,
respectively; (b) The densities of the TEensemble values for varied ωX→Y(SNR = 20 dB) were computed.
The distributions had some overlap, but the overlap areas were minimal.
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Figure 3. The densities of the t-test values and the false positive rate at different significance p levels.
(a) The densities of the t-test values with ωX→Y = 0, SNR = 50, 30, 20, 10, 0, −10 dB were broadly
similar and normally distributed; (b) The false positive rate increased with the significance level-p
from 0.002 to 0.02. It fluctuated around 0.01 when p was 0.002 and increased to 0.05 when p was 0.02.
Noise had no impact on the proportion of false positive.

Figure 4 shows the sensitivity and the CDT values against the significance p levels
with ωX→Y from 10 to 70. The results were twofold. First, when SNR was constant, the
sensitivity values improved gradually with the increase in the significance p levels. The
CDT value was 19.4 when p was 0.002 and reduced to 17.9 when p was 0.02. However,
the decrease was minimal, and the CDT values were almost the same for varied p values
(Figure 4e). The results indicated that the significance p level had a limited effect on the
sensitivity and the CDT values. Second, moderate noise (SNR = 50, 30, 20, 10 dB) had
little impact on the sensitivity and the CDT values. However, when SNR was 0 dB, the
sensitivity values reduced, and the CDT values increased by nearly 10. Even more, the
sensitivity values dramatically decreased when SNR was −10 dB and only when ωX→Y

was 60, about 80% of directed interactions were detected by the novel TEensemble.
The sensitivity values of the novel TEensemble and the traditional TEensemble were com-

pared in two cases (Figure 5). For case 1, the significance p level was 0.002 for the novel
TEensemble and the significance α level was 0.01 in the traditional method. For case 2, p and
α were 0.02 and 0.05, respectively. In case 1, the two methods had the same false positive
rate. The sensitivity values of the novel TEensemble were somewhat lower than those of the
traditional method. For SNR = 50, 30, 20, 10, 0 dB, the differences in the CDT values for
the two methods were minimal, about 1.5. The difference increased to 6 when SNR was
−10 dB. In case 2, the false positive rate of the traditional method was higher than that of
the novel TEensemble. The two methods had the almost same sensitivity values (the CDT
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values) regardless of SNRs. The results indicated that the proposed TEensemble almost had
the same performance as the traditional method in detecting direction with realistic noise.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 21 
 

 

sensitivity values reduced, and the CDT values increased by nearly 10. Even more, the 
sensitivity values dramatically decreased when SNR was −10 dB and only when 𝜔௑→௒ 
was 60, about 80% of directed interactions were detected by the novel 𝑇𝐸௘௡௦௘௠௕௟௘. 

 
Figure 4. The sensitivity and the CDT values of the novel 𝑇𝐸௘௡௦௘௠௕௟௘ with varied significance p 
levels. (a–d) The sensitivity values of 𝑇𝐸௘௡௦௘௠௕௟௘ were plotted against the weight factor 𝜔௑→௒ for 
different SNRs with the significance p level = 0.002, 0.005, 0.01, 0.02. The sensitivity values improved 
with p from 0.002 to 0.02. Moderate noise had a limited effect on the sensitivity. However, the sen-
sitivity values were reduced for low SNR; (e) The CDT values (sensitivity = 0.8) were plotted against 
the significance p levels with varied SNRs. Moderate noises and p values had a limited effect on the 
CDT values, and low SNR increased them. 

The sensitivity values of the novel 𝑇𝐸௘௡௦௘௠௕௟௘ and the traditional 𝑇𝐸௘௡௦௘௠௕௟௘ were 
compared in two cases (Figure 5). For case 1, the significance p level was 0.002 for the 
novel 𝑇𝐸௘௡௦௘௠௕௟௘ and the significance 𝛼 level was 0.01 in the traditional method. For case 
2, p and 𝛼 were 0.02 and 0.05, respectively. In case 1, the two methods had the same false 
positive rate. The sensitivity values of the novel 𝑇𝐸௘௡௦௘௠௕௟௘ were somewhat lower than 
those of the traditional method. For SNR = 50, 30, 20, 10, 0 dB, the differences in the CDT 
values for the two methods were minimal, about 1.5. The difference increased to 6 when 
SNR was −10 dB. In case 2, the false positive rate of the traditional method was higher 
than that of the novel 𝑇𝐸௘௡௦௘௠௕௟௘. The two methods had the almost same sensitivity values 
(the CDT values) regardless of SNRs. The results indicated that the proposed 𝑇𝐸௘௡௦௘௠௕௟௘ 
almost had the same performance as the traditional method in detecting direction with 
realistic noise. 

Therefore, the novel 𝑇𝐸௘௡௦௘௠௕௟௘ in this paper could robustly detect the strength and 
the direction of the interaction when SNR was above 0 dB, but this ability was reduced 
when SNR was lower than −10 dB. 
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lowing, p = 0.002 was used as the significance level for the t-test in the novel 𝑇𝐸௘௡௦௘௠௕௟௘. 

Figure 4. The sensitivity and the CDT values of the novel TEensemble with varied significance p levels.
(a–d) The sensitivity values of TEensemble were plotted against the weight factor ωX→Y for different
SNRs with the significance p level = 0.002, 0.005, 0.01, 0.02. The sensitivity values improved with
p from 0.002 to 0.02. Moderate noise had a limited effect on the sensitivity. However, the sensitivity
values were reduced for low SNR; (e) The CDT values (sensitivity = 0.8) were plotted against the
significance p levels with varied SNRs. Moderate noises and p values had a limited effect on the CDT
values, and low SNR increased them.
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with α from 0.01 to 0.05. Moderate noises had a limited effect on sensitivity, but the sensitivity values
dramatically reduced when SNR was −10 dB; (c) The false positive rate in the traditional TEensemble
fluctuated around 0.01 when the significance α level was 0.01 and increased to 0.05 or higher when
α was 0.05; (d,e) The CDT values of the novel TEensemble were compared with those of the traditional
method for varied SNRs. For SNR = 50, 30, 20, 10, 0 dB, the differences in the CDT values for the two
methods were tiny. The differences increased when SNR was −10 dB.

Therefore, the novel TEensemble in this paper could robustly detect the strength and the
direction of the interaction when SNR was above 0 dB, but this ability was reduced when
SNR was lower than −10 dB.

Above all, the significance p level had a limited effect on the sensitivity and the CDT
values, but it changed the proportion of false positive dramatically. Therefore, in the
following, p = 0.002 was used as the significance level for the t-test in the novel TEensemble.

3.1.2. Window Length and the Number of Trials Affect the Stability of the Novel TEensemble

In order to explore the interaction dynamics, a short time window is used to improve
the temporal resolution. However, accurate TEensemble estimation requires enough samples.
We, therefore, investigated the effect of the window length and the number of trials on the
performance of the novel TEensemble. Then, the results were compared with those of the
traditional method. The samples in a time window were 100, 300, and 500, respectively.
The number of trials were 50, 100, 150, and 200 with SNR = 0, 20 dB.

Figure 6a shows that when the SNR was 20 dB, the TEensemble values clustered around
0 for ωX→Y = 0 and increased monotonically with ωX→Y from 20 to 60, regardless of the
sample size in the ensemble members (Figure 6a top). The same results occurred for low
SNR (Figure 6a bottom). As expected, by either increasing the window length or the number
of trials, the variance of the TEensemble values was reduced with an increased sample size.

Figure 6b shows the sensitivity of the novel TEensemble with varied window lengths
and the number of trials when SNR was 0, 20 dB. The longer the window length and the
more trials used, the higher the sensitivity TEensemble obtained. Under the same conditions,
the sensitivity for SNR = 20 dB is higher than that of SNR = 0 dB.

To quantify the sensitivity, we calculated the CDT values for a varied amount of
simple sizes with SNR = 50, 20, 0 dB and compared the CDT values of the novel TEensemble
with those of the traditional method. The results showed that the CDT values for the two
methods gradually reduced with the increase in the sample size, regardless of the SNR
values, and finally reached the same stable state (Figure 6c). For SNR = 50, 20 dB, the CDT
values in the traditional TEensemble reached stability when the sample size was 15,000 while
it was 20,000 in the novel TEensemble The same results were obtained when SNR was 0 dB.
The traditional method reached stability with 75,000 samples, which was faster than that of
the novel TEensemble.

Finally, we calculated the false positive rate for different sample sizes. Figure 6d shows
that the false positive rate fluctuated between 0 and 0.02 for the two methods regardless
of the samples and noise. There were several values above 0.02 in the traditional method.
The false positive rate of the novel TEensemble seems to be more stable. Therefore, the
window length and the number of trials affect the stability of the novel TEensemble. With
the increase in sample size, the variance of the TEensemble values was reduced and the
sensitivity of the novel TEensemble reached its steady state, but it was slower than that of the
traditional method.
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Figure 6. The performance of the novel TEensemble with varied window lengths and number of trials.
(a) We calculated the TEensemble values for varied window lengths (100, 300, 500) and number of trials
(50, 100, 150, 200) (top: SNR = 20 dB; bottom: SNR = 0 dB). In the upper (or bottom) right-hand
corner is a detailed drawing. The TEensemble values clustered around 0 for ωX→Y = 0 and increased
monotonically for ωX→Y from 20 to 60, regardless of the SNR values. The variance of the TEensemble
values was reduced with the increase in the sample size. The solid lines and shaded areas represent
the mean and the variance of the TEensemble values, which were calculated 500 times by drawing
a certain number of pairs from 1000 signal pairs; (b) The sensitivity of the novel TEensemble was
calculated. The solid lines are the sensitivity values of the novel TEensemble and the dotted lines are
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those of the traditional method. With the increase in the sample size, the sensitivity improved (top:
SNR = 20 dB; bottom: SNR = 0 dB); (c) The CDT values against the sample size with SNR = 50, 20, 0 dB.
With the increase in samples, the CDT values reached their stable state in the novel TEensemble, which
was slower than that of the traditional TEensemble; (d) We obtained the false positive rates for different
sample sizes with SNR = 50, 20, 0 dB. They fluctuated between 0 and 0.02 for the two methods
regardless of the samples and noise. There were several values above 0.02 in the traditional method.

3.1.3. The Novel TEensemble Requires Less Computation Time to Track the Dynamic
Interaction Process

To evaluate the ability and computation time of the novel TEensemble in this work in
tracking the dynamic interaction process, signal pairs were generated with varying coupling
strength (u = 20 ms, trial length = 60 s, number of trials = 100, sampling frequency = 100 Hz).
ωX→Y was on/off boxcar and ωY→X varied with the absolute value of a sinusoid (Figure 7b).
Then, we used a scanning approach to reconstruct TEensemble values and the corresponding
interaction delay u. We scanned assumed delays in the interval u = [0, 30] ms with 10 ms
steps and a window length ∆t = 2s was used for the novel and the traditional TEensemble.
Because they used same estimation method, the TEensemble values for both could track the
dynamic process of ωX→Y and ωY→X, and bidirectional coupling had no effect on each
other (Figure 7c,d).
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the local field potentials (LFPs) of hippocampal (Hp) and nidopallium caudolaterale 
(NCL) were recorded on two pigeons (P087, P089) when they were performing a goal-
directed decision-making task. The pigeons were trained to start from the waiting area, 
pass through the straight area, and turn left, forward, or right as the goal location light 
instructed. If the pigeons choose the correct direction, they could obtain food (Figure 8). 
Details of the experimental process are described in [47]. 

Figure 7. The ability and the time consumption of the novel TEensemble in tracking the dynamic
interaction process. (a,b) Signal pairs were generated with varying coupling strength. ωX→Y is the
on/off boxcar and ωY→X varies with the absolute value of a sinusoid; (c,d) The TEensemble values
for the novel and the traditional method could track the dynamic process of ωX→Y and ωY→X . The
solid blue and red circles indicated the significant interaction. (e) The time consumptions of the novel
and the traditional TEensemble on GPU and CPU, respectively. The time consumption was reduced by
about two or three orders of magnitude compared with that of the traditional method. The pro. and
tra. are the abbreviations of proposed and traditional, respectively.
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The time consumptions were compared for the two methods on GPU and CPU,
respectively. For the above bidirectional interaction, the computation time of the traditional
method on CPU (CPU-Intel(R) Core (TM) i5-10210U) was 1,237,322.12 s (500 surrogate data
sets were used), and the running time on GPU was 37,494.6 s while the time consumption of
the novel TEensemble was 9634.99 s on CPU, and just 291.97 s (4.87 min) on GPU (Figure 7e).
The time consumption on GPU was calculated to be 33 times faster than that on CPU. Due
to only one set of surrogate data used, the time consumption of the novel TEensemble was
significantly lower than that of the traditional method, and the novel TEensemble solved the
problem of computational complexity fundamentally.

3.2. Applying the Novel TEensemble on the Actual Neural Signals

To explore the applicability of TEensemble in this paper for the actual neural signals, the
local field potentials (LFPs) of hippocampal (Hp) and nidopallium caudolaterale (NCL)
were recorded on two pigeons (P087, P089) when they were performing a goal-directed
decision-making task. The pigeons were trained to start from the waiting area, pass through
the straight area, and turn left, forward, or right as the goal location light instructed. If
the pigeons choose the correct direction, they could obtain food (Figure 8). Details of the
experimental process are described in [47].
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Figure 8. Diagrammatic sketch of a plus-maze and pigeon with implanted arrays. (a) The pigeons were
trained to start from the waiting area, pass through the straight area, and turn left, forward, or right
as the goal location light instructed. After a reward was consumed, they returned to the waiting area.
S1, S2, S3, S4 are infrared sensors. (b) The microelectrode arrays were implanted at Hp and NCL.

Data processing was performed using custom scripts written in MATLAB. First, we
removed the trials containing strong motion artifact. The adaptive common average
reference was used for all channels of the remaining trials [46] and 50 Hz line noise was
suppressed using an adaptive notch filter. Then, the signals were resampled to 1000 Hz
and the slow gamma frequency band (40–60 Hz) of LFPs recorded from Hp and NCL were
extracted for analysis. Finally, from the waiting to turning period, a total of 4-s signals were
used. The number of independent repetition trials for each pigeon was 500.

We used the novel TEensemble that was introduced in this work to calculate the dynamic
interaction between Hp and NCL of the pigeon in the goal-directed decision-making tasks.
A time window of ∆t = 200 ms was used. For each non-overlapping time window, we
scanned the assumed interaction delays in the interval u = [10, 50] ms with 5 ms steps. In
total, 100 trials were used by randomly drawing from 500 trials for TEensemble estimation.
This procedure was repeated 10 times. The results of the novel TEensemble were consistent
with Zhao’s, using the functional network and partial directional coherence [47]. The
information flowed from Hp to NCL in the turning period with a 30 ms time delay. The
novel TEensemble reported the dynamic interaction process in detail and found that the
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interaction between the two brain regions reached the maximum at about 1 s after the
animal entered the turning area (Figure 9). This may be related to the fact that the animal
saw the light stimulation after entering the turning area, and then transferred the spatial
location information formed in Hp to NCL. Therefore, the novel TEensemble in this paper is
suitable for analyzing the dynamic interaction process between the actual neural signals.
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Figure 9. The TEensemble values of the Hp and NCL brain regions in pigeons when they were
preforming the goal-directed decision-making tasks. (a,b) TEensemble values were calculated using the
LFPs recorded from Hp and NCL for pigeon P087 (a) and P089 (b). The blue lines are the TEensemble
values from Hp to NCL and the red lines are the opposite. The solid blue circles represented the
significant interaction from Hp to NCL when the significance p level was 0.002.

4. Discussion

To reduce the time consumption of the ensemble transfer entropy (TEensemble) and
explore the dynamic interaction process in neuroscience, we proposed a fast, efficient
TEensemble in which we modified the traditional statistical method. A t-test for the teensemble
values that were estimated from the raw and the surrogate data was performed to test
whether there was a significant difference in their mean values-TEensemble. Because just one
set of surrogate data was used, the time consumption of the novel TEensemble was signifi-
cantly reduced. To validate the improved efficiency, the coupled signal pairs generated by
a neural mass model were used. First, the novel TEensemble in this paper robustly detected
the strength and the direction of the interaction between signal pairs with moderate noises
(SNR was above 0 dB) and its performance decreased dramatically when SNR was −10 dB.
It yielded almost the same false positive rate and sensitivity as those of the traditional
TEensemble. Second, with the increase in the window length and the number of trials, the
novel TEensemble reached its stable state, but it was slower than that the traditional method.
Third, the novel TEensemble could accurately track the dynamic interaction process and
its computation time was reduced by two to three orders of magnitude compared with
the traditional method. Finally, the applicability of the novel TEensemble in the realistic
neural signals was verified on the LFP signals of Hp and NCL when pigeons performed
goal-directed decision-making tasks. Therefore, the novel TEensemble in this paper may be a
suitable way to investigate the dynamic interaction process between brain regions.

TEensemble is a biased estimation and does not have a meaningful upper bound [9], so
it is necessary to construct the null hypothesis distribution to test the statistical significance
of TEensemble, which is an essential part in TEensemble [21]. In TE, the null hypothesis
distribution can be constructed by one set of surrogate data (n trials) [9]. However, in the
ensemble method, only a single metric value can be obtained from n trials [20], so the null
hypothesis distribution is built by multiple sets (usually more than 500) of surrogate data,
which dramatically increases the amount of calculation [21]. In this paper, we introduced a
simple statistical method in the novel TEensemble by performing a t-test for teensemble of the
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raw and the surrogate data (one set). Because just one set of surrogate data was needed, the
computation time was reduced significantly and the computational complexity in TEensemble
was fundamentally solved. However, there is still a large amount of calculation in the
novel TEensemble with the KSG estimator. For the construction of a multi-brain dynamic
interaction network, one workaround is that the novel TEensemble runs on GPU. Another
way is to use the TE estimator with a small amount of calculation, for instance, the symbolic
version of TE based on ordinal pattern symbolization, kernel-based transfer entropy, and
the transfer entropy rate through Lempel–Ziv complexity. The next step is to generalize
these estimators to the ensemble method and compare their performance in an ensemble
of realizations.

One may wonder whether the service conditions of the t-test are met in the novel
TEensemble. In fact, the teensemble of the raw data and the surrogate data are not normally
distributed (Figure S1a,b). However, based on the central limit theorem, the t-test is always
appropriate for large enough samples, regardless of the distribution of the data [41,42,48].
In the ensemble method, the sample size of teensemble is lager (generally more than 5000).
So, it is stable to use the t-test to detect whether there is any significant difference between
TEensemble of the raw data and TEensemble from the surrogate data. Meanwhile, we compared
the false positive rate and the sensitivity of the novel TEensemble with the t-test and Wilcoxon
rank-sum test. The two methods obtained the same false positive rate and CDT values
(Figure S2a,b). Therefore, in this paper, it is possible to use a t-test of teensemble values
from the raw data against teensemble values from the surrogate data to detect the significant
difference between the TEensemble values of the raw and the surrogate data.

In the novel TEensemble, we chose p = 0.002 as the significance level for the t-test. The
false positive rate fluctuated around 0.01 when p was 0.002 and increased to 0.05 when
p was 0.02. Someone may doubt whether the novel TEensemble is able to control the false
positive rate at the desired level and they believe there is just a 1% chance of their result
being a false alarm when p is 0.01. However, the false positive rate is not only related to
p value but also intimately connected to the sample size. When the sample size is large, the
sensitivity of the statistical test method is very high. The result is positive even for the two
groups with a small difference [49]. In the ensemble method, the samples of teensemble are
usually larger than 5000. If we expect the false positive rate to be 0.01, we should reduce
the p value instead of p = 0.01. Meanwhile, the results in Section 3.1.1 also confirmed this
conclusion. Only when p is 0.002, the false positive rate is around 0.01, and it is 0.03 instead
of 0.01 when p is 0.01. So, the p-value does not measure the probability that the studied
hypothesis is true. It reflects our level of tolerance for the false positive rate [50,51].

One of the major challenges in brain science is that the neural signals are corrupted
by technical noises (power line interference, impedance fluctuation, motion artifacts, etc.)
and biological artifacts (volume conductor, eye movement, eyeblink, muscular, etc.) [52–55].
The presence of noise can mask the features of the neural signals and affect the analy-
sis of the interactions between brain regions. Various methods have been proposed to
eliminate noise. For instance, the elimination of noise at the source by standardizing the
experimental operation [45], reduction in the power line interference by the adaptive notch
filter [56], removal of muscle artifact by ensemble empirical mode decomposition and
multiset canonical correlation analysis [57], and so on. However, some filters that are
obtained by convolution of the input with their impulse responses may blur the temporal
or causal relations between signal and external events [45]. We should be cautions when
using them. If signals are recorded on multiple channels, spatial filters may be applied
to remove noise [46]. However, some noises are sufficiently complex so that we cannot
disentangle them completely from neural processing, which we really need. Therefore, the
analysis methods we use should be robust to noise. In Section 3.1.1, we investigated the
robustness of the novel TEensemble to noise. The results show that the novel TEensemble can
measure the strength and the direction of interaction robustly when the SNR is above 0 dB.
Therefore, the novel TEensemble we propose is valid in the presence of moderate noises.
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TEensemble based on the dependent repetition trials detects interaction within a short
time window. It has high temporal resolution and is suitable for analyzing the dynamic
interaction process between neural signals [20]. However, the selection of the time window
length needs to pay attention to the following points: First, we used a scanning method
to obtain the interaction time delay u. However, the time delay can only be estimated
accurately when the sample size is greater than 10,000 [21]. Therefore, in order to estimate
the time delay accurately in collapse trials, the length of the time window should be
selected to ensure that there are enough samples in the ensemble members. Second,
in the novel TEensemble, to obtain an accurate estimation of future information, enough
historical information should be involved. We used the Ragwitz criterion to calculate the
embedded window (embedded dimension k, l * embedded delay τ), which includes the
past information of the source and the target signals and has the ability to predict the
future of the target signal [37]. So, the larger the embedded window, the longer the time
window that should be picked. Finally, the selection of the time window length is limited
by the number of independent repetition trials. Based on the analysis in Section 3.1.2,
the performance of the novel TEensemble is affected by the sample size. The larger the
sample size, the better the stability of the novel TEensemble. The sensitivity and the CDT
values reached stability when the sample size was more than 20,000 with moderate noise.
Therefore, we can select a small window to improve the temporal resolution with more
independent repetitions. When the number of independent repetitions is less, a large time
window should be used to ensure the stability of the performance.

In TE, the KSG estimator requires the signal to be stationary to obtain accurate re-
sults [32]. However, this is difficult to realize in neuroscience and most neural signals are
non-stationary. TEensemble solves this problem by estimating using independent repetitions
in which equivalent events (or equivalent brain activity) occur periodically. The neural
signals recorded from these trials are assumed to be cyclo-stationary [58]. In general, inde-
pendent repetitions meet this hypothesis [21]. However, the brain activity in the learning
tasks changes gradually and its neural signals are not cyclo-stationary, so in this case,
caution should be exercised when using the novel TESPO.

Local transfer entropy is a time-varying version of TE, which was proposed by Lizier
to realize the local or pointwise interaction estimation, and TE can be expressed as an
average of local transfer entropy [39]. In recent years, local transfer entropy has been used
in neuroscience [59]. Ramón demonstrated that the local mutual information is suitable
for measuring the dynamics of cross-frequency coupling in brain electrophysiological
signals [32]. Local transfer entropy has been applied to explore the dynamic coupling of
the phase–amplitude during seizures [59]. However, Sezen questions the local causality
measure of local transfer entropy because the causal nature does not necessarily remain in
each part [60]. In addition, there is high-frequency leakage into the local transfer entropy,
and it is difficult to explain this phenomenon theoretically. The use of local transfer entropy
to measure dynamic interaction needs further research. In this paper, local transfer entropy
is not directly used to investigate the dynamic interaction between signal pairs. We used
the characteristic that TE is the average value of the local transfer entropy for the statistical
analysis in the novel TEensemble.

Research in rodents and avian has shown that goal-directed behavior involves multiple
brain regions. Among them, Hp and PFC/NCL play important roles. Hp participates in
goal-directed behavior by recognizing key locations in space [61]. PFC/NCL is involved
in weighing conflicting, then making a decision [62]. Hp and PFC/NCL have very close
functional interactions that contribute to goal-directed behavior’s successful execution [63].
In a previous work, we investigated the interaction between Hp and NCL of pigeons in
a goal-directed task using the local function network and partial directional coherence.
The results show that during the turning area, the functional interaction of the Hp-NCL
increases significantly, and the information flows from Hp to NCL [48], which was also
detected using the novel TEensemble. However, the whole decision-making period is as long
as 2 s, in which the dynamics of Hp–NCL interaction is unknown. The novel TEensemble
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solves this problem and it was found that the TEensemble metric value reaches the maximum
at about 1 s after the animal entered the turning area. This may be due to the spatial location
information forming in Hp when the animals saw the light stimulation in the turning area,
and then it being transferred from Hp to NCL for decision-making. The results show that
the novel TEensemble is suitable for investigating the dynamic interaction between the actual
neural signals.

5. Conclusions

We introduced a fast and efficient ensemble transfer entropy (TEensemble) to detect the
dynamic interaction process between neural signals. It uses a t-test for the ensemble local
transfer entropy (teensemble) from the raw data against the teensemble from the surrogate data
as the statistical method in the novel TEensemble. Due to just one set of surrogate data being
used, the time consumption is significantly reduced. We compared the performance of
the novel TEensemble with that of the traditional TEensemble. The novel TEensemble exhibited
many characteristics. First, the time consumption was reduced by two or three magni-
tudes. Second, the novel TEensemble reliably measures the strength and the direction of the
interaction in the presence of moderate noise. Compared with the traditional TEensemble,
the novel TEensemble was slower to reach its steady state with the increase in the sample
size. Third, the novel TEensemble could track the dynamic interaction process accurately.
Finally, the novel TEensemble was applicable to the actual neural signals. Taken together,
the novel TEensemble may be a suitable method for quantifying the dynamic interactions
in neuroscience.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/e24081118/s1, Figure S1: The distributions of teensemble values which
were estimated from the raw and the surrogate data with varied ωX→Y; Figure S2: The false positive rate
and the CDT values of the novel TEensemble with the t-test and the Wilcoxon rank sum test (left: t-test,
right: Wilcoxon rank sum test).
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