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Abstract: In order to accurately diagnose the fault type of power transformer, this paper proposes
a transformer fault diagnosis method based on the combination of time-shift multiscale bubble en-
tropy (TSMBE) and stochastic configuration network (SCN). Firstly, bubble entropy is introduced
to overcome the shortcomings of traditional entropy models that rely too heavily on hyperparame-
ters. Secondly, on the basis of bubble entropy, a tool for measuring signal complexity, TSMBE, is
proposed. Then, the TSMBE of the transformer vibration signal is extracted as a fault feature. Finally,
the fault feature is inputted into the stochastic configuration network model to achieve an accurate
identification of different transformer state signals. The proposed method was applied to real power
transformer fault cases, and the research results showed that TSMBE-SCN achieved 99.01%, 99.1%,
99.11%, 99.11%, 99.14% and 99.02% of the diagnostic rates under different folding numbers, respec-
tively, compared with conventional diagnostic models MBE-SCN, TSMSE-SCN, MSE-SCN,
TSMDE-SCN and MDE-SCN. This comparison shows that TSMBE-SCN has a strong competitive
advantage, which verifies that the proposed method has a good diagnostic effect. This study pro-
vides a new method for power transformer fault diagnosis, which has good reference value.

Keywords: power transformer; fault diagnosis; multiscale entropy; stochastic configuration
networks; feature extraction

1. Introduction

The power transformer is an important part of the power grid, and ensuring the safe
operation of the transformer is a prerequisite for the stability of the power system [1,2].
Therefore, the effective detection of potential transformer faults based on the transformer
monitoring system and fault diagnosis technology, has important engineering value for
maintaining the efficient operation of the power grid [3-5].

As an emerging transformer detection method, the online detection method over-
comes the defect of the traditional offline detection method, which requires a power fault
[6]. It has the advantages of convenience, safety and reliability, and meets power supply
requirements. It has become the mainstream direction of power transformer fault diagno-
sis [7,8]. Generally speaking, transformer online detection methods can be summarized
into two categories: dissolved gas analysis (DGA) and vibration analysis [9]. DGA [10-13]
is mainly based on the dissolved gas composition of transformer oil, and diagnostic tech-
nology to detect faults caused by the change of insulating oil properties, such as partial
discharge and overheating. For example, Wu et al. [11] proposed a DGA transformer fault
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diagnosis method based on the combination of improved seagull optimization algorithm
and support vector machine, which can accurately identify transformer faults such as
overheating and discharge. However, the diagnostic effect of DGA is deeply affected by
the concentration of dissolved gas, and detection equipment is expensive, resulting in
DGA having certain limitations. As the external manifestation of power transformers, me-
chanical vibration signals contain a large amount of information about the operation state
of the transformers [14]. Therefore, researchers often use vibration signals as an important
indicator to evaluate the health status of the transformer, and transformer fault diagnosis
based on vibration signals has been widely used [15-17]. However, most of the existing
research on transformer fault diagnosis based on vibration signals focuses on mechanical
faults such as internal windings [18] and iron core loosening [19]. They ignore the effective
detection of over-excitation, under-excitation and inter-turn short circuit, which may
cause serious consequences such as transformer heating, and even, burning. Therefore, it
is necessary to reasonably detect the abnormal conditions of the transformer under differ-
ent excitation states, including bad states such as winding inter-turn short circuit.

The transformer fault diagnosis method based on vibration signal mainly includes
two steps: feature extraction and pattern recognition [20,21]. Feature extraction is the key
to transformer fault diagnosis, and the quality of feature extraction directly affects the
final diagnosis results. As a nonlinear dynamic method, entropy measures the complexity
of the signal. It is widely used in the field of rotating machinery fault feature extraction
such as rolling bearing [22,23], wind turbine [24,25] and hydropower units [26,27]. At the
same time, with the continuous development of entropy theory, isentropic models similar
to multiscale entropy [28], refined composite multiscale entropy [29], and multiscale dis-
persion entropy [30,31], have been used to extract the characteristics of transformer fault
signals. For example, Lu et.al. [29] used refine composite multiscale entropy (RCMSE) and
time-frequency entropy (TFE) to extract the fault characteristics of transformer signals,
and combined the improved kernel extreme learning machine (IKELM) to achieve the ac-
curate identification of transformer faults. However, the above entropies rely too much
on the selection of hyper-parameters, and the robustness of the entropy model parameters
is poor, which requires significant time cost in parameter selection [32,33]. To overcome
the above shortcomings of the entropies, Manis et al. [34] proposed a new signal complex-
ity measurement tool —bubble entropy. It was proved by experiments that bubble entropy
completely eliminated the influence of proportion factor and further reduced the im-
portance of the embedding dimension, which is an entropy model with basically no pa-
rameters [35,36]. At the same time, in view of the fact that bubble entropy cannot compre-
hensively measure the complexity of time-series signals at multiple scales, inspired by the
idea of time-shift, this paper proposes the time-shift multiscale bubble entropy, and uses
TSMBE as the feature extraction tool to extract the fault characteristics of vibration signals
in different states of power transformers.

Pattern recognition is an important part of power transformer fault diagnosis. It is
the ultimate goal of transformer fault diagnosis to locate the rapid positioning of the trans-
former fault by identifying different state signals with classifiers. With the continuous de-
velopment of artificial intelligence, machine learning-based models have been used for
power load forecasting [37,38], power system security assessment [39,40] and circuit fault
location [41,42]. The existing methods of transformer fault diagnosis often use machine
learning algorithms such as support vector machine (SVM) [43,44], probabilistic neural
network (PNN) [45] and back propagation neural network (BPNN) [46] as classifiers to
effectively identify different transformer faults. Although the above methods can some-
times achieve good diagnostic results, problems such as difficulty of select hyper-param-
eters, easily falling into the local optimal solution, and a long training time, hinder their
further application. As the latest model of stochastic parameter neural network [47], sto-
chastic configuration network (SCN) overcomes the difficulty of hyper-parameter setting
by virtue of its unique supervision mechanism and incremental network model. It has the
advantages of low computational cost, high efficiency and not easily falling into the local
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optimal solution [48,49]. It has a wide range of application in chemical medicine [50], wind
speed prediction [51] and the aviation industry [52]. In this paper, the features extracted
by TSMBE are inputted into the SCN network to complete the pattern recognition of dif-
ferent state signals of the transformer.

Through the above analysis, the main innovations of this paper are as follows. Firstly,
aiming to solve the problem that traditional multiscale entropy parameters are difficult to
adjust, and inspired by the idea of time-shift, a nonlinear dynamic method with almost no
hyper-parameters —TSMBE—is developed. TSMBE is then verified by experiments to
have good feature extraction performance. Secondly, TSMBE is used as a feature extrac-
tion tool to perform the feature extraction of vibration signals in different states of trans-
formers. The feature extraction effect of TSMBE under different hyper-parameters in ac-
tual transformer fault diagnosis is analyzed, and the results show that TSMBE is hardly
affected by hyper-parameters. Then, SCN is introduced as the classifier of power trans-
former fault diagnosis, and a fault diagnosis method of power transformer based on
TSMBE and stochastic configuration network is proposed to systematically identify dif-
ferent state signals of the transformer. Finally, by comparing the performance of different
models in the measured transformer fault cases, it is concluded that the proposed method
performs the best among all models, which verifies the superiority of the proposed
method.

The rest of this paper is as follows: Section 2 introduces the relevant theoretical
knowledge of the model and the performance verification process of the TSMBE algo-
rithm; Section 3 refers the proposed model to actual transformer fault cases. Finally, Sec-
tion 4 draws the conclusions of this study.

2. TSMBE-SCN Model
2.1. Bubble Entropy

Inspired by permutation entropy and Renyi entropy, Manis et al. [34] proposed a
new tool for measuring time series complexity —bubble entropy. By eliminating the pro-
portion factor and reducing the importance of embedding dimension, bubble entropy has
stronger robustness to parameters and overcomes the shortcoming of traditional entropy
parameter selection. The main steps of bubble entropy are as follows:

(1) Map time series X ={x, }:1N into m-dimensional space vector Z by phase space re-

construction:
I x(1) x(1+d) - x(1+(m-1)d)]
Z= x(7) x(j+d) ~~-x(j+(m—1)d) (1)
| X(N=(m-1)d) x(N-(m=2)d) --- x(N)

where m represents the embedding dimension, N is the length of time series, d isthe
delay time, and its value takes 1.
Use the bubble sort algorithm to sort each

Z, (j)={x(j),x(j+d),~~~,x(j+(m—l)d)} and calculate the exchange number 7n re-

quired for each vector, and then calculate the entropy H" of this distribution:

H" =-log¥" p? )

where L is the type number of different exchange numbers, p, represents the probabil-
ity of different exchange numbers;

(2) Replace m with m+1 and repeat steps (1)(2) to calculate H™*';

(3) According to Formula (3), bubble entropy can be obtained:
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BE(X,m,d)=(H""~H")/log(m+1/m-1) 3)

2.2. Time-Shift Multiscale Bubble Entropy

Bubble entropy only measures the time complexity on a single scale and it is difficult
to fully reflect the effective information of the signal. To solve this problem, Costa et al.
[53] proposed the concept of multiscale entropy, which achieves the purpose of multiscale
measurement of signal complexity by segmenting time series signals. In this paper, mul-
tiscale entropy and bubble entropy are combined, and TSMBE is proposed based on frac-
tal theory, which overcomes the problems of insufficient coarse-grained degree of tradi-
tional multiscale entropy and difficult adjustment of parameters. The calculation process
of TSMBE is as follows:

1) As shown in Figure 1, segment the time series signal of length N into k subse-
g g g g
quences through Formula (4):

B _
Y/ _{xﬂ/x,b’+k/x/3+2k"“’xﬂ+kL(N—ﬂ)/kj} 4)

where x is the sample point of the original signal, k represents the number of seg-
mented subsequences, and Y/ isthe Ath subsequence.

X % Xy Xy X5 X Xy Xy Xy Xyp Xy Xy X3 Xy X3 X X X Xpa Xpg

Time shift procedure

Xy Xs 2 X3 X

(1) .
17 ® © 0 o ®
Xy X6 Yo 14 i1
@ w v Vv V¥V ... W -
Y,
7 & & & & a ..
4

};{4)66‘00"' ...... O ......

Figure 1. Time shift segmentation process under k=4 .

(2) Calculate the bubble entropy of time series signals at all scales, and define the mean
value of these attention entropy as the TSMBE at this scale & :

TSMBE (k) =~ BE(Y*, m,d) 5
kﬁ_1 k ( )

(3) Use Formula (5) to calculate the TSMBE value of all scale factors 7, and take the set
of these values as TSMBE. In this paper, 7 is set to 10. The specific calculation pro-
cess is shown in Figure 2:
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Figure 2. The calculation process of TSMBE.

2.2.1. Parameter Discussion of TSMBE

The selection of parameters directly leads to the change of the TSMBE entropy value.
In order to explore the influence of hyper-parameters on the entropy distribution of
TSMBE, Gaussian white noise (GWN) and 1/f noise (FN) are introduced for simulation
experiments (see Figure 3).

205 =
£ £
< <
% 02 0.4 0.6 08 1 0 02 04 0.6 08 I
time/s time/s
(a) (b)
Figure 3. The vibration signal of noise. (a) The vibration signal of GWN. (b) The vibration signal of
FN.

This paper analyzes the TSMBE and multiscale bubble entropy (MBE) value distri-
butions of GWN and FN under different embedding dimensions, and the results are
shown in Figure 4. As shown in Figure 4, the volatility of TSMBE entropy is weaker than
that of MBE, indicating that changing the coarse-grained processing method can effec-
tively improve the stability of MBE. At the same time, by comparing the distribution of
TSMBE and MBE under different m, it is concluded that when m is greater than 5, the
entropy values of TSMBE and MBE fluctuate to some extent. When m is less than 4, the
calculated entropy values of TSMBE and MBE deviate from the entropy values under
other m conditions. In addition, if m is too large, it will have high computational time
costs. For comprehensive consideration, the hyper-parameter m of TSMBE algorithm is
set to 4 in this paper.
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Figure 4. Distribution of entropy under different embedding dimensions. (a) MBE distribution of
GWN. (b) MBE distribution of FN. (¢) TSMBE distribution of GWN. (d) TSMBE distribution of FN.

2.2.2. Performance Analysis of TSMBE

In this paper, the performance of TSMBE is comprehensively considered from the
robustness of algorithm timing length and the recognition ability of different types of sig-
nals.

In order to test the robustness of the timing length of TSMBE, this paper analyzes the
entropy value distribution of TSMBE and MBE under 50 groups of noises with different
lengths of time series ( N =256, N =512, N=1024, N=2048, N =4096, and
N =8192). Additionally, the paper evaluates the robustness of the timing length of the
algorithm by the change of mean value, with the specific results shown in Figure 5. It can
be seen from the figure that, compared with MBE, the entropy distribution of TSMBE is
smoother at different timing lengths. Among them, the maximum fluctuations of the
mean MBE entropy value under different length noises (GWN and FN) reach 0.201 and
0.25, while the maximum fluctuations of the TSMBE entropy value are 0.138 and 0.23,
indicating that the TSMBE algorithm is less affected by the length of time series. At the
same time, comparing the entropy value distribution of time series signals with different
lengths, the entropy value of time series signals with N less than 1024 deviates to some
extent. It indicates that the stability of TSMBE and MBE is weakened when N isless than
1024, which requires that the length of time series signals must be greater than or equal to
1024.
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RS " Scale £
237 Scale factor
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Figure 5. Entropy distribution under different lengths of noise signal. (a) MBE distribution under
different lengths (GWN). (b) MBE distribution under different lengths (FN). (c) TSMBE distribution
under different lengths (GWN). (d) TSMBE distribution under different lengths (FN).

In essence, TSMBE is a feature extraction tool, and whether it can effectively distin-
guish different types of signals becomes an important indicator of measuring its perfor-
mance. The paper analyzes the recognition effects of TSMBE and MBE for different noises
(GWN and EN signals with lengths of 2048), and measures the classification performance
of different multiscale entropies through the entropy distribution and coefficient of vari-
ation (CV) value, with the results shown in Figure 6. As shown in Figure 6, the CV value
of the multiscale entropy processed by the time-shift segmentation method is generally
lower than that of the traditional multiscale entropy, indicating that the multiscale en-
tropy obtained on the basis of the time-shift segmentation method is more stable. It indi-
rectly verifies that the use of the time-shift segmentation method can effectively overcome
the shortcomings of traditional multiscale entropy coarse-graining. However, by observ-
ing the distribution of TSMSE entropy values, it can be seen that the entropy value of
TSMSE is not defined in high-scale cases, indicating that the sample entropy is greatly
affected by timing length, and cannot adapt to a short time series. At the same time, com-
paring the entropy distribution of TSMBE and MBE, it can be seen that TSMBE has no
crossover phenomenon at any scale, indicating that it has good signal recognition ability.
In addition, comparing the CV values of the four multiscale entropies, the maximum CV
value of TSMBE is only 0.497, which is far lower than that of the other three multiscale
entropies, which verifies its good stability. According to the above analysis, it can be con-
cluded that TSMBE has good recognition ability for different types of signals.

[
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Figure 6. Recognition of multiscale entropy under different types of noise. (a) MSE distribution un-
der different types of noise. (b) TSMSE distribution under different types of noise. (c) MBE distri-
bution under different types of noise. (d) TSMBE distribution under different types of noise. (e) CV
value by MSE under different types of noise. (f) CV value by TSMSE under different types of noise.
(g) CV value by MBE under different types of noise. (h) CV value by TSMBE under different types
of noise.

2.3. Stochastic Configuration Network

As anew type of random weight neural network with supervision mechanism, SCN
is gradually constructed according to the supervision mechanism, which is different from
the conventional feedforward neural network. The mechanism constrains the specific
value range of random input weights and deviations. This supervision mechanism guar-
antees the general approximation properties of the SCN model generated by a given non-
linear mapping. The specific detailed process of SCN is described as follows:

(1) Use sigmoid as the activation function to calculate the output g, of thesth hidden

node, when the hidden layer nodeis S-1, then the output Z, , of the SCN is:
S-1
Zs 1= 7.8l W+b,)(S=2,3,4,..L,,,Z,=0) 6)
s=1

where y, represents the output weight of the sth hiddennode, W is the input vector,
and L,
error e, , can be calculated according to Formula (7):

is the maximum number of hidden layer nodes. At the same time, the network

X

es1=2Z-Zg =[5 11,8512, ,€51p] ()

(2) Introduce a supervision mechanism, and randomly assign the input weight and bias
of node S through Formula (8):

2 2
¢= <eS—1,h'gS> - bgz(l -r= lus)”eS—l,h " 20,h=12,---,D 8)
where 0< " g” <b,,b, e R"; r represents the regularization parameter, ranging from 0 to
1; and ug=(1-r)/S+1. The weight and bias corresponding to the maximum value ¢
obtained by repeating Tmax experiment are the required values.
(3) Use the least square method combined with weight @ and bias b to calculate the
hidden layer output weight:

2

)

[71,72,"',7L]=argmin

L
2‘27131
j=1
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Continue to increase the hidden layer nodes, and combine the given y, @, and b
with Formula (8) to achieve the smallest error value, and finally output the optimal model.
At the same time, according to the SCN hyper-parameter setting principle in [48], the pro-
portion factor 1 of the input weight and bias is set to {0.5, 1, 5, 10, 30, 50, 100, 150, 200,
250}, this value of T is 100; The regularization parameter r is set to {0.9, 0.99, 0.9999,

max

0.99999, 0.999999}, and the allowable error ¢ is set to 0.001. The specific calculation process
of SCN is shown in Figure 7.

—

| Parameters initialization |

Y

Calculate current residual error by Formula |
(7) S-1 i

v

Assign the ws,bsaccording to be supervisory
mechanism (Formula (8))

v

Determine output weights y using Formula (9)

v

Increase the number of hidden layer nodes

meet the termination
conditions

| Construct the SCN model |

Figure 7. The flowchart of stochastic configuration network.

2.4. Transformer Fault Diagnosis Model Based on TSMBE-SCN

The overall process of transformer fault diagnosis is shown in Figure 8, and the
TSMBE value of vibration signal is extracted as the feature vector. At the same time, the
feature sample data are divided into training set and test set. Then, the SCN model is
trained by the training set samples, and the recognition performance of the diagnostic
model is tested by the test set samples.

» Normalized processing
signal

-
|

! I

| | @
A -

| | Feature extraction using
) " TSMBE

L

Training Testing
dataset dataset

s =

— <):I | Stochastic configuration network

Figure 8. Flow chart of the proposed method.
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3. Experimental Case Analysis
3.1. Experimental Platform and Data Description

In order to verify the effectiveness and superiority of the proposed diagnosis model,
this paper studied the vibration signals of the inter-turn short circuit, under-excitation and
over-excitation faults of the transformer in [54] as the research objects.

In order to avoid information leakage caused by repeated sampling, as shown in Figure
9, the experiment used the data sample length of 1024 as the standard, and adopted the
non-overlapping sampling method to segment the measured vibration signal. By adjust-
ing the fault current and voltage, a total of 510 groups of six kinds of fault signals were
collected, including under-excitation, over-excitation and inter-turn short circuit. Each
state sample had 85 groups, and the sampling frequency was 30 kHz. In addition, each
group of signals was normalized. The vibration signal waveform is shown in Figure 10.

Figure 9. Non-overlapping sampling method.
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time/s
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(e) ()

Figure 10. Waveform diagram of measured signal of transformer. (a) The signal of normal excita-
tion. (b) The signal of under-excitation (type I). (c) The signal of under-excitation (type II). (d) The
signal of over-excitation. (e) The signal of turn-to-turn short circuit (type I). (f) The signal of turn-
to-turn short circuit (type II).

Figure 10 shows the waveforms of six state signals, in which the excitation fault vi-
bration signals were generated by regulating the voltage. In this paper, signals generated
at 320V, 360 V, 400 V and 440 V were selected to simulate the under-excitation signal I,
under-excitation signal II, normal excitation signal and over-excitation signal. Vibration
signals under 5 A and 10 A, two different current conditions, were selected to simulate
the inter-turn short circuit signal I and inter-turn short circuit signal II, respectively. In
addition, it was impossible to effectively distinguish the fault signals of transformers in
different states by naked eye, and the signal feature information contained in the wave-
form signal was required to be deeply excavated. To facilitate memory, the six different
signals were abbreviated as ‘NE’, “UE1’, “‘UE2’, ‘OE’, “TSC1” and “TSC2’.
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3.2. Fault Feature Extraction of Transformer Vibration Signal

TSMBE was used as a feature extraction tool for transformer vibration signal feature
extraction. MBE [55], multiscale dispersion entropy (MDE) [30], time-shift multiscale dis-
persion entropy (TSMDE) [56], multiscale sample entropy (MSE) [53] and time-shift mul-
tiscale entropy (TSMSE) [57] were introduced for comparative experiments. All models
were implemented on Matlab 2019b platform, and the parameter settings of different mul-
tiscale entropy are shown in Table 1.

Table 1. The parameter settings of different multiscale entropy model.

Model Parameter
% T d Number of Categories c Threshold r Scale Factor 7

TSMBE 4 1 10
TSMDE 2 1 10
TSMSE 2 1 0.15xSD 10

MBE 4 1 10

MDE 4 1 10

MSE 2 1 5 0.15xSD 10

Multiscale entropy such as TSMBE was used to extract fault features of vibration sig-
nals in different states, and t-distributed stochastic neighbor embedding (T-SNE) was
used to perform extracted features visualization. The performance of feature extraction
tool was measured by observing the distribution of vibration signal features in different
states, and specific results are shown in Figure 11. It can be seen from Figure 11 that only
sporadic “TSC1” and “TSC2’ of the fault features extracted by TSMBE are mixed, indicating
that TSMBE has good feature extraction performance, while the fault features extracted
by the other five multiscale entropies had certain mixed phenomena. For example, the
“UEY’, “UE2’ and ‘NE’, in the features extracted by MSE, had large aliasing, and MSE could
not identify the “TSC1” and ‘“TSC2’ signals, while TSMSE had low feature extraction per-
formance due to the limitation of timing length, and its feature extraction performance
was not as good as MSE in short time series signals. In addition, compared with MDE and
TSMDE, it was concluded that the time-shift segmentation method, instead of the tradi-
tional coarse-grained method, could indeed improve the feature performance of the
model to a certain extent. The main feature of TSMDE extraction is that “TSC1” and “TSC2’
have large aliasing. The features extracted by MBE also have large aliasing, which further
shows that the simple coarse-grained segmentation method cannot effectively adapt to
the feature extraction of complex fault signals of transformers.
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Figure 11. The visualization results of model feature. (a) The visualization results of MSE. (b) The
visualization results of MDE. (c) The visualization results of MBE. (d) The visualization results of
TSMSE. (e) The visualization results of TSMDE. (f) The visualization results of TSMBE.

The above analysis shows that, compared with the other five multiscale entropy
models, the transformer feature vector extracted by TSMBE had the best distinguishing

effect, and only sporadic signals were aliased, which verifies that TSMBE has good feature
extraction performance.

3.3. Pattern Recognition of Transformer Signal

The features extracted by multiscale entropy were inputted into the SCN model to
complete the pattern recognition of vibration signals of different transformer states. How-
ever, the maximum number of nodes in the hidden layer is an important parameter that
affects network performance. This paper determined the optimal parameter value by an-
alyzing the recognition effect of SCN under different L __ . As shown in Figure 12, the
paper used the features extracted by TSMBE as feature vectors, using the 2-fold cross-
validation method to divide the training set and the test set, and analyzed the SCN diag-
nosis with L__  within 10 within 100. Each group of experiments was repeated 20 times,
and the average diagnostic rate and standard deviation were used to measure the diag-
nostic performance of the model. The analysis showed that when L _, was 30, SCN
achieved a diagnostic rate of 99.01% and a standard deviation of 0.634%, and the diagnos-
tic effect was higher than other L, models. Therefore, the L__ of SCN was set to 30.

X X
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Figure 12. Diagnostic mean value of SCN model under different L__ . (a) Diagnostic mean value of

SCN. (b) Diagnostic mean value of SCN model under different L ___ model under different L__ .

X

In order to analyze the specific diagnosis of different models, the sample set was di-
vided approximately equally into a training set and test set, and the diagnosis results of
the different diagnostic models were analyzed through the confusion matrix diagram.
Specific results are shown in Figure 13. As shown in Figure 13, the proposed method only
misjudged the two types of signals “TSC1” and “TSC2’, and two “TSC2’ signals were mis-
judged as “TSC1’, which was consistent with the results of feature extraction. Limited by
the length of time, the diagnostic effect of TSMSE was the most unsatisfactory and was
almost impossible to identify any state signal. By comparing the confusion matrix dia-
grams of MDE-SCN and TSMDE-SCN, MBE-SCN and TSMBE-SCN comparison models,
it was concluded that compared with the MDE-SCN and MBE-SCN models obtained by
traditional coarse-grained partitioning method, TSMDE-SCN and TSMBE-SCN showed
excellent diagnostic performance. It indicated that the time-shift segmentation method
could improve the diagnostic effect of the model to some extent. By comparing the MDE-
SCN and MBE-SCN, TSMDE-SCN and TSMBE-SCN models, it was concluded that the
bubble entropy-based multiscale entropy had better diagnostic performance.
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Figure 13. Model confusion matrix diagram. (a) The confusion matrix of MSE-SCN. (b) The confu-
sion matrix of MDE-SCN. (c) The confusion matrix of MBE-SCN. (d) The confusion matrix of
TSMSE-SCN. (e) The confusion matrix of TSMDE-SCN. (f) The confusion matrix of TSMBE-SCN.

In order to avoid the influence of random experiments on the final experimental re-
sults, and to verify the general performance of the proposed method, this paper divided
the training set and the test set by the cross-validation method. Each group of experiments
was repeated independently 20 times, and the mean value and standard deviation were
used to measure the performance of different diagnostic models; the specific results are
shown in Figure 14. As shown in Figure 14, compared with the other five diagnostic mod-
els, the proposed method had remarkable advantages in both diagnostic accuracy and
algorithm stability. Under different folding numbers (K =2, 3, 4, 5, 6 and?7),its di-
agnostic mean values were 99.01%, 99.1%, 99.11%, 99.11%, 99.14% and 99.02%, and the
standard deviations of diagnostic rates were 0.665%, 0.762%, 0.971%, 0.882%, 0.985% and
1.279%. TSMSE-SCN was affected by the timing length, and the diagnostic model per-
formed poorly. The mean diagnostic rate was lower than 70% in all experiments, indicat-
ing that the model was not competent for the transformer in this paper. At the same time,
comparing the diagnostic rates of other time-shift multiscale entropy and traditional mul-
tiscale entropy diagnostic models, the results showed that the multiscale entropy diag-
nostic model based on time-shift segmentation had better diagnostic effect. It showed that
the new time series segmentation method could deeply mine fault information, overcome
the shortcomings of traditional multiscale entropy coarse-grained, and further improve
the diagnostic performance of the model.
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Figure 14. Fault diagnosis of models under different fold numbers. (a) Diagnostic mean of models.
(b) Diagnostic mean of main models. (c¢) Diagnostic standard deviation of models.
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The recognition performance of the classifier is one of the important factors that de-
termine the transformer fault diagnosis. BPNN, extreme learning machine (ELM), and
SVM, were introduced for comparative experiments. The hyper-parameters of BPNN
were set as follows: the topological structure was 10-10-6, the number of iterations was
1000, the learning rate was 0.05, and the training target was 0.00001. The hyper-parameters
of SVM were set as follows: the penalty factor was set to 1, the kernel function selected the
‘RBF’ function, and the kernel function parameter was set to 1/C (C is the number of cate-
gories, which was set to 1/6 in this paper). The hyper-parameters of ELM were set as fol-
lows: the number of hidden nodes was set to 100. The features extracted by TSMBE were
used as feature vectors, which were divided into a training set and test set according to
the cross-validation method, and inputted into four machine learning algorithms for
recognition. Each group of experiments was repeated independently 20 times. The specific
results are shown in Figure 15. It can be clearly seen from the figure that the diagnostic
effect of BPNN was far inferior to the other three classifiers, and the proposed model
showed the best diagnostic effect in all folding numbers. For example, compared with the
other three diagnostic models (TSMBE-ELM, TSMBE-SVM and TSMBE-BPNN), the diag-
nostic rate of TSMNE-SCN increased by 1.17%, 2.66% and 15.01%, respectively, under
folding number 2, while the standard deviation decreased by 0.05%, 0.894% and 7.906%,
respectively. Through the above analysis, it was concluded that SCN is a stable and effec-
tive classifier.
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Figure 15. Fault diagnosis of classifiers under different fold numbers. (a) Diagnostic mean value of
different classifiers. (b) Diagnostic standard deviation of different classifiers under different fold
numbers under different fold numbers.

In addition, in order to explore whether the hyper-parameter m will have a huge im-
pact on the TSMBE, the paper analyzed the diagnostic effect of TSMBE-SCN under differ-
ent embedding vectors (m=2,3,4,5 and 6); specific results are shown in Figure 16. It can
be seen from Figure 16 that the diagnostic mean value and standard deviation of TSMBE-
SCN under different parameters m were roughly equal. The fluctuation of the mean value
was not more than 0.28%, and the fluctuation of the standard deviation was not more than
0.62%. All models achieved a diagnostic mean value of more than 98.73% and a standard
deviation of less than 0.728%, indicating that the hyper-parameter m had little effect on
the final experimental results. It also proved that TSMBE is an algorithm that is not af-
fected by the hyper-parameter from the experimental perspective.
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Figure 16. Fault diagnosis of model under different fold numbers. (a) Diagnostic mean value under
different m. (b) Diagnostic standard deviation under different m.
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4. Conclusions

In this paper, a fault diagnosis method combining time-shift multiscale bubble en-
tropy and stochastic configuration network was proposed to achieve the early fault diag-
nosis of transformer faults in different states. The following conclusions were obtained by
experimental verification:

(1) Aiming to solve the shortcomings of insufficient coarse-grained scale, and the diffi-
culty in determining hyper-parameters of traditional multiscale entropy, a new non-
linear dynamic method —time-shift multiscale bubble entropy —was developed. The
hyper-parameters and the applicable shortest timing length of the TSMBE algorithm
were determined through simulation experiments, and comparison experiments of
TSMBE, MBE, TSMSE and MSE algorithms were carried out to verify that TSMBE
had good signal recognition performance and robustness of timing length;

(2) The proposed method was applied to real transformer fault cases. Compared with
MBE-SCN, TSMSE-SCN, MSE-SCN, TSMDE-SCN and MDE-SCN models, the pro-
posed model performed best. The diagnostic mean values under different folding
numbers were 99.01%, 99.1%, 99.11%, 99.11%, 99.14% and 99.02%, respectively, and
the diagnostic standard deviations were 0.665%, 0.762%, 0.971%, 0.882%, 0.985% and
1.279%, respectively, which proved the superiority of the proposed method;

(3) Comparing the recognition performance of the four classifiers SCN, BPNN, SVM and
ELM, it was concluded that the diagnostic rate of TSMNE-SCN increased by 1.17%,
2.66% and 15.01%, while the standard deviation decreased by 0.05%, 0.894% and
7.906%, indicating that SCN had the best recognition performance. In addition, the
diagnostic results of the proposed method under different embedding dimensions m
were discussed. It showed that the mean value of different models did not fluctuate
more than 0.28%, and the standard deviation did not fluctuate more than 0.62%. All
models achieved a diagnostic mean value of more than 98.73%, and the standard de-
viation was also less than 0.728%, indicating that TSMBE was an algorithm not af-
fected by parameters.

This paper developed a new transformer early fault diagnosis method, which had a
good guiding role. However, the proposed method only relied on a single direction vibra-
tion signal to perform the fault diagnosis of the transformer. In actual production experi-
ments, problems such as difficulty in selecting measurement points and incomplete re-
flection of fault information may be encountered. Therefore, in the next work, the authors
hope to extend the TSMBE algorithm into the field of multi-channel fault feature extrac-
tion, and propose the use of time-shift multivariate multiscale bubble entropy to achieve
the joint diagnosis of multi-channel signals of a transformer.
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