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Abstract: Measuring the temporal complexity of functional MRI (fMRI) time series is one approach
to assess how brain activity changes over time. In fact, hemodynamic response of the brain is known
to exhibit critical behaviour at the edge between order and disorder. In this study, we aimed to revisit
the spatial distribution of temporal complexity in resting state and task fMRI of 100 unrelated subjects
from the Human Connectome Project (HCP). First, we compared two common choices of complexity
measures, i.e., Hurst exponent and multiscale entropy, and observed a high spatial similarity between
them. Second, we considered four tasks in the HCP dataset (Language, Motor, Social, and Working
Memory) and found high task-specific complexity, even when the task design was regressed out. For
the significance thresholding of brain complexity maps, we used a statistical framework based on
graph signal processing that incorporates the structural connectome to develop the null distributions
of fMRI complexity. The results suggest that the frontoparietal, dorsal attention, visual, and default
mode networks represent stronger complex behaviour than the rest of the brain, irrespective of the
task engagement. In sum, the findings support the hypothesis of fMRI temporal complexity as a
marker of cognition.

Keywords: functional MRI; resting state; task engagement; temporal complexity; multiscale entropy;
Hurst exponent; task specificity; graph signal processing

1. Introduction

The concept of complexity has been studied in many real-world phenomena including
mechanical systems [1,2], volcanic eruption [3], climate change [4], earthquakes [5], financial
markets [6], biological signals [7–12], and the hemodynamics of the human brain [13–17].
Fluctuations of spontaneous brain activity, measured by resting state functional magnetic
resonance imaging (rsfMRI), are of particular importance because they can provide insight
into brain structures and their functional relationships [18]. The analysis of fMRI time
series has revealed distinguishable functional communities across brain areas called resting
state networks (RSNs) [19], which have also been reported during task engagement [20,21].
Within and between-RSN fMRI signals have been associated with changes in the dynamical
states of brain function [22–24].

RSNs exhibit a balanced dynamic between order and disorder in time and space,
referred to as spatiotemporal complexity. This phenomenon is linked with brain anatomy
and has been studied through whole-brain modelling and chaos theory [25,26], as well as
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a combination of information theory with network science [27,28]. Along the time axis,
this feature of brain function is reduced to temporal complexity and has been shown to be
reproducible and distinguishable from head motion [14]. It seems also RSN-specific and
more pronounced in high-level functional networks such as the default mode network
(DMN), frontoparietal network (FP), and dorsal attention network (DA) [13,14]. The com-
plex dynamic of brain function originates from a large number of interacting components in
the cerebral cortex that are often divided into several subunits themselves with distinctive
functional properties. The collective activity of these modules leads to a non-centralized
and self-organized behaviour with diverse realizations in the time domain [29].

Logarithmic linearity in the frequency domain is one of the manifestations of temporal
complexity that has been reported in fMRI. Ciuciu et al. [21] showed that fMRI signals have
scale-free and multifractal properties during rest and task performance. Scale-free dynamic
of fMRI is likely affected by mental states. In fact, task engagement may suppress self-
similarity of fMRI [30]. McDonough and Nashiro [13] hypothesized that RSNs may present
characteristic complexity patterns. The region-specific properties of fMRI were also studied
in [31] where higher irregularity was reported in sub-cortical regions such as the caudate,
the olfactory gyrus, the amygdala, and the hippocampus, whilst primary sensorimotor and
visual areas were associated with slower temporal changes. Nezafati et al. [22] confirmed
this finding and also, showed that networks exhibit distinct complex properties which
may change between the resting state and during task performance. Omidvarnia et al. [14]
reproduced the findings of RSN-specific temporal complexity in rsfMRI and the lower
complexity of sub-cortical regions in contrast to cortical networks across 987 healthy
subjects. They also reported that rsfMRI complexity correlates with fluid intelligence.
This finding was in line with the hypothesis in [17] where a positive relationship between
intelligence and the temporal complexity of fMRI was reported. The prefrontal cortex
and inferior temporal lobes were amongst brain regions with the strongest relationship
between high fMRI complexity and high intelligence. These studies, to name but a few,
suggest that the evaluation and analysis of fMRI fluctuations can provide insight into
functional brain networks, the dynamics of brain structure and human behaviour. There
is evidence that the temporal complexity of brain function supports different aspects of
human behaviour and cognition [32]. Perturbed complexity across cortical areas may
contribute to a range of brain diseases including epilepsy [33], Alzheimer’s disease [34],
and schizophrenia [35]. Time-varying changes of functional brain networks are likely
related to the fine balance between efficient information-processing and metabolic costs
in the brain [36]. Spatial distribution of temporal complexity in brain function can shed
light on how interactions between cortical regions are temporally organized and has the
capacity of leading to imaging-based biomarkers of brain function in health and disease.

Different measures have been used for the temporal complexity analysis of fMRI
including time-resolved graph theory measures [33], entropy measures [13,14,17,22,33],
and self-similarity measures [21,30,37,38]. A crucial step for an appropriate interpretation
of these measures is to develop relevant null distributions for scoring the grey boundary
between complete randomness and pure regularity (i.e., temporal complexity) in fMRI
[39,40]. An ideal null distribution must preserve all properties of the data except the one
that is under investigation. Surrogate data analysis is a widely used data-driven approach
for developing null distributions in real-world datasets. This approach is based on the
shuffling of a single feature or a set of features in the data, while the other fundamental
features are kept intact. In a complicated dynamical system with a combined complexity
in time and space such as the human brain, appropriate null distributions must take both
the dynamics and the underlying structure into account. Phase shuffling in the temporal
Fourier domain is an effective way of generating the surrogates of fMRI when the cross-
correlations between brain regions need to be preserved [41]. However, it fails to consider
the anatomical basis of fMRI into account. Establishing a brain structure-informed statistical
inference for temporal complexity analysis of fMRI is still an open question. A solution to
this challenge is through graph signal processing [42] where fMRI time points are projected
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onto structurally informed basis vectors and randomization is performed in this joint
domain [43].

In this study, we aim to perform an independent assessment on the most commonly
reported aspects of temporal complexity in fMRI during rest and task engagement. We
use two measures of temporal complexity, i.e., Hurst exponent and multiscale entropy,
and compare them in the context of fMRI analysis. First, we validate the monofractal
feature of brain hemodynamics during task engagement and rest using Hurst exponent in a
population of unrelated subjects from the Human Connectome Project (HCP) [44]. Second,
we assess task specificity of fMRI complexity during the task engagement and resting state.
To this end, we perform a pair-wise support vector machine (SVM) analysis on the Hurst
exponent and a multiscale entropy-based complexity index across all brain regions. Third,
we examine the hypothesis of complexity alteration in brain hemodynamics due to task
engagement. Fourth, we investigate the agreement between the spatial distribution of
Hurst exponent and multiscale entropy in fMRI. Finally, we perform statistical testing on
fMRI complexity through a brain structure-informed surrogate technique based on graph
signal processing. We look into the mathematical properties of this technique in detail and
its consequences for our analysis. Figure 1 illustrates the procedure of performing temporal
complexity analysis and graph surrogate generation on a typical fMRI dataset, as adapted
in this study.

Temporal complexity of fMRI and its estimation

Figure 1. (A) The temporal complexity analysis procedure of fMRI in this study. (B) The process of
generating graph surrogates from functional and structural MRI.
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2. Materials and Methods
2.1. Data and Preprocessing

We obtained the rest and task fMRI and diffusion-weighted scans of 100 unrelated
subjects (ages 22–35) from the HCP1200 release [44]. Each subject underwent a number of
fMRI recording sessions including four rsfMRI runs, seven task fMRI runs, and a diffusion
MRI run. Each fMRI dataset had a voxel size of 2 × 2 × 2 millimetres and the repetition
time (TR) of 720 milliseconds in a 3-T Siemens Skyra scanner. We utilised two rest runs with
left–right phase encoding as well as four task runs with a minimum length of 3 min or 250
TR’s, i.e., Language, Motor, Social, and Working Memory. The other three task recordings,
i.e., Gambling, Emotion, and Relational, were shorter than 3 min and therefore excluded
from the analysis. Note that each task-based fMRI recording had a specific task design
with a different number of conditions and trials (Table 1). See [45] for the description
of the fMRI tasks. We included the rsfMRI datasets with left–right phase encoding only
due to the known issue of asymmetric drop-out between left–right and right–left phase
encoding of rest runs in the HCP database [46] and its potential impact on task specificity
analysis in Section 2.3. Since the length of rsfMRI in all subjects was considerably longer
than all task fMRI recordings (14.4 min versus 3 to 4 min), we used the first 399 TR’s of rest
runs in order to make the extracted complexity measures comparable. The fMRI datasets
were preprocessed using SPM8 through a procedure described in [47]. First, fMRI datasets
underwent a spatial smoothing by a 5 mm isotropic Gaussian kernel. Six motion parameters
as well as average cerebrospinal fluid signal and white matter signal were then regressed
out. We did not apply any further bandpass filtering on the fMRI time series at this stage.
A parcellation mask [48] was used to parcellate the grey matter into 360 cortical regions of
interest (NROI = 360). The corresponding diffusion-weighted datasets were preprocessed
through the steps outlined in [47] and used to extract the structural connectivity matrix of
each subject for graph signal processing.

2.2. Temporal Complexity Analysis of fMRI

One of the most common ways to measure scale invariance in time series is by using
the Hurst exponent H [49]. It determines whether there is a predominant time-scale or
frequency component in the underlying dynamical process. The value of H varies between 0
and 1 where H ≤ 0.5 implies short-memory or fast return to the mean (such as white noise),
and H ≥ 0.5 represents long-memory or a trending behaviour with random turning points.
The value of H = 0.5 represents a random walk whose time points have no correlation with
their past values. Scale-free signals have a long memory, because all of their time scales
and spectral components contribute equally to their dynamics. This leads to a power law
relationship in the spectral power of scale-free signals in the form of P( f ) ∝ f−β where
P( f ) is the power spectral density at frequency f , and β is a non-zero positive real number
referred to as spectral exponent. For some scale-free processes such the fractional Brownian
motion, there is a theoretical relationship between the spectral exponent β and the Hurst
exponent H via the equation β = 2H + 1 [50]. In this study, we used detrended fluctuation
analysis (DFA) [51] to estimate the Hurst exponent and log-linear line fitting to the power
spectral density function to estimate the spectral exponent of fMRI time series. The DFA
algorithm has been widely used in the past for the analysis of fMRI fractality [30,52].
Previous studies have reported an approximate range of 0.5–0.9 for the Hurst exponent of
fMRI time series which highlights them as a class of signals with complex dynamic and long
memory [30,52]. Given the direct link between the Hurst exponent and signal entropy [53],
we also looked into the complex behaviour of fMRI using multiscale entropy [54]. This
measure is based on the sample entropy [55] at several time scales of a signal x (here, mean
fMRI time series at a particular ROI). Multiscale entropy characterises white noise by a
very large entropy value (usually above 4) at the first time scale which rapidly decreases
across coarser time scales. This leads to small areas under the multiscale entropy curve for
highly irregular signals such as white noise. On the other hand, complex signals such as
red/pink noise represent a relatively flat or monotonically increasing pattern across most of
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the time scales with a larger area under the curve compared to white noise [14]. Therefore,
the area under the curve of multiscale entropy can be considered as a complexity index for
temporal complexity analysis of biosignals [56]. See Appendix A for a detailed description
of multiscale entropy.

Table 1. List of fMRI runs of HCP, utilized in this study.

Run Session NTR Length in Minutes No. of Conditions No. of Trials

1 Rest1LR 399 4.8 - -

2 Rest2LR 399 4.8 - -

5 Language 305 3.67 2 11

6 Motor 273 3.29 5 10

7 Social 263 3.17 2 5

8 Working Memory 395 4.74 8 8

2.3. Task Specificity of fMRI Complexity

In order to test the dependency of the complex properties of brain hemodynamics
on task engagement, we used a set of SVMs with the radial basis function (RBF) kernels
in order to evaluate the separability of the Hurst exponent and multiscale entropy over
two rest runs and four task runs of fMRI. The SVM analysis is a supervised learning
method which is widely used for performing classification and regression studies using
fMRI datasets. We extracted ROI-wise complexity measures of Nsubj = 100 subjects and six
fMRI runs. For each pair-wise comparison between the two fMRI runs, we considered each
subject as an observation and the brain maps as feature vectors of size NROI × 1 where
NROI = 360. This yielded 100 feature vectors of size NROI × 1 for each fMRI run. Here, we
investigated whether mental tasks can be discriminated in a population of healthy subjects
using the ROI-wise temporal complexity of fMRI. We quantified the performance of SVM
classifiers using the percentage of their classification loss or the proportion of observations
misclassified by the model. This pair-wise SVM analysis led to two symmetric accuracy
matrices of size 6× 6 for the two temporal complexity measures. The SVM classifiers were
evaluated via 5-fold cross-validation and their hyper-parameters were optimized through
grid search. We minimized the issue of overfitting in the SVM classification analysis by
optimizing the box constraint parameter in MATLAB’s fitcsvm function. This parameter
controls the maximum number of support vectors, thereby preventing overfitting. The
larger the box constraint parameter, the less support vectors are assigned to the SVM
classifier.

2.4. Spatial Distribution of fMRI Complexity across Grey Matter

To be able to interpret the complexity measures of fMRI across brain regions, one
must perform statistical testing. In this study, we generated NSurr = 100 surrogate fMRI
datasets for each subject and each fMRI run through a graph signal processing framework
which combines the brain structure and function in order to generate the surrogates of fMRI
whose null distribution preserves the spatial smoothness of the fMRI signal on the structural
connectome at each time point [42,43]. Our motivation for adapting this technique was to
incorporate the underlying anatomical aspects of fMRI in the significance testing step, an
important piece of information which is usually neglected in the fMRI complexity analysis
studies. As discussed in Appendix B, the graph surrogate method: (i) preserves second
order statistical moments across fMRI time points, i.e., temporal correlation; (ii) randomizes
functional connectivity; (iii) randomizes the spatial variation of scale-free dynamics of fMRI
at each single ROI; and (iv) randomizes the spatial variation of the scale-free dynamics
between ROI pairs.
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In order to obtain the group-level maps of brain complexity, we applied binomial
testing on the subject-specific brain maps. First, each individual map of complexity was
thresholded at a significance level of αsubj = 0.01 in order to obtain a binary map at the
subject level. Then, the binomial distribution P(n) of having n detections was used at each
ROI to examine the significant number of suprathreshold regions across subjects at the
significance level of αgroup = 0.001. It was equivalent with 10 detections (i.e., the number
of suprathreshold regions) for a population of 100 subjects. The results were corrected
for multiple comparisons at the number of regions and fMRI runs tested, i.e., 360 × 6
comparisons.

3. Results
3.1. FMRI Represents Complex Behaviour during Rest and Task

As seen in Figure 2, the normalized group mean power spectral density of all fMRI
recording sessions (four fMRI runs and four task runs) show log-linearity in the frequency
domain. This feature was more pronounced in rsfMRI datasets and the spectral exponents
were RSN-specific with default mode, frontoparietal, and dorsal attention networks pre-
senting the highest exponents in most cases (Figure 2B). The β exponents of different RSNs,
however, were shown to be task-dependent. For example, the Social task led to the highest
spectral exponent across subjects at the dorsal attention network or Rest runs led to the
highest exponents at the default mode and frontoparietal networks. A striking observation
was related to the existence of dominant peaks in the log-linear power spectral density
functions of task fMRI in contrast to rsfMRI (Figure 2A). In order to rule out the influence
of the task designs in this spectral feature of task fMRI recordings (Figure 2C), we regressed
out the task timings trial-wise from the data and checked the spectral log-linearity of the
residuals only. As Figure 2D illustrates, the peaks still remain in the log-linear power
spectral density functions of task fMRI residuals, although they are slightly suppressed.
This suggests that these spectral peaks are independent from the task design and likely
explain why the Hurst exponent is generally smaller during task engagement and larger at
rest [21,30,39].
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Spectral properties of fMRI and its GLM residual

Figure 2. (A) Normalized power spectra of RSNs averaged over all subjects. (B) Corresponding β

exponents as the slope of RSN-wise normalized logarithmic power spectra, estimated within the
frequency band of 0.01–0.2 Hz. (C) Task fMRI protocol overview for Language, Motor, Social, and
Working Memory tasks in HCP. Each yellow block represents an event trial and the trial blocks of
each column in the event designs are identical. Each column represents a stimulus type referred to as
a condition and has been denoted as Ci in the figure. See [45] for the description of each condition
in four HCP tasks. (D) RSN-wise normalized logarithmic power spectra averaged over all subjects,
after regressing out the block designs from task fMRI through GLM. Abbreviations: GLM = general
linear modelling; VIS = visual, SM = somatomotor; DA = dorsal attention; VA = ventral attention;
L = limbic; FP = frontoparietal; DMN = default mode network; numbered C = Condition.

3.2. Task Engagement Lowers Complexity of BOLD Activity

As summarized in the classification loss matrices of Figure 3, the fMRI of resting state
and task engagement can be classified with high accuracy using both temporal complexity
measures. However, the dynamics of fMRI sessions at rest are not distinguishable from each
other (note the high classification loss between rsfMRI recordings in Figure 3C,D). Here,
each dataset has been characterized as a set of Nsubj feature vectors of size NROI × 1 where
Nsubj = 100 and NROI = 360. The distribution of temporal complexity across brain areas in
different rest and task fMRI runs (brain maps of Figures 3A and 4) suggests that the spatial
profile of complex dynamics in fMRI is affected by task engagement and resting conditions.
As evident in the histograms of individualized mean Hurst exponents across brain areas
in Figure 3B, each task results in a regionally specific reduction in dynamic complexity,
an observation in line with previous findings in the literature [30]. This establishes a
framework for comparing the task burden in subjects. For example, the Hurst exponent
histograms suggest that the working memory task is likely the most demanding brain state
in the population of this study, because its associated histogram covers the lowest interval
of self-similarity.
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Task specificity of Hurst exponent across brain regions

Figure 3. (A) Spatial distributions of the Hurst exponent across brain regions (averaged over subjects).
The brain maps of 2 rest runs have been averaged. (B) Histograms of the group mean Hurst exponent
over 360 brain regions for 4 task runs and 2 rest runs (averaged). Classification loss of pair-wise
comparison of mental tasks using binary SVM classifiers with linear kernel: (C) Hurst exponent; and
(D) multiscale entropy-based complexity index. The classification loss values have been color coded
from dark blue (near zero) to bright red (near 1), and also mentioned on each pair. Abbreviations:
WMemory = working memory; Rest1LR = first rest run with left-to-right slicing; Rest2LR = second
rest run with left-to-right slicing.

Relationship between the Hurst exponent and multiscale entropy of fMRI

Figure 4. (A) Spatial distributions of the entropy-based complexity index across brain regions
(averaged over subjects); (B) Joint distribution of the Hurst exponent and complexity index extracted
from the rest and task fMRI datasets, averaged across all subjects. The brain maps of 2 rest runs are
averaged. Abbreviation: WMemory = working memory.

3.3. Complex Dynamics Exist in the Brain Structural-Functional Coupling

In Figure 5, we show the spectral power and multiscale entropy patterns of the
projected fMRI datasets onto brain structure at rest and during task engagement. As Figure
5A illustrates, the distribution of spatial energy across the brain connectome follows a
log-linear relationship. However, despite what we observed for the spectral power of
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fMRI in Figure 2A, a considerable difference between the power spectral distributions of
graph signals extracted from different tasks and rest sessions is not evident here. This can
also be observed in the multiscale entropy patterns and complexity indices of brain graph
signals in Figure 5B,C which are quite comparable over four tasks and the average rest. In
particular, there is an inflection point in the scatter plot of complexity indices (Figure 5C)
associated with the colour transition in the multiscale entropy patterns of Figure 5B from
dark blue (low randomness) to green (high randomness). These elbow or knee points are
also indicative of log-linearity in the complexity domain of brain structure–function.

Complex dynamics of brain graph signals

Figure 5. (A) Logarithmic plots of the power spectral density functions of brain graph signals (i.e.,
the projection of the fMRI data at rest and task onto brain structure) versus brain spatial harmonics.
The plots of two rest runs are averaged. Each grey curve belongs to a single subject and the red
curves represent group mean. All curves are normalized to 1. (B) Multiscale entropy patterns of the
graph signals, colour coded by their associated brain spatial harmonyic (C) The complexity indices
associated with the multiscale entropy curves of (B).

3.4. Spatial Patterns of Complex Dynamics in fMRI

Figure 6A illustrates the group-mean spatial patterns of multiscale entropy-based
complexity index across brain areas for the average rest runs and four tasks. Furthermore,
Figure 6B presents the pie chars of the percentage of suprathreshold ROIs in 7 RSNs
associated with Figure 6A. All maps were thresholded at the subject-level p-value of
0.01 and family-wise error-corrected at the group-level p-value of 0.01 using the graph
surrogate data generation method introduced in [43]. Furthermore, Table 2 summarizes the
contribution of 7 RSNs in the suprathreshold brain regions of Figure 6. In all fMRI runs, the
visual areas were amongst the regions with highest complex dynamics. The next mostly
engaged RSNs in all runs were the dorsal attention network with a maximum cover of 7.5%
followed by the frontoparietal and default mode networks with a maximum cover of 8.9%,
all during the Working Memory task. Several regions across dorsal lateral prefrontal cortex
(DLPFC) showed up as the most frequently observed areas with the highest complexity
across all tasks and rest runs. These regions included 8Av, 9m, 8BL, 10d, 9a and p10p.
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Other most repeated suprathreshold regions included: left RSC (anterior cingulate cortex),
left TE1a (middle temporal gyrus), PGi (temporo–parieto occipital junction), PGs (inferior
parietal cortex) and right 45 (inferior frontal cortex). The limbic network represented the
least complex regions with most random behaviour in all task and rest runs. See [48] for
the anatomical description of these brain labels.

Thresholded fMRI complexity maps using the graph surrogate data method

Figure 6. (A) Spatial distribution of group-mean fMRI temporal complexity across brain areas for
4 task runs and the average rest run. All maps are thresholded using the graph surrogate data
generation [43] at the subject level p-value of 0.01 and family-wise error corrected at the p-value of
0.01. (B) Pie charts are the percentage of suprathreshold ROIs in 7 RSNs after graph surrogate testing,
normalized by the number of ROIs. See Table 2 for the values of pie slices. Abbreviations: VIS = visual;
SM = somatomotor; DA = dorsal attention; VA = ventral attention; L = limbic, FP = frontoparietal;
DMN = default mode network; WMemory = working memory.
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Table 2. Percentage of suprathreshold ROIs in 7 RSNs after the graph surrogate testing of brain
complexity maps in Figure 6 (normalized by the number of ROIs). Abbreviations: VIS = visual;
SM = somatomotor; DA = dorsal attention; VA = ventral attention; L = limbic; FP = frontoparietal;
DMN = default mode network.

Task Name VIS SM DA VA L FP DMN

Rest1LR 5.3% 0.6% 3.6% 1.7% 0% 3.3% 2.5%

Rest2LR 7.5% 1.4% 4.7% 1.7% 0% 3.6% 3.1%

Language 7.8% 1.4% 5.3% 1.7% 0% 3.6% 2.5%

Motor 6.7% 0.6% 5.3% 1.4% 0% 3.6% 3.3%

Social 4.2% 0.3% 1.9% 1.1% 0% 3.1% 2.2%

Working Memory 7.8% 5% 7.5% 3.6% 0% 8.9% 7.8%

4. Discussion

This study reinforces the existence of complex dynamics in brain function [22] and
provides further evidence for the hypothesis of distinct complexity features in human
behaviour and cognition [30]. Our results suggest that: (i) task-based and rsfMRI signals
exhibit temporal complexity, inferred by Hurst exponent and multiscale entropy; (ii) rest
and task periods of brain function can be distinguished from each other with high accuracy
based on their temporal complexity profiles; (iii) cognitive load can suppress the complex
dynamics of fMRI in contrast to the resting state; (iv) spatial distribution of Hurst exponent
and entropy-based complexity index in fMRI are highly correlated; and (v) the visual,
frontoparietal, default mode, and dorsal attention networks represent maximal complex
behaviour compared to the rest of the brain in most mental states.

Temporal changes of neural activity in the brain are observed on the scale of millisec-
onds in single-cell spiking to the order of seconds in BOLD fluctuations [57]. In contrast
to the traditional neuroscientific view which would mostly consider this variability as a
random disturbance and measurement noise, many systematic patterns of information
have been detected in neural variability over multiple temporal and spatial scales [54,58,59].
Neural variability at the BOLD level not only reflects inter-subject differences such as
behavioural traits, but it also captures within-subject changes such as the dynamical states
of the brain and cognitive load [57]. An important feature of neural variability in the
brain is its temporally complex behaviour. Although temporal variability and temporal
complexity are closely related, these two concepts are not necessarily the same. In other
words, temporal complexity always exhibits variability, but a variable process is not nec-
essarily complex. Also, high complexity is not necessarily equivant with high entropy.
As a matter of fact, Gaussian white noise represents the highest signal entropy, highest
variability, and highest unpredictability amongst all signal types, but it is not deemed
as temporally complex according to our definition. A complex pattern of brain activity is
rich in information over time and represents a balanced dynamic between order and dis-
order within brain networks or between different brain regions [13,14]. Recent theories
in neuroscience have proposed that the temporal complexity of brain function is likely
associated with information processing in the brain [13,59]. The first theory [60] indicates
that a healthy brain retains an optimal degree of instability which allows it to enter to
different dynamical states and sample the external world. In this way, the brain learns how to
optimize responses to environmental stimuli. The second set of theories [61] argue that a
moderate level of randomness is necessary in the neural system because it increases the
probability of neuronal firing in subthreshold neurons. In contrast to the second proposal, a
third view [62] is that the temporal complexity of brain function can enhance or suppress
the likelihood of neural synchrony between cortical areas. All of these theories speak to the
direct relationship between the temporal complexity of brain function and information
transfer across neural populations, cortical regions and functional networks.
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Considering the key role of complex processes in brain mechanisms, one would expect
to find realizations of temporal complexity in brain hemodynamics as well. To investigate
this possibility, it is crucial to quantify the temporal complexity of neural variability. Signal
entropy measures were found to be relevant for investigating the complexity of brain
function. This is mainly because these measures do not rely on distributional assumptions
(unlike variance-based measures), and are not restricted by sinusoidal signal waveforms
(unlike frequency-based measures). In this study, we utilized two measures for the tem-
poral complexity analysis of fMRI in order to cross-check the fMRI complexity analysis
results: multiscale entropy as an entropy-based measure which evaluates similar patterns
of information throughout signals and the Hurst exponent as a variance-based measure
which quantifies the memory of signals and their tendency to return to their mean values.
Multiscale entropy has been shown to be sensitive to RSN-specific hemodynamics, and
reproducible across healthy subjects [13,14]. The direct relationship between multiscale
entropy and self-similarity [53] makes it a good candidate for investigating the properties
of the Hurst exponent in fMRI.

It is important to note that the existence of self-similarity and fractality in BOLD
signals has been subject to discussion in recent decades, mainly due to the limited temporal
resolution of fMRI and sluggishness of the hemodynamic responses in the brain [63]. A
fundamental question here is, even assuming the presence of temporal complexity in
brain hemodynamics, that of whether the recorded BOLD signal inside an MRI scanner
is able to adequately capture it. To address this question, the following issues should be
considered: (i) low temporal resolution of the measured BOLD changes with a typical TR
value in the scale of hundred milliseconds to seconds; (ii) the use of short-length fMRI time
series (less than 200 TR’s) in some studies; (iii) potential impact of preprocessing steps and
residual scanning artifacts on the nonlinear dynamics of fMRI; (iv) upon the agreement
on the complex dynamics of fMRI, whether it is monofractal or multifractal [21,64]. It
has been shown that non-fractal time series with inadequate memory can still exhibit
log-linear spectral power and be falsely identified as complex processes [63]. Therefore,
one may argue that the observed complex behaviour of fMRI is not biological, but it simply
originates from the signal aspects of fMRI such as its inadequate length in the previous
studies. In fact, it has been shown that the accuracy of fMRI fractal analysis can be affected
by the number of brain volumes [64]. As Figure 4 shows, a linear association across brain
regions was evident between the Hurst exponent and the area under multiscale entropy
curves of rsfMRI at the group level. Although the two measures operate at different
ranges and utilize different methodologies to quantify temporal complexity, their spatial
agreement across brain regions is relatively high (Pearson correlation above 0.8). However,
the distinction between the dynamics of rsfMRI and task fMRI is more apparent in the
Hurst exponent brain maps (Figure 3) in contrast to the entropy-based complexity index
brain maps (Figure 4). It speaks to numerous monofractal analysis techniques which one
can utilise to estimate the temporal complexity of fMRI, though each method may vary in
its strengths, biases, and sensitivity to the biological changes of brain function. In spite
of these technical differences, several simulated and experimental studies supported the
hypothesis of a power law distribution for the fMRI power spectrum over the frequency
band of 0.01 Hz to 0.1 Hz [21,52,65,66]. See [67] for a recent review on this topic.

The magnitude of H across brain areas in our study (Figure 3) is comparable with the
previously reported findings showing a typical range of≈0.5–1 for H [30,68,69]. The spatial
extent of fMRI temporal complexity in our results is maximal across the frontoparietal,
dorsal attention, visual and default mode networks and minimal across deep brain areas
such as the limbic network (see Figures 3 and 4). The considerable overlap between the
analysis results of this study with the existing literature suggests that the fMRI signal length
(minimum of 263 TR’s—see Table 1) has been enough to replicate the previous hypotheses
about the temporal complexity of brain function. In fact, a previous study has shown that
valid Hurst exponents can be obtained from fMRI time series as brief as 40 s (≈56 TR’s)
through the DFA algorithm [30]. Furthermore, this implies that the fMRI preprocessing
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steps have not significantly manipulated the true dynamics of fMRI datasets in this study.
According to our results, the spatial patterns of the Hurst exponent in fMRI are highly
correlated with the associated patterns of entropy-based complexity index. This indicates
that the two measures of fMRI temporal complexity converge to a similar outcome even
though their computation is completely different.

The results of this study suggest that the temporal complexity of some regions such as
motor areas is task-dependant. Higher values of complexity index and Hurst exponent of a
given brain region or RSN (Figure 7) imply that the associated fMRI signals are temporally
redundant and more predictable. Regions/networks with slower dynamics are likely
responsible for the process of internal stimuli with low surprise and high adaptability.
However, external stimuli such as sensory inputs and auditory inputs may reduce the
adaptability of brain dynamics, increase surprise and shift the temporal complexity of
brain function towards faster dynamics. An exception would be the visual network which
shows variable dynamics from slow to fast across different tasks (see Figure 7), likely
due to the larger capacity of visual areas in contrast to the other networks and brain
regions. It is important to note that despite the presence of complex dynamics in fMRI, the
relationship between fMRI temporal complexity and intrinsic functional connectivity is
scale-dependant. It has been shown that the weighted sum of functional links to a given
brain node, referred to as functional connectivity strength or FCS, is associated with the
functional significance of that node in support of the information transfer across the brain
[70]. The link between the FCS and temporal complexity of rsfMRI has been shown to be
scale-dependant [13,14]. In particular, an inverse relationship has been reported between
the FCS and temporal complexity of RSNs at fine time scales of multiscale entropy (τ ≤
5 at a TR of 0.72 s equivalent to time periods shorter than 3.5 s–4 s), while it turns to a
proportional relationship at coarse time scales (τ > 6 or time periods greater than ≈4 s).
This scale-dependant relationship varies for different RSNs. For example, frontoparietal
and default mode networks represent the highest correlation between resting state FCS
and temporal complexity at fine scales and lowest correlation at coarse scales, while it is
the opposite for somatomotor, sub-cortical and visual networks [13,14]. On the other hand,
the fine time scales of fMRI were associated with the dynamics of local neural populations,
whilst the coarse time scales are likely related to long-range functional connections [13].
Altogether, these observations would suggest that, in order to obtain a comprehensive
picture about complex dynamics of fMRI, one must consider the anatomical locations
(i.e., spatial distribution) of brain regions. This speaks to the necessity of appropriate
spatiotemporal methods for the significance testing of fMRI temporal complexity which
can account for brain structure and function at the same time.

Surrogate data testing is a powerful method for characterizing the statistical properties
of time series. In this approach, we want to compare the measure of interest extracted
from the original data, i.e., the alternative hypothesis H1, to the distribution of the same
measure obtained from a large number of surrogate data, i.e., the null hypothesis H0. In
the context of fMRI temporal complexity, the null hypothesis could be that fMRI time
series at different brain regions are generated by some non-complex processes and their
functional relationships are also non-complex. If the complexity indices of fMRI signals
fall within the null distribution H0, this means that these indices only rely on the statistical
properties preserved under the null H0. Otherwise, we can reject the null hypothesis and
interpret fMRI temporal complexity as revealing statistical properties beyond H0. A critical
question here is how to specify the null hypothesis of scale-free dynamics in fMRI and
how to remove this signal feature of interest from the original data in order to generate
surrogates [71,72]. In this study, we chose the brain graph randomization technique [43]
which shuffles the power spectral density of fMRI in the graph domain for each time
point, while keeping its underlying anatomical properties. As analytically discussed in the
Appendix B, the surrogate data in this study preserve the pair-wise correlation between
fMRI time series between brain regions. However, the functional connectivity, spatial
variation of complex dynamics and spatial variation of the complex dynamics of functional
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connectivity are randomized in the surrogate time series. Therefore, the complex dynamics
of brain ROIs with suprathreshold complexity indices is significantly different from the
chance level and likely play a key role in moderating the information transfer across the
whole brain. According to Table 2 as well as Section 3.4, the supporting role of brain regions
is maximal within the frontoparietal, dorsal attention, visual, and default mode networks
such as DLPFC and PGi, regardless of the resting state or task engagement. This finding is
in line with the previous studies showing the dominant role of these brain areas in internal
processing and the facilitation of information exchange in functional brain networks [73,74].

RSN-wise mean and standard deviation of complexity measures in this study

Figure 7. Group-level mean and standard deviation of the Hurst exponent and area under the curve
of multiscale entropy at 7 resting state networks. Abbreviations: VIS = visual; SM = somatomotor;
DA = dorsal attention; VA = ventral attention; L = limbic; FP = frontoparietal; DMN = default mode
network; WMemory = working memory.

A number of caveats need to be considered in interpreting the results of this study.
From the technical perspective, one should be aware of the limitation of Hurst exponent
and multiscale entropy in capturing multivariate relations between fMRI time series at
multiple ROIs. Both complexity measures used in this study treat ROI-wise fMRI signals
as a set of individual and independent time series. However, mean fMRI time series at
different ROIs are often statistically dependent and correlated due to the smearing effect of
hemodynamic changes in the brain and a possible effect of fMRI preprocessing steps such
as spatial smoothing. Therefore, it is plausible to use the multivariate versions of temporal
complexity measures for fMRI data analysis [75,76]. A systematic comparison between
the univariate and multivariate measures of complex dynamics and temporal complexity
remains for our future work. Another consideration should be given to the nature of BOLD
signals as an indirect measure of neural activity and the reduced amount of information
it carries, in contrast to other direct measurements with higher temporal resolution such
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as local field potentials. Although fMRI has a greater capacity to cover larger brain areas
than the localized measurements of neural activity and can provide large-scale information
about the complex properties of brain dynamics, its temporal complexity must be treated
as an indirect property of brain function. In this study, we assumed monofractality in
fMRI and compared the entropy-based complexity index of fMRI with the classical Hurst
exponent at different ROIs. It would be informative to check the possible links between
the multiscale entropy and multifractality of fMRI using longer fMRI datasets and higher
temporal resolutions during rest and task engagement. We also focused on the complexity
of fMRI and its spatial distributions in the time domain only. However, this is only one
dimension along which the complexity of brain dynamics can be measured. A more holistic
view would be to consider the complexity of brain function in both time and space and
adapt multivariate measures for the complexity analysis of fMRI time series [77].

5. Conclusions

Temporal complexity is a reproducible aspect of fMRI during rest and task engagement.
This feature of brain function is task specific and can be suppressed by cognitive load. FMRI
complexity is a discriminative feature between rest and task in the brain functional domain,
but not in the brain structural domain. A brain structure-informed statistical testing of
fMRI complexity reveals several areas with suprathreshold temporal complexity within the
frontoparietal, visual, dorsal attention, and default mode networks.
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Appendix A. Multiscale Entropy Analysis

Multiscale entropy analysis [54] is based on the calculation of sample entropy [55] at
multiple time scales. Sample entropy treats each short piece of x as a template to quantify
a conditional probability that two templates of length m, which are similar to within a
tolerance level r, will remain similar when m becomes m + 1. Note that self-matches are
not considered in calculating this conditional probability. A template Xm

i is defined as (in
all equations, scalar variables are in normal font, while vector variables are in bold.):

Xm
i = {xi, xi+1, ... , xi+m−1}, i = 1, ..., N −m + 1, (A1)
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where N is the number of time points in x and m is the embedding dimension. Two
templates Xm

i and Xm
j are considered as neighbours if their Chebyshev distance d(Xm

i , Xm
j )

is less than a tolerance parameter r. This leads to an r-neighbourhood conditional probability
function Cm

i (r) for any vector Xm
i in the m-dimensional reconstructed phase space:

Cm
i (r) =

1
N −m + 1

Bm
i (r), i = 1, ..., N −m + 1, (A2)

where Bm
i (r) is given by:

Bm
i (r) =

N−m

∑
j=1

Ψ(r− d(Xm
i , Xm

j )), (A3)

where Ψ(.) is the sign function with 0 for non-positive inputs and 1 for positive inputs.
Sample entropy is then given by:

SampEnτ(m, r) = lim
N→∞

−ln
Br

m+1
Br

m
, (A4)

where Br
m is the average of Bm

i (r)’s over all templates:

Br
m =

1
N −m

N−m

∑
i=1

Bm
i (r). (A5)

Sample entropy is always non-negative, but it can also become undefined. It is important to
multiply the tolerance parameter r by the standard deviation of x to account for amplitude
variations across different signals [55]. Multiscale entropy extracts sample entropy after
the coarse graining of the input signal x at a range of time scales τ. A coarse-grained vector
x(τ) = {xi(τ)} is defined as:

xi(τ) =
1
τ

iτ

∑
k=(i−1)τ+1

xk, τ = 1, 2, ..., τmax. (A6)

In this study, we used these parameter values: m = 2, r = 0.5 and τmax = 10. We
reduced the dimensionality of multiscale entropy patterns to a single value by calculating
the area under each multi-scale entropy curve over all scales, divided by the maximum
number of scales (i.e., τmax). This leads to a complexity index Mi for each parcellated rsfMRI
dataset as follows [56]:

Mi =
1

τmax

∫ τmax

1
SampEn(xτ , m, r) dτ. (A7)

Appendix B. The graph Surrogate Method for fMRI Complexity Analysis

In this section, we explain a surrogate data method, proposed in [43], which we
hypothesize is a relevant technique for generating null distributions in the hypothesis
testing of fMRI complexity. This approach uses the graph signal processing framework [42]
in order to combine the brain structure and function. Let Y ∈ RNROI×NT be a parcellated
rsfMRI dataset from NROI brain regions of interest (ROIs) which were uniformly sampled
at NT time points.

Appendix B.1. Combining Brain Structure and Function

In order to model the spatiotemporal correlates of fMRI, we consider a basis set
UG ∈ RNROI×NROI which contains the spatial harmonics of brain function and another basis
set UF ∈ RNT×NT which models the dynamics of fMRI using a Fourier transform with
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NT bins. Joint projection of Y into the structural and spectral domains of the brain can be
modelled as:

Ŷ = g(Y|UG, UF), (A8)

where Ŷ is a NROI × NT matrix and g is a nonlinear mapping from the time domain into
the joint complexity–structure domain. In this study, we assume that g is a linear function
and also, the structural and spectral domains of brain function are linearly separable. In
that case, Equation (A8) is written as:

Ŷ = U>G YU∗F, (A9)

where U>G is the transpose of UG and ∗ denotes the complex conjugate operator. This general
formulation considers the spatial and spectral properties of brain function through UG and
UF, respectively. If UF is an identity matrix, Equation (A9) leads to the representation of
graph signal processing for fMRI datasets.

Appendix B.2. Spatial Harmonics of Brain Structure

In order to obtain the structural basis set of brain function (i.e., UG in Equation (A9)),
one can incorporate a brain structural graph from the corresponding diffusion MRI [42].
This graph can be characterized as G = (V, E) where V is a set of NROI vertices and E is
a set of weighted edges associated with a symmetric and real-valued adjacency matrix
AG ∈ RNROI×NROI . Each element in AG represents the number of white-matter pathways
between two brain regions. The symmetric normalized Laplacian matrix of AG is then used
to form a structural space onto which the brain function is projected:

Lsym
G = I−D−

1
2

G AGD−
1
2

G , (A10)

where I ∈ RNROI×NROI is the identity matrix and DG ∈ RNROI×NROI is the degree matrix of
AG, a diagonal matrix whose non-zero elements are defined as:

dii =
NROI

∑
k=1

aik, (A11)

where aik is the ik’th element of AG. According to the spectral graph theory [42,78], spa-
tial harmonics of the fMRI temporal correlation matrix G can be obtained through the
eigendecomposition of Lsym

G as follows:

Lsym
G = UGΛGU>G , (A12)

where the diagonal matrix ΛG includes the eigenvalues (or spatial harmonics) of Lsym
G

and UG contains the corresponding spatial eigenmodes. Given that AG is real valued
and symmetric, both ΛG and UG will be real valued. The matrix UG constitutes an NROI-
dimensional brain structural space or structural space, in short. The assumption here is that
brain structure is fixed in time. Therefore, all elements of UG are time invariant. The
left-side multiplication of UT

GY in Equation (A9) is usually referred to as graph signals in the
literature [42].

Appendix B.3. Graph Surrogate Generation

We used the graph surrogate data generation method in [43] to develop the null
distributions of fMRI complexity. This technique is based on the idea of sign randomization
in brain structural eigenmodes. Let A ∈ RNROI×NROI be the fMRI temporal correlation
matrix associated with the vectorized fMRI data Y ∈ RNROI×NT . The spatial eigenmodes
of A could be obtained through graph signal processing as the columns of the square and
orthogonal matrix UG ∈ RNROI×NROI .
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One can randomize the eigen matrix UG and generate ŨG by keeping the absolute
value of its elements, while shuffling the signs of eigenvectors (i.e., the signs of all elements
across a column are either flipped or not). In this case, a surrogate form of Y with a similar
size, called hereafter Ỹ, is obtained as [43]:

Ỹ = B̃Y, (A13)

where B̃ = UGŨT
G ∈ RNROI×NROI . Each element of B̃ can be written as:

b̃ij =
NROI

∑
k=1

uikũkj, (A14)

where uik is the ik’th element of UG and ũkj is the kj’th element of ŨG. In Equation (A13),
ŨT

GY randomizes the fMRI matrix Y in the structural brain graph domain and left-side
multiplication to UG takes the randomized graph signals back to the functional domain.
Note that, in the case of UG = ŨG (i.e., if there is no shuffling in the graph domain),
we have:

b̃ij =

{
1 i = j
0 i 6= j,

(A15)

while in the case of graph shuffling, we have:

b̃ij =

{
±1 i = j
a i 6= j,

(A16)

where a ∈ R is a real number.

Appendix B.4. Regarding Linearity

The surrogate data matrix X̃ in Equation (A13) can be also written as:

X̃ = [b̃1 b̃2 ... b̃NROI ]X, (A17)

where b̃i is the i’th column in B̃. By assuming the index j as a temporal argument in
Equation (A17), the i’th element of X̃ at time t is given by:

x̃i(t) = b̃1i x1(t) + b̃2i x2(t) + ... b̃NROI i xNROI (t) =
NROI

∑
k=1

b̃ki xk(t). (A18)

This implies that each element of the surrogate data X̃ at time t is a linear random combi-
nation of its corresponding fMRI time point over all ROIs. Therefore, the graph surrogate
method [43] preserves the linear relationships between original fMRI time points.

Appendix B.5. Regarding Functional Connectivity

Now, let us compute the spatial covariance matrix of X̃, referred to as C̃S ∈ RNROI×RROI ,
in order to obtain an insight about inter-regional cross-correlation surrogate time series
as follows:

C̃S = cov{X̃} = X̃X̃T = UGŨT
GXXTŨGUT

G

= X̃X̃T = UGŨT
Gcov{X} ŨGUT

G.
(A19)

The matrix cov{X} ∈ RNROI×NROI is equivalent with the functional connectivity extracted
from fMRI data X. Since UGŨT

G and ŨGUT
G are not necessarily identity matrices, C̃S and

cov{X} will not be the same. Therefore, the graph surrogate method in [43] randomizes
functional connectivity.
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Appendix B.6. Regarding the fMRI Temporal Correlation Matrix

To unravel the pair-wise relationship between the time points of graph surrogates, a
similar cross-correlation analysis can be performed by simply transposing X̃ in Equation
(A19). This leads to a super adjacency matrix C̃T ∈ RNT×NT as follows:

C̃T = cov{X̃T} = X̃TX̃ = XTŨGUT
GUGŨT

GX = XTX = cov{XT}. (A20)

This is based on the fact that both UG and ŨG are orthogonal, so the terms ŨGUT
G and UGŨT

G
are identity matrices. Since C̃T is independent from X̃, it does not change throughout the
surrogate generation procedure. This suggests that the fMRI temporal correlation matrix
embedded in the surrogate data matrix X̃ is preserved through the method described
in [43].

Appendix B.7. Regarding Temporal Complexity

The complex properties of a multivariate time series can be studied by looking into
the log-linearity of its auto- and cross-spectral power functions in the frequency domain.
A log-linear pattern of spectral power means that the frequency components have been
distributed according to an exponential law S( f ) = 1/ f β where β is referred to as the
spectral exponent. This parameter is related to the memory of the underlying signal measured
by Hurst exponent H, varying between 0 and 1. A value near 0 reflects the short memory
(i.e., quickly coming back to the signal mean or noise-like behaviour), while a value close to
1 represents long memory (i.e., slow return to the signal mean or a smooth dynamic). In the
spatial case of fractional Brownian motion, an exponent of H = 0.5 leads to a random walk.

In order to check the complex properties of graph surrogates in X̃, one can use the
linear expansion in Equation (A18) and obtain the Fourier transform of x̃i(t) as follows:

F{x̃i(t)} = F̃k( f ) =
NROI

∑
k=1

b̃ki F{xk(t)} =
NROI

∑
k=1

b̃ki Fk( f ), (A21)

where xk(t) is the mean fMRI time series at the k’th ROI. The power spectral density
function of x̃i(t) is then obtained as:

S̃ii( f ) = F̃i( f )F̃∗i ( f ) =
NROI

∑
m=1

b̃mi Fm( f )
NROI

∑
n=1

b̃ni F∗n ( f )

=
NROI

∑
m=1

NROI

∑
n=1

b̃mi b̃ni Fm( f )F∗n ( f ).

(A22)

Each single multiplication term Fm( f )F∗n ( f ) in Equation (A22) is either equal to the power
spectral density of individual surrogate time series (i.e., Smm( f )) or coherency between
pairs of surrogate signals (i.e., Smn( f )) as follows:

Fm( f )F∗n ( f ) =

{
Smm( f ) m = n
Smn( f ) m 6= n.

(A23)

Therefore, the spectral power of each surrogate time series in X̃ is a random linear combina-
tion of all spectral powers and all possible pair-wise coherencies between original fMRI
time series across ROIs. Now, let us assume that there is some level of complex dynamics
within the original fMRI time series, that is, the spectral power and coherency across a
sub-group or all temporal dimensions of X follow the power law:

Smn( f ) ≈ 1/ f βmn , m = 1, ..., NROI , n = 1, ..., NROI . (A24)
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With this assumption, it is clear from Equation (A22) that the power spectral density
functions of surrogate data X̃ (i.e., S̃ii( f ), i = 1, ..., NROI) do not necessarily preserve the
complex properties of the original fMRI data at individual ROIs or interaction between
regions. If there is no variation in complex properties across brain regions (i.e., if the spatial
distribution of spectral exponents is the same across all regions), the Hurst exponent of
surrogates would be the same as the original data. This is an example in which the complex
properties of the original dataset are completely preserved by the graph surrogate data
method [43]. In practice, however, the fMRI temporal correlation matrix A imposes a
non-uniform distribution of the complex properties across regions which can be picked up
by the graph surrogate method.

Note that the coherency between different graph surrogates (i.e., S̃ij( f ), i, j = 1, ..., NROI ,
i 6= j) gives a shuffled version of functional connectivity in the time domain. To show this, we
take advantage of the cross-correlation and Wiener–Khinchin theorems outlining the reciprocal
relationship between correlation and coherence in the time and frequency domains. The
Wiener–Khinchin theorem states that for x̃i(t), the power spectral density function S̃ii( f ) is
equal to the Fourier transform of its auto-correlation function R̃ii(τ):

S̃ii( f ) = F{R̃ii(τ)}, (A25)

where τ denotes the delay and F is the Fourier transform operator. Furthermore, the
cross-correlation theorem indicates that the correlation between surrogates x̃i(t) and x̃j(t)
in the time domain is equivalent to their coherence in the frequency domain:

S̃ij( f ) = F{R̃ij(τ)} = F{x̃i(t)}∗ F{x̃j(t)}, (A26)

where R̃ij(τ) is the cross-correlation of x̃i(t) with x̃j(t) at the delay τ and ∗ denotes the
complex conjugate operator. This suggests that the graph surrogate method [43] tends to
remove the spatial variation of possibly complex properties of the original data at each
single fMRI time series, which preserves the temporal relationships but randomizes their
functional connectivity.
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