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Abstract: Multi-source information fusion is widely used because of its similarity to practical en-
gineering situations. With the development of science and technology, the sources of information
collected under engineering projects and scientific research are more diverse. To extract helpful infor-
mation from multi-source information, in this paper, we propose a multi-source information fusion
method based on the Dempster-Shafer (DS) evidence theory with the negation of reconstructed basic
probability assignments (nrBPA). To determine the initial basic probability assignment (BPA), the
Gaussian distribution BPA functions with padding terms are used. After that, nrBPAs are determined
by two processes, reassigning the high blur degree BPA and transforming them into the form of
negation. In addition, evidence of preliminary fusion is obtained using the entropy weight method
based on the improved belief entropy of nrBPAs. The final fusion results are calculated from the
preliminary fused evidence through the Dempster’s combination rule. In the experimental section,
the UCI iris data set and the wine data set are used for validating the arithmetic processes of the
proposed method. In the comparative analysis, the effectiveness of the BPA determination using
a padded Gaussian function is verified by discussing the classification task with the iris data set.
Subsequently, the comparison with other methods using the cross-validation method proves that the
proposed method is robust. Notably, the classification accuracy of the iris data set using the proposed
method can reach an accuracy of 97.04%, which is higher than many other methods.

Keywords: Gaussian distribution; reconstructed basic probability assignment; Dempster-Shafer
evidence theory; multi-source information fusion; belief entropy

1. Introduction

Multi-source information fusion refers to the processing and fusion of data collected
from diverse knowledge sources or sensors. It is now used in many fields such as fault
diagnosis [1], life-cycle prediction of engineering parts [2], recommendation systems [3],
and medical diagnosis [4], etc. The fusion algorithm for multi-source information must
seriously consider the evaluation of different attributes because the impacts of different
attributes on the fusion results may be diverse. However, information involved in fusion is
often imperfect, mainly in terms of uncertainty, imprecision, incompleteness, ambiguity,
multiplicity, conflict, etc. [5]. How to use multi-source information more efficiently has
become a challenge. The techniques commonly applied to address uncertain information
modeling and fusion include Bayesian estimation [6], fuzzy theory [7], Kalman filter
theory [8], artificial neural network theory [9], DS evidence theory [10], etc.

Among the above methods, DS evidence theory enables representing and managing
uncertainty without a priori information and expressing “uncertain” and “imprecise” in-
formation. By modeling the problem, DS evidence theory is able to process the data more
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appropriately in the fusion process, which can improve the accuracy of fusion and make
the decision results more informative. DS evidence theory is widely applied by researchers
in the multi-source information fusion field for classification [11–13], decision-making [14],
and so on.

DS evidence theory was first proposed by Dempster [15] in 1967 to address the
multi-valued mapping dilemma using upper and lower probabilities, and Dempster’s
combination rule was also proposed in it. The DS evidence theory was further extended and
refined by Shafer [16], who introduced the concept of trust function to form a “mathematical
theory of evidence”. Nonetheless, there are shortcomings in DS evidence theory, especially
for Dempster’s rule of combination [17–19]. For example, the inability to resolve situations
of severe or complete conflicts of evidence. Conflict of evidence means that the evidence
involved in the calculation supports conflicting results. Many works focus on this issue.

One is to investigate the determination methods of BPAs [20]. Researchers who study
this perspective believe that using different BPA determination methods can make the BPAs
obtained from raw data conversion contain more valid information, and it will be easier
to obtain the correct fusion results subsequently [21]. The BPA determination methods
are divided into function-based BPA determination and intelligent algorithm-based BPA
determination. Among the function-based BPA determination methods, the triangular
fuzzy function-based BPA construction method is the most employed owing to its simple
construction [22,23]. In addition, there are methods to generate BPA using trapezoidal
fuzzy functions [24], Gaussian fuzzy functions [25], etc. The function-based determination
generally has the advantage of being simpler and less time-consuming to compute, but the
loss or bias of information is larger. For intelligent algorithms, researchers use methods
such as gray correlation function BPA [26] and kernel density estimation [27] to establish
BPA. Intelligent algorithm-based BPA determination is better, but the complexity is often
much greater than the combination rule, where computational cost and rewards are not
well balanced.

The next perspective of improvement is the modification of Dempster’s combination
rules, especially for the method of conflict evidence fusion. Researchers who have studied
this point of view believe that this result arises due to the shortcomings of Dempster’s
combination rule itself, which leads to discarding when processing conflicting data [28–30].
Yager [31], for example, eliminated the normalization process of Dempster’s combination
rule and proposed a new combination rule that used coercion to assign highly conflicting
information to the public, which reduced the impact of evidence conflicts, although this
combination rule no longer guaranteed the associative law and the commutative law; Jiang
and Zhan [30] proposed mGCR (modified generalized evidence theory), which made the
combination result contain more obvious geometric features and the physical meaning of
the original GCR; Smarandache and Dezert [32] proposed a new DSmT theory based on DS
evidence theory, where the representation of evidence was no longer represented by a single
BPA but consisted of an independent source of evidence and a related source of evidence,
both of which were involved in the computation of the combination of the evidence. The
strategy of modifying the rules of Dempster’s combination rules has been shown to be
effective in some works. However, modifying the rules means that the new rules may result
in the method no longer satisfying the constraints of the DS evidence theory. It is possible
that the properties of evidence will change, which may lead to uncontrollable results.

The third perspective is to modify the evidence sources before fusing them to make
them more reasonable logically [33,34]. Scholars believe that the problem mentioned
arises from the drawback of evidence sources rather than combination rules. Murphy [35]
obtained a preliminary-fused BPA by averaging the BPAs of multiple sources with the
same focal element separately to achieve the reduction in conflict degree; Song et al. [36]
composed a support matrix (SDM) between BPAs by means of Euclidean distance to take
into account the associations and conflicts between the evidence. This method improves
the accuracy and anti-interference ability of the combined results but is computationally
complex. Weng et al. [37] argued that the degree of blurring of BPAs has become larger as
the number of focal elements included increased. Therefore, a method of reconstructing
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the BPA was proposed to reflect the relationship between different focal element BPAs.
By reassigning the BPAs, the uncertainty was reduced; Yin [38] proposed the negation of
BPAs so that the uncertain information contained in the BPAs came from both positive
and negative aspects to improve the accuracy of fusion. Moreover, Wu et al. [39] adapted
DS evidence theory to tunnel collapse risk analysis. Wu et al. employed a normal cloud
model, probabilistic support vector machines (SVM) and a Bayesian network to assign BPAs
from statistical data, sensors and expert assessments, respectively. Moreover, the above
BPAs were fused and participated in the calculation of Dempster’s combination rule.
This approach achieved a high accuracy rate in assessing risk from multiple dimensions.
However, its achievement was based on sacrificing a large amount of data collection and
processing time, model training time, and computing time.

In this work, the DS evidence theory is modified from two perspectives: the deter-
mination of the initial BPAs and the evidence preprocessing. The main motivation is
as follows:

1. Since the initial BPAs have a significant influence on the fusion results, Gaussian
functions estimated by the maximum likelihood method are used for determining
the initial BPAs. To enhance the generalizability of the method, we assume that the
multi-source information involved in the fusion obeys a complex nonlinear joint
distribution, and they are distributed normally. This hypothesis has proven to be
valid and widely accepted [40]. Therefore, it is conventional to use Gaussian func-
tions to build the initial BPA determination model. Furthermore, original data will
be padded with the mean of the data correspondingly before being estimated by
the maximum likelihood method in order to improve generalizability and mitigate
overfitting due to the over-dependence on the provided data. The padding strategy
was first used in mathematical statistics to supplement missing information or to
reduce dimensionality [41,42]. Lopez-Martin et al. proved that embedding the fea-
tures of samples into the mapping space was beneficial for improving the accuracy of
detection [43]. They embedded sample labels in self-supervised learning networks to
accomplish network intrusion detection.

2. To improve the ability to discern the uncertainty of information, a variety of methods
are applied to extract more valid information from the original sources. Referring to
Weng et al.’s method [37], the BPA is firstly reconstructed by assigning the original
BPAs, and the BPAs’ values with high degrees of uncertainty are partially assigned to
the BPA of the subset focal elements. Additionally, referring to Yin’s research [38] on
the negation of BPA, the reconstructed BPA of the subset focal elements is improved by
the negation of BPA to enhance the representation of BPA uncertainty information. We
denote the result of the calculation after the above process as nrBPA. Such processing
can reduce the uncertainty of BPAs while ensuring the uncertainty of BPAs, which
makes the final information involved in DS fusion richer and can improve the accuracy
of decision-making.

3. To reduce the impact of conflicting information from each source on the DS evidence
fusion and to make the fusion results more robust. First, improved belief entropy
is employed to measure the information entropy of information from each source.
Then the initial fusion BPAs are calculated by the entropy weighting method based
on the improved belief entropy, which will be involved in the subsequent Dempster’s
combination rule calculation to obtain the results.

The steps to complete the multi-source information fusion using the proposed method
can be divided into four steps. First, the initial BPAs are obtained using the multi-source
information data set; secondly, the initial BPAs are reconstructed into nrBPAs through a
series of normalization and uncertain information retention methods; in the third step,
the improved belief entropy of nrBPAs is served as the information entropy. The inverse
normalization results of information entropies are used as weights of mass function to syn-
thesize several known pieces of evidence into preliminary-fused BPAs; finally, Dempster’s
combination rule is used for accomplishing data fusion.
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The remainder of the article is organized as follows. In the second part, some prepara-
tory knowledge is briefly introduced. In the third part, a multi-source information fusion
method based on DS evidence theory with a strategy of nrBPA and padded Gaussian BPA
function is proposed. The fourth part numerically demonstrates this fusion method based
on the UCI data set. The fifth part discusses the effectiveness of improving the fusion
results and compares the performance with other evidence-theoretic-based methods using
cross-validation. The sixth part draws conclusions.

2. Preliminaries
2.1. Dempster-Shafer Evidence Theory

DS evidence theory is a Bayesian theory-based uncertainty inference approach that
integrates the upper and lower bounds of confidence of evidence by modeling informa-
tion of different attributes [44] and completes data fusion using Dempster’s combination
rule [15]. This section will introduce the basics of DS evidence theory briefly.

Definition 1. Define a finite, non-empty, mutually incompatible set of elements Θ = θ1, θ2, θ3 . . . θi . . . θn.
Θ is called a frame of discrimination (FOD), where n is the total number of elements contained in Θ,
and θi(1 ≤ i ≤ n) are the elements belonging to Θ. There are 2| | cases for all combinations of all elements
belonging to , as shown in Equation (1).

2| | = {∅, θ1, θ2, θ3...{θ1, θ2}, {θ1, θ3}...{θ1, θ2, θ3} . . . , Θ} (1)

When analyzing evidence, it is necessary to establish an initial assignment of con-
fidence to the evidence, which expresses the degree of support of the evidence for the
proposition itself. In DS theory, it is accustomed to consider the confidence of evidence as
the mass of a physical object, so the mass function is used for expressing the confidence of
evidence, which is also called basic probability assignment or body of evidence.

Definition 2. Let A be an arbitrary subset of FOD and m(A) be the BPA of A. Then, the mapping
2| | → [0, 1] satisfies the following properties.{

∑A⊆Θ m(A) = 1
m(∅) = 0

(2)

If m(A) > 0, then A is said to be a focal element of m.

Definition 3. For each A belonging to FOD Θ, the sum of its subsets of BPA is called the belief
function bel(A), which is used to express the probability that the result may be a subset of A. Let B
be a focal element belonging to FOD Θ, and bel(A) is calculated as Equation (3).

bel(A) = ∑
B⊆A

m(B) (3)

Definition 4. For each A belonging to FOD Θ, the sum of all focal elements belonging to FOD
Θ whose intersection with A is not empty is called the Plausibility function of A Pl(A). Pl(A) is
employed for expressing the maximum belief of proposition A. Let B be a focal element belonging to
FOD Θ, Pl(A) is denoted as Equation (4).

Pl(A) = ∑
A
⋂

B 6=∅
m(B) (4)

Definition 5. Let m1 and m2 be BPAs belonging to the same discriminative frame and independent
of each other, B1, B2, . . . Bn and C1, C2, . . . Cm be all focal elements contained in m1 and m2,
respectively, n is the number of focal elements in m1, m is the number of focal elements in m1.
Suppose A is a single focal element belonging to the same discriminative frame, then according to
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the DS evidence fusion rule, we have Equation (5). With this calculation, only the BPAs of single
focal element are retained

m1
⊕

m2(A) =
1
K ∑

B∩C=A
m1(Bi) ·m2

(
Cj
)
, 0 ≤ i ≤ n, 0 ≤ j ≤ m (5)

where K = ∑B∩C 6=∅ m1(Bi) ·m2
(
Cj
)

is called the coefficient measuring conflict of m1 and m2.

2.2. Negation of BPA

The traditional DS evidence fusion rule is susceptible to conflicting evidence, giving
rise to counter-intuitive conclusions. Instead of traditional BPA, Yin et al., in 2018 [38]
employed the modified negation of BPA to participate in fusion operations. Specifically,
Yin et al. addressed the effect of negation on BPA by employing four uncertainty mea-
sures, which were confusion measure (Conf) [45], dissonance measure (Diss) [45,46], non-
specificity (NS) [47], ambiguity measure (AM) [48], and aggregated uncertainty (AU) [49].
The experimental results showed that the negation process causes all five uncertainty
measures of BPA to rise. As the negation process continued to iterate, the AU kept an
increasing trend, and the other four factors fluctuated to different degrees. Finally, all five
values converged to higher values than the original BPA. Therefore, we choose the negation
operation to further process the BPA to obtain a higher uncertainty.

Definition 6. Suppose mAi is the BPA on the FOD Θ, let m̄Ai be complement of mAi , there exists
m̄Ai = 1−mAi . The modified negation of BPA is defined as Equation (6).

m̄Ai =
1−m(Ai)

2N − 2
(6)

In which N = |Θ|, is the number of identification frames Θ containing all focal elements, and 2N− 2
is the sum of the inverse of all BPAs on the identification frame Θ.

2.3. Belief Entropy
2.3.1. Deng Entropy

Shannon entropy is a common method to measure the inaccuracy of information by
probability assignment, but in DS evidence theory, the uncertainty of evidence cannot be
well measured.

Definition 7. Deng entropy [50], proposed by Deng based on Shannon entropy, is defined as
Equation (7).

Ed(m) = − ∑
A⊆X

m(A)log2
m(A)

2|A| − 1
(7)

where A is a focal element of FOD Θ, | A | is a modulo operation on A, which is also equal to the
number of elements contained in A. Deng entropy is a variant of the classical Shannon entropy,
which decomposes m(A) by 2|A| − 1 and is a means of measuring BPA uncertainty. When A is a
single element, Deng Entropy degenerates to Shannon entropy.

Yan and Deng pointed out in their paper [51] that Deng entropy does not characterize
well the variability of BPAs containing different element types when they contain the same
number of elements and assignments. To address this problem, Yan and Deng proposed
the improved belief entropy inspired by the improvement of Deng entropy. By introducing
the belief function, uncertainty can be distinguished when the mass function contains
events of the same scale but with different elements. Improved belief entropy considers the
information about the scale of the evidence and the relative size of the focal element with
respect to the evidence.



Entropy 2022, 24, 1164 6 of 25

Definition 8. Improved belief entropy is defined as Equation (8)

EMd(m) = − ∑
A⊆Θ

m(A)log2
m(A) + bel(A)

2
(
2|A| − 1

) e
|A|−1
|X| (8)

where bel(A) is the belief function of A, | A | is the number of events contained in focal element A
as shown in Equation (3). | X | is the number of non-empty events contained in BPA X.

2.3.2. Entropy Weight Method

The entropy weight method determines the weight of an index based on the defini-
tion of entropy in information theory. It is more objective, avoiding the subjectivity and
blindness of setting weights artificially.

Definition 9. Suppose there are n sources of information, and the information entropies are
E1, E2, E3 . . . En; for example, we employ improved belief entropy EMd as information entropies in
our works. Then, the weight of source i is calculated as Equation (9).

Wi =
1
Ei

∑n
i=1

1
Ei

(9)

2.4. Hypothesis Testing Based on Gaussian Probability Density Function

A probability distribution function describes the distribution pattern of values taken by
a random variable. Parameter estimation is the process of estimating unknown parameters
in the overall distribution based on random samples drawn from the overall population.
The method of maximum likelihood estimation is a type of parameter estimation first
proposed by the German mathematician C. F. Gauss in 1821, but the method is usually
credited to the British statistician R. A. Fisher, who reintroduced the idea in his 1922
paper [52] and first explored some properties of this method. When we have an event
occurrence in one trial, it is considered that the value at this time should be the one that
makes the maximum of all possible values of t. The method of great likelihood estimation
is to choose such a value of a parameter as an estimate of this parameter so that the selected
sample appears in the selected overall probability as the maximum [53].

A large number of processes in the natural and social sciences naturally follow Gaus-
sian distributions. Even if they are not inherently Gaussian distributed, Gaussian distribu-
tions often provide the best approximation. Therefore, Gaussian distribution is chosen to
fit the distribution of information in this paper.

Definition 10. The Gaussian probability density function is described as Equation (10)

f (X) =
1

σ
√

2π
e−

(X−µ)2

2σ2 (10)

where X is a random variable obeying Gaussian distribution, µ is the expectation of the random
variable X, and σ is the variance of the random variable X.

The great likelihood method is used for constructing a Gaussian probability density
function model for the random variable X. The specific implementation is based on a
number of sample observations belonging to the random variable X. The expectation
and variance of the two parameters of the Gaussian probability density function model
are obtained.

Definition 11. Suppose X1, X2 . . . Xn are a set of independent samples of random variables X from
a Gaussian distribution, x1, x2, . . . xn, (n ∈ N∗) are sample observations, the unknown parameter
mean µ and variance σ in X are calculated as the following steps:
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Firstly, the unknown parameter mean µ and variance σ likelihood function L is shown in
Equation (11).

L
(

µ, σ2
)
= L

(
x1, x2, . . . xn; µ, σ2

)
=

n

∏
i=1

1
σ
√

2π
e−

(xi−µ)2

2σ2 , 1 ≤ i ≤ n (11)

Solve L(µ), L(σ) separately and take the value of zero after logarithmic partial derivative as in
Equation {

∂
∂µ ln L = 0
∂

∂σ ln L = 0
(12)

Finally, let Equation (12) be equal to 0, and the obtained are the maximum likelihood estimates
µ̂ and σ̂ of µ and σ. Substituting the likelihood function L into Equation (12), respectively, the final
µ̂ and σ̂ can be obtained as Equation (13).

µ̂ = 1
n ∑n

i=1 xi

σ̂2 = (n− 1)∑n
i=1 (xi − µ̂)2 (13)

3. Proposed Method

We propose a multi-source information fusion method based on the DS evidence theory
with padded Gaussian BPA function and nrBPA. The method remedies the traditional DS
evidence theory defects, including the inaccuracy of the calculation when the evidence
conflicts severely or completely, the inability to recognize the uncertainty degree of BPA
and the poor robustness.

To begin with, because the determination from the original BPA is the basis for the DS
evidence theory, the determination results are closely related to the fusion results. Scholars
have attempted in many ways to generate BPA to make it more useful for subsequent
calculations, such as the method of fuzzy triangular affiliation function, interval generation,
kernel function, etc. In our work, Gaussian functions with padding terms with mean
values are utilized as the BPA functions. Complex distributions in reality are often close
to Gaussian distributions, and such methods of fitting realistic distributions by means of
Gaussian functions have also proven to be effective [40]. The comparison of the efficiency
of our method with other determination methods is shown in Section 5.1.1. Inspired by
the mean interpolation method in statistics, which is widely accepted to fill in defective
data [41,42], we believe that when the amount of raw data is small, or incomplete, or jitter
has a significant impact on the robustness of the method, overfitting is likely to occur.
To improve the robustness of our method, the Gaussian functions are padded with mean
data under a certain ratio. It makes the confidence level obtained closer to the mean value,
so that the interference caused by some outliers is reduced and the overfitting of our method
is alleviated. The effectiveness of this strategy will also be discussed in Section 5.1.2 based
on the iris classification task. According to the outcome, we set the padding ratio to 40% as
the default padding ratio of the method because this allows the method to guarantee better
performance on both small and larger data sets (corresponding in the experiments as the
ratio of samples participating in the training of the method) while ensuring that the BPA
assignment model is determined by the information of the real data as much as possible.
The padding ratio can be adjusted for different sizes of data sets for information fusion
tasks in order to achieve better performance.

On the other hand, we believe that the degree of uncertainty and ambiguity of the
evidence should be taken into account. The uncertainty of the evidence refers to the focal
elements contained in the evidence. The greater the variety of focal elements contained
in the evidence, the greater the uncertainty of the evidence, and the more possibilities for
fusion results. Consequently, the uncertainty makes it easier to obtain correct fusion results.
Therefore, we aim to find a representation that adequately reflects the uncertainty of BPA.
Yin et al., proved the modified negation of BPA [38]. Based on the above viewpoint, we
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define a BPA representation: negation of reconstructed BPA, which is later abbreviated as
nrBPA. First, the initial BPA is reconstructed using the method [37] by combining the degree
of uncertainty of each BPA within the initial BPA, which both enhances the deterministic
discriminative information and retains the uncertainty of the original BPA information.
The degree of uncertainty of a BPA is defined as the number of focal elements contained
in the BPA. The higher the number of focal elements, the vaguer the BPA is, and the
lower the number of focal elements, the clearer the BPA is. The method [38] is then cited to
generate the negation of reconstructed BPA. By considering the degree of dispersion of focal
elements, more information was collected from both the positive and negative sides of BPA,
and BPA becomes more uncertain. Moreover, it is pleasant that when the BPA degenerates
to probability, the DS evidence will degenerate to a Bayesian distribution, and the negation
of the BPA will also degenerate to the negation of probability. The result obtained from the
above two steps is employed as the nrBPA. In addition, the difficulty of having 0 values in
BPA using Gaussian BPA functions is discovered. BPAs are likely to obtain the same number
of focal elements as all elements in FOD. This can lead to difficulties in measuring the
uncertainty before different BPAs. Therefore, before performing Dempster’s combination
rule, the improved belief entropy proposed by Yan and Deng [51] is referred to measure
the lateral importance between heterogeneous sources of information. The improved belief
entropy considers not only different totals but also variations in entropy values between
BPAs with the same total but different elements, which is suitable for evaluating the nrBPAs.

In the proposed method, the first part is to construct a Gaussian BPA function. It
is worth noting that besides the training data, each Gaussian function is padded with a
certain percentage of data with the mean value of the training data to alleviate the over-
fitting when the information in the data set is insufficient. The information to be fused is
transformed into the initial BPAs by padded Gaussian BPA functions. After that, the initial
BPAs are transformed into the nrBPAs, and the specific implementation process is divided
into two steps. In the first step, the initial BPAs are reconstructed by assigning some values
of the BPAs with high uncertainty to those with low uncertainty ones associated with them
to reduce the uncertainty of the overall evidence. Since not all values of BPAs with high
uncertainty are involved in the assignment, the type of focal elements contained in the
evidence remains unchanged, and thus.,the uncertainty of the evidence is preserved; in the
second step, the reconstructed BPAs are transformed in the way of negation. The negation
of BPA caused the BPAs to contain increased uncertainty information from both positive
and negative sides. Up to this point, nrBPAs have been generated. Again, the heterogenous
nrBPAs are synthesized by the entropy weighting method into the preliminary fused
BPAs. Finally, the final fusion results are obtained by Dempster’s combination rule using
preliminary fused BPAs. The steps to achieve multi-source fusion using the method we
proposed are shown in Figure 1. For ease of understanding, we show the change process of
BPA in Figure 2. The detailed steps of the method are described as follows.
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Figure 1. Flow chart for multi-source information fusion of the proposed method.

Figure 2. Schematic diagram of the reconstruction process of BPA.

Step 1
Establishing the initial Gaussian BPA determination model. In order to transform

the data into the initial BPAs, a Gaussian model was chosen, and the steps to build it are
shown below.

Step 1.1. Obtaining the feature data set of known fusion results. The set of known
fusion results R = r1, r2 . . . rO, which correspond to the identification framework θ in DS
evidence theory, and r1, r2 . . . rO are the fusion results, which correspond to the elements
in DS evidence theory. The data set is represented as:

S = {I1, I2 . . . IN}

Step 1.2. Let N be the total number of data, the original data structure of each sample
to be fused is assumed as:

Ii =
{

s1, s2 . . . sj . . . sM, di
}

, 1 ≤ i ≤ N, 1 ≤ j ≤ M.
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where sj is each feature value, the last bit di is the fusion result, di ∈ R, and M is the
number of feature dimensions.

Step 1.3. The individual features of the training data are involved in estimating
parameters σ̂andµ̂ of the Gaussian function by the maximum likelihood method. Notably,
in order to avoid overfitting of the generated Gaussian model, each feature is supplemented
with a certain proportion of data with the value of the mean when calculating the variance.
For example, if the original training data volume is N ∗ t, where N is the total, 0 < t ≤ 1
is the training proportion. For a feature, suppose the mean value of a certain event is µ,
and the filling proportion is p, where 0 ≤ p ≤ 1. Then, (N ∗ t) ∗ p samples with the value
of µ will be filled, and the size of the padded data set is (N ∗ t) ∗ (1 + p).

Using the padded data set, the combination of the mean and variance of each feature
on each category µ̂k, σ̂k is calculated with reference to Equation (13). It is easy to obtain
combinations of size M × O, constructed as G = F1, F2, F3 . . . Fj . . . FM. G is the set of
Gaussian probability density functions. Fj = { f1, f2 . . . fk . . . fO}, 1 ≤ k ≤ O, is the set
of Gaussian distributed probability density functions for each fusion result under the
specified features.

Each fk is shown in Equation (14), which is obtained by substituting the corresponding
combination of mean and variance into the Gaussian probability distribution function.

fk(X) =
1

σ̂k
√

2π
e
− (X−µ̂k)

2

2σ̂k
2 (14)

Step 2
Determining the initial BPAs. The given data for each of the objects to be fused

are input according to the structure I =
{

s1, s2 . . . sj . . . sM
}

. The obtained input data
I′ =

{
s1′, s2′ . . . sj′ . . . sM′

}
are substituted into the corresponding functions in the set of

Gaussian probability density functions composed of Step 1.1, Step 1.2, and the initial BPAs
can be obtained. Let the elements r1, r2 . . . rO be sorted from smallest to largest by the
values obtained after bringing in the corresponding probability density functions. h1, h2, h3
are the values of the Gaussian functions of the feature values substituted into each fusion
result, respectively, the corresponding BPAs are calculated as below.

m(r1, r2 . . . rO) = h1,

m(r2, . . . rO) = h2 − h1,

. . .

m(rO−1, rO) = hO−1 − hO−2,

m(rO) = hO − hO−1.

Let r1 = B, r2 = A, r3 = C, and the schematic diagram of the BPA calculation is shown
in Figure 3. The horizontal coordinate value of the thick black line represents the feature
value sj′, and the intersection points h1, h2, h3 are the intersection points of the feature
value sj′ and the Gaussian function of the fusion results B, A and C under the feature sj,
respectively, which determines the BPA about the feature value: values of m(C), m(A,C),
m(A,B,C).



Entropy 2022, 24, 1164 11 of 25

Figure 3. Schematic representation of BPAs determination by Gaussian BPA functions.

Step 3
Converting the initial BPAs to nrBPAs. The transformation of the original BPA to

nrBPA is achieved using approaches from reference [37] and the method of reference [38].
The specific implementation steps are as follows.

Step 3.1. For a BPA, the more elements pointed to, the greater the uncertainty of that
BPA and the more ambiguous the information contained. Weng et al.’s method [37] is
proved to measure the uncertainty of BPA and reduce the information uncertainty. For all
BPAs according to Equation (15). mr(Ai) = ∑Ai⊆Aj

m(Aj)

2
|Aj |−1

∀Ai, Aj ⊂ Θ, m(Ai) 6= 0

mr(Θ) = m(Θ)
2n−1

(15)

where Ai, Aj are the focal elements of FOD Θ, |Aj| is a modulo operation on Aj, which is

also equal to the number of elements contained in Aj, 2|Aj | − 1 represents the number of
possible outcomes in Aj, which is a measure of uncertainty, and n is the number of focal
elements contained in BPA Θ. With this operation, not only does each BPA’s data come
from itself but from its upper sets, measuring the degree of association between individual
BPAs. When the focal element of a BPA is BPA Θ, its only source of data is itself.

Step 3.2. The reconstructed BPAs are normalized according to Equation (16) in order to
comply with the construction criterion of the BPA and to facilitate the subsequent operations.

mr(Ai) =
mr(Ai)

∑Aj⊆Θ mr
(

Aj
) (16)

Step 3.3. The reconstructed BPAs are transformed into nrBPAs, mnr. By exploring
both positive and negative information of the evidence through Yin et al.’s method [38],
the inverse of the BPAs is obtained through Equation (6).

Step 4
The fusion results of heterogenous information are weighted using the entropy weight-

ing method. The entropy weighting method has the ability to take the importance of
heterogeneous sources of information into account. The specific steps are as follows.

Step 4.1. The uncertainties of BPAs are measured by improved belief entropy [51]. Equation (8)
is applied to obtain the information entropy of each BPA, denoted as E1, E2, E3 . . . EM.

Step 4.2. Equation (9) is referenced to convert the information entropy into weights to
obtain w1, w2, w3 . . . wM.

Step 4.3. The final BPAs of each focal element are obtained by multiplying the obtained
BPAs with their corresponding weight value obtained by the entropy weight method and
then multiplying the BPAs of different BPAs but the same focal element to obtain the final
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BPA of each focal element. Take the focal element Ai belonging to BPA Θ as an example, M
is the total number of features, and the final BPA A m′(Ai) is calculated as Equation (17).

m′(Ai) = w1 ·m1(Ai) + w2 ·m2(Ai) . . . wM ·mM(Ai) (17)

Step 5
Further fusion through Dempster’s combination rule. The final BPA is combined

M-1 times using the DS evidence theory combination algorithm, M is the total number
of feature types,

⊕
denotes the calculation of Equation (5), and the fusion equation is as

Equation (18).

m(Ai) = m′(Ai)
⊕

m
′
(Ai)

⊕
m′(Ai) . . .

⊕
m′(Ai) (18)

Step 6
The fusion conclusion is obtained by comparing the combined results. Considering

that the BPA was flipped by using negation, the smallest value is chosen as the highest
confidence fusion conclusion.

4. Experiments

In this section, a series of experiments were elaborated on realistic data sets based
on the methodology introduced. The performances of the method on given data sets are
shown as well.

4.1. Demonstration of the Proposed Method

In this part, the classification tasks based on the UCI Iris data set [54] weree presented to
show the process of the proposed method in the context of multi-source information fusion.

The iris data set contains 150 samples, 50 each from three species of iris-iris-setosa,
iris-versicolor and iris-virginica. Each category contains four features-sepal length (SL),
sepal width (SW), petal length (PL), and petal width (PW), where the first category of iris
and the latter two categories of iris are linearly separable, while the latter two categories
are linearly inseparable. For the convenience of representation, iris-setosa, iris-versicolor,
and iris-virginica are abbreviated in the following formulas as A, B, C.

The proportion of data drawn from the data set employed for building the Gaussian
distributed BPA generating function was referred to as the training proportion. As a
preparation, we first disordered all the data and later randomly selected the data with 80%
of the training proportion instead of using the proportional data within each data set, as this
was more realistic. After that, these data were used for generating Gaussian distribution
BPA to determine functions according to the great likelihood estimation. The padding
proportion to 40% of the data with the values as the mean of the extracted data was set to
alleviate overfitting. The mean and variance values of the Gaussian distributions obtained
for the four features under the three iris types are shown in Table 1 below. In addition, all
calculations were performed by a computer, and the results were accurate to seven decimal
places. For convenience, all data are taken to three decimal places. This may lead to a slight
difference in the results obtained during the operation between the displayed data and the
data involved in the operation.
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Table 1. µs, σs of different kinds of features obtained through the training set.

Parameters Category SL SW PL PW

µ
iris-setosa 4.983 3.393 1.478 0.243

iris-versicolor 5.950 2.796 4.261 1.322
iris-virginica 6.566 2.989 5.532 2.030

σ
iris-setosa 1.267 1.302 0.678 0.373

iris-versicolor 1.782 1.093 1.717 0.744
iris-virginica 2.345 1.286 2.010 1.094

First, a random iris sample in the data set was selected with SL, SW, PL, and PW
features and the ground truth as in Table 2.

Table 2. Features and ground truth of the selected sample.

SL SW PL PW Ground Truth

5.9 3.0 5.1 1.8 iris-virginica

The eigenvalues were substituted into the corresponding Gaussian distribution BPA
determination functions to obtain the corresponding initial BPA, as shown in Figure 4.
The Gaussian distribution BPA generating functions of the three iris types are drawn by
curves of different colors, and the eigenvalues are marked by thick black lines, and the
focal points of the thick black lines and the generating functions are the basis for the initial
BPA determination.

Figure 4. Eigenvalues and Gaussian distribution functions of the three irises under the corresponding
SL,PL,SW,PW features. BPAs were generated based on the intersection of the eigenvalues with the
Gaussian functions under the corresponding features.

The initial BPAs of each feature could be obtained according to Table 1. Then, the initial
BPAs obtained under different features were shown below. It can be found that the
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generated BPA values were biased towards BPAs containing more focal elements with a
higher degree of fuzziness, for example, (B, C, A) under SW feature reached 0.925.

SSL : m(B) = 0.039, m(B,C) = 0.184, m(B,C,A) = 0.777.

SSW : m(B) = 0.023, m(B,C) = 0.051, m(B,C,A) = 0.925.

SPL : m(C) = 0.120, m(B,C) = 0.859, m(B,C,A) = 0.0

SPW : m(C) = 0.177, m(B,C) = 0.801, m(B,C,A) = 0.001.

Afterward, in order to obtain nrBPAs, the BPAs were first reconstructed by Equation (15)
to reduce the fuzziness of the BPA and obtain mr. As an example, the calculation process of
each BPA reconstruction for feature SL is shown below.

mr(A) =
0.777
23 − 1

= 0.111.

mr(B) = 0.039 +
0.184
22 − 1

+
0.777
23 − 1

= 0.212.

mr(C) =
0.184
22 − 1

+
0.777
23 − 1

= 0.172.

mr(A,B) =
0.777
23 − 1

= 0.111.

mr(A,C) =
0.777
23 − 1

= 0.111.

mr(B,C) =
0.184
22 − 1

+
0.777
23 − 1

= 0.172.

mr(A,B,C) =
0.777
23 − 1

= 0.111.

All the reconstructed BPAs are shown in Table 3. It can be seen that the BPAs with the
highest uncertainty, such as m(B,C,A), were reduced, and the BPAs with low uncertainty,
such as m(B), m(C), were increased.

Table 3. Reconstructed BPAs of the selected sample.

m(A) m(B) m(C) m(A,B) m(A,C) m(B,C) m(A,B,C)

SL 0.111 0.212 0.172 0.111 0.111 0.172 0.111
SW 0.132 0.149 0.173 0.132 0.132 0.149 0.132
PL 0.000 0.293 0.415 0.000 0.000 0.293 0.000
PW 0.000 0.273 0.454 0.000 0.000 0.273 0.000

Then, Equation (7) was applied to calculate the inverse of the reconstructed BPA,
which results as nrBPA mnr. The actual logic of the calculation was that when the number
of focal elements contained in the BPA was 1, mnr was simply transformed into a difference
relative to 1. When the number of focal elements was greater than 1, i.e., the degree of
uncertainty was higher, the value obtained by dividing the number greater than 1 was
smaller, and a smaller value can be obtained in the fusion result, which corresponds to the
reinforcement of uncertainty of the evidence. The procedure of taking the negation of mr to
obtain nrBPAs of feature SL are shown below.
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mnr(A) =
1−m(A)

21 − 1
= 0.148, mnr(B) =

1−m(B)
21 − 1

= 0.131,

mnr(C) =
1−m(C)

21 − 1
= 0.138, mnr(A,B) =

1−m(A,B)
22 − 1

= 0.148,

mnr(A,C) =
1−m(A,C)

22 − 1
= 0.148, mnr(B,C) =

1−m(B,C)
22 − 1

= 0.138,

mnr(A,B,C) =
1−m(A,B,C)

23 − 1
= 0.148.

The negation obtained from all reconstructed BPAs are shown in Table 4.

Table 4. NrBPAs of the selected sample.

mnr(A) mnr(B) mnr(C) mnr(A,B) mnr(A,C) mnr(B,C) mnr(A,B,C)

SL 0.148 0.131 0.138 0.148 0.148 0.138 0.148
SW 0.145 0.142 0.138 0.145 0.145 0.142 0.145
PL 0.167 0.1184 0.098 0.167 0.167 0.118 0.167
PW 0.167 0.121 0.092 0.167 0.167 0.121 0.167

After obtaining the negation of BPA, the uncertainties of nrBPAs were measured
by improved belief entropy through Equation (8). Later, the weight of each feature was
calculated, according to the calculated information entropy by Equation (9). Taking the
feature SL EMd(SL) as an example, the calculation is shown as follows:

EMd(SL) = −[0.148 ∗ log
(

0.148 + 0.148
2

e
0
3

)
+ 0.131 ∗ log

(
0.131 + 0.131

2
e

0
3

)
+ 0.138 ∗ log

(
0.138 + 0.138

2
e

0
3

)
+ 0.148 ∗ log

(
0.148 + 0.148 + 0.148 + 0.131

2 ∗ 3
e

1
3

)
+ 0.148 ∗ log

(
0.148 + 0.148 + 0.148 + 0.138

2 ∗ 3
e

1
3

)
+ 0.138 ∗ log

(
0.138 + 0.138 + 0.131 + 0.138

2 ∗ 3
e

1
3

)
+ 0.148 ∗ log

(
0.148 + 0.148 + 0.148 + 0.131 + 0.138 + 0.148 + 0.148 + 0.138

2 ∗ 7
e

2
3

)
] = 1.852.

When the number of focal elements increased, the improved belief entropy took the
subset BPA data of BPA into consideration as well. The information entropy of all features
could be obtained in the same way. The results are shown in Table 5.

Table 5. The information entropy of all features of the selected sample.

ESL ESW EPL EPW

1.852 1.846 1.868 1.870

According to Equation (9) weight of feature SL wSL was:

wSL =
1

1.852
1

1.852 + 1
1.846 + 1

1.868 + 1
1.870

= 0.251.

Similarly, the weights of all features are shown in Table 6.
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Table 6. The weights of all features.

WSL WSW WPL WPW

0.251 0.252 0.249 0.249

Further, the BPAs of the four features were weighted and summed using the entropy
weighting method Equation (18) to obtain the BPA mw, and the BPAs of the species A mw(A)
were calculated as follows. It can be found that the importance of different features for the
fusion was distinguished by the entropy weights of the different features. Furthermore,
in this example, feature SL, SW obtained higher weights. All the calculation results are
shown in Table 7.

m(A) = 0.148 ∗ 0.251 + 0.145 ∗ 0.252 + 0.167 ∗ 0.249 + 0.167 ∗ 0.249 = 0.157.

Table 7. Weighted BPAs mw of the selected sample.

mw(A) mw(B) mw(C) mw(A,B) mw(A,C) mw(B,C) mw(A,B,C)

0.157 0.128 0.116 0.157 0.157 0.130 0.157

Finally, the BPAs of each category of the preliminary fusion were obtained using the
DS evidence theory combination rule fusion mw The results are shown in Table 8, and the
C with the smallest BPA value, i.e., iris-virginica, was selected as the classification result,
which was the same as the ground truth.

Table 8. Fusion results of the selected sample using the proposed method.

m(A) m(B) m(C)

0.628 0.230 0.141

4.2. Application to Realistic Classification Tasks

In this part, the proposed method is applied in real-world classification fusion tasks.
Firstly, the proposed method uses the classification task of the UCI wine data set to validate
the proposed method. The UCI wine data set [55] collects three types of wines with 13
attributes, namely alcohol, malic acid, ash, alcalinity of ash, magnesium, total phenols,
flavanoids, nonflavanoid phenols, proanthocyanins, color intensity, hue, OD280/OD315
of diluted wines, and proline, with the number of samples in each category as shown in
Table 9.

Table 9. Number of samples in each category of wines.

A B C

59 71 48

As per the results, our method achieved the highest average accuracy of 91.00%
when the training ratio was 90% and padding was 60%. When the training ratio decreases,
padding can also make the classification accuracy stabilize at a high level. When the amount
of data is insufficient, using padding can classify more effectively as well. The relationship
between the training set ratio, padding ratio and classification accuracy is shown in Figure 5,
where each accuracy was obtained as the average value taken after 10 replicate experiments.
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Figure 5. Accuracy under different training ratios and padding ratios in the wine classification task.

Furthermore, the highest classification accuracy of the proposed method for different
types was measured. The classification results for each type with a padding ratio of 20%
and different training ratios were counted separately, as shown in Figure 6. In summary,
when the training ratio was higher than 50%, the proposed method achieved a stable
accuracy of 90–99% for both B and C and also achieved about 80% classification accuracy
for A. When the training ratio was 60%, the classification accuracy values of B and C had
reached over 95%, while the accuracy rate of A was in the rising stage. When the training
ratio reached 90, the classification accuracy for class A improved to over 90%.

Figure 6. Accuracy of three types of wine with different training ratios.

Furthermore, we also applied the proposed method to the breast cancer data set [56]
and dry beans data set [57] classification tasks. Including the previously introduced
data sets, the iris data set [54] and wine data set [55], the results are shown in Table 10.
The validation method used is k-fold cross-validation, which will be described in detail in
Section 5.2.
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Table 10. Accuracies of the proposed method with different data sets.

Data Set Accuracy

Iris [54] 97.04%

Wine [55] 95.37%

Breast Cancer [56] 94.90%

Dry Beans [57] 86.89%

5. Comparative Analysis

In this chapter, the validity of the improvements and the robustness of the method
were validated by a series of means. The iris data set from UCI was used for completing
this part of the validation. It should be noted that Section 4.1 has a slight difference in the
values obtained since the data extraction method used is a random sampling of a certain
percentage of data from within all species; therefore, the fusion results of the method may
differ in the effects of BPA determination due to the different order of arrangement of the
data read in each experiment.

5.1. Discussion on Effectiveness of the Improved Method

The effectiveness of using the Gaussian function to determine the BPA and padding
the mean terms when constructing the Gaussian distribution were discussed, respectively.
The training data set for each classification task in this section was obtained by performing
both data set disruption and random sampling. Furthermore, the accuracy is the average
accuracy obtained by conducting each group of experiments ten times.

5.1.1. Discussion on Effectiveness of Using Gaussian BPA Function

The discussion on the effectiveness of using a Gaussian probability distribution func-
tion to determine BPAs. We learned that some papers [22,23] used the triangular fuzzy
function to accomplish this work, and the fusion performance of this method was com-
pared. For determining the BPA using a triangular affiliation function, each feature con-
tains a triangular affiliation function for each category, assuming that the category is A
and the minimum, average and maximum values of the features under category A are
a1, a2, a3, respectively, the trigonometric function is denoted as A = (a1, a2, a3)), and the
BPA generation stage obtains the deployed by projecting the original feature values into
the trigonometric function BPA.

The comparison experiments between these two approaches were accomplished un-
der the condition of ensuring the same means of subsequent fusion processing. In each
experiment, data were randomly selected with ratios of 20%, 25%, 30%, 35%, 40%, 45%,
50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 92%, and 94% from data set as the training
set, respectively, and the remaining data were used for the test set. The accuracy graphs of
the two methods are shown in Figure 7. Both methods show an increasing trend in accuracy
as the training ratio rises. At a training ratio of 20%, the triangular fuzzy function and the
proposed method possessed a base accuracy of 84.54% and 91.93%, respectively. In contrast
to the triangular fuzzy function, which achieved a maximum accuracy of 89.60% at 90% of
the training ratio, the accuracy of the proposed method stabilized at 94.17% to 94.74% when
the training ratio was higher than 25%, and the maximum accuracy was 94.74%, which
was 5.14% higher than that of the triangular fuzzy function. In conclusion, the proposed
method is more stable and more accurate than the triangular fuzzy function.
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Figure 7. Accuracy of BPA determination based on the proposed method and triangle fussy function.

5.1.2. Discussion on Effect of the Padding Strategy for Generating BPA Function

The discussion on the effect of using the padding strategy for generating the Gaussian
BPA function. In the proposed method, the data used for generating the BPA determination
function is composed of the training data and a certain percentage of the mean padding
terms of the training data. We completed the discussion through the iris classification
case. The accuracy of the proposed method obtained at training ratios from 20% to 100%
with padding ratios of 0%, 10%, 30%, 50%, and 70% is shown in Figure 8. It can be seen
intuitively that the method with padding terms had higher accuracy when the data volume
was in the range of 20% to 70%, and the classification accuracy obtained by this method was
more stable. Because the setting of the padding will make the functions used for Gaussian
BPA determination tend to give higher confidence values for values that are in the vicinity
of the mean of the corresponding features. The results prove that this method can improve
the stability and accuracy of the multi-source information fusion system when the data
are insufficient. It is not rare for training data to be inadequate in real-life multi-source
information fusion tasks caused by small or under-informed data sets. With a capacity of
150, the iris data set classification task, in fact, also becomes a classification task based on a
small data set.

Figure 8. Accuracy of the proposed method with different padding ratios on different training ratios.

5.2. Discussion on Robustness

Since the iris data set itself is a data set from reality, it is used it as a robustness exami-
nation. The main instrument employed in this section to compare the differences between
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the various methods is cross-validation. Cross-validation, proposed by Geisser S [58] and
sometimes named rotation estimation, is a common validation method in statistics and
machine learning. It achieves the effect of maximizing the data by selecting different parts
of the data set each time and is suitable for scenarios where the size of the data set is small
such that the training and test sets cannot be completely separated to complete model
validation, which is similar to ours.

In particular, we use the k-fold cross-validation in cross-validation, where k = 10,
as follows:

1. Dividing all data sets into 10 parts;
2. The model is completed by taking one of the test sets without duplication and using

the other nine as training sets. After that, the accuracy Ai of the used method on
the test set is calculated. Positive samples with correct classification are set as true
positive examples (TP), positive samples with incorrect classification are set as false
positive examples (FP), negative samples with correct classification are set as false
positive examples (FP), and the formula for the accuracy A is given in Equation (19).

A =
TP + TN

FP + TP + FN + TN
(19)

3. Averaging the 10 accuracies to obtain the final accuracy rate, as shown in Equation (20).

A(10) =
1
10

10

∑
i=1

Ai (20)

Contrary to the previous experiments, the training data for each classification task in
this chapter are obtained by taking the corresponding proportion of each feature from the
randomly disrupted data set evenly.

We first used 150 samples from the iris data set as a training set to conduct k-fold
cross-validations. The proposed method’s padding ratio for the Gaussian distribution
BPA generating function was set at 40%. Algorithms involved in the comparison were
Dempster’s method [15], Murphy’s method [35] and Xiao’s method [59]. The classification
results obtained for training set ratios from 50% to 100% are shown in Figure 9, where the
classification results of Dempster’s method and Murphy’s method and Xiao’s method were
from the paper [59]. At a training ratio of 50%, the accuracy of Dempster’s, Murphy’s,
and Xiao’s methods was 93.33%, while the proposed method could already reach 96.11%
accuracy. When the training ratio reached 60%, the accuracy of the proposed method
slightly decreased to 95%, Xiao’s method kept maintaining the accuracy at 93.33%, and both
Dempster’s and Murphy’s methods dropped to 92.00%. During the training ratio from
60% to 70%, the accuracy of all three methods involved in the comparison dropped to
90.67%, while the accuracy of the launched method continued to rise to 96.82%, which
indicated that the launched method had strong robustness. When the training ratio was
75%, the accuracy of the other three methods involved in the comparison rebounded to
93.33% at 75%, while the accuracy of the proposed method reached a maximum of 97.04%
at that time. The accuracy of each method changed more gradually between 80% and 100%
of the training ratio, with the accuracy of the proposed method stable between 95.57% and
94.50% and the accuracy of the other three methods stable between 94.00% and 92.67%.
Overall, the accuracy of the proposed method was always above the other three methods
involved in the comparison during the change in the training percentage from 50% to 100%,
and the proposed method could maintain a flatter change trend when the other methods
showed a sudden drop, which indicated that the proposed method had better robustness.
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Figure 9. Accuracy of different methods with different training ratios on the iris data set.

The classification accuracy of the proposed method for each species of iris was com-
pared with the results of Dempster’s method [15], Murphy’s method [35], Xiao’s method [59],
and Chen et al.’s method [60]. The results are shown in Table 11 and Figure 10, respectively.
It can be found that all five methods could achieve 100% accuracy in iris-setosa. Dempster’s,
Murphy’s, and Xiao’s methods all have a higher accuracy of 99.69% in iris-versicolor clas-
sification, but only obtained an accuracy of 78.98% to 80.39% in the iris-virginica category.
Chen’s method was able to achieve accuracy of 90% and higher accuracy in all species’
classifications than Dempster’s method, Murphy’s method and Xiao’s method. However,
the average accuracy of Chen et al.’s method was lower compared to the proposed method.
The variance of the accuracy of the proposed method was 0.001, which was the smallest
among the five compared methods. The comparison indicates that the proposed method
has better stability in multi-source information fusion.

Table 11. Comparison of the classification accuracy on each category, mean accuracy and variance of
the proposed method with other methods.

Iris-Setosa Iris-Versicolor Iris-Virginica Average Variance

Dempster’s method [15] 1.0000 0.9969 0.7898 0.9289 0.0097

Murphy’s method [35] 1.0000 0.9969 0.7898 0.9289 0.0097

Xiao’s method [59] 1.0000 0.9969 0.8039 0.9336 0.0084

Chen et al.’s method [60] 1.0000 0.9000 0.9600 0.9533 0.0017

Proposed Method 1.0000 0.9255 0.9420 0.9558 0.0010

Figure 10. The accuracy of five ways to classify three species of iris.
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The best performances of Dempster’s method [15], Murphy’s method [35], Xiao’s
method [59], Chen’s method [60] and the proposed method were tested on the classifica-
tion task of the iris data set. In addition to the above methods based on evidence theory,
the KNN-based method [61] and deep neural network-based method [62] were also in-
volved in the comparison, and the results are shown in Table 12. The proposed method
was able to achieve a maximum accuracy of 97.04%, which is higher than the other four
algorithms that participated in the comparison.

Table 12. Comparison between the best performances of the proposed method with other methods.

Method Accuracy

Dempster’s method [15] 92.89%

Murphy’s method [35] 92.89%

Xiao’s method [59] 94.00%
Chen et al.’s method [60] 95.47%

KNN-based method [61] 96.67%

deep neural network-based method [62] 96.00%

Proposed method 97.04%

6. Conclusions

This paper proposes a new approach for multi-source information fusion in the frame
of DS evidence theory. Gaussian functions with padding terms to determine BPAs were
shown to be effective in alleviating the problem of over-fitting. It enables the use of the
method when there is insufficient information. For measuring the uncertainty of BPA well,
a new BPA representation—rnBPA—is proposed, which allows the clear BPA’s value to
be enhanced while uncertainty evidence is ensured and collects the potential information
contained in the BPA. In the experiments, we illustrated how the proposed method works
with classification tasks based on the UCI iris data set, a wine data set, a breast cancer
data set and dry beans data set. For comparative analysis, a comparison of the effect
between the triangular fuzzy and the Gaussian function-based BPA and the discussion on
the positive effects of padding terms in Gaussian BPA functions were designed to verify the
superiority of BPA functions utilized in this work. It is experimentally demonstrated that
the application of Gaussian distribution with padding terms enables the fusion method to be
effective. After that, we used the cross-validation method to compare the effects of different
data fusion methods on the classification task of the UCI iris data set. The launched method
obtained a stable accuracy of above 94%, which shows superior robustness. With the
highest accuracy of 97.04%, the proposed method won the best accuracy in comparison
to many other methods. For limitations, we assumed that the data in this work is close to
a normal distribution, which is useful for uniformly selected datasets and was proven to
be effective in the experiment. However, if the dataset has high atypicality, it can lead to
inaccurate results. As a result, further research on improving the method under high bias,
such as optimizing the initial BPA building model, is worthwhile. In addition, we found
that in the application to wine classification Section 4.2, type B accounted for nearly 40%
of the dataset and maintained a high level of accuracy in the classification results, while
the accuracies of the other two types were more volatile. That was possibly caused by the
fact that the factor method did not take certain measures to give enough attention to the
categories with low particle size, which also needs further discussion.
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