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Owing to its significant contagion and mutation, the new crown pneumonia

epidemic has caused more than 520 million infections worldwide and has

brought irreversible effects on the society. Computed tomography (CT) images

can clearly demonstrate lung lesions of patients. This study used deep learning

techniques to assist doctors in the screening and quantitative analysis of this

disease. Consequently, this study will help to improve the diagnostic efficiency

and reduce the risk of infection. In this study, we propose a new method to

improve U-Net for lesion segmentation in the chest CT images of COVID-19

patients. 750 annotated chest CT images of 150 patients diagnosed with

COVID-19 were selected to classify, identify, and segment the background

area, lung area, ground glass opacity, and lung parenchyma. First, to address the

problem of a loss of lesion detail during down sampling, we replaced part of the

convolution operation with atrous convolution in the encoder structure of the

segmentation network and employed convolutional block attention module

(CBAM) to enhance theweighting of important feature information. Second, the

Swin Transformer structure is introduced in the last layer of the encoder to

reduce the number of parameters and improve network performance. We used

the CC-CCII lesion segmentation dataset for training and validation of the

model effectiveness. The results of ablation experiments demonstrate that this

method achieved significant performance gain, in which the mean pixel

accuracy is 87.62%, mean intersection over union is 80.6%, and dice

similarity coefficient is 88.27%. Further, we verified that this model achieved

superior performance in comparison to other models. Thus, the method

proposed herein can better assist doctors in evaluating and analyzing the

condition of COVID-19 patients.
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1 Introduction

According to several studies (Zhu et al., 2019; Dong et al., 2020;

Xu et al., 2020), computed tomography (CT) clearly displays the

characteristic lung lesions of Covid-19 in patients. However, CT

scans contain hundreds of slices, and CT images must be

reconstructed and transmitted through an image archiving and

communication system for doctors to interpret results and

diagnose patients. Covid-19 and other types of pneumonia are

generally identified by radiologists by simply processing images

at communication system terminals, reading them, or projecting

them through a lamp (Bai et al., 2020; Song et al., 2021; Bernheim

et al., 2020; Rubin et al., 2020; Wong et al., 2020; Lee et al., 2001).

Simultaneously, radiologists must be experienced to achieve

sufficient detection results. Covid-19 has similar medical imaging

characteristics to other types of pneumonia (Shi et al., 2020), and CT

can be used to determine whether a patient is infected with viral

pneumonia (Covid-19 is a viral pneumonia caused by the SARS-

COV-2 virus) (Chen and Li, 2020). However, CT is unable to

determine which virus causes viral pneumonia; the novel

coronavirus or another virus, making it difficult to distinguish

and diagnose the virus type. Considering these difficulties,

quickly and accurately distinguishing between Covid-19 and

other types of pneumonia is crucial to facilitating the screening

process in clinical practice. Therefore, with the AI-assisted diagnosis

of medical images, accurate and efficient recognition of Covid-19

lung CT images is of profound significance for controlling the

epidemic (Ardila et al., 2019; Esteva et al., 2019; Esteva et al., 2017;

Litjens et al., 2017; Mei et al., 2020; Qin et al., 2019; Topol 2019; Li

et al., 2020; Jaiswal et al., 2020).

Locality is used by traditional convolutional networks to

improve efficiency but at the cost of losing the connection in a

global context. Convolutional architecture has an inherent induction

bias, lacking an understanding of position dependence in images

(Wang et al., 2020; Valanarasu et al., 2021). In a study byDosovitskiy

et al. (2020), the proposed vision transformer (ViT) was trained on

large image datasets using location-embedded two-dimensional

(2D) image patches as input sequences, thus achieving a

performance comparable to that of convolutional networks.

Based on the transformer architecture, a self-attention

mechanism was utilized to encode the position dependence at a

distance to learn efficient representations. However, most existing

transformer-based network architectures require large datasets for

training. Generalization may be inadequate if the training is

performed using insufficient data. In a study by Hassani et al.

(2021), a compact convolutional transformer (CCT) (Wang et al.,

2021) was proposed to eliminate the misunderstanding of the

requirement of a transformer for large amounts of data. It

achieves comparable performance on small datasets; however,

when the input dimension is large, the operational cost of the

self-attention mechanism increases significantly. Global pooling

does not use the location information in the process of extracting

pneumonia symptoms, potentially causing loss of location

information. For imaging tasks, it is important to obtain the

spatial position structure of an image.

Therefore, we use a new method to solve the above problems in

CT lesion segmentation of COVID-19. To solve the problem of

detail loss, we add CBAM (Woo et al., 2018) and atrous convolution

to the U-Net encoder part, and replace the partial convolution

operation with the empty convolution operation. This can solve the

problem of feature image detail loss caused by the decrease of

resolution after repeated down-sampling operations. A Swin

Transformer (Liu et al., 2021) is added to obtain local

information in the CNN network, and the joint loss function is

used for optimization during training. Thus, the segmentation of

background regions, lungs, ground-glass opacities, and lung

parenchyma in the chest CT images of patients is achieved. The

results of ablation experiments demonstrate that this method

achieved significant performance gain, in which the mean pixel

accuracy is 87.62%, mean intersection over union is 80.6%, and dice

similarity coefficient is 88.27%. The feasibility and effectiveness of

this method are proved. Chest CT examination has a very important

application prospect in clinical observation of treatment effect,

monitoring of lesions and follow-up.

2 Materials and methods

Here, a new lesion segmentation method in chest CT images of

COVID-19 patients is proposed, and the network structure is shown

in Figure 1. The input is downsampled 4 times in total. The encoder

performs a normal convolution and a dilated convolution operation

before downsampling. The BN layer and the activation function

layer are added to speed up the network convergence process. The

CBAM mechanism is introduced in the downsampling process.

After each downsampling iteration, the size of the feature vector is

halved, and the number of channels is doubled. In the experiment,

images with a height andwidth of 512 and three channels are used as

input, that is,512 × 512 × 3 After being processed by the encoder

part, a feature vector of size 32 × 32 × 512 is output. Then, the

downsampled feature images are flattened to fit the vector

dimension of the Swin Transformer structure by linear

embedding. The vector dimension does not change in the

Transformer encoder structure, and a sequence vector of 1,024 ×

512 dimensions is output. The sequence vector is restored to 32 ×

32 × 512 by the Reshape operation to fit the input dimension

requirement of the segmentation network upsampling. Finally, the

segmentation result whose height and width are consistent with the

input is obtained after passing through the decoder for four

upsampling iterations.

2.1 Convolution attention module

We use an attention mechanism in the network to perform

weight adjustment on the feature vectors. This is similar to how
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FIGURE 1
Segmentation network structure diagram.

FIGURE 2
Flowchart of the attention module of the convolutional block.

FIGURE 3
Flowchart of channel attention mechanism.
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the human brain focuses on important information. Important

information is made more prominent, and other information is

filtered. The convolutional attention module is composed of

channel attention and spatial attention modules, which are

used for the attention mechanism of the feature vector

channel and space, respectively. The process is shown in

Figure 2. Finally, the attention weights are multiplied by the

input feature image to obtain the output feature image.

2.1.1 Channel attention mechanism
Channel attention assigns weights to each channel of the

feature image. Valid channel weights are increased, and

invalid channel weights are suppressed. The flow of the

channel attention mechanism is shown in Figure 3. The

input feature F ∈ RH×W×C is average-pooled to generate the

vector FC
avg ∈ R1×1×C, where C represents the channel. The

vector FC
max ∈ R1×1×C is generated by a max-pooling

operation. Average pooling has the advantage of optimizing

the spatial information of feature images. Max pooling can

extract landmark information in feature images. The two

output features are fed into a shared multilayer perceptron,

and features with contextual descriptions are generated.

Finally, the ReLU activation function is used to output the

feature image channel weights. Feature images are summed

and merged elementwise. The feature vector MC ∈ RC×1×1 is

output through the sigmoid activation function.

According to the above process, the calculation formula is as

follows:

Mc(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))
� σ(W1(W0(Fc

avg)) +W1(W0(Fc
max)))

(1)

where σ represents the Sigmoid activation function, AvgPool

represents the average pooling operation, MaxPool represents

the maximum pooling operation, MLP represents the shared

multi-layer perceptron, andW0 andW1 ∈ RC/r×C are the weights

of the shared multi-layer perceptron.

2.1.2 Spatial attention mechanism
The spatial attention mechanism can measure some regions

of the feature image to obtain higher responses, and the

mechanism flow is shown in Figure 4. Suppose the feature

vector optimized by the channel attention module is

F′ ∈ RH×W×C. F′ generates the two-dimensional vector

FS
avg ∈ RH×W×1 by the max pooling operation, and

FS
max ∈ RH×W×1 is generated through average pooling, where

S represents a channel. The two-dimensional vector

information obtained by the pooling operation is

concatenated. The feature information is fused through the

convolution operation, and a two-dimensional spatial attention

image is generated through the sigmoid activation function.

Finally, the output of the spatial attention module is dot

multiplied with the feature image at the pixel level to obtain

the weighted feature image.

The equation of the above process is as follows:

Ms(F) � σ(f7×7([MaxPool(F′),AvgPool(F′)]))
� σ(f7×7([Fs

max, F
s
avg]))

(2)

where σ is the sigmoid activation function, and f7×7 indicates

that the feature vector in parentheses is convolved with a

convolution kernel of size 7 × 7.

F represents the feature image, the output F′ is optimized by

the channel attention module, and the output F″ is optimized by

the spatial attention module. Therefore, feature F is optimized by

the CBAM module:

F′ � Mc(F) ⊗ F (3)
F″ � Ms(F‘) ⊗ F′ (4)

where ⊗ represents that the elementwise multiplication.

FIGURE 4
Flow chart of spatial attention mechanism.
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2.2 Atrous convolution

Feature information is extracted using U-Net model

convolution operations. Due to device performance

limitations, multiple pooling operations reduce the resolution

of feature vectors. When using the convolution operation to

extract higher-level features, the next convolution operation can

obtain a larger receptive field. However, as the feature size

decreases, feature information will be lost. The restoration

detail information cannot be restored, while upsampling

restores the size. Replacing ordinary convolution operations

with atrous convolution can achieve a larger receptive field

range within a limited convolution kernel. Therefore, the loss

of detail information caused by the downsampling process can be

solved. The ordinary convolution and atrous convolution

methods and the obtained receptive fields are shown in

Figure 5. In the right image of Figures 5A,B, the feature maps

of 9 × 9 use a convolution kernel of size 3 × 3 and stride 1 for

convolution operation. In the right picture of Figure 5A, the

receptive field is obtained after two ordinary convolution

iterations; the range is 5 × 5. In the right picture of Figure 5B,

the receptive field is obtained after one ordinary convolution and

one dilated convolution with a dilation factor of 2; the range is 7 ×

7. It shows that a larger receptive field range is obtained after

using atrous convolution. The numbers in the figure represent

the number of times the pixels are convolved.

When using continuous atrous convolution, the dilation

factor cannot be a common divisor greater than 1. And the

expansion factor must satisfy the following formula:

Mi � max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri] (5)

where Mi represents the maximum expansion factor of the i-th

layer, and ri is the expansion factor that represents the distance

between adjacent elements in the hollow convolution kernel,

which should be less than or equal to the size of the convolution

kernel. In the atrous convolution operation, the convolution

kernel size is fixed. When the dilation rate increases, the

spacing of adjacent elements in the convolution kernel

increases. It is also possible to keep the height and width of

the original input feature map unchanged.

FIGURE 5
Convolution operation. (A): 2D-Convolution. (B): Dilated Convolution.
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2.3 Swin transformer module

After improving the convolutional structure network of

U-Net to extract feature information, we use the Swin

Transformer to extract the global information from the

feature information. We combine the CNN with the

Transformer structural model. The insufficiency of context

dependencies in the acquisition of low-level features by

convolutional networks will be compensated. Compared with

ViT, we improve the Transformer encoder by introducing

windows multi-head self-attention (W-MSA) and shifted

windows multi-head self-attention (SW-MSA) (Hatamizadeh

et al., 2022). Assuming the input is xl−1 , the formula is as follows:

x′l−1 � xl−1 +W −MSA(LN(xl−1)), (6)
xl � x′l−1 +MLP(LN(x′l−1)), (7)
x′l � xl + SW −MSA(LN(xl)), (8)
xl+1 � x′l +MLP(LN(x′l)). (9)

where l ∈ {1, 2,/, L}
According to the Swin Transformer formula, it can be

concluded that the structure consists of two Transformer

encoder modules. After the input is normalized by the layer,

the attention value is calculated using W-MSA, and the residual

structure is formed with the original input. After layer

normalization and MLP operation, the encoder module with

the SW-MSA calculation method is used to output the feature

vector. The Swin Transformer structure is shown in Figure 6.

Compared with the ViT, an encoder module is added, and the

redesigned W-MSA and SW-MSA calculation methods greatly

reduce the computational complexity.

In the W-MSA operation of the Swin Transformer, the

feature map is divided into windows of the same size, which

is equivalent to reducing the size of the patch. Thereby the

computational complexity is reduced. We utilize the same

self-attention mechanism as ViT inside each individual

window. However, after dividing the feature map into separate

feature windows, the attention mechanism values of the feature

windows are calculated separately, and there is no information

interaction between them. As a result, the self-attention

mechanism cannot obtain global information. Therefore, the

SW-MSA operation is increased, and the window operation is

shifted. This solves the defect that information cannot be

exchanged between W-MSA operation windows. The

operation flow of common MSA, W-MSA, and SW-MSA is

shown in Figure 7. The W-MSA window size is 4. In the SW-

MSA operation, the feature window is divided into three different

patch sizes, which are 2 × 2, 2 × 4, and 4 × 4 sizes. After

combining four 2 × 2-sized windows and combining four 2 × 4-

sized windows, two feature windows with patch size 2 × 2 are

obtained. Then, the attention value is obtained by continuing the

calculation of W-MSA. Finally, the original window dimensions

are restored. As such, not only is the computational complexity

reduced, but the interactive information between the windows

can be obtained.

2.4 Optimization of loss function

In medical image segmentation, common loss functions

include cross entropy loss (CE loss) and dice coefficient loss

(Dice loss). The chest CT image segmentation method we

proposed includes four categories: background region, lung

region, ground glass opacity, and lung parenchyma. Figure 8

shows the chest CT images and the pixel distribution maps of

different categories in the corresponding segmentation gold

standard. The abscissa is the segmentation type, and the

ordinate is the number of pixels. It can be seen that the

proportion of ground glass and lung parenchyma is much

smaller than the background and lung areas. This is common

in mild and moderate patients, and there may even be no focal

manifestations. Therefore, uneven data distribution will be

caused in the experiment, which makes network training

more difficult.

The cross-entropy loss function compares the pixel-

predicted value output by the training model with the real

FIGURE 6
Swin Transformer module.
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value. In the case of training without overfitting, the smaller the

loss value, the better the result. The formula is as follows:

CE loss � −yplog2(y′) (10)
where y is the real label paper, y′ is the predicted value, and the

loss function has the same prediction weight for each category.

As shown in Figure 8, the background area accounts for a large

proportion, and the factors leading to the final result will be

biased towards the background area. After training, the

performance value of the loss function is small, but it cannot

reflect the classification effect of other categories through the loss

value.

FIGURE 7
Operation diagram of self-attention mechanism. (A): MSA. (B): W-MSA. (C): SW-MSA.

FIGURE 8
CT images and corresponding pixel category distributions.
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In dice loss, dice represents the dice similarly coefficient

(DSC), which indicates the degree of similarity between two

sample areas; the value is between 0 and 1; the larger the value,

the higher the similarity. Assuming that A and B represent sets of

regions, the DSC formula is as follows:

Dice � 2|A ∩ B|
|A| + |B| (11)

where ∩ represents the intersection of sets, and the dice loss

formula can be obtained according to the DSC. The formula is as

follows:

Dice loss � 1 − 2
∣∣∣∣Y ∩ �Y

∣∣∣∣ + 1

|Y| + ∣∣∣∣�Y
∣∣∣∣ + 1

(12)

where Y is the real segmentation area, and �Y is the model

prediction area. We add 1 to the denominator and numerator

to prevent the denominator from being zero and to reduce the

possibility of overfitting during the training process. Compared

with the CE loss function, dice loss is not affected by the

background when the number of pixel categories is unevenly

distributed. However, training instability occurs when the

prediction is incorrect. Therefore, we combine the CE loss

function and dice loss as a joint loss function and use the CE

loss function to guide dice loss for training. The formula is as

follows:

loss � 0.5 × CE +Dice loss (13)

loss � 0.5 × Y · log2(�Y) + 1 − 2
∣∣∣∣Y ∩ �Y

∣∣∣∣ + 1

|Y| + ∣∣∣∣�Y
∣∣∣∣ + 1

(14)

2.5 Datasets

We utilized a dataset from the China Consortium for Chest

CT Imaging Research (CC-CCII) (Ai et al., 2020). The CC-CCII

dataset contains 617,775 CT images from 6,752 CT scans of

4,154 patients. The study sample size was estimated by standard

AI training and validation methods. Patients were randomly

assigned to a training set (60%), an internal validation set (20%)

or a test set (20%). We chose to use 750 annotated chest CT

images selected from 150 COVID-19 patients by five radiologists

with 15 years of experience. These images include background

areas, lung areas, ground-glass opacities, and lung parenchyma.

Mild patients mainly present with ground-glass opacity, which is

distributed in the lower lobes of both lungs and adheres closely to

the pleura. Ground-glass shadows are characterized by spreading

FIGURE 9
Chest CT images of COVID-19 patients. (A): Initial CT image. (B): Gold standard. (C): Color-annotated segmentation results.
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toward the center and blurring at the edges. In moderate patients,

the number of lesions proliferated, and the lesions were markedly

plaque-like. The patient is accompanied by a condition of cough

and fatigue. In severe patients, the density of lung tissue increases

and the lung parenchyma changes. The patient presented with

fever and headache. An example of the segmentation of a chest CT

image of a COVID-19 patient is shown in Figure 9. Figure 9A is the

initial image, Figure 9B is the gold standard of the dataset, and

Figure 9C is after the gold standard mask and the initial CT image

are superimposed; the highlighted color is used to distinguish the

segmentation results. The gray area is the background area of the

patient, the red area is the lung area, the yellow area is the ground

glass opacity, and the blue area is the lung parenchyma.

2.5.1 Data augmentation
CT images have different properties, such as brightness,

saturation, and angle. Therefore, a data augmentation method

is added in the preprocessing stage of experimental training to

prevent overfitting of the training results. In this way, the model

performance is increased, and the data augmentation is shown in

Figure 10. Figure 10A is the initial image. Figures 10B–F are the

corresponding labels of the original image after rotating,

horizontally flipping, randomly cropping, adjusting saturation,

and adjusting brightness, respectively.

2.5.2 Training parameters
The training set of the CC-CCII dataset is divided into ten

groups, each time nine groups of images are used as the training

set and one group is used as the validation set. They were used in

ten-fold cross-validation experiments. After training and

validation separately, we use the test set to test, repeat this

process ten times, and finally take the average of the ten

results as the evaluation of algorithm accuracy. All CT image

pixels are resized to 512 × 512 pixels before being input into the

training model. In the model training, the network adopts the

mean square error loss function; The initial learning rate of the

Adam optimizer is 0.0001; The batch size is set to 64; And the

fully connected layer uses a dropout layer with probability 0.5.

This deep learning method does not require much analysis of the

threshold and gray value of CT images. Data augmentation is

achieved by adjusting contrast, affine transformation, and color

dithering to achieve better performance of the model. The details

of the experimental training parameters are listed in Table 1.

2.5.3 Evaluation indicators
To analyze the segmentation performance of the trained

model, we used three common performance metrics: mean

intersection over union (mIoU) (Rezatofighi et al., 2019), DSC

(Huang et al., 2022), and mean pixel accuracy (mPA)

(Paintdakhi et al., 2016). mIoU is the average of the ratios

of the intersection and union of the results predicted by the

FIGURE 10
Example of CT image data-enhancement results. (A): the original CT image and its corresponding gold standard. (B): the CT image obtained
after rotation and its corresponding gold standard. (C): the CT image obtained after horizontal flipping and its corresponding gold standard. (D): the
CT image obtained after random cropping and its corresponding gold standard. (E): the CT image obtained after adjusting the contrast and its
corresponding gold standard. (F): the CT image obtained after adjusting the brightness and its corresponding gold standard.

TABLE 1 Training parameter settings.

Type Setting

Batch size 64

Learning rate 0.0001

Optimizer Adam

Iterations (Epoch) 100

Ubuntu 18.04 PyToch1.6.0
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model for each category and the true label, DSC is the

similarity measure function, which can calculate the

similarity between the true label and the predicted label,

and mPA is represents the pixel accuracy of each category.

The pixel accuracy is summed and averaged.

mIOU � 1
k + 1

∑
k

i�0

TP

TP + FN + FP
(15)

DSC � 1
k + 1

∑
k

i�0

2TP
FP + 2TP + FN

(16)

mPA � 1
k + 1

∑
k

i�0

TP

TP + FN
(17)

where k is the number of classes, TP is the number of pixels that

are correctly predicted as positive examples, FN is the number of

pixels that are incorrectly predicted as negative examples, and FP

is the number of pixels that are incorrectly predicted as positive

examples.

3 Results and discussion

3.1 Ablation experiment

To verify the segmentation effect of the improved U-Net

model, we conducted ablation experiments. The segmentation

FIGURE 11
Example of ablation experiment comparison. (A): the CT image of the COVID-19 patient. (B): the gold standard of the CT image. (C): the U-Net
segmentation result. (D): the U-Net segmentation result after introducing atrous convolution. (E): the U-Net segmentation result after introducing
atrous convolution and CBAM. (F): the U-Net segmentation result after introducing the atrous convolution, CBAM, and Swin Transformer modules.

TABLE 2 Comparison of ablation experiments.

Modle mPA/% mIoU/% DSC/%

U-Net 85.86 78.59 86.74

U-Net + Atrous convolution 86.22 79.11 87.15

U-Net + Atrous convolution + CBAM 87.41 80.41 87.49

U-Net + Atrous convolution + CBAM + Swin Transformer 87.62 80.64 88.27
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test results are shown in Figure 11. From the segmentation results

of the CT image example, it can be observed that the original

U-Net did not segment the tiny lesion details. The other

improved models identified the lesions, but the segmentation

effects were different. The U-Net segmentation result after

adding atrous convolution is shown in Figure 11D. After

adding CBAM, the effect is improved, as shown in

Figure 11E. The model segmentation results after introducing

the atrous convolution, CBAM, and Swin Transformer modules

are significantly improved, as shown in Figure 11F. The

segmentation performance of our proposed method achieved

the best performance; especially in the case of a large number of

lesion areas, the segmentation results of lesion and lung areas by

this method are closer to the corresponding gold standard.

The experimental segmentation performance indicators are

listed in Table 2. On the basis of U-Net, the atrous convolution

mPA is added, and the mIoU and DSC indicators are increased

by 0.36%, 0.52%, and 0.41%, respectively. After adding atrous

convolution and CBAM, the corresponding indicators greatly

improved. mPA, mIoU, and DSC metrics improved by 1.55%,

1.82%, and 0.75%, respectively. After adding atrous convolution,

the corresponding indicators of CBAM and the Swin

Transformer improved the most. The mPA, mIoU, and DSC

metrics improved by 1.76%, 2.05%, and 1.53%, respectively. The

corresponding metrics demonstrate the effectiveness and

feasibility of our method.

The convergence effect of the training loss function of the

new model is shown in Figure 12. The curves in the figure

represent the training loss curves from the 1st to 5th fold,

respectively. After the training method of cross-validation is

used, we find that the training loss value of each epoch in

fold 1 is the largest and the training loss value of each epoch

in fold five is the smallest. The training loss value of each epoch in

the next fold is smaller than that of the previous fold. The results

show that the convergence effect of the newmodel is significantly

improved.

3.2 Models comparison

We demonstrate the feasibility and effectiveness of the

proposed improved method through ablation experiments. To

further verify the segmentation ability of the model, we compared

it with other models. The results of the segmentation experiment

are shown in Figure 13. First, the ResU-Net model (Jha et al.,

2019) adds a residual structure to the convolution operations of

the encoder and decoder to improve model performance. In CT

FIGURE 12
Training convergence loss curve.

TABLE 3 Performance comparison of different models.

Model mPA/% mIoU/% DSC/% FLOPs (G)

ResU-Net 87.05 80.1 87.54 1.46

Attention U-Net 86.26 78.31 86.47 1.95

TransU-Net 86.99 79.33 87.31 1.39

Ours 87.62 80.6 88.27 1.44

TABLE 4 Subjective evaluation scoring method.

Score Features of the
restored image

0 Severely distorted image

1 Image with severe distortion in some areas

2 Slightly distorted image

3 Difficult to spot distorted images

4 Images with better visual effects

5 Very sharp images

TABLE 5 Subjective quality evaluation of different algorithms.

Method Sharpness Resolution Invariance Acceptability

ResU-Net 3.3 ± 0.21 3.5 ± 0.25 0.5 ± 0.39 3.8 ± 0.21

Attention U-Net 3.6 ± 0.24 3.9 ± 0.49 0.6 ± 0.16 3.9 ± 0.41

TransU-Net 3.7 ± 0.16 4.1 ± 0.21 0.6 ± 0.25 4.2 ± 0.24

Our method 3.9 ± 0.24 4.3 ± 0.07 0.7 ± 0.36 4.2 ± 0.81
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FIGURE 13
Example of comparison of different models. (A): the CT images of COVID-19 patients. (B): the gold standard of CT images. (C): the
segmentation results of our model. (D): the ResU-Net segmentation results. (E): the Attention U-net segmentation results. (F): the TransU-net
segmentation result.
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images of mild patients, our method is compared with the ResU-

net method, as shown in Figures 13C,D. In the figure, the

performance of the two methods is comparable when

segmenting smaller lesions. However, when the proportion of

the lesion area is relatively large, the segmentation results show

obvious voids, as shown in the second picture in Figure 13D.

Second, Attention U-net (Oktay et al., 2018) introduces a soft

attention mechanism, which is implemented by supervising the

upper-level features through the next-level features. Our method

is compared with the attention U-net method, as shown in

Figures 13C,E. From the segmentation results, it can be seen

that our method performs significantly better than the attention

U-net method in terms of lesion segmentation accuracy in

smaller regions. Further, leaky segmentation is present in the

sixth picture of Figure 13E. Finally, TansU-Net (Chen et al.,

2021) applies the Transformer encoder to image segmentation.

Our method is compared with the TansU-Net method, as shown

in Figures 13C,F. In the segmentation example, the TansU-Net

method also appears similar to Attention U-net, failing to

successfully identify smaller lesion areas. We used the Swin

Transformer encoder structure before the segmentation

network decoder. Although CBAM and hole convolution are

added, the FLOPs are not much different, and the comprehensive

segmentation ability is significantly better than TransU-Net. The

effectiveness of our method is further demonstrated, and some

complexity is reduced from the Transformer structure.

The comparison performance indicators of the above models

are listed in Table 3. The performance metrics of the Attention

U-Net method were the worst. The ResU-Net model

outperformed TransU-Net in segmentation performance in

the used test dataset. Compared with ResU-Net, our proposed

segmentation method has improved performance indicators.

mPA, mIOU, and DSC were improved by 0.57%, 0.5%, and

0.73%, respectively. Therefore, our proposed method performed

the best among the compared models.

3.3 Subjective evaluation

For more specialized medical evaluation of segmentation

models, clinical validation is required. We invited 10 chief

physicians with more than 5 years of clinical experience in

radiology to independently perform image analysis (sharpness,

resolution, invariance, and acceptability). The scoring criteria for

subjective evaluation are shown in Table 4. Ten groups of test

samples were randomly constructed, and each group consisted of

ten CT images of the lesion area. The subjective quality

evaluation results of different algorithms utilized by

radiologists are listed in Table 5.

As shown in Table 5, our proposed Atrous Convolution +

CBAM + Swin Transformer model achieves the best subjective

quality evaluations in terms of sharpness, resolution, invariance,

and acceptability. The main reason is the benefit from

introducing W-MSA and the exchange of information.

Compared with other segmentation methods, our W-MSA

fuses the mutual information and the multimodal features of

CT images and has strong representation. The consistency of

pathological information between segmented CT image and

original CT image was guaranteed. This method achieves the

best segmentation effect in terms of ground-glass opacity and

visible plaque and lung parenchyma lesions.

4 Conclusion

Currently, a key approach to prevent the spread of the

epidemic is to combine the chest CT images of patients for

diagnosis. Therefore, this paper proposed an improved U-Net

network for lesion segmentation in chest CT images of COVID-

19. Atrous convolution was used as the convolution operation

of each layer of the segmentation network encoder structure,

and CBAM was introduced in the downsampling process to

solve the problem of loss of lesion detail during the

downsampling process. The Swin Transformer module was

added to the encoder using the transformer structure to

obtain global feature information. The primary improvement

of the segmentation model framework is in the encoder part,

which improved the model feature extraction performance. The

results of the ablation experiments showed that the mPA,

mIOU, and DSC reached 87.62, 80.6 and 88.27, respectively.

In the subjective evaluation of radiologists, our method can

effectively segment ground-glass opacity, visible plaque and

lung parenchyma lesions, and maintain consistency with the

original CT image pathological information. In future research,

we will continue to refine the model. We aim to improve the

screening process and the quantitative analysis of the disease

and enhancing the efficiency of diagnosis and reducing

infection.
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