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Abstract: This paper studies the properties of the derivatives of differential entropy H(Xt) in Costa’s
entropy power inequality. For real-valued random variables, Cheng and Geng conjectured that for
m ≥ 1, (−1)m+1(dm/dtm)H(Xt) ≥ 0, while McKean conjectured a stronger statement, whereby
(−1)m+1(dm/dtm)H(Xt) ≥ (−1)m+1(dm/dtm)H(XGt). Here, we study the higher dimensional ana-
logues of these conjectures. In particular, we study the veracity of the following two statements:
C1(m, n) : (−1)m+1(dm/dtm)H(Xt) ≥ 0, where n denotes that Xt is a random vector taking values
in Rn, and similarly, C2(m, n) : (−1)m+1(dm/dtm)H(Xt) ≥ (−1)m+1(dm/dtm)H(XGt) ≥ 0. In this
paper, we prove some new multivariate cases: C1(3, i), i = 2, 3, 4. Motivated by our results, we
further propose a weaker version of McKean’s conjecture C3(m, n) : (−1)m+1(dm/dtm)H(Xt) ≥
(−1)m+1 1

n (d
m/dtm)H(XGt), which is implied by C2(m, n) and implies C1(m, n). We prove some

multivariate cases of this conjecture under the log-concave condition: C3(3, i), i = 2, 3, 4 and C3(4, 2).
A systematic procedure to prove Cl(m, n) is proposed based on symbolic computation and semidefi-
nite programming, and all the new results mentioned above are explicitly and strictly proved using
this procedure.

Keywords: differential entropy; completely monotone; Mckean’s conjecture; log-concavity; Gaussian
optimality

1. Introduction

Shannon’s entropy power inequality (EPI) is one of the most important informa-
tion inequalities [1], which has many proofs, generalizations, and applications [2–11]. In
particular, Costa presented a generalized version of the EPI in his seminal paper [12].

Let X be an n-dimensional random vector with finite variance and a probability density
function p(x). For t > 0, define Xt , X + Zt, where Zt ∼ Nn(0, tI) is an independent
standard Gaussian random vector with the covariance matrix t× I. The probability density
of Xt is

pt(xt) =
1

(2πt)n/2

∫
Rn

p(x) exp
(
−‖xt − x‖2

2t

)
dx. (1)

Thus, the heat equation holds for pt(xt), i.e.,

dpt

dt
=

1
2
∇2 pt. (2)

The differential entropy of Xt is defined as

H(Xt) = −
∫
Rn

pt(xt) log pt(xt)dxt. (3)
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Costa [12] proved that the entropy power of Xt, given by N(Xt) =
1

2πe
e(2/n)H(Xt) is a concave

function in t. More precisely, Costa proved (d/dt)N(Xt) ≥ 0 and (d2/dt2)N(Xt) ≤ 0.
Due to its importance, several new proofs and generalizations for Costa’s EPI have

been given. Dembo [13] gave a simple proof for Costa’s EPI via the Fisher information
inequality. Villani [14] proved Costa’s EPI with Cauchy–Schwarz inequality as well as the
heat equation. Toscani [15] proved that (d3/dt3)N(Xt) ≥ 0 if pt is log-concave. Cheng and
Geng proposed a conjecture [16]:

Conjecture 1. The first derivative of H(Xt) (i.e., the Fisher information) is completely monotone
in t, that is,

C1(m, n) : (−1)m+1(dm/dtm)H(Xt) ≥ 0. (4)

Costa’s EPI implies C1(1, n) and C1(2, n) [12], and Cheng–Geng proved C1(3, 1) and C1(4, 1) [16].

Let XG ∼ Nn(µ, σ2 I) be an n-dimensional Gaussian random vector and XGt , XG +Zt
be the Gaussian Xt. McKean [17] proved that XGt achieves the minimum of (d/dt)H(Xt)
and −(d2/dt2) H(Xt) is subject to Var(Xt) = σ2 + t, and conjectured the general case:

Conjecture 2. The following inequality holds subject to Var(Xt) = σ2 + t,

C2(m, n) : (−1)m+1(dm/dtm)H(Xt) ≥ (−1)m+1(dm/dtm)H(XGt) ≥ 0. (5)

McKean proved C2(1, 1) and C2(2, 1) [17]. Zhang–Anantharam–Geng [18] proved
C2(3, 1), C2(4, 1) and C2(5, 1) if the probability density function of Xt is log-concave. Note
that C2(1, n) and C2(2, n) are immediate consequences of Entropy Power Inequality and
Costa’s concavity of entropy power result [12], respectively. In this paper, we notice that in
the multivariate case, Conjecture 2 might not be true for m > 2 even under the log-concave
condition, which motivates us to propose the following weaker conjecture:

Conjecture 3. The following inequality holds subject to Var(Xt) = σ2 + t,

C3(m, n) : (−1)m+1(dm/dtm)H(Xt) ≥ (−1)m+1 1
n (d

m/dtm)H(XGt) ≥ 0. (6)

We see that Conjecture 3 coincides with Conjecture 2 for n = 1 (univariate case).
Additionally, Conjecture 2 implies Conjecture 3 and Conjecture 3 implies Conjecture 1. The
three conjectures give different lower bounds for the derivatives of (−1)m+1H(Xt).

Remark 1. The authors in [14,16] proved some cases of Conjecture 1 by writing the left-hand
formula in Conjecture 1 as sums of squares and, hence, concluded their sign. We provide a systematic
way to explore this idea using symbolic computation and semidefinite programming and prove
several new results in the multivariate cases.

Our procedure for proving Cs(m, n) consists of three main ingredients. First, a sys-
tematic method is proposed to compute the constraints Ri, i = 1, . . . , N1 that are satisfied
by pt(xt) and its derivatives. The condition that pt is log-concave can also be reduced to a
set of constraints, i.e.,Rj, j = 1, . . . , N2. Second, based on symbolic computation, proof for
Cs(m, n) is reduced to the following problem:

∃pi ∈ R and Qj s.t. (E−
N1

∑
i=1

piRi −
N2

∑
j=1

QjRj = S) (7)

where E, Qj, and S are polynomials in pt and its derivatives such that E represents the
conjecture, Qj ≥ 0, and S is a sum of squares (SOS). Third, problem (7) can be solved with
semidefinite programming (SDP) [19,20]. Note that from Equation (7), we can give an
explicit and strict proof for Cs(m, n).
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Using the procedure proposed in this paper, we prove several new results about the
three conjectures: C1(3, 2), C1(3, 3), C1(3, 4), and C3(3, 2), C3(3, 3), C3(3, 4), C3(4, 2) under
the log-concave condition.

In Table 1, we give the data for computing the SOS representation (7) using the Matlab
software in Appendix A of [21], where Vars is the number of variables, and N1 and N2 are
the numbers of constraints in (7).

Table 1. Data in computing the SOS with symbolic computation and SDP.

C2(3, 1) C1(3, 2) C1(3, 3) C1(3, 4) C3(3, 2) C3(3, 3) C3(3, 4) C3(4, 2)

Vars 3 14 38 80 14 38 38 33
N1 6 63 512 1966 63 512 512 417
N2 0 0 0 0 0 6 6 3

The procedure is inspired by the work of [12,14,16,18], and uses basic ideas introduced
therein. The specific contributions in this paper are:

(1) Based on symbolic computation and semidefinite programming, Cs(m, n) can be
automatically verified with the aid of the software systems Maple and Matlab, and
analytical proofs for Cs(m, n) can also be efficiently produced.

(2) The new concept of differentially homogenous polynomials is introduced and used to
reduce the computational complexity. Compared with the pure SDP-based approach
(such as [18]), the computational efficiency of our procedure is, in general, much
higher. See Procedure 2 for details.

(3) The results in [16,18] are generalized from the univariate cases to the multivariate
cases (new results). This is the first attempt for the multivariate high order cases of the
conjectures.

(4) In comparison to the literature (such as [12,15,16,18]), the constraints (integral or
log-concave) considered in this paper are more general.

The rest of this paper is organized as follows. In Section 2, we give the proof procedure.
In Section 3, we prove C1(3, 2), C1(3, 3) and C1(3, 4). In Section 4 we prove C3(3, 2), C3(3, 3),
and C3(3, 4) under the log-concave condition. In Section 5, we prove C3(4, 2) under the
log-concave condition. In Section 6, the conclusions are presented.

2. Proof Procedure

In this section, we provide a general procedure to prove Cs(m, n) for specific values of
s, m, and n.

2.1. Some Notations

Let [n]0 = {0, 1, . . . , n}, [n] = {1, . . . , n}, and xt = [x1,t, . . . , xn,t]. To simplify the
notations, we use pt to denote pt(xt) in the rest of the paper. Denote

Pn = { ∂h pt

∂h1 x1,t · · · ∂hn xn,t
: h =

n

∑
i=1

hi, hi ∈ N}

to be the set of all derivatives of pt with respect to the differential operators ∂
∂xi,t

, i = 1, . . . , n
and R[Pn] to be the set of polynomials in Pn with coefficients in R. For v ∈ Pn, let ord(v)
be the order of v. For a monomial ∏r

i=1 vdi
i with vi ∈ Pn, its degree, order, and total order are

defined as ∑r
i=1 di, maxr

i=1 ord(vi), and ∑r
i=1 di · ord(vi), respectively.

A polynomial in R[Pn] is called a kth-order differentially homogeneous polynomial or
simply a kth-order differential form, if all its monomials have a degree of k and a total order
of k. LetMk,n be the set of all monomials which have a degree of k and a total order of k.
Then, the set of kth-order differential forms is an R-linear vector space generated byMk,n,
which is denoted as SpanR(Mk,n).
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We will use Gaussian elimination in SpanR(Mk,n) by treating the monomials as
variables. We always use the lexicographic order for the monomials to be defined below

unless mentioned otherwise. Consider two distinct derivatives v1 = ∂h pt

∂h1 x1,t ···∂hn xn,t
and

v2 = ∂s pt
∂s1 x1,t ···∂sn xn,t

. We say v1 > v2 if h > s, or h = s, hl > sl and hj = sj for j = l + 1, . . . , n.

Consider the two distinct monomials m1 = ∏r
i=1 vdi

i and m2 = ∏r
i=1 vei

i , where vi ∈ Pn and
vi < vj for i < j. We define m1 > m2 if dl > el , and di = ei for i = l + 1, . . . , r.

From (1), pt : Rn+1 → R is a function in xt and t. Therefore, each polynomial
f ∈ R[Pn] is also a function in xt and t, f̃ (t) =

∫
Rn f dxt is a function in t, and the

expectation of f with respect to xt E[ f ] ,
∫
Rn pt f dxt is also a function in t. By f ≥ 0, f̃ ≥ 0,

and E[ f ] ≥ 0, we mean f (xt, t) ≥ 0, f̃ (t) ≥ 0, and E[ f ](t) ≥ 0 for all xt ∈ Rn and t > 0.

2.2. Three Parts of the Proof

In this section, we give the procedure to prove Cs(m, n), which consists of three parts.

2.2.1. Part I

In step 1, we reduce the proof of Cs(m, n) into the proof of an integral inequality, as
shown by the following lemma, whose proof will be given in Section 2.3:

Lemma 1. Proof that Cs(m, n), s = 1, 2, 3 can be reduced to show∫
Rn

Es,m,n

p2m−1
t

dxt ≥ 0 (8)

where
Es,m,n = ∑n

a1=1 · · ·∑n
am=1 Es,m,n,am ,

am = (a1, . . . , am),

Es,m,n,am is a 2mth-order differential form in R[Pm,n], and

Pm,n = { ∂h pt

∂h1 xa1,t ···∂hm xam ,t
: h ∈ [2m− 1]0; ai ∈ [n], i ∈ [m]}. (9)

2.2.2. Part II

In step 2, we compute the constraints which are relations satisfied by the probability
density pt of Xt. In this paper, we consider two types of constraints: integral constraints and
log-concave constraints, which will be given in Lemmas 2 and 3, respectively. Since Es,m,n
in (8) is a 2mth-order differential form, we need only the constraints which are 2mth-order
differential forms.

Definition 1. An mth-order integral constraint is the 2mth-order differential form R in R[Pn]
such that ∫

Rn

R
p2m−1

t
dxt = 0.

Lemma 2 ([22]). There is a systematic method to compute the mth-order integral constraints
Cm,n = {Ri, i = 1, . . . , N1}.

A function f : Rn → R is called log-concave if log f is a concave function. In this paper,
by the log-concave condition, we mean that the density function pt is log-concave.

Definition 2. An mth-order log-concave constraint is a 2mth-order differential formR in R[Pn]
such thatR ≥ 0 under the log-concave condition.

The following lemma computes the log-concave constraints:
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Lemma 3 ([22]). Let H(pt) ∈ R[Pn]n×n be the Hessian matrix of pt, ∇pt = ( ∂pt
∂x1,t

, . . . , ∂pt
∂xn,t

),

L(pt) , ptH(pt)−∇T pt∇pt, (10)

and4k,l , l = 1, . . . , Lk be the kth-order principle minors of L(pt). Then, the mth-order log-concave
constraints are

Cm,n = {
l

∏
i=1

(−1)ki4ki ,li Tk1,...,kl
|

l

∑
i=1

ki ≤ m} (11)

where Tk1,...,kl
∈ SpanR(M2m−2 ∑l

i=1 ki ,n
) and Tk1,...,kl

≥ 0.

Note that Tk1,...,kl
in (11) are not known. For convenience, denote

Cm,n = {Pj, j = 1, . . . , N2}, (12)

where Pj represents ∏l
i=1(−1)ki4ki ,li in (11). From Lemma 3, it is easy to see that ∏l

i=1(−1)ki

4ki ,li is a (2 ∑l
i=1 ki)th-order log-concave constraint.

2.2.3. Part III

In step 3, we give a procedure to write Es,m,n as an SOS under the constraints, the
details of which will be given in Section 2.4.

Procedure 1. For Es,m,n in Lemma 1, Cm,n = {Ri, i = 1, . . . , N1} in Lemma 2, and Cm,n =
{Pj, j = 1, . . . , N2} in Lemma 3, the procedure computes el ∈ R and Qj ∈ SpanR(M2m−deg Pj ,n)

such that

Es,m,n −
N1

∑
i=1

eiRi −
N2

∑
j=1

PjQj = S, (13)

and Qj ≥ 0, j = 1, . . . , N2, (14)

where S is an SOS. If the log-concave condition is not needed, we may set Qj = 0 for all j.

To summarize the proof procedure, we have the following:

Theorem 1. If Procedure 1 satisfies (13) and (14) for certain s, m, and n, then Cs(m, n) is explicitly
and strictly proved.

Proof. With Lemma 1, we have the following proof for Cs(m, n):

∫
R

Et,m,n

p2m−1
t

dxt
(13)
=
∫
R

∑N1
i=1 eiRi + ∑N2

j=1 PjQj + S

p2m−1
t

dxt

S1
=
∫
R

∑N2
j=1 PjQj + S

p2m−1
t

dxt

S2
≥
∫
R

S
p2m−1

t
dxt

S3
≥ 0.

(15)

Equality S1 is true, because Ri is an integral constraint by Lemma 2. By Lemma 3 and
(14), PjQj ≥ 0 is true under the log-concave condition, so inequality S2 is true under the
log-concave condition. Finally, inequality S3 is true, because S ≥ 0 is an SOS.
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2.3. Proof of Lemma 1

Costa [12] proved the following basic properties for pt and H(Xt),

dH(Xt)

dt
= −1

2
E
[
∇2 log pt

]
= 1

2

∫
Rn

‖∇pt‖2

pt
dxt

= 1
2 J(Xt),

(16)

where

∇pt =

(
∂pt

∂x1,t
, . . . ,

∂pt

∂xn,t

)
, ∇2 pt =

n

∑
i=1

∂2 pt

∂2xi,t
,

and J(Xt) , E
(
‖∇pt‖2

p2
t

)
is the Fisher information [6]. Equation (16) implies C1(1, n):

d
dt H(Xt) ≥ 0.

For s = 1, Lemma 1 was proved by

Lemma 4 ([22]). For m ∈ Nm>1, we have

(−1)m+1(dm/dtm)H(Xt) =
∫
Rn

E1,m,n

p2m−1
t (xt)

dxt, (17)

where

E1,m,n =
(−1)m+1 p2m−1

t
2

dm−1

dtm−1 (
‖∇pt‖2

pt
)

= ∑n
a1=1 · · ·∑n

am=1 E1,m,n,am

is a 2mth-order differential form in R[Pm,n].

To prove Lemma 1 for s = 2, 3, we need to compute (dm/dtm)H(XGt). Let XG ∼
Nn(µ, σ2 I) be an n-dimensional Gaussian random vector and XGt , XG + Zt, where
Zt ∼ Nn(0, tI) is introduced in Section 1. Then, XGt ∼ Nn(µ, (σ2 + t)I) and the probability
density of XGt is

p̂t =
1

(2π(σ2 + t))n/2 exp(− 1
2(σ2 + t)

‖xt − µ‖2).

Lemma 5 ([22]). Let T = ∇2logpt and TG = ∇2logp̂t. Then, under the log-concave condition,
we have

E[(−T)m]
(a)
≥ [E(−T)]m

(b)
≥ [E(−TG)]

m

(c)
= (−1)m+1 2nm−1

(m−1)! (d
m/dtm)H(XGt).

(18)

Lemma 6 ([22]). For T = ∇2logpt and m ∈ Nm>1, we have

E[(−T)m] =
∫ n

R

E0,m,n

p2m−1
t

dxt (19)

where
E0,m,n = ∑n

a1=1 · · ·∑n
am=1 E0,m,n,am ,

am = (a1, . . . , am),

and E0,m,n,am is a 2mth-order differential form in R[Pm,n].



Entropy 2022, 24, 1155 7 of 17

We can now prove Lemma 1 for s = 2, 3. Let

E2,m,n = E1,m,n − (m−1)!
2nm−1 E0,m,n,

E3,m,n = E1,m,n − (m−1)!
2nm E0,m,n,

(20)

where E1,m,n and E0,m,n are from Lemmas 4 and 6, respectively. By Lemma 5, Cs(m, n) is
true if

∫
Rn

Es,m,n

p2m−1
t

dxt ≥ 0 for l = 2, 3. Together with Lemma 4, Lemma 1 is proved.

2.4. Main Result (Procedure 1)

In this section, we present the detailed Procedure 1, called Procedure 2, which is based
on symbolic computation and the SOS theory.

Procedure 2. Input: Es,m,n and Ri, i = 1, . . . , N1 are 2mth-order differential forms in R[Pn];
Pj, j = 1, . . . , N2 are 2k jth-order differential forms in in R[Pn].

Output: ei ∈ R and Qj ∈ SpanR(M2(m−kj),n) such that (13) and (14) are true, or fail
meaning such that ei and Qj are not found.

S1. Treat the monomials inMm,n as new variables ml , l = 1, . . . , Nm,n, which are all
the monomials in R[Pn] with the degree m and the total order m. We call mlms a quadratic
monomial.

S2. Write monomials in Cm,n = {Ri, i = 1, . . . , N1} as quadratic monomials if possible.
By performing Gaussian elimination on Cm,n by treating the monomials as variables and
according to a monomial order such that a quadratic monomial is less than a non-quadratic
monomial, we obtain

C̃m,n = Cm,n,1 ∪ Cm,n,2,

where Cm,n,1 is the set of quadratic forms in mi, Cm,n,2 is the set of non-quadratic forms, and
SpanR(Cm,n) = SpanR(C̃m,n).

S3. There may exist relationships among the variables mi, which are called intrinsic

constraints. For instance, for m1 = p2
t (

∂2 pt
∂2x1,t

)2, m2 = pt(
∂pt

∂x1,t
)2 ∂2 pt

∂2x1,t
, and m3 = ( ∂pt

∂x1,t
)4 in

M4,n, an intrinsic constraint is m1m3 −m2
2 = 0. By adding the intrinsic constraints which

are quadratic forms in mi to Cm,n,1, we obtain

Ĉm,n,1 = {R̂i, i = 1, . . . , N3}.

S4. Let M2(m−kj),n = {mj,k, k = 1, . . . , Vj} and Qj = ∑
Vj
k=1 qj,kmj,k, where qj,k are

variables to be found later. Let R̄j be obtained from PjQj by writing monomials in PjQj as
quadratic monomials in mi, and eliminating the non-quadratic monomials with Cm,n,2, such

that R̄j − PjQj ∈ SpanR(Cm,n) and R̄j = ∑
Vj
l=1 qj,lhj,l , where hj,l ∈ R[mi,Pn]. If an hj,l is not

a quadratic form in mi, then delete R̄j; hence, the R̄j’s in quadratic form are selected. Then,
denote these constraints asRj, j = 1, . . . , N2, which form the reduced set Ĉm,n.

S5. Let Ês,m,n be obtained from Es,m,n by eliminating the non-quadratic monomials
using Cm,n,2 such that Es,m,n − Ês,m,n ∈ SpanR(Cm,n,2) ⊂ SpanR(Cm,n).

S6. Since Ês,m,n, R̂i, i = 1, . . . , N3 and Rj, j = 1, . . . , N2 are quadratic forms in mi, we
can use the Matlab codes given in Appendix A [21] to compute pi, qj,s ∈ R such that

Ês,m,n −∑N3
i=1 piR̂i −∑N2

j=1Rj = S, (21)

Rj = ∑
Vj
l=1 qj,lhj,l , j = 1, . . . , N2

Qj = ∑
Vj
l=1 qj,lmj,l ≥ 0, j = 1, . . . , N2 (22)
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where

S =
Nm,n

∑
i=1

ci(
Nm,n

∑
j=i

eijmj)
2

is an SOS, ci, eij ∈ R and ci ≥ 0. If (21) and (22) cannot be found, return FAIL.
S7. Since R̂i, Es,m,n − Ês,m,n,Rj − PjQj are all in SpanR(Cm,n), Equations (13) and (14)

can be obtained from (21) and (22), respectively.

Remark 2. Procedure 2 can be implemented automatically by Maple and Matlab on a computer.
In Procedure 2, steps S2, S4 and S5 are based on the symbolic computation theory for reduction,
which makes our method more efficient than the pure SDP-based method [18] or a direct theoretical
proof [16]. The use of symbolic computation also ensures that our calculation is strict and free of
numerical errors.

Remark 3. Let R be an intrinsic constraint. Then, R becomes zero when replacing mi by its
corresponding monomial inMm,n. Therefore, SpanR(Ĉm,n,1) = SpanR(Cm,n,1) ⊂ SpanR(Cm,n)
in R[Pn]; that is, we do not need to include the intrinsic constraints in (21). However, these
intrinsic constraints are needed when using the Matlab software in Appendix A of [21].

2.5. An Illustrative Example

As an illustrative example, we prove C2(3, 1) under the log-concave condition using
the proof procedure given in Section 2.2. Since n = 1, denote

xt = x1,t, f := f0 := pt, fn :=
∂n pt

∂nx1,t
, n ∈ N>0.

In step 1, by Lemma 1 and (8), we have

d3H(Xt)

dt3 − 2!
2
E
[
( f 2

1 − f f2)
3

f 6

]
(16)
=
∫ (1

2
d2

dt2

(
f 2
1
f

)
−

( f 2
1 − f f2)

3

f 5

)
dxt

(8)
=
∫ E2,3,1

f 5 dxt

(23)

where
E2,3,1 =

1
4

f 4 f 2
3 −

1
2

f 3 f1 f3 f2 +
1
4

f 4 f1 f5 −
11
4

f 2 f 2
1 f 2

2

−1
8

f 3 f 2
1 f4 + f 3 f 3

2 + 3 f f 4
1 f2 − f 6

1

is a sixth-order differential form.
In step 2, we compute the constraints with Lemmas 2 and 3. With Lemma 2, we find

six third-order integral constraints: C3,1 = {Ri, i = 1, . . . , 6}:

R1 = 5 f f 4
1 f2 − 4 f 6

1 ,

R2 = 2 f 3 f1 f2 f3 + f 3 f 3
2 − 2 f 2 f 2

1 f 2
2 ,

R3 = f 4 f1 f5 + f 4 f2 f4 − f 3 f 2
1 f4,

R4 = f 3 f 2
1 f4 + 2 f 3 f1 f2 f3 − 2 f 2 f 3

1 f3,

R5 = f 2 f 3
1 f3 + 3 f 2 f 2

1 f 2
2 − 3 f f 4

1 f2,

R6 = f 4 f2 f4 + f 4 f 2
3 − f 3 f1 f2 f3.

With Lemma 3, we obtain one third-order log-concave constraint: C3,1 = {P1Q1}, where

P1 = f f2 − f 2
1 , Q1 ∈ SpanR(M4,1), and Q1 ≥ 0.
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In step 3, we use Procedure 2 to compute the SOS representation (13) and (14) with
the input E2,3,1, C3,1 = {Ri, i = 1, . . . , 6}, P1 = f 2

1 − f f2.
S1. The new variables areM3,1 = {m1 = f 2 f3, m2 = f f1 f2, m3 = f 3

1 }, which are listed
from high to low in the lexicographical monomial order.

S2. By writing monomials in C3,1 as quadratic monomials in mi if possible and per-
forming Gaussian elimination on C3,1, we have

C3,1,1 = { R̂1 = 5m2m3 − 4m2
3,

R̂2 = m1m3 + 3m2
2 −

12
5 m2

3},

C3,1,2 = { R̃1 = f 3 f 3
2 + 2m1m2 − 2m2

2,

R̃2 = f 4 f1 f5 −m2
1 + 3m1m2 + 6m2

2 −
24
5 m2

3,

R̃3 = f 4 f2 f4 + m2
1 −m1m2,

R̃4 = f 3 f 2
1 f4 + 2m1m2 + 6m2

2 −
24
5 m2

3}.

S3. There exist no intrinsic constraints and thus, Ĉ3,1,1 = {R̂1, R̂2} and N3 = 2.
S4.M4,1 = { f 3 f4, f 2 f1 f3, f 2 f 2

2 , f f 2
1 f2, f 4

1 }. Then, Q1 = q1,1 f 2 f 2
2 + q1,2 f f 2

1 f2 + q1,3 f 4
1 .

Monomials f 3 f4, f 2 f1 f3 do not appear in Q1 due to Q1 ≥ 0. By writing monomials in P1Q1
as quadratic monomials if possible and using C3,1,2 to eliminate non-quadratic monomials,
we obtain

R1 = P1Q1 − (
1
5

q1,2R̂1 − q1,1R̃1 −
1
5

q1,3R̂1)

= q1,1(2m1m2 −m2
2) + q1,2(

4
5 m2

3 −m2
2) +

q1,3

5
m2

3.

S5. By writing E2,3,1 as a quadratic form in mi, we have

Ê2,3,1 = E2,3,1 − 3
5 R̂1 − R̃1 − 1

4 R̃2 +
1
8 R̃4

= 1
2 m2

1 − 3m1m2 − 3
2 m2

2 + 2m2
3.

S6. Since Ê3,1, R̂1, R̂2,R1 are quadratic forms in mi, we can use the Matlab software in
Appendix A of [21] to obtain the following SOS representation

Ê2,3,1 = ∑2
i=1 piR̂i +R1 + ∑3

i=1 ci(∑3
j=i ei,jmj)

2,

Q1 ≥ 0,
(24)

where
p1 =

6
5

, p2 = −2, c1 =
1
2

, e1,1 = 1, e1,2 = −3, e1,3 = 2,

q1,1 = q1,2 = q1,3 = c2 = c3 = 0.

S7. We obtain

E2,3,1 =
3
4

R1 + R2 +
1
4

R3 +
1
8

R4 −
7
4

R5 −
1
4

R6

+∑3
i=1 ci(∑3

j=i ei,jmj)
2.
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From Theorem 1 and (23), we have

d3H(Xt)

dt3 − 2!
2
E
[
( f 2

1 − f f2)
3

f 6

]
=
∫
R

E2,3,1

p5
t

dxt

=
∫
R

1
p5

t
(

3
4

R1 + R2 +
1
4

R3 +
1
8

R4

−7
4

R5 −
1
4

R6 +
3

∑
i=1

ci(
3

∑
j=i

ei,jmj)
2) dxt

=
∫
R

(m1 − 3m2 + 2m3)
2

2p5
t

dxt

≥ 0.

(25)

Thus, an explicit and strict proof is given for C2(3, 1). Note that this example is also
considered in [18] by the pure SDP-based method, which is a semi-automatic algorithm.
See Table 1 for the time used to provide analytical proof of this example by our automatic
method on a computer.

3. Proof of C1(3,n) for n = 2, 3, 4

In this section, we use the procedure in Section 2.2 to prove C1(3, n) for n = 2, 3, 4.

3.1. Compute E1,3,n

In step 1, we compute E1,3,n in (8) and (20):

1
2

d2

dt2

(∫
Rn

‖∇pt‖2

pt
dxt

)
(2)
=
∫

Rn

E1,3,n

p5
t

dxt, (26)

where

E1,3,n =
n

∑
a=1

n

∑
b=1

n

∑
c=1

F3,a,b,c

and

F3,a,b,c =
p4

t
4

∂3 pt

∂xa,t∂2xc,t

∂3 pt

∂xa,t∂2xb,t
− p3

t
4

∂pt

∂xa,t

∂3 pt

∂xa,t∂2xb,t

∂2 pt

∂2xc,t

+
p4

t
4

∂pt

∂xa,t

∂5 pt

∂xa,t∂2xb,t∂2xc,t
− p3

t
4

∂pt

∂xa,t

∂3 pt

∂xa,t∂2xc,t

∂2 pt

∂2xb,t

+
p2

t
4

(
∂pt

∂xa,t

)2 ∂2 pt

∂2xb,t

∂2 pt

∂2xc,t
− p3

t
8

(
∂pt

∂xa,t

)2 ∂4 pt

∂2xb,t∂2xc,t
.

3.2. Compute the Third-Order Constraints

In step 2, we obtain the third-order constraints. We introduce the notation

Va,b,c = {
∂h pt

∂h1 xa,t∂h2 xb,t∂h3 xc,t
: h = h1 + h2 + h3 ∈ [5]0}, (27)

where a, b, c are variables taking values in [n]. Then,

P3,n = ∪n
a=1 ∪n

b=1 ∪
n
c=1Va,b,c.

The third-order integral constraints are:

C3,n = {R(3)
i,a,b,c, : i = 1, . . . , 955; a, b, c ∈ [n]}, (28)
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where R(3)
i,a,b,c in the form of lengthy formulas can be found in [23]. Note that we do not use

all the third-order constraints in [23].

3.3. Proof of C1(3,2)

The proof follows Procedure 2 with E1,3,2 given in (26) as the input. To make the proof
explicit, we will give the key expressions.

In Step S1, the new variables areM3,2 and are listed in the lexicographical monomial
order:

m1 = p2
t

∂p3
t

∂3x2,t
, m2 = p2

t
∂3 pt

∂x1,t∂2x2,t
,

m3 = p2
t

∂3 pt

∂2x1,t∂x2,t
, m4 = p2

t
∂p3

t
∂3x1,t

,

m5 = pt
∂2 pt

∂2x2,t

∂pt

∂x2,t
, m6 = pt

∂2 pt

∂2x2,t

∂pt

∂x1,t
,

m7 = pt
∂2 pt

∂x1,t∂x2,t

∂pt

∂x2,t
, m8 = pt

∂2 pt

∂x1,t∂x2,t

∂pt

∂x1,t
,

m9 = pt
∂2 pt

∂x2
1,t

∂pt

∂x2,t
, m10 = pt

∂2 pt

∂x2
1,t

∂pt

∂x1,t
,

m11 =

(
∂pt

∂x2,t

)3
, m12 =

(
∂pt

∂x2,t

)2 ∂pt

∂x1,t
,

m13 =
∂pt

∂x2,t

(
∂pt

∂x1,t

)2
, m14 =

(
∂pt

∂x1,t

)3
.

In Step S2, the constraints are

C3,2 = {R(3)
j,a,b,c : j = 1, . . . , 955; a, b, c ∈ [2]}.

Removing the repeated ones, we have N1 = 135. We obtain C3,2,1 and C3,2,2, which contain
48 and 52 constraints, respectively.

In Step S3, there exist 15 intrinsic constraints:

m5m8 = m6m7, m5m10 = m6m9, m5m12 = m6m11,

m5m13 = m6m12, m5m14 = m6m13, m7m10 = m8m9,

m7m12 = m8m11, m7m13 = m8m12, m7m14 = m8m13,

m9m12 = m10m11, m9m13 = m10m12, m9m14 = m10m13,

m11m13 = m2
12, m11m14 = m12m13, m12m14 = m2

13.

Thus, Ĉ3,2,1 contains 63 constraints and N3 = 63.
Step S4 is not needed in the proof of this case.
In Step S5, by eliminating the non-quadratic monomials in E1,3,2 using C3,2,2 to obtain

a quadratic form in mi and then simplifying the quadratic form using C3,2,1, we have
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Ê1,3,2 = E1,3,2 − (
3
4

R̂17 −
1
6

R̂12 −
1
6

R̂13 +
7
6

R̂18 −
1
2

R̂32

−1
2

R̂34 −
5
8

R̂35 −
1
2

R̂40 −
1

12
R̃2 −

1
8

R̃5 −
1
4

R̃6

+
1
2

R̃7 +
1
4

R̃8 +
1
2

R̃18 +
1
4

R̃19 −
1
8

R̃39 −
1
4

R̃46

+ 1
2 R̃48 −

1
8

R̃49 +
1
4

R̃53)

=
1
2

m2
1 −m1m5 +

3
2

m2
2 − 3m2m6 +

3
2

m2
3 +

1
2

m2
4

−2m4m6 −m4m7 −m4m10 −
1
2

m2
5 +

3
2

m2
6 − 3m2

7

−2m7m10 + 3m2
8 −

5
2

m2
9 −

3
2

m9m11 + 21m9m13

−1
2

m2
10 +

3
5

m2
11 + 3m2

12 − 15m2
13 +

3
5

m2
14.

In Step S6, using the Matlab program in [23] with Ê1,3,2 and Ĉ3,2,1 as the input, we find
an SOS representation for Ê1,3,2. Thus, by Theorem 1, C1(3, 2) is strictly proved.

3.4. Proof of C1(3,3)

The proof follows Procedure 2 with E1,3,3 given in (29) as the input. The detailed
lengthy formulas can be seen in [23].

In Step S1, the new variables areM3,3 = {mi, i = 1, . . . , 38} which is the set of all
monomials in R[P3,3] with a degree of 3 and a total order of 3, and which are listed in the
lexicographical monomial order.

In Step S2, the constraints are: C3,n = {R(3)
i,a,b,c : i = 1, . . . , 955}, N1 = 955. We obtain

C3,n,1 and C3,n,2, which contain 350 and 328 constraints, respectively.
In Step S3, there exist 189 intrinsic constraints. In total, Ĉ3,n,1 contains 539 constraints.

Using R-Gaussian elimination in SpanR(Ĉ3,n,1) shows that 512 of these 539 constraints are
linearly independent, so N3 = 512.

Step S4 is not needed in the proof of this case.
In Step S5, by eliminating the non-quadratic monomials in E1,3,3 using C3,3,2 and then

simplifying the expression using C3,3,1, we obtain Ê1,3,3 written as a quadratic form in mi.
In Step S6, using the Matlab program in [23] with Ê1,3,3 and Ĉ3,3,1 as the input, we find

an SOS representation for F̂3,3. Thus, using Theorem 1, C1(3, 3) is strictly proved.

3.5. Proof of C1(3,4)

The proof follows Procedure 2 with E1,3,4 given in (29) as the input. The detailed
lengthy formulas can be seen in [23].

In Step S1, the new variables areM3,4 = {mi, i = 1, . . . , 80} which is the set of all
monomials in R[P3,4] with a degree of 3 and a total order of 3, and which are listed in the
lexicographical monomial order.

In Step S2, we obtain C3,4 = {R(3)
i,a,b,c, R(0)

j , R(2)
k,a,b, : i = 1, . . . , 955, j = 1, . . . , 8, k =

1, . . . , 20, a, b, c ∈ [4]}. Removing the repeated ones, we have N1 = 3172. We obtain C3,4,1
and C3,4,2 which contain 1120 and 975 constraints, respectively.

In Step S3, there exist 1080 intrinsic constraints. In total, Ĉ3,4,1 contains 2200 constraints.
Only 1966 constraints in Ĉ3,4,1 are R-linearly independent, so N2 = 1966.

Step S4 is not needed in the proof of this case.
In Step S5, by eliminating the non-quadratic monomials in E1,3,4 using C3,4,2 to obtain

a quadratic form in mi and then simplifying the quadratic form with C3,4,1, we obtain Ê1,3,4
which is written as a quadratic form in mi.

In Step S6, using the Matlab program in [23] with Ê1,3,4 and Ĉ3,4,1 as the input, we find
an SOS representation for Ê1,3,4. Thus, using Theorem 1, C1(3, 4) is strictly proved.
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4. Proof of C3(3,n) for n = 2, 3, 4 under the Log-Concave Condition

In this section, we use the procedure in Section 2.2 to prove C3(3, n) for n = 2, 3, 4
under the log-concave condition. The detailed lengthy formulas can be seen in [21].

4.1. Compute E3,3,n

In step 1, we compute E3,3,n in (8) and (20):

1
2

d2

dt2

(
‖∇pt‖2

pt

)
− 1

n3E
(
‖∇pt‖2 − pt∇2 pt

p2
t

)3

(2)
=
∫
Rn

E3,3,n

p5
t

dxt

(29)

where

E3,3,n =
n

∑
a=1

n

∑
b=1

n

∑
c=1

E3,a,b,c

and

E3,a,b,c =
p4

t
4

∂3 pt

∂xa,t∂2xc,t

∂3 pt

∂xa,t∂2xb,t
− p3

t
4

∂pt

∂xa,t

∂3 pt

∂xa,t∂2xb,t

∂2 pt

∂2xc,t

+
p4

t
4

∂pt

∂xa,t

∂5 pt

∂xa,t∂2xb,t∂2xc,t
− p3

t
4

∂pt

∂xa,t

∂3 pt

∂xa,t∂2xc,t

∂2 pt

∂2xb,t

+
p2

t
4

(
∂pt

∂xa,t

)2 ∂2 pt

∂2xb,t

∂2 pt

∂2xc,t
− p3

t
8

(
∂pt

∂xa,t

)2 ∂4 pt

∂2xb,t∂2xc,t

− 1
n3

[
(

∂pt

∂xa,t
)2 − pt(

∂2 pt

∂2xa,t
)

][
(

∂pt

∂xb,t
)2 − pt(

∂2 pt

∂2xb,t
)

][
(

∂pt

∂xc,t
)2 − pt(

∂2 pt

∂2xc,t
)

]
.

4.2. Compute the Third-Order Log-Concave Constraints

In step 2, we obtain the third-order log-concave constraints.
From Lemma 3, we can compute the third-order log-concave constraints:

C3,2 = {R1 = −41,1Q1,R2 = −41,2Q2,R3 = 42,1Q3}, (30)

where Q1, Q2 ∈ SpanR(M4,4) and Q3 ∈ SpanR(M2,2). Note that C3,2 does not contain all
the log-concave constraints in Lemma 3. The constraints C3,2 are enough for our purpose
in this paper.

For n > 2, we give certain log-concave constraints in a special form, which are needed
in the proof procedure in Section 4.3. Let

∇1 pt =

(
∂pt

∂xa,t
,

∂pt

∂xb,t
,

∂pt

∂xc,t

)
,

L1(pt) , ptH1(pt)−∇T
1 pt∇1 pt,

where

H1(pt) =



∂2 pt

∂2xa,t

∂2 pt

∂xa,t∂xb,t

∂2 pt

∂xa,t∂xc,t
∂2 pt

∂xa,t∂xb,t

∂2 pt

∂2xb,t

∂2 pt

∂xb,t∂xc,t
∂2 pt

∂xa,t∂xc,t

∂2 pt

∂xb,t∂xc,t

∂2 pt

∂2xc,t


,

and 4′k,l , l = 1, . . . , Lk the kth-order principle minors of L1(pt). LetM′
k be the set of all

monomials in Va,b,c (defined in (27)) which have a degree of k and a total order of k. We have

C3,n = {−4′1,1Q1,1,−4′1,2Q1,2,−4′1,3Q1,3,4′2,1Q2,1,4′2,2Q2,2,4′2,3Q2,3,−4′3,1Q3,1} (31)
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where Q1,i ∈ SpanR(M′
4), Q2,j ∈ SpanR(M′

2), and Q3,1 ∈ R.

4.3. Proof of C3(3,2)

The proof follows Procedure 2 with E3,3,2 given in (29) and the constraints in (28) and
(30) as the input.

Steps S1–S3 are the same with the proof of the case C1(3, 2).
In Step S4, we obtain Ĉ(3, 2) which contains three quadratic-form constraints.
In Step S5, by eliminating the non-quadratic monomials in E3,3,2 using C3,2,2 to obtain

a quadratic form in mi and then simplifying the quadratic form using C3,2,1, we have

Ê3,3,2 =
31
40

m2
14 −

147
8

m2
13 −

5
2

m7m10 +
15
4

m2
8 −

25
8

m2
9

−31
16

m9m11 +
207
8

m9m13 −
5
8

m2
10 +

1
2

m2
1

−5
4

m1m5 +
31
40

m2
11 +

31
8

m2
12 +

1
2

m2
4 −

5
2

m4m6

−5
4

m4m7 +
3
2

m2
3 −

15
4

m2
7 −

5
4

m4m10

−5
8

m2
5 +

15
8

m2
6 +

3
2

m2
2 −

15
4

m2m6.

In Step S6, using the Matlab software in Appendix A [21] with Ê3,3,2, Ĉ3,2,1 and Ĉ3,2
as the input, we find an SOS representation for Ê3,3,2. Thus, C3(3, 2) is proved under
the log-concave condition. The Maple program for proving C3(3, 2) can be found at
https://github.com/cmyuanmmrc/codeforepi/ (accessed on 15 July 2020).

Remark 4. We fail to prove C2(3, 2) even under the log-concave condition using the above proce-
dure. Specifically, we cannot find an SOS representation for Ê2,3,2 in Step S6. Since the SDP algo-
rithm is not complete for problem (21), we cannot say that an SOS representation does not exist for
Ê2,3,2. The Maple program for C2(3, 2) can be found at https://github.com/cmyuanmmrc/codeforepi/
(accessed on 15 July 2020).

4.4. Proof of C3(3,3) and C3(3,4)

In this subsection, we prove C3(3, 3), C3(3, 4). Motivated by symmetric functions, for
any function f (a, b, c), we have

n
∑

a,b,c=1
f (a, b, c) =

n
∑

1≤a<b<c

{
2

(n− 1)(n− 2)
[

f (a, a, a)

+ f (b, b, b) + f (c, c, c)
]
+

1
n− 2

[
f (a, a, b) + f (a, b, a)

+ f (b, a, a) + f (a, a, c) + f (a, c, a) + f (c, a, a)
+ f (b, b, a) + f (b, a, b) + f (a, b, b) + f (b, b, c)
+ f (b, c, b) + f (c, b, b) + f (c, c, a) + f (c, a, c)
+ f (a, c, c) + f (c, c, b) + f (c, b, c) + f (b, c, c)

]
+[ f (a, b, c) + f (a, c, b) + f (b, a, c) + f (b, c, a)

+ f (c, a, b) + f (c, b, a)
]}

.

(32)

From (29) and (32), we obtain

E3,3,n =
n
∑

a=1

n
∑

b=1

n
∑

c=1
E3,a,b,c =

n
∑

1≤a<b<c≤n
J3,3,n,

https://github.com/cmyuanmmrc/codeforepi/
https://github.com/cmyuanmmrc/codeforepi/
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where
J3,3,n =

2
(n− 1)(n− 2)

[
E3,a,a,a + E3,b,b,b + E3,c,c,c

]
+

1
n− 2

[
E3,a,a,b + E3,a,b,a + E3,b,a,a + E3,a,a,c

+E3,a,c,a + E3,c,a,a + E3,b,b,a + E3,b,a,b + E3,a,b,b

+E3,b,b,c + E3,b,c,b + E3,c,b,b + E3,c,c,a + E3,c,a,c

+E3,a,c,c + E3,c,c,b + E3,c,b,c + E3,b,c,c
]

+
[
E3,a,b,c + E3,a,c,b + E3,b,a,c + E3,b,c,a

+E3,c,a,b + E3,c,b,a
]

(33)

From (33), if we prove J3,3,n ≥ 0, then E3,3,n ≥ 0. It is clear that J3,3,n has many fewer terms
than E3,3,n.

In J3,3,n given in (33) and the constraints in (28) and (31), we may consider ∂
∂xa,t

, ∂
∂xb,t

,

and ∂
∂xc,t

as the differential operators without giving concrete values to a, b, and c.
First, we prove C3(3, 3) using Procedure 2 with J3,3,3 given in (33) and the constraints

in (28) and (31) as the input.
In Step S1, the new variables areM′

3 = {mi, i = 1, . . . , 38}, which is the set of all the
monomials in R[Va,b,c] with a degree of 3 and a total order of 3.

In Step S2, the constraints are: C3,n = {R(3)
i,a,b,c : i = 1, . . . , 955}, N1 = 955. We obtain

C3,n,1 and C3,n,2, which contain 350 and 328 constraints, respectively.
In Step S3, there exist 189 intrinsic constraints. In total, Ĉ3,n,1 contains 539 constraints.

Using R-Gaussian elimination in SpanR(Ĉ3,n,1) shows that 512 of these 539 constraints are
linearly independent, thus N3 = 512.

In Step S4, we obtain Ĉ3,n from C3,n which contains six constraints.
In Step S5, eliminating the non-quadratic monomials in J3,3,3 using C3,n,2 and then

simplifying the expression using C3,n,1, we obtain Ĵ3,3,3, which is written as a quadratic
form in mi.

In Step S6, using the Matlab software in Appendix A [21] with Ĵ3,3,3, Ĉ3,n,1 and Ĉ3,n
as the input, we find an SOS representation for Ĵ3,3,3. Thus, using Theorem 1, C3(3, 3)
is strictly proved. The Maple program used to prove C3(3, 3) can be found at https:
//github.com/cmyuanmmrc/codeforepi/ (accessed on 15 July 2020).

To prove C3(3, 4), we just need to replace the input from J3,3,3 with J3,3,4 in Step S5 in
the above procedure. In the same way, C3(3, 4) can be strictly proved. The Maple program
used to prove C3(3, 4) can be found at https://github.com/cmyuanmmrc/codeforepi/
(accessed on 15 July 2020).

5. Proof of C3(4,2)

In this section, we use the procedure in Section 2.2 to prove C3(4, 2) under the log-
concave condition.

In step 1, we compute E3,4,n in (8) and (20):

1
2

d3

dt3

(
‖∇pt‖2

pt

)
− 3

n4E
(
‖∇pt‖2 − pt∇2 pt

p2
t

)4

(2)
=
∫
Rn

E3,4,n

p7
t

dxt,
(34)

where E3,4,n = ∑n
a=1 ∑n

b=1 ∑n
c=1 ∑n

d=1 E4,a,b,c,d. For brevity, we omit the concrete expression
of E4,a,b,c,d.

In step 2, based on Lemma 2, we obtain 589 fourth-order constraints:

C4,2 = {R(2)
i : i = 1, . . . , 589} ⊂ R[P4,2] and N1 = 589. (35)

https://github.com/cmyuanmmrc/codeforepi/
https://github.com/cmyuanmmrc/codeforepi/
https://github.com/cmyuanmmrc/codeforepi/
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Using Lemma 3, we obtain three fourth-order log-concave constraints:

C4,2 = {−41,1Q1,1,−41,2Q1,2,42,1Q2,1}

where Q1,1, Q1,2 ∈ SpanR(M6,2) and Q2,1 ∈ SpanR(M4,2).
In step 3, we use Procedure 2 to compute the SOS representations (13) and (14) with

E3,4,n, C4,2, and C4,2 as the input.
In Step S1, the new variables areM4,2 = {mi, i = 1, . . . , 33}, which is the set of all

monomials in R[P4,2] with a degree of 4 and a total order of 4, and which is listed in the
lexicographical monomial order.

In Step S2, using Gaussian elimination for C4,2 = {R(2)
i : i = 1, . . . , 589}, we obtain

C4,2,1 and C4,2,2, which contain 266 and 182 constraints, respectively.
In Step S3, there exist 182 intrinsic constraints. Thus, Ĉ4,2,1 contains 448 constraints.

Using R-Gaussian elimination in SpanR(Ĉ4,2,1) shows that 417 of these 448 constraints are
linearly independent, so N3 = 417.

In Step S4, we obtain Ĉ(4, 2), which contain three log-concave constraints, so N2 = 3.
In Step S5, by eliminating the non-quadratic monomials in E3,4,2 using C4,2,2 to obtain

a quadratic form in mi and then simplifying the quadratic form using C4,2,1, we obtain Ê3,4,2
which is written as a quadratic form in mi.

In Step S6, using the Matlab software in Appendix A of [21] with Ê3,4,2, Ĉ4,2,1 and
Ĉ(4, 2) as the input, we find an SOS representation for Ê3,4,2. Thus, using Theorem 1,
C3(4, 2) is strictly proved under the log-concave condition. The Maple program used to
prove C3(4, 2) can be found at https://github.com/cmyuanmmrc/codeforepi/ (accessed
on 15 July 2020).

6. Conclusions

In this paper, three conjectures Cl(m, n) for l = 1, 2, 3 concerning the lower bound
for the derivatives of H(Xt) are considered. We propose a general procedure to prove
inequities similar to Cl(m, n). We first consider one of the conjectures of McKean C1(m, n) :
(−1)m+1(dm/dtm)H(Xt) ≥ 0 in the multivariate case, and prove C1(3, 2), C1(3, 3) and
C1(3, 4). This conjecture is also mentioned in Villani’s paper [14], and is named the super-H
theorem. Motivated by C2(m, n), we further propose the following weaker conjecture
C3(m, n) : (−1)m+1(dm/dtm)H(Xt) ≥ (−1)m+1 1

n (d
m/dtm)H(XGt). Using our procedure,

we prove C3(3, 2), C3(3, 3), C3(3, 4) and C3(4, 2) under the log-concave condition.
In the univariate case (n = 1), C1(3, 1) and C1(4, 1) were proved [16] and C1(5, 1)

cannot be proved with the SDP approach (In this paper, when we say Cs(m, n) cannot
be proved with the SDP approach, we mean that the software in Appendix A of [21]
terminates and gives a negative answer for problem (21)) [18,22]. C2(3, 1), C2(4, 1), and
C2(5, 1) were proved under the log-concave condition [18]. We try to prove C2(6, 1) under
the log-concave condition. However, due to the accuracy of the SDP software, we cannot
find an explicit SOS representation. In the multivariate case, C1(3, 2), C1(3, 3), and C1(3, 4)
were proved and C1(4, 2) cannot be proved with the SDP approach [22]. For C1(3, n), n > 4,
the corresponding SDP problem is too large for the Matlab software in Appendix A [23].
In this paper, C3(3, 2), C3(3, 3), C3(3, 4), and C3(4, 2) were proved under the log-concave
condition, and C2(3, 2), C2(3, 3), C2(3, 4), and C2(4, 2) cannot be proved with the SDP
approach under the log-concave condition. For C3(3, n), n > 4 and C3(4, n), n > 2, the
corresponding SDP problems are too large for the Matlab software in Appendix A [21].

In order to use the SDP approach to prove more difficult problems, two kinds of
improvements are needed. First, it is easy to see that the size of Es(m, n) and the numbers
of the constraints increase exponentially as m and n become larger. Thus, we need to find
certain rules which could be used to simplify the computation to solve problems such as
C1(3, n)(n > 4) and C3(3, n)(n > 4) under the log-concave condition. Second, in many
cases, such as C1(5, 1) and C2(3, 2) under the log-concave constraint, the SDP software
terminates and gives a negative answer. Since the SDP method is not complete for our

https://github.com/cmyuanmmrc/codeforepi/
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problem, we do not know whether an SOS representation exists. We thus need a complete
method to solve problem (13). Another problem is to find more constraints besides those
used in this paper in order to increase the power of the approach.
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