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Abstract: Due to the complicated engineering operation of the check valve in a high−pressure dia-

phragm pump, its vibration signal tends to show non−stationary and non−linear characteristics. 

These leads to difficulty extracting fault features and, hence, a low accuracy for fault diagnosis. It is 

difficult to extract fault features accurately and reliably using the traditional MPE method, and the 

ELM model has a low accuracy rate in fault classification. Multi−scale weighted permutation en-

tropy (MWPE) is based on extracting multi−scale fault features and arrangement pattern features, 

and due to the combination of extracting a sequence of amplitude features, fault features are signif-

icantly enhanced, which overcomes the deficiency of the single−scale permutation entropy charac-

terizing the complexity of vibration signals. It establishes the check valve fault diagnosis model from 

the twin extreme learning machine (TELM). The TELM fault diagnosis model established, based on 

MWPE, aims to find a pair of non−parallel classification hyperplanes in the equipment state space 

to improve the model’s applicability. Experiments show that the proposed method effectively ex-

tracts the characteristics of the vibration signal, and the fault diagnosis model effectively identifies 

the fault state of the check valve with an accuracy rate of 97.222%. 

Keywords: TELM; fault diagnosis; check valve; MWPE 

 

1. Introduction 

As the power equipment of slurry pipeline transportation, the stable and reliable op-

eration of high−pressure diaphragm pumps is the basis for ensuring the safe production 

of the pipeline transportation system. As a critical component of high−pressure dia-

phragm pumps, check valves receive damage due to the frequent reciprocating move-

ment. Therefore, it is a vulnerable part, and, often, the point of failure of the pipeline 

transportation system. Hence, monitoring the operating status of the check valve, and 

studying its fault diagnosis, is of great significance in improving the production efficiency 

and production safety of the slurry pipeline. 

As it is affected by non−linear factors such as load, friction, and impact, the vibration 

signal of the check valve often shows non−linear and non−stationary characteristics. Time 

series analysis and forecasting is generally considered an effective method in data mining. 

A novel framework was introduced for supporting deep learning in enhancing accurate, 

efficient, and reliable time series models; it ensures a time series is ‘‘suitable’’ for fitting a 

deep learning model by performing a series of transformations in order to satisfy the sta-

tionarity property [1]. As a method based on non−linear dynamics, permutation entropy 

(PE) is sensitive to the sudden change and impact of non−stable sequences [2]. Therefore, 

it can be applied to measure the complexity of the time series in the mechanical dynamics 

system, and is suitable for the feature extraction of fault signals of mechanical equipment 

under complex working conditions [3]. However, single−scale permutation entropy has 

difficulty extracting the complete information of the sudden error and shocks [4]. This 
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paper proposes a multi−scale entropy (MSE) feature extraction method for detecting the 

complexity and randomness of signals at different scales [5]. Drawing on the idea of MSE, 

the literature proposes multi−scale permutation entropy (MPE), which improves the ca-

pability of noise processing [6]. Taking advantage of MPE’s characteristics in extracting 

signals, it extracts the non−linear fault characteristics from the bearing vibration signal in 

different scales, and a novel rolling bearing fault diagnosis method based on MPE and 

support vector machine (SVM) is proposed. [7]. Avoiding the problem that MPE considers 

only the permutation information of the time series, the multi−scale weighted permuta-

tion entropy (MWPE) method is different from MPE in the sense that it suits better signals, 

having considerable amplitude information, and also succeeds in accounting for the mul-

tiple time scales inherent in financial systems. Compared with MPE, WMPE reduces the 

standard deviation, which ensures the results are more robust. [8,9]. Combining the ad-

vantages of MWPE, the literature quantifies the non−linear characteristics of bearing vi-

bration signals. It establishes a bearing fault diagnosis model based on MWPE and ex-

treme learning machine (ELM) to obtain superior recognition accuracy and efficiency [10]. 

Support vector machine (SVM), back propagation neural network (BPNN), and ELM 

are commonly used methods in fault diagnosis. BPNN has good classification accuracy in 

the case of limited samples, but the training speed is slow and it has structural instability; 

the classical BPNN algorithm easily plunges into local minimums, low converging speed, 

etc. SVM avoids falling into the local optimal problem, but the classification performance 

is limited by the choice of kernel function parameters and its own structural parameters. 

The reason why ELM can be widely used in the field of fault diagnosis depends on the 

characteristics of ELM: ELM randomly generates and inputs weights and hidden layer 

deviations, and can establish fault diagnosis models without iteration or optimization. For 

the binary classification problem of fault diagnosis, ELM is essentially looking for an op-

timal classification hyperplane. The method based on hyperplane classification has be-

come more popular in a wide range of applications. However, it is still challenging to 

achieve a satisfactory performance with only one separate hyperplane for the fault diag-

nosis of check valves of high−pressure diaphragm pumps. 

Extending the applicability of ELM, the literature proposed the twin extreme learn-

ing machine (TELM) [11] algorithm. The goal of TELM is to optimize two classification 

hyperplanes, each of which has the smallest distance from one class and the largest dis-

tance as possible with the other class. TELM training optimizes two ELMs simultaneously 

and obtains two, non−parallel, separating hyperplanes, thereby extending the applicabil-

ity of ELM. Combining the advantages of TELM, this paper establishes a TELM fault di-

agnosis model based on multi−scale weighted permutation entropy (MWPE). Featuring 

the characteristic that the vibration signal of the check valve of the high−pressure dia-

phragm pump changes under non−stable conditions, this paper analyzes the TELM fault 

diagnosis model based on MWPE, which presents the non−linear dynamic characteristics 

of the operating check valve. This model expands the applicability of the ELM, and im-

proves the accuracy of the fault diagnosis of the model. 

The innovation points and main contributions of this paper can be summarized as 

follows: 

(1) The weighting method of arrangement mode is introduced into MPE, and the vibra-

tion signal characteristics of bearings and check valves are extracted by a better 

MWPE method, and the fault characteristics and signals of mechanical parts are ac-

curately and stably expressed; 

(2) The biggest innovation in this paper is that the TELM fault diagnosis model is pro-

posed for the first time, which accurately identifies mechanical equipment failures 

by constructing two ELMs and obtaining a classification hyperplane between them, 

which has not been reported in previous studies; 

(3) Combining the MWPE feature extraction method with the TELM diagnostic model 

for the first time, a fast, effect, and accurate fault diagnosis method for mechanical 

equipment is proposed. In addition, the effectiveness and innovation of the method 
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were verified by the fault diagnosis of two types of mechanical parts, bearing and 

check valves. 

The rest of this paper is organized as follows: Section 2 introduces the basic theory, 

including the theory of multi−scale weighted arrangement entropy and the theory of twin 

limit learning machine. Section 3 introduces the fault diagnosis method and implementa-

tion process based on MWPE and TELM. Section 4 gives an experimental analysis of bear-

ing and check valve fault diagnosis. Section 5 presents the experimental discussion and 

conclusions of this paper. 

2. Basic Theory 

2.1. Multiscale Entropy (MSE) 

Multi−scale entropy (MSE), proposed by Costa et al. [5], was developed from sample 

entropy. Unlike sample entropy, which only reflects the characteristics of signals at a sin-

gle scale, MSE reflects the self−similarity and complexity of signals at different time scales. 

The value of MSE increases with the higher complexity of the signals. Vibration signals 

generated by equipment faults concentrate in specific frequency bands. MSE that can re-

flect the self−similarity and complexity of signals at different time scales can extract the 

inherent characteristics of vibration signals to judge equipment faults. The calculation 

process of MSE is as follows: 

(1) Use Formula (1) to reconstruct the time series { ( ), 1, 2, }y t t M …,  into 

coarse−grained time series { ( ), 1, 2, }u t t N …, , where   is the scale factor, and the 

length of the reconstructed time series is = int( / )N M  . 

( 1) 1

1
( ) ( )

i

i j

u i y t


   

 
 

(1)

Vector ( )x i  can be calculated by 

( ) [ ( ), ( 1), ( 1)]x i u i u i u i m   … ,  (2)

where m  is the embedding dimension and r  is the similar capacity. 

Given ( 1 1)i N m    , according to Formula (2), the distance between the vector 

( )x i  and other vectors (1 1, )( ) j N m j ix j       calculates as: 

0~ 1
[ ( ), ( )] | ( ) ( ) |

k m
d x i x j max u i k u j k

 
     (3)

According to 0r r （ ）, the given similar capacity and value (1 1)i N mi     , 

calculate the number [ ( ), ( )]d x i x j r , and then calculate the ratio of the number 

[ ( ), ( )]d x i x j r  to the number of vectors N m  according to Formula (4):  

( )={ ( [ ( ), ( ) ])} /( )m
iC r count d x i x j r N m 

 (4)

Then, calculate the average value ( )m r  of the results according to Formula (5):  

1

1

1
( )

+1
( )

N m
m

i

i

m C r
N m

r
 







 

(5)

Repeat the above steps, let 1m m  , calculate: 
+1( )m r : 

+1

1

+1 1
( )( )

N m
m

i

i

m C r
N m

r








 

(6)

Obtain sample entropy of coarse−grained time series { ( ), 1, 2, }u t t N …,  as:  
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(7)

Repeat all the above steps to calculate the sample entropy under different values, and 

obtain the final multi−scale entropy  . 

The value of MSE is related to the embedding dimension m , similarity tolerance r
, scale factor  , and coarse−grained data length N . 

2.2. Multi−Scale Permutation Entropy (MPE) 

The multi−scale permutation entropy (MPE) algorithm was first proposed by Aziz et 

al. [12]. It is the combination of a multi−scale algorithm and permutation entropy algo-

rithm. The disadvantage of permutation entropy is that the extraction of the sorting mode 

of each time series does not include other information of the signal, but the sorting mode 

itself. That is, the process loses the data of amplitude. 

The coarse−grained processing of the original time series 1 2{ }, , Nx x x…，  by MPE 

is the core of the multi−scale algorithm. The steps to construct the multi−scale time series 
( ){ }s
jy  are as follows: 

(1) Calculate the average value of time series { }ix  in each window s  according to 

Formula (8).  

( )

( 1) 1

1
( ), 1

js
s
j

i j s

N
y x i j

s s  

  
 

(8)

The signal ( ) :1x i i N   is coarse−grained to obtain the coarse−grained sequence 
( )s
jy , 1,2, , ms s   is the scale factor, and N  is the length of the original time series;  

(2) Calculate the permutation entropy (PE) of each coarse−grained sequence 
( )s
jy , 

and while the scale factor is s , the MPE is as follows:  

( )( , , , ) ( , , )s
jMPE x m s PE y m   (9)

MPE calculates the permutation entropy of the coarse−grained time series, whose 

core is the coarse−grained processing. When exacting MPE features, embedding dimen-

sion m , delay time  , and scale factor s  have a great influence on the result.  

2.3. Multi−Scale Weighted Permutation Entropy (MWPE) 

Multi−scale weighted permutation entropy (MWPE) combines multi−scale analysis 

with WPE [9]. Multi−scale analysis obtains the time series of original time series at multi-

ple scales through the coarse−grained process, and obtains the complexity of the time sig-

nal at different scales; that is, MWPE describes the structural characteristics and complex-

ity of time series at multiple scales. The MWPE calculation steps are as follows: 

(1) Obtain the coarse−grained time series on multiple scales of the original time series 

through coarse−grained process. Time series 1 2{ }, , Nx x x…，  are divided into non−over-

lapping windows of length s , and calculate the coarse−grained time series 
( )s
jy  on dif-

ferent scale factors s . 

( )

( 1) 1

1
( ), 1

js
s
j

i j s

N
y x i j

s s  

    (10)

(2) Calculate the coarse−grained sequences 
( )s
jy  at each scale, according to Formula 

(10) to obtain MWPE.  
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( )( , , , ) ( , , )s
jMWPE x s m WPE y m 

 
(11)

According to the formula, it can be concluded that when =1s , MWPE equals WPE. 

However, for most signals in reality, single−scale weighted permutation entropy cannot 

wholly describe signals’ internal structural characteristics and complexity. At the same 

time, MWPE can reflect the actual attributes of signals more comprehensively [13].  

2.4. Twin Extreme Learning Machine 

The standard ELM [13] comprises three layers: the input layer, the hidden layer, and 

the output layer. It is developed on the basis of the single−hidden−layer feedforward neu-

ral networks (SLFNs), but the hidden layer of SLFN is only a BP neural network with one 

layer. The topology of ELM is shown in Figure 1. 

 

Figure 1. ELM model. 

As an efficient single−hidden−layer feedforward neural network, we assume that for 

a given n training sample, 
1

1 2( ,  ,  . . . ,  )n d nX x x x R   , whose labels are 

2
1 2( ,  ,  . . . ,  )n n dY y y y R   , where 1d  and 2d  represent the dimensions of the in-

put data and output data, respectively. The weight 
1 L

ij
dW R    of the hidden layer 

of the extreme learning machine is randomly selected, where L represents the number of 

neurons in the hidden layer. The calculation of the hidden layer is the same as the calcu-

lation of the traditional forward propagation network ( , )H g X W , where 
LnH R  , 

and ( )g   is the activation function.  

The learning objective of the extreme learning machine is to solve the output weight 
  by minimizing the sum of the prediction error loss functions. The objective function is:  

2 2
ELM

1
minL || || || ||

2 2

C
Y H     (12)

where the C value directly affects the generalization performance of ELM, and is a regu-

larization coefficient. 

1 1 1 L L 1

1 1 L L

( , , ) ( , , )

( , , ) ( , , )N N N L

g w b x g w b x

H

g w b x g w b x


 
   
  



 



 (13)
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T

1 2 L L m
, ,T T T   


   …  (14)

T

1 2 L m
, ,T T T

N
Y y y y


   …  (15)

Taking the derivative   of Formula (12) and setting it to 0, the output weight   

can be obtained as follows:  

1

1

( ) ,

( ) ,

T T

T T

I
H H H Y N L

C
I

H HH Y N L
C








 

 
  
  

(16)

where I is the identity matrix. 

TELM, as an improvement of the extreme learning machine algorithm [11,14], is also 

a binary classifier. However, it uses two non−parallel hyperplanes instead of one single 

hyperplane for classification. The TELM works by obtaining two non−parallel hyper-

planes by solving two more minor QPP problems. It is assumed that U and V are the data 

matrices representing the labels of class 1 and −1 outputted after the nodes of the hidden 

layer, respectively. For the TELM algorithm, it solves two non−parallel hyperplanes in R: 

1 1

2 2

( ) : ( ) 0,

( ) : ( ) 0,

f x h x

f x h x





  

  
 (17)

Keeping each hyperplane close to its class’s data and away from other class’s data 

points. 

Then, obtain new data points from the +1 class or −1 class based on these two hyper-

planes. The core of the TELM algorithm is to solve the relationship between the following 

two QPPs objective functions and corresponding constraints: 

1

2
1 12 2

,

1 2

1
min || ||

2

, 0

TU c e

V e

 
 

  



   
 

(18)

then 

2

2
2 22 1

,

2 1

1
min || V ||

2

, 0

Tc e

U e

 
 

  



   
 (19)

where   and   are the error vectors corresponding to class −1 and class +1 in the train-

ing model, respectively; 1 2, 0c c   are the trade−offs parameters; and 1e  and 2e  are 

each corresponding vector.  

The dual problem of the original problem of Formulas (18) and (19) is as follows: 

1
2

1 2

1
max ( + )

2

0 , 1, 2, ,

T T T T

i

e V U U I V

c i m


    

    

 (20)

1
2

2 2

1
max ( + )

2

0 , 1, 2, ,

T T T T

i

e U V V I U

c i m


   





   

 (21)

By these two formulas, the optimal sum of Lagrangian multipliers   and   can be 

obtained, and the sum of decision variables 1  and 2  can be calculated as follows:  
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1
1= ( + )T TU U I V     (22)

1
2= ( + )T TV V I U    (23)

A new data point belonging to nx R  is assigned to ( =+1, 1)r   from the class 

r , 

1,2 1,2
( ) arg(min ( )) arg(min ( ) )T

r r
r r

f x d x h x
 

 
 

(24)

3. Feature Extraction and TELM Fault Diagnosis Method 

Rolling bearings and diaphragm pump check valves are mechanical equipment with 

complex structures, and the vibration signal excited by the fault location has complex, 

non−linear characteristics. In addition, as it is affected by the background noise and the 

acquisition error of the vibration sensor, plus the change in the operating conditions, the 

acquired vibration signal has serious non−stationary characteristics. In summary, the fea-

ture extraction and fault diagnosis of mechanical equipment vibration signals in the actual 

operating environment face great challenges. The above analysis shows that the 

multi−scale weighted permutation entropy can effectively retain the coarse−grained infor-

mation and the amplitude information of the vibration signal, and the twin extreme learn-

ing machine can distinguish the two types of samples to the greatest extent through the 

distance between the two ELM hyperplanes. The fault diagnosis model based on MWPE 

and TELM effectively makes up for the shortcomings of existing fault diagnosis methods, 

so it inspired us to propose a new fault diagnosis method. Through the proposed fault 

diagnosis method, the fault feature extraction efficiency and fault identification accuracy 

of the bearing and check valve will be further improved. 

The specific steps of the MWPE–TELM fault diagnosis method proposed in this pa-

per are as follows: 

Step 1: Collect vibration signals from various states of parts; 

Step 2: Divide the collected vibration signal data, divide the non−overlapping sam-

ples into 60 segments, and extract fault features for each part; 

Step 3: For each state, calculate the MWPE features of the vibration signal sample to 

construct a fault diagnosis feature space, the size of whose feature matrix is 60 × 20, where 

the scale factor s of the MWPE is 20, the embedding dimension m is 4, and the time delay 


 is 1. The scale factor s of MSE and MPE is 20; 

Step 4: Input the obtained high−dimensional features into the ELM model for training 

and testing, 60% as training samples and 40% as test samples; 

Step 5: Adopt a mixed−domain ELM fault diagnosis model to identify the fault infor-

mation. 

The algorithm flow chart is shown in Figure 2. 



Entropy 2022, 24, 1181 8 of 13 
 

 

 

Figure 2. Algorithm flow chart. 

4. Experimental Simulation and Analysis 

4.1. Analysis of Data 

This section uses bearing data from Case Western Reserve University in the United 

States for fault diagnosis to verify the effectiveness of the method proposed in this paper, 

and the effectiveness of the hybrid domain feature extraction [15]. 

This paper takes the vibration signal of the fan terminal bearing at the motor speed 

of 1797 r/min as experimental data, as Table 1 below shows:  

Table 1. Experimental bearing sample attributes. 

Outer Ring (ft) Inner Ring (ft) Rotary Element (ft) 

0.014 0.07 0.021 

The three fault diameters of the inner ring, outer ring, and rotary body are 0.07 ft, 

0.014 ft, and 0.021 ft, respectively, and the Figure 3 below shows their time−domain wave-

form. 
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Figure 3. 10 bearing states in time−domain Figure 1. 

As shown in the figure, signals such as IR007, IR014, IR021, OR007, OR014, and 

OR021 demonstrate periodic impact, while the signals of B007, B014, and B021 show no 

obvious periodic hint. The amplitude difference between the signals is not apparent, and 

neither are the characteristics of the impact or its period. Hence, the proposed mixed do-

main can identify the bearing fault type and the degree of fault.  

According to the entropy feature extraction method proposed in this paper, divide 

the vibration signals of each state into 60 non−overlapping segments with a length of 1280. 

Since TELM diagnosis results are affected by different entropy features, to eliminate 

contingency, the above entropy feature extraction method is used to conduct bearing fault 

diagnosis experiments under other values for the parameter s, and Figure 4 shows the 

results below, Table 2 shows the optimum value of the diagnosis results under different 

entropy characteristics. 

 

Figure 4. Diagnosis results of MWPE characteristics of bearing under different s values of TELM. 

Table 2. Diagnosis results under different entropy characteristics. 

 Diagnostic Time (s) Accuracy % 
Number of Nodes in the Hidden 

Layer 

MSE 0.014 87.50 50 

MPE 0.003582 95.833 50 

MWPE 0.006596 97.222 50 

When extracting the MWPE features, the hidden layer nodes of TELM change from 

0 to 2000, and the average fault diagnosis accuracy is greater than 90%. When the hidden 

layer node takes the value H = 50, the fault diagnosis accuracy is 97.222%. The results in 

Table 3 show that adopting the proposed MWPE feature extraction method can improve 
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fault diagnosis accuracy, which is more optimal than the MSE and MPE feature extraction 

methods. 

Table 3. Bearing diagnosis results corresponding to the node number of different hidden layers. 

 Accuracy under Different Hidden Layer Node Number H   

H 50 80 200 500 800 1000 1500 2000 

MSE 55.675% 65.550% 81.111% 93.833% 87.750% 81.111% 95.833% 93.833% 

MPE 91.666% 83.333% 79.166% 95.833% 95.833% 91.666% 91.666% 91.666% 

MWPE 97.333% 94.444% 97.222% 95.833% 91.666% 95.833% 97.333% 95.833% 

By comparing the four classification models of BPNN, SVM, ELM, and TELM, the 

bearing fault diagnosis results under different feature dimensions are shown in Figure 5. 

It can be seen that the TELM method achieves better results under different feature di-

mensions, with an average accuracy higher than 95%. 

 

Figure 5. Bearing fault diagnosis accuracy obtained under different classification models. 

4.2. Data Analysis of Diaphragm Pump Check Valve 

The above experiments show that the proposed MWPE feature extraction method 

can achieve satisfactory results in bearing fault diagnosis. Thus, it is applied to the fault 

diagnosis of the diaphragm pump check valve. Figure 6a,b show the sensors that are fixed 

on the shells of the inlet and outlet valves. For each valve, there is one acceleration sensor 

of type PCB352C33 (sensitivity 100 mV/g) and one sound pressure sensors of type MP021 

(50 mV/Pa). The acceleration sensor collects the shell vibration signal along the Z−axis 

using three channels, while the sound pressure sensor collects the sound signal along the 

Y−axis direction. Figure 6c shows the vibration signal acquisition device of the check 

valve. The eight channel analog signal is amplified, filtered, and converted into A/D by 

the data acquisition card, and sent to the PS PXI−3050EXT 2.7ghz controller. Then, the 

signal is transferred to the PS PXIE−9108Ext eight slot industrial computer and stored in 

the hard disk. 

The operation regularly ran from November 1st until the 24th, when the check valve 

failed and was replaced. The No. 2 feeding check valve of the diaphragm pump was stuck. 

On 24 December, the No. 3 discharge check valve of the diaphragm pump was worn and 

broken down. 
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Figure 6. Vibration signal acquisition device and fault check valve. 

We randomly selected a group of vibration signals in the time−domain of the normal 

state of the check valve, the stuck valve fault, and worn valve seat periods. Figure 7 shows 

the result. 

 

Figure 7. Time−domain waveform of vibration signal of check valve. 

There are some fault shocks in the time−domain diagrams, yet all the local waveforms 

contain noise, making the shock period unclear. It is difficult to analyze the types and 

causes of the faults through the time−domain waveforms only. Therefore, we use a vibra-

tion signal sample and entropy feature extraction to diagnose the fault of the check valve. 

Firstly, we divide the vibration signals of check valves in each state into 60 non−over-

lapping segments, and the data points of each piece are 1280. 

The above entropy feature extraction method is used to conduct check valve fault 

diagnosis experiments under other values for the parameter s, and Figure 8 shows the 

results below. Since the fault diagnosis result of the twin extreme learning machine algo-

rithm is affected by the number of hidden layer nodes, Table 4 compares the ELM’s fault 

diagnosis results of the check valve when the hidden layer nodes range from 0 to 2000. 

 

Figure 8. Diagnosis results of MWPE characteristics of check valve under different s values of 

TELM. 



Entropy 2022, 24, 1181 12 of 13 
 

 

Table 4. Check valve diagnosis results corresponding to the node number of different hidden lay-

ers. 

 Accuracy under Different Hidden Layer Node Number H   

H 50 80 200 500 800 1000 1500 2000 

MSE 45.675% 68.550% 90.750% 88.550% 91.666% 88.550% 95.833% 95.833% 

MPE 91.670% 94.440% 79.166% 91.666% 95.833% 95.833% 91.666% 95.833% 

MWPE 97.222% 94.444% 97.222% 95.833% 91.666% 95.833% 97.222% 95.833% 

According to Figure 9, no matter how much the number of hidden layer nodes 

changes, the average diagnosis result obtained by the check valve MWPE feature is close 

to 95%, with the maximum diagnosis accuracy being 97.22%. Therefore, the MWPE–

TELM feature extraction method proposed in this paper achieves better results in the fault 

diagnosis of bearings and check valves, proving the method’s effectiveness. 

 

Figure 9. Check valve fault diagnosis accuracy and standardization under different classification 

models. 

5. Conclusions 

This paper proposes a fault diagnosis method based on MWPE and TELM, and ap-

plies it to the fault diagnosis of the check valve of a high−pressure diaphragm pump. 

While extracting the arrangement information of the vibration signal, the method also 

adds up information of amplitude, and uses MWPE to characterize the operating state of 

the check valve. MWPE can effectively extract the non−linear dynamic characteristics of 

the check valve of the high−pressure diaphragm pump and capture the sudden change 

and impact information in the signal. The TELM fault diagnosis model, which trains and 

optimizes two ELMs simultaneously, establishes two non−parallel classification hyper-

planes in the running state feature space, and expands the applicability of ELMs. When 

the method proposed by this paper is applied to the multiple failures of a check valve, the 

experimental results show that the proposed algorithm accurately and effectively extracts 

the failure information of the one−way valve, with a diagnostic accuracy of over 97%. 

Though the proposed method provides superior accuracy of feature extraction and ro-

bustness of the fault diagnosis, the stability of MWPE under coarse−grained data could be 

further improved, and further research could continue to explore the optimal parameters 

of TELM. 
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