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Abstract: Focusing on the motion energy consumption of a self-developed inchworm robot’s peri-
staltic gait, based on the “error tracking” of cubic polynomial programming in Cartesian space and
seventh polynomial programming in joint space, we propose an optimal motion planning method
of energy consumption considering both kinematic and dynamic constraints. Firstly, we offer a
mathematical description of the energy consumption and space curve similarity operator. Secondly,
we describe the mathematical models of the robot trajectory and path that were established in terms
of their dynamics and kinematics. Then, we propose a motion planning method based on improved
adaptive particle swarm optimization (PSO) to accelerate the convergence speed of the algorithm and
ensure the accuracy of the model calculation. Finally, we outline the simulation test carried out to
measure the inchworm-like robot’s creeping gait. The results show that the motion path obtained by
using the planning method proposed in this paper is the one with the least energy consumption by
the robot among all the comparison paths. Moreover, compared with other algorithms, it was found
that the result obtained by using the algorithm proposed in this paper is the one with the shortest
solution time and the lowest energy consumption under the same iteration times. The calculation
results verify the feasibility and effectiveness of the planning method.

Keywords: inchworm robot; seventh-degree polynomial programming; improved adaptive PSO;
motion planning

1. Introduction

“Made in China 2025” is an action program that indicates that green manufacturing
is set to be the future development trend of China’s manufacturing industry [1]. At the
same time, artificial intelligence fields such as robotics are booming at present. In order to
meet the needs of the times [2], reducing energy consumption as much as possible is an
important goal of robot design. Therefore, this paper mainly explores how to minimize
energy consumption in the process of robot movement, which, in essence, involves the
optimal motion planning of the robot energy consumption from the starting point to the
target point [3].

The geometrid-like robot was designed according to the geometrid, being a creature
in nature. Its trunk is roughly the shape of an arched bridge and its posture is flexible. It
can crawl in different environments. Its movement mode is peristalsis, crawling forward
by means of adsorption at both ends and an extension of the middle joint, as shown in the
Figure 1. For this paper, the model of the robot entity was constructed in order to study the
energy consumption of the robot’s creeping gait. Figure 2 is a schematic diagram of the
robot crawling.

At present, the main solution to the problem of robot motion planning in academic
circles is to decompose it into sub-problems: The first sub-problem is path planning, which
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involves solving the effective path connecting two points in cartesian space based on the
kinematic level, when we know the starting point and target point. Thus, Song, B. and
Wang, Z. [4] suggested smooth path planning based on the improved algorithm of the
continuous high-degree Bezier curve; Zhou, M. and Wang, Z. [5] suggested multi-objective
path planning based on the improved GWO-WOA method; and Wang, J. and Chi, W. [6]
suggested the shortest path planning based on neural network RRT* learning. The second
sub-problem is path tracking, in the case where the robot path has been established, and
the trajectory of the robot on the path is solved in joint space based on the dynamic level.
For example, Zhang, T. and Zhang, M. [7] proposed an input shaping algorithm to replace
the acceleration constraint in order to obtain a time-optimal smooth trajectory; Chai, R. and
Tsourdos, A. [8] combined the real-time re-entry trajectory planning method of fuzzy multi-
objective transcription and the deep neural network; and Shen, P. and Zhang, X. [9] based
their method on torque and speed constraints, aiming at the optimality and completeness
of algorithm time.

Processes 2022, 10, 1675 2 of 18 
 

 

  

Figure 1. Inchworm creeping scene. 

   

Figure 2. Sketch of the robot crawling. 
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However, such methods also divide the motion planning problem into two parts and 
do not integrate the sub-problems well. Because solutions to path tracking need to be 
based on the solved kinematics of path planning, if path tracking is not considered in the 
process of solving the path planning, it is likely that the path will not meet the dynamic 
constraints; thus, the solving of path planning also needs to be based on the existing dy-
namics of path tracking. Therefore, path planning and path tracking go hand in hand, and 
the question of how to combine path planning and path tracking effectively is the key to 
solving the motion planning. For example, Jiang, L. and Guan, Y.S, [10], based on kine-
matic and dynamic constraints, used the lattice point search method to solve the optimal 
energy consumption, while Everett, M. and Yu, F.C. [11] proposed a motion planning 
method of dynamic decision for a mobile robot based on deep reinforcement learning. 
Due to the constraints, such as the combination of kinematics and dynamics, to solving 
the problem, it can be easily transformed into finding extremum under high dimensional 
nonlinear constraints. Therefore, it is difficult to apply traditional algorithms, such as the 
gradient descent method, to solve such problems, because the model is too complex and 
the objective function is mostly implicit, and the solution easily falls into the local optimal. 
For the resolution of this phenomenon, the academic community usually adopts heuristic 
algorithms, such as particle swarm optimization (PSO) [12], the genetic algorithm (GA) 
[13], Tabu search (TS) [14], Cuckoo search (CS) [15], and Beetle Antennae search (BAS) 
[16]. While PSO is widely used because it is not dependent on the problem information, 
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However, such methods also divide the motion planning problem into two parts
and do not integrate the sub-problems well. Because solutions to path tracking need to
be based on the solved kinematics of path planning, if path tracking is not considered
in the process of solving the path planning, it is likely that the path will not meet the
dynamic constraints; thus, the solving of path planning also needs to be based on the
existing dynamics of path tracking. Therefore, path planning and path tracking go hand
in hand, and the question of how to combine path planning and path tracking effectively
is the key to solving the motion planning. For example, Jiang, L. and Guan, Y.S, [10],
based on kinematic and dynamic constraints, used the lattice point search method to solve
the optimal energy consumption, while Everett, M. and Yu, F.C. [11] proposed a motion
planning method of dynamic decision for a mobile robot based on deep reinforcement
learning. Due to the constraints, such as the combination of kinematics and dynamics,
to solving the problem, it can be easily transformed into finding extremum under high
dimensional nonlinear constraints. Therefore, it is difficult to apply traditional algorithms,
such as the gradient descent method, to solve such problems, because the model is too
complex and the objective function is mostly implicit, and the solution easily falls into the
local optimal. For the resolution of this phenomenon, the academic community usually
adopts heuristic algorithms, such as particle swarm optimization (PSO) [12], the genetic
algorithm (GA) [13], Tabu search (TS) [14], Cuckoo search (CS) [15], and Beetle Antennae
search (BAS) [16]. While PSO is widely used because it is not dependent on the problem
information, has a strong universality and simple principle, is easy to implement, and has
less adjustment parameters and other advantages, it still restricts the global search and
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local search ability because of the inertial weight operator in the algorithm. Therefore, it
has become a focus of research. Inspired by the activation function of the neural network,
this paper adopts the methods of self-adaptive adjustment of the function and setting the
taboo area to solve this problem, so as to improve the convergence speed of the algorithm
and ensure the accuracy of the model calculation.

In this paper, we study the energy consumption of an inchworm robot in a peristaltic
gait of motion. Considering the kinematic and dynamic constraints of the robot and taking
the minimum energy consumption as the optimization goal, we attempted to solve the
optimized trajectory of the robot based on improved adaptive PSO.

The main contributions of this paper are as follows:

(1) Based on “error tracking” of the cubic polynomial programming in Cartesian space
and seventh polynomial programming in joint space, we propose an optimal mo-
tion planning method for energy consumption, considering both kinematic and
dynamic constraints.

(2) Based on the optimal energy consumption model, we propose an improved adaptive
PSO algorithm using the function of the sigmoid adaptive to adjust the inertia weight
operator and set the tabu region.

This paper is organized as follows. Section 2 establishes the robot’s indexes at the
levels of its kinematics and dynamics, respectively. Section 3 describes the performance
of the modeling and solving based on the improved adaptive PSO. Section 4 describes
the performance of the simulation verification of the feasibility and effectiveness of the
algorithm. The last section concludes this paper.

2. Motion Energy Consumption of the Inchworm-Mimicking Robot and Mathematical
Description of the Spatial Curve Similarity Operator
2.1. Energy Consumption of Motion

If the robot is composed of L joints in series, the dynamics expression can be obtained
by taking the derivative of the Lagrange equation [17]:

τi =
L
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j=1
Dij ..

qj
+

L
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L
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Each joint moment of the robot can be composed of an inertia moment, a centrifugal
force, a Coriolis force term and a gravity term. Before the two parts can be formed of
every moment of the angular velocity and angular acceleration, in order to solve these two
parts, the trajectories of the joint angular velocity and angular acceleration are required
in advance. The third part of the gravity item is formed by the various joints, and its
own gravity and center of mass offsets and centroid offset by the displacement of the joint
trajectory. Thus, in order to obtain the torque of each joint, the first step is to calculate the
angular displacement, angular velocity, and angular acceleration of each joint.

In the formula, the first part
L
∑

j=1
Dijqj is the robot inertia term, the second part

L
∑

j=1

L
∑

k=1
Dijk .

qj .
qk is the centrifugal force and Coriolis force term, and the third part Gi is

the gravity term. τi, qi,
.
qi, and

..
qi are the generalized moment, displacement, angular veloc-

ity, and angular acceleration of the i joint, respectively; gT is the gravity matrix; rp is the
position of the center of mass p of the connecting rod; Ti

i−1 is the homogeneous coordinate
transformation matrix of the i coordinate system of the rod to the i− 1 coordinate system of
the rod; ai is the length of the i rod; αi is the torsion angle of the i rod; θi is the i joint angle;
di is the offset distance of the i rod; mi is the mass of the i rod; (xi, yi, zi) are the coordinates
of the centroid of the i bar; Iixx, Iiyy, Iizz are the mass moments of inertia of the i bar; and
Iixy, Iiyz, Iixz are the products of inertia of the i bar.

In actual motion, the motor provides energy for the robot to move from the starting
point to the target point, but the total work performed by the robot is often not equal to
the energy consumption of the motor. After consulting the literature [10], the total energy
consumption of the motor in the process of robot movement can be roughly divided into
the following parts:

1: The positive work effected by the motor on the robot is the energy consumption,
when the joint torque is consistent with the direction of motion:

W =
∫ .

q(te)

.
q(ts)

τ d
.
q, τ · .

q > 0 (2)

2: The negative work effected by the motor on the robot is the energy consumption,
when the joint torque is opposite to the direction of motion:

W =

∣∣∣∣∣
∫ .

q(te)

.
q(ts)

τ d
.
q

∣∣∣∣∣, τ · .
q < 0 (3)

3: The heat energy consumed by the motor is the energy consumption of the electric motor:

W =
∫ te

ts

(
τ2/τZ

)
dt, τ · .

q = 0 (4)

Due to the uncertainty of the heat loss, it is very challenging to solve the total energy
consumption in detail. Therefore, Gregory, J. and Olivares, A. [18] proposed the adoption
of a more intuitive and effective mathematical description of the robot’s motion energy
consumption, as shown in the Equation (5):

W =
∫ te

ts
τ2 dt (5)

In the equation, ts and te represent the start and end time of robot motion, respectively,
.
q is the angular velocity of the joint motion, and τZ is the impedance coefficient of the motor.
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2.2. Space Curve Similarity Operator

Based on the “error tracking” model of cubic polynomial programming in Cartesian
space and seventh polynomial programming in joint space, it is necessary to match the
similarity between a certain motion path and the planned path in space, so that a space
curve similarity operator can be defined. If there are two curves, L1 and L2, both of which
consist of N discrete points, the spatial similarity operator of these two curves can be
expressed by the sum of the Euclidean distance squares of the points:

R =
N

∑
i=1

((
XL1

i − XL2
i

)2
+
(

YL1
i −YL2

i

)2
+
(

ZL1
i − ZL2

i

)2
)

(6)

In the equation,
(

XL1
i , YL1

i , ZL1
i

)
is the spatial coordinate belonging to the i point on

the curve L1, and
(

XL2
i , YL2

i , ZL2
i

)
is the spatial coordinate belonging to the i point on the

curve L2.

3. Motion Planning Method Based on the Optimal Energy Consumption
3.1. Continuous Trajectory Planning Based on Joint Space plus the Acceleration Curve

In actual motion, even if the starting point and target point states of all the joint spaces
of the robot are determined, it is difficult to meet the requirements of the robot terminal
motion path if a single polynomial programming method has been carried out for the joint
space, respectively. Therefore, spline interpolation is generally carried out for the joint
space in order to carry out the piecewise polynomial programming [19].

Multinomial spline interpolation: the function S(t) ∈ C[ts, te], which is polynomial on
each intercell

[
tj, tj+1

]
, where ts = t0 < t1 < ... < tn−1 < tn = te is a given node, is said to

be a multinomial spline function on node t0, t1, ..., tn−1, tn.
In order to improve the smoothness of the motion and reduce the loss of the motor, it

is necessary to constrain the change rate of the motor torque, and the motor torque is the
driving force to produce the angular acceleration of the joint. Therefore, it is necessary to
constrain the change rate of the angular acceleration of the joint—i.e., angle plus accelera-
tion. In this study, we used piecewise cubic polynomial programming for the joint space
of the robot in order to ensure that the joint space acceleration curve was smooth, so as to
reduce the resonance of the motor [20].

Assume that the joint position of the ith joint at moments tj and tj+1 is qi
j and qi

j+1, the

joint motion velocity is
.
qi

j and
.
qi

j+1, the joint motion acceleration is
..
qi

j and
..
qi

j+1, and the joint

motion plus acceleration is
...
q i

j and
...
q i

j+1. Thus, the complete boundary conditions of the
robot joint space motion can be obtained, as shown in the Equation (7):

qi(tj) = qi
j, qi(tj+1) = qi

j+1
.
qi
(tj) =

.
qi

j,
.
qi
(tj+1) =

.
qi

j+1
..
qi
(tj) =

..
qi

j,
..
qi
(tj+1) =

..
qi

j+1...
q i(tj) =

...
q i

j,
...
q i(tj+1) =

...
q i

j+1

(7)

Since there are eight conditions, the polynomial needs to have at least eight coefficients
in order to ensure a viable solution. Therefore, let the joint displacement polynomial in the
interval be a seventh-degree polynomial, as shown in the Formula (8):

qi(t) = a0 + a1t + a2t2 ++a3t3 + a4t4 + a5t5 + a6t6 + a7t7 (8)
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In order to solve the eight coefficients, such as a0, ..., a7, the boundary conditions are
expressed in matrix form, as shown in Formula (9), where the coefficients A and B are
shown in Formulas (10) and (11), respectively:

A[a0, a1, ..., a6, a7]
T = B (9)

A =



1 tj t2
j t3

j t4
j t5

j t6
j t7

j
1 tj+1 t2

j+1 t3
j+1 t4

j+1 t5
j+1 t6

j+1 t7
j+1

1 2tj 3t2
j 4t3

j 5t4
j 6t5

j 7t6
j

1 2tj+1 3t2
j+1 4t3

j+1 5t4
j+1 6t5

j+1 7t6
j+1

2 6tj 12t2
j 20t3

j 30t4
j 42t5

j
2 6tj+1 12t2

j+1 20t3
j+1 30t4

j+1 42t5
j+1

6 24tj 60t2
j 120t3

j 210t4
j

6 24tj+1 60t2
j+1 120t3

j+1 210t4
j+1


(10)

B =
[
qi

j, qi
j+1,

.
qi

j,
.
qi

j+1,
..
qi

j,
..
qi

j+1,
...
q i

j,
...
q i

j+1

]T
(11)

If the time matrix tall =
[
t0, ..., tj−1, tj, ..., tn

]
, as long as appropriate parameters such

as tall and B are given, we can solve the eight parameters, such as a0, ..., a7, so as to
determine the displacement trajectory qi(t) of the ith joint. The velocity trajectory

.
qi
(t),

acceleration trajectory
..
qi
(t), and acceleration trajectory

...
q i(t) can be obtained by obtaining

the derivative successively.

Remark 1: Since the third equation has eight conditions, the polynomial needs to have at least eight
coefficients in order to ensure a feasible solution. In addition, we discover by experimental simulation
that the effect of the accuracy brought about by a higher-degree joint displacement polynomial is
not significantly improved. Therefore, in order to simplify the complexity of the model, the joint
displacement polynomial in this interval is set as a seventh-degree polynomial in order to ensure the
calculation accuracy.

3.2. Path Planning Based on Cartesian Space Motion Curve Continuity

Given the starting point and ending point of the robot movement in the space, it is
necessary to select an appropriate space curve to connect the points for the path of the
robot movement. The curve consists of two features: 1: which surface the curve is on in the
space; and 2: what the shape the curve on the surface has [21]. Since it is difficult to directly
describe the shape of the surface and curve in the space, we first built a surface body based
on a plane curve, taking the plane curve as the bus and using the curve similarity operator.
The surface of the surface body was a spatial surface, and the curve similar to the bus shape
on the space surface was a spatial curve.

Since three non-collinear points determine a plane, when Pstart(Xstart, Ystart, Zstart) and
Pend(Xend, Yend, Zend) are known, if a suitable sample point Pinsert(Xinsert, Yinsert, Zinsert) is
chosen, the mixture product of three vectors formed by the property of space plane, where
three points are zero, and the three-point equation of plane θ can be obtained as follows:∣∣∣∣∣∣

x− xstart y− ystart z− zstart
xinsert − xstart yinsert − ystart zinsert − zstart
xend − xstart yend − ystart zend − zstart

∣∣∣∣∣∣ = 0 (12)

For paths connecting the three points of the plane to make the curve smooth and
continuous, cubic polynomials are needed as a minimum [22]. In the plane θ, the position p
passing through the three points Pstart, Pinsert and Pend is known. If the slope

.
p of the path

passing through the three points is determined, the complete path can be obtained by cubic
polynomial interpolation.
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Connect curves PstartPinsertPend and define the similarity operator Rmax of the spatial
curves according to the similarity of the spatial curves based on Equation (6). If both curves
are composed of N points, then the maximum Euclidean distance of each point is Rmax/N
on average. The N points of curve PstartPinsertPend are taken as the center of the sphere,
and Rmax/N is taken as the radius, so that the N sphere can be formed in the space. The
surface of the feasible space ρ is the surface of the N spheres connected with the starting
point Pstart and the ending point Pend. The curve PstartPinsertPend is translated along the
plane, intersecting the plane θ at an angle α, and the space curve intersecting the surface
ρ is the feasible path of the robot motion. Figure 3 is an illustration of the space curve in
Cartesian space.
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Parameters Pinsert, Rmax, and α determine the position of the curve, and
.
p determines

the shape of the curve. If appropriate, Rmax, α, and
.
p are given, and the path of the robot in

the feasible space can be obtained.

3.3. Trajectory Solving Based on Improved Adaptive PSO

After the joint trajectory and movement path of the robot are obtained, the torque of
each joint can be obtained from Equations (1) and (9), as shown in Equation (13):

τi(t) = f
(

qi(t),
.
qi
(t),

..
qi
(t),

...
q i(t)

)
= g

(
tall, qi(t)

)
=

n−1
∑

j=1
g
(
tall(j), tall

(
j + 1), qi(t)

) (13)

where f represents the implicit function of Newton–Euler dynamic recursion, and g rep-
resents the function transformed by tall and qi(t) for qi(t),

.
qi
(t),

..
qi
(t) and

...
q i(t). Thus, the

energy consumption of the ith joint can be described as:

Wi =
∫ T

0
τi2dt =

n−1

∑
j=0

∫ tall(j+1)

tall(j)
g2
(

tall(j), tall(j + 1), qi(t)
)

dt (14)
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Among these methods, when combining Cartesian space path planning and joint
space trajectory planning, qi(t) can be described by Pinsert, Rmax, α and

.
p. Therefore, the

solution model is finally transformed into:

min
L

∑
i=1

n−1

∑
j=1

∫ tall(j+1)

tall(j)
g2(tall(j), tall(j + 1), Pinsert, Rmax, α,

.
p
)
dt (15)

s.t



h
(
tall(j), tall(j + 1), Pinsert, Rmax, α,

.
p
)
≥ τi

lb
h
(
tall(j), tall(j + 1), Pinsert, Rmax, α,

.
p
)
≤ τi

ub
Pinsert ∈ Q
Rmax ≤ d
0 ≤ α ≤ 2π
.
p ∈ ε

qi
lb ≤ qi ≤ qi

ub.
qi

lb ≤
.
qi ≤ .

qi
ub

..
qi

lb ≤
..
qi ≤ ..

qi
ub...

q i
lb ≤

...
q i ≤

...
q i

ub

(16)

where Q is the workspace area of the robot, d is a fixed distance coefficient, and ε is a real
number. From the above model, it can be inferred that, if an appropriate tall is selected
during joint space trajectory planning, the whole solution process works to optimize the
parameters of the path curve in Cartesian space.

In order to solve the minimum value of this objective function, traditional methods,
such as the gradient descent method, have a fast convergence rate [23], but the objective
function of this model is an implicit function, which makes it difficult to apply the gradient
descent method. However, the PSO algorithm is widely used to solve this kind of model
due to its advantages, such as the fact that it does not rely on problem information, its
strong universality, simple principle, easy implementation, fewer adjustment parameters,
etc. Therefore, in this study we adopted the PSO algorithm [24].

The PSO algorithm is a population X = (x1, ...xi, ...xM) composed of M particles in a T-
dimensional space. The position of the ith particle is Xi = (xi1, ...xiT), the velocity of the ith
particle is Vi = (vi1, ...viT), the global extreme value of the population is Bw = (bw1, ...bwT),
and the individual extreme value of the particle is Bi = (bi1, ...biT). Particle xi updates its
speed and position as follows:{

Vi(k + 1) = wVi(k) + s1r1(k)(Bi(k)− Xi(k)) + s2r2(k)(Bw(k)− Xi(k))
Xi(k + 1) = Xi(k) + Vi(k + 1)

(17)

where, i = 1, ..., M, k = 1, ..., T, i is the population size and k is the number of evolution. r1
and r2 are random numbers distributed between [0, 1], s1 and s2 are individual learning
factors and group learning factors, respectively, and w is the inertial weight. When w is
large, the global search ability is strong, and when w is small, the local search ability is
strong. If the value is adjusted adaptively, the global search can be used first to cause the
search space to converge in a certain region quickly, and then the local search can be used
to obtain the high-precision solution.

Therefore, the question of how to define the inertial weight operator is related to the
convergence speed and solving accuracy of the algorithm. Inspired by the neural network
activation function, for this paper we adopted the sigmoid function to define the inertial
weight operator [25], as shown in the Formula (18):

w(k) =
1

1 + e−(h(k−1)−h(k))/d
(18)

where the function h is the fitness function, which is the objective function of this paper, as
shown in Equation (12), and d is the attenuation coefficient. The greatest feature of the w
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adaptive function proposed in this paper is the introduction of the objective function, which
adapts the step size of the search by calculating the value of difference of the objective
function to the input of the sigmoid function. When h(k− 1)− h(k) is greater, note that
the algorithm is not searching the local optimal area, and there is a need to strengthen
the global search ability. The w value is greater once h(k− 1)− h(k) becomes smaller, the
specification has converged in a certain area, and there is a need to strengthen the local
search ability. Thus, the w value is reduced by using the fast decay property of the sigmoid
function. The function of the inertial weight operator is shown in Figure 4:
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Because the objective function of the solution is complex, even after the inertia weight
operator W is optimized, the solution will still fall into local optimization many times,
resulting in a reduction in the efficiency of the solution. Therefore, it is necessary to further
optimize the algorithm. For this reason, the tabu area in the algorithm is introduced [26],
and the spatial complexity of the algorithm is exchanged for the time complexity in order
to solve this problem.

The Tabu search (TS) algorithm is based on a local neighborhood search, where
the taboos table is set to taboo some experienced operations, and contempt criteria are
used to reward certain good states, and the global optimal solution is finally screened by
comparison. The tabu area is the searched space in the tabu table. In this study, tabu area
was set as the local optimal area obtained by the algorithm in the search process, so as
to ensure the avoidance of this area in the subsequent search process and speed up the
convergence of the algorithm.

In this study, the concept of the taboo region was defined as follows: Take the locally
optimal solution Xi = (xi1, ...xiT) as the geometric center of space, and the average length
of step η of n in the search process as the radius r. The feasible solution space satisfying
Formula (19) is the taboo region:

(x− xi1)
2 + ... + (x− xiT)

2 ≤ r (19)

According to the above description, after the algorithm converges in a certain region,
the inertia weight operator decreases, and then the step size η is also small, so that the
step size η must be small in a period of time before the algorithm searches for the local
optimal solution, and then the radius r depends on the number of steps n. When n is
too small, the tabu radius is too small to reflect the scale of the tabu area, leading to the
insufficient convergence speed of the algorithm; when n is too large, the tabu radius is too
large, leading to the overwide coverage of the tabu area, leading to the reduction in the
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algorithm’s solution accuracy. The simulation results show that, when n is 10, both the
convergence speed and solution accuracy are considered.

To sum up, the algorithm flow for solving the model is shown in Figure 5:
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4. Example of Imitated Inchworm Robot Movement Planning
4.1. Dynamic Parameters of the Inchworm Robot Imitation

The robot was constructed adopting the modular design method. The upper and
lower parts are completely symmetrical, with both ends being gripper modules, and the
middle body part is composed of two joint modules. The joint module close to the gripper
is marked as the I joint because its rotation direction and connecting rod axis overlap,
and the middle joint module is marked as the T joint because its rotation direction and
connecting rod axis are perpendicular. Figure 6 offers the parameter diagram of the robot.
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According to the actual load capacity of the robot, its dynamic constraints are as shown
in Equation (20): 

−134N ·m ≤ τi ≤ 134N ·m, i = 1, ..., 5
−π rad ≤ qi ≤ π rad, i = 1,..., 5
−1.28rad/s ≤ .

qi ≤ 1.28rad/s, i = 1, ..., 5
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qi ≤ 1.12rad/s2, i = 1, ..., 5
−0.95rad/s3 ≤

...
q i ≤ 0.95rad/s3, i = 1, ..., 5

(20)

4.2. Simulation Experiment of the Inchworm Robot Climbing a Straight Bar

In order to verify the feasibility and effectiveness of the optimal motion planning
method of energy consumption proposed here, we took the inchworm robot as the research
object and had it carry out a straight bar climbing experiment in the Matlab simulation
environment. The climbing scene is shown in Figure 7. The robot was required to climb
from the starting position to the ending position on the vertical bar in space.
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The optimal climbing path for the energy consumption, as obtained by the motion
planning method proposed in this paper, is shown in Figure 8. In order to demonstrate
the feasibility of the algorithm, three effective paths near and far from the optimal path
were selected for comparative testing, which were respectively denoted as comparative
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path 1, 2, 3, with the parameters shown in Table 1. Table 2 shows the corresponding energy
consumption and maximum torque values of these different paths in the same motion
time. From the data available in the table, using the motion path obtained by the proposed
planning method, we can observe that these all contrasted with the robot path with the
least energy consumption, along with the angular displacement, angular velocity, angular
acceleration, and angular plus acceleration curves of each joint during the robot’s climbing,
which are shown in Figures 9–12.
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Table 1. Parameters of the different paths.

Path Pinsert Rmax α
.
p

Optimal path (0, 5, 7.5) 5 0 (2.5, 0, 2.5)

Comparison path 1 (0, 0, 7.5) 5 0 (0, 0, 0)

Comparison path 2 (0, 10, 7.5) 5 0 (5, 0, 5)

Comparison path 3 (0, 15, 7.5) 5 0 (10, 0, 10)

Table 2. Comparison of the energy consumption levels of the different climbing paths on a
straight rod.

Path Movement Time/S Energy
Consumption/(N2·m2·s)

Maximum
Moment/(N·m)

Optimal path 8 1.97 × 104 97

Comparison path 1 8 2.28 × 104 100

Comparison path 2 8 2.06 × 104 106

Comparison path 3 8 2.66 × 104 128

As shown in Figure 8, the angular displacement of each joint did not reach the max-
imum displacement, indicating that each joint works normally. As seen in Figures 9–11,
the angular velocity, angular acceleration, and angular acceleration of each joint did not
exceed the upper limit of power of the motor itself, indicating that it can effectively provide
the power demanded for the robot motion. All the curves in the figure are continuous and
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smooth, indicating that the joints were less impacted during the movement of the robot,
and that the motor ran smoothly, which can extend the service life of the motor effectively.
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Figure 9. Spatial angular displacement of the robot joint. 

0 1 2 3 4 5 6 7 8
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

time/(s)

an
gu

la
r v

el
oc

ity
/(r

ad
/s

)

 

 
Joint 1、5 Angle velocity

Joint 2 Angle velocity

Joint 3 Angle velocity

Joint 4 Angle velocity

 

Figure 10. Spatial angular velocity of the robot joint. 
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Figure 11. Spatial angular acceleration of the robot joint. 
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Figure 12. Spatial angular plus acceleration of the robot joint. 
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As shown in Figure 8, the angular displacement of each joint did not reach the max-
imum displacement, indicating that each joint works normally. As seen in Figures 9–11, 
the angular velocity, angular acceleration, and angular acceleration of each joint did not 
exceed the upper limit of power of the motor itself, indicating that it can effectively pro-
vide the power demanded for the robot motion. All the curves in the figure are continuous 
and smooth, indicating that the joints were less impacted during the movement of the 
robot, and that the motor ran smoothly, which can extend the service life of the motor 
effectively. 

Figure 12. Spatial angular plus acceleration of the robot joint.

5. Analysis and Discussion of the Model

In this paper, the inertial weight operator in the traditional PSO was combined with
the sigmoid function, and the difference of the objective function h(k− 1)− h(k) divided by
the attenuation coefficient d of each iteration was taken as the input of the sigmoid function
in order to achieve self-adaptation. When h(k− 1)− h(k) was large, it indicated that the
algorithm had not searched the local optimal region, and the global search ability needed
to be strengthened. At this time, the w value was large. Once h(k− 1)− h(k) became small,
it indicated that it had converged in a certain region, and the local search ability needed to
be strengthened. At this time, the w value could be reduced by using the fast decay of the
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sigmoid function. The purpose of introducing the attenuation coefficient d was to smooth
the input and prevent the over-fitting of the algorithm [27].

In this paper, in order to explore the attenuation coefficient d for the purpose of
solving the model, in the same simulation environment, the initial population was set to
200, and we established the traditional PSO model without the attenuation coefficient d,
the constant model with the maximum iteration number 50, the first-order function model
with the iteration number K, and the quadratic function model with the iteration number
K, respectively. The results are shown in Figure 13:
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It can be seen from Figure 13 that the traditional model converged quickly in the
early stage but tended to fall into the local optimum in the later stage, resulting in a low
solution accuracy. After the introduction of the attenuation coefficient d, the convergence
of the algorithm became slow in the early stage due to the existence of d, but the search
accuracy was higher in the later stage, and it was easier to obtain the optimal solution.
Moreover, d was the lowest energy consumption obtained by the quadratic function model,
indicating that the attenuation coefficient d based on the solution model in this paper was
more consistent with the quadratic function model with the number of iterations k.

In order to demonstrate the effectiveness of the algorithm, the genetic algorithm (GA),
Tabu search (TS), Cuckoo search (CS), and Beetle Antennae search (BAS) algorithms were
selected to conduct 20 comparative calculations with the improved adaptive particle swarm
optimization (PSO) proposed in this paper, and the average solution time and minimum
energy consumption indexes are shown in Table 3:

Table 3. The average solving time of the different algorithms compared with the minimum energy
consumption index.

Algorithm Number of
Iterations/Time

Energy
Consumption/(N2·m2·s) Solution Time/s

Improved adaptive PSO 50 1.97 × 104 168

GA 50 2.86 × 104 288

TS 50 2.68 × 104 246

CS 50 2.44 × 104 229

BAS 50 2.51 × 104 235
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It can be seen from the data in the table that the results obtained using the algorithm
proposed in this paper showed the shortest solving time and the lowest energy consumption
in the same number of iterations among all the comparison algorithms.

6. Conclusions

In this paper, the optimal energy consumption of an inchworm robot was studied by
testing the peristaltic gait of the inchworm robot. Firstly, an intuitive and effective method
was used to describe the total energy consumption of the robot climbing and the spatial
curve similarity operator. Secondly, a motion planning method based on the optimal energy
consumption for climbing was formulated, and the motion planning method was made
up of three parts: the first part was based on the trajectory planning of the joint space and
continuous acceleration curve, the second part was based on the cartesian space motion
curve continuous path planning, and the third part was based on the improved adaptive
PSO to obtain the solution of the model. The most important feature of this method is
that the kinematic and dynamic constraints of the robot are organically combined, and the
complexity of the solution is reduced through the intuitive building of the model and the
effective algorithm optimization. Finally, the actual kinematics and dynamics of the robot
were calculated in the Matlab simulation environment. The simulation results show that
the proposed motion planning method is feasible and effective.

The following directions for the improvement of the research in this paper are as follows:

1. How to better define the relationship between the energy consumption of the robot’s
movement and the torque of each joint, and how to couple the energy loss, which is
difficult to describe in the process of the robot movement, with the path of and time
required for the robot movement.

2. The “error tracking” method defined in this paper is a pseudo-smooth path method.
We should consider how to better ensure the relative smoothness of the Cartesian
space curve when the robot joint trajectory is smooth and approximates to the space
smooth curve.
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