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Abstract: The aim of the paper is to present a two-step method for facilitating the design of analog 

amplifiers taking into account the bottom–top approach and utilizing machine learning techniques. 

The X-chart and a framework describing the specificity of analog circuit design using machine learn-

ing are introduced. The possibility of libraries with open machine learning models to support the 

designer is also discussed. The proposed method is verified for a three-stage amplifier design. In 

the first step, the stage type is predicted with 89.74% accuracy as the applied learner is a Decision 

Tree machine learning algorithm. Moreover, two induction rule algorithms are used for predictive 

logic generation. In the second step, some typical parameters for a given stage are predicted consid-

ering four learners: Decision Tree, Random Forest, Gradient Boosted Trees, and Support Vector Ma-

chine. The most suitable is found to be Support Vector Machine, which is characterized with the 

smallest obtained errors. 

Keywords: analog design; machine learning; amplifier circuits; X-chart; framework for analog cir-

cuits design 

 

1. Introduction 

Amplifier design is a complex problem related to finding the best circuit structure 

according to specifications predefined by the user. This specification explains the desired 

function and application of the designed circuit, and its required electrical parameters and 

characteristics. To solve this design task, the designer should know and understand the 

principle of operation and specific features of a wide variety of simple circuits, in addition 

to the methods for designing complex electronic modules and devices. In analog electron-

ics, some simple building stages serve as the basis of construction of different analog cir-

cuits such as amplifiers, functional converters, filters, and generators [1,2]. Thus, 

knowledge about circuit operability and possible circuit variants, and about the theory of 

how to construct a circuit according to a given specification, are a very important part of 

the design process. The circuit design is also supported by Electronic Design Automation 

(EDA) software equipped with multiple component libraries and appropriate instrumen-

tation. This saves time, resources, and effort for designers. Some errors and non-suitable 

circuit variants can be avoided. Recently, machine and deep learning have been utilized 

in an assistive role in circuit design to automate engineering tasks [3–5]. Machine learn-

ing-based approaches to design rely on the collected data, a strong understanding of the 

theory in electronics, and the practically proven methods. This knowledge should be com-

bined with familiarity regarding the specificity and advantages of machine learning algo-

rithms [6–8] that should support the right design decisions. Furthermore, Hamolia and 

Melnyk show the need for new methodologies for high-level automated design, inte-

grated in EDA software, which is driven by continuous technology development [9]. The 

authors point out the appearance of a new scientific field related to machine learning-
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based EDA for facilitating all phases of chip design. Ren et al. group the applications of 

machine learning for solving EDA problems to predictors, optimizers, and generators [10]. 

They argue that conventional EDA algorithms should collaborate with machine learning 

for achieving greater efficiency. It seems that the design process could be facilitated in 

both directions: from top to bottom and from bottom to top, and at behavioral, structural, 

and physical levels through machine learning models. Some research papers address sim-

ilar topics, showing positive results, successful implementations, and challenging issues. 

Dieste-Velasco et al. present a methodology for improving the design of electronic circuits, 

driven by artificial neural network algorithms and the statistical technique design of ex-

periments [11]. They conclude that the proposed approach can be used for efficient be-

havioral modeling of electronic circuits and for the prediction of some parameters. 

Guerra-Gomez et al. investigate the speed of regression techniques used in the design of 

medium- and large-scale electronic circuits and prove the suitability of regression algo-

rithms for circuit modeling with high speed and high accuracy [12]. The research team of 

Hasani et al. propose a compositional method for building an artificial neural network 

used for modeling complex analog integrated circuits and reduced simulation time is 

demonstrated [13]. Mina et al. summarize the existing scientific achievements in automat-

ing the design process of integrated analog circuits (on MOS, CMOS technology), pointing 

out the advantages of machine learning techniques (supervised, unsupervised, reinforce-

ment learning) for circuit designers [14]. 

Machine learning utilization at the physical level of chip design is also discussed in 

several scientific publications, which describe the current progress and bottlenecks of 

component placement and routing [15–17]. Time saving for optimal component place-

ment on the printed circuit board (PCB), avoiding concurrency issues in routing, and in-

creasing the designer’s efficacy are among the future problems that should be solved, in-

cluding through usage of machine learning. 

Obviously, the evolution of machine learning and data science has led to inventing 

novel methodological solutions in electronics and circuit design, as indicated by the in-

creased scientific interest in recent years. The reported findings are related to design op-

timization [18], object detection [19], defect identification [20], classification [21], etc.  

The aim of the paper is to present a method for facilitating the design of analog am-

plifiers based on utilization of machine learning algorithms following the bottom–top de-

sign strategy. The X-chart and a framework reflecting on the specificity of analog circuit 

design using machine learning are introduced. The possibility for creating some libraries 

with open machine learning models is also discussed. 

2. Design Process of Analog Devices 

A similar approach to the Gajski–Kuhn Y-chart [22], which explains the characteris-

tics of a design process through its three domains, outlining behavioral, structural, and 

physical design, is applied here (Figure 1a). The Gajski–Kuhn Y-chart is created with ex-

amples for digital circuit design, but in this work is adapted to the specificity of analog 

circuit design using machine learning (Figure 1b—X-chart).  

 The behavioral domain in the Gajski–Kuhn Y-chart presents the function of a given 

circuit without knowing the components that are included for its implementation. In 

this domain, the electronic circuit is seen as a “black box”, in which only its inputs 

and outputs are known.  

 The structural domain defines how the circuit is built. It considers the circuit struc-

ture, building components and the connections between them. The structural domain 

provides one of the possible transformations of the behavioral description into a set 

of components and relationships between them, which satisfies the predefined user 

specification.  
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 The physical domain shows exactly how the circuit has to be implemented on the 

board layout in order to ensure the desired behavior of the circuit. The main prob-

lems here concern the component placement on the PCB and their routing, taking 

into account the constraints of the limited chip area, the specific features of the com-

ponents and their physical geometry, the routing collisions, and congestion. Physical 

design is a complex task and is currently performed in several steps: macro place-

ment, global placement, detailed placement, global routing, and detailed routing.  

In the proposed X-chart, the design process is supported through usage of machine 

learning as a new domain of machine learning is added. At the behavioral domain in the 

X-chart, the stage, device, or module are examined as a “black box” and the designer is 

interested only in their input and output, but not in the circuit structure. The structural 

domain explains the exact circuit topology of stages, devices, and modules as a given stage 

is created through components (transistors, resistors, capacitors, diodes, etc.). One device 

can be built through one or several stages and a module includes more than one device. 

The physical domain presents the best placement of the components, stages, devices, and 

modules on the PCB and their routing, forming printed circuit board assembly (PCBA). 

The machine learning domain shows the supportive role of machine learning algorithms 

in the design process, assisting the designers to accurately solve the specified problem and 

to make the correct decisions. This domain reveals the capability of machine learning in 

the prediction/classification of suitable components for realization of a stage, predic-

tion/classification of possible stages for an electronic circuit design of a device, and pre-

diction/classification of the possible devices on the PCB that form a module. For a given 

behavior of the circuit, several structural and physical implementations are possible and 

machine learning is applied to find possible solutions and the best approach. For this pur-

pose, libraries with open machine learning models of circuits are prepared and used to 

shorten the design process and increase the design quality. 

(a)  

(b)  

Figure 1. Design process depicted by: (a) Gajski-Kuhn Y-chart [22]; (b) proposed X-chart for analog 

design through machine learning. 

The chosen design strategy in this research is from bottom to top with hierarchical 

dependence between its four phases. The framework for circuit design through machine 

learning is shown in Figure 2:  

(1) The first phase identifies suitable components for analog circuit creation. The com-

mon added components are transistors, resistors, capacitors, diodes, etc., which are 

organized in libraries. The electrical behavior of components is described with equa-
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tions. The created machine learning (ML) models, which are also organized in librar-

ies, are capable of predicting and classifying possible components for circuit imple-

mentation of a given stage. 

(2) The second phase determines the appropriate stages that can form the circuit device. 

In the case of amplifier design, the circuit can be built from one stage, which is called 

a single-stage amplifier; a circuit built from two stages is known as a two-stage am-

plifier; and a circuit built from more stages is known as a multi-stage amplifier. An 

amplifier stage includes an amplifier element (here are considered just transistors), a 

circuit for connecting to the signal source, a power supply circuit, a circuit for ensur-

ing the constant current mode, and a circuit for connecting to the load. It may also 

contain a circuit for implementing feedback in order to improve or change the pa-

rameters and characteristics of the stage. The schematics of all stages are organized 

in libraries. Machine learning is used for predicting/classifying the behavior, and the 

structure of possible stages through equations and transfer functions, as machine 

learning models are placed in a library. 

 

Figure 2. Framework for analog circuit design using machine learning. 
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(3) The third phase connects the identified stages forming a device. Some additional cir-

cuits may be added as common feedback or circuits for correction. The most com-

monly used devices form device libraries. Machine learning models predict/classify 

the behavior and structure of the device, in addition to its placement and routing on 

the PCB, taking into account the device function.  

(4) The fourth phase demonstrates the realization of more complex electronic products, 

i.e., so-called modules. One module may consist of one or several devices, which are 

connected to realize the predefined user specification. Some additional circuits for 

parameter improvement and correction can be added. Machine learning pre-

dicts/classifies the behavior and structure of modules and device placement on the 

PCB, considering the devices’ transfer functions and the function of the whole mod-

ule. 

3. Design of Analog Amplifiers 

The accent in this work is on the third phase in the design process and on behavioral 

and structural modeling of analog amplifiers through machine learning. The components’ 

prediction/classification and PCBA design will be within the scope of future work. The 

design of amplifiers can be carried out considering the specifics of a certain technology 

[23–25]. The most often used technologies are: bipolar; Bipolar-Field Effect Transistor 

(BiFET), where bipolar and MOS elements are formed in a common substrate; and Com-

plementary Metal Oxide Semiconductor (CMOS), which uses complementary pairs of 

transistors. Each technology has its advantages and disadvantages, and is preferred for 

applications in specific cases. Bipolar technology is characterized with the possibility to 

obtain large voltage gain, small unbalanced input voltage, and very low noise voltage. In 

BiFET amplifiers, the input transistors are FETs and the rest of the circuit is made up of 

bipolar transistors. These are characterized by a higher rate of rise in the output voltage 

compared to bipolar and CMOS amplifiers. The common characteristic of bipolar and 

BiFET technology is that they allow for a wider bandwidth compared to CMOS technol-

ogy. The advantages of CMOS amplifiers are related to operation at lower supply volt-

ages, using mainly one supply voltage, and providing an operating range of the input 

and/or output voltage that is approximately equal to the supply voltage (rail-to-rail 

mode), as the consumed current is kept at a small value. It is obvious that the design pro-

cess of amplifiers depends on the features of the technology. In this paper, the design of 

bipolar amplifiers is examined, and the CMOS design methodologies, because of their 

contemporary interest, will be discussed and explored in future work. 

At the beginning, a library with the most common amplifier stages is introduced with 

their transfer functions and some parameters. According to a definition, an amplifier is an 

electronic device used to amplify an electrical signal in terms of current, voltage, or power. 

It is a converter of the electrical energy of the voltage supply source ���  into another type 

of electrical energy suitable for delivering to the load in its output circuit. In amplifier 

circuits, the signal transmission is carried out from the input to the output, but it is possi-

ble to use one or several feedback circuits. The most important parameters of amplifiers 

are the amplification coefficients, and input and output resistance. In multi-stage amplifi-

ers, the overall transfer function has to be found taking into account the functions of the 

building stages, which can be categorized as input, intermediate, and output. Figure 3 

presents a block diagram of a multi-stage amplifier, for which a wide variety of stages can 

be involved in its design to satisfy the requirements. In most cases, the aim of the first 

input stage is to obtain high gain and good suppression of the common-mode signals so 

that unwanted interference is not amplified and propagated to subsequent stages. An-

other requirement for the first stage is to provide a high input impedance. There are dif-

ferent variants for realization of this input stage, but in many cases a differential pair with 

or without a current source or through a cascode common emitter (CE)–common base 

(CB) is used. The role of the intermediate stage is to increase the amplifier gain, so it is 

very often realized through CE or a differential pair with or without a current source. The 
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purpose of the driver stage is to provide appropriate values of currents and voltages to 

drive the output transistors. This requirement also predetermines its construction using a 

CE transistor or a Darlington transistor with or without a dynamic load. The output stage 

must provide a small output resistance and a certain output power. Therefore, it often 

involves a push–pull power amplifier circuit, with the (non-) complementary transistors 

being single and connected in a common collector (CC) circuit, or a Darlington transistor 

circuit can be used. In order to improve the parameters and characteristics of the amplifier, 

auxiliary circuits for realization of feedback and frequency domain correction can be in-

troduced.  

 

Figure 3. Structure of a multi-stage amplifier. 

Let us suppose that the library with stages contains the most commonly used stages 

in amplifiers, some of which are presented on Figure 4. Their main parameters are sum-

marized in Table 1 and they are: ��—voltage amplification; ��—current amplification; 

��—differential coefficient of voltage amplification; ��� and ��� are respectively input and 

output resistance of the stage; �� and �� are resistors in collector and emitter circuits, re-

spectively; ���  and ��� are input and output resistance of a transistor, respectively; �� is 

transconductance; CMRR—Common Mode Rejection Ratio. 
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Figure 4. (a) Common emitter; (b) common emitter with active load; (c) common collector; 

(d) differential pair with resistive load and emitter resistor; (e) differential pair with resis-

tive load and current source; (f) differential pair with active load; (g) complementary out-

put pair in class B; (h) complementary output pair in class AB; (i) complementary output 

pair with Darlington transistors in class AB. 

Table 1. Parameters of amplifier stages. 

Stage Parameters Function Type 

(a) Stage 1: common emitter 

�� = −��(���||��||��) = −�����
� —high 

�� =
��

��
= −

��

���
� ��—high 

��� = ��||�� ≈ ���—medium 

��� = ��||�� ≈ ��—medium 

Amplifies voltage, current, and power, inverts 

the phase of the input voltage by 180° 
Intermediate 

(b) Stage 2: common emitter 

with active load 

�� = −��(����
||����

)—higher 

��—high  

��� = ����
—medium 

��� = ����
||����

—high 

Amplifies voltage, current, and power, possesses 

increased amplification gains 
Intermediate 

(c) Stage 3: common collector 

�� ≈
����

������
< 1—does not amplify 

�� ≈ ℎ���—high 

��� ≈ ��||ℎ�����)—high 

��� = (
�

��
+

��

����
)||��—low 

Repeats the input voltage (voltage follower), but 

amplifies the current and power 
Output 

(d) Stage 4: differential pair 

with resistive load and emitter re-

sistor 

�� ≈ ����||
��

�
—high 

��� ≈ 2���—high 

���≈2��—medium 

���� ≈ 2����—high 

Amplifies the difference between both inputs Input 

(e) Stage 5: differential pair 

with resistive load and current 

source; 

���� =
����(�������)

���
—higher Better suppression of common mode signals Input 

(f) Stage 6: differential pair 

with active load 
�� ≈ (���||���||��)—higher 

Higher differential gain is achieved through 

adding active load 
Input 

(g) Stage 7: push-pull stage 

with complementary output pair in 

class B 

�� < 1—does not amplify 

�� =
1

2
���� =

1

2
��

��� 

� =
��

���

=
�

4

��

���

 

���� =
�

�

�����

���
=

�

�
≈ 0.785 or 78.5% 

Each of the transistors operates in an CC circuit, 

which achieves high input and low output re-

sistance, high current gain and low distortion. 

Output 

(h) Stage 8: complementary 

output pair in class AB 

����� =
2��� − ���

��,�

 

� ≈ 40– 50% 

The resistor R3 is used for creating a bias voltage 

on the bases of transistors T1 and T2 
Output 

(i) Stage 9: complementary 

output pair with Darlington tran-

sistors in class AB 

� ≈ 40– 50% 

The two diodes, in addition to creating a bias 

voltage on the bases of transistors T1 and T2, are 

also used to stabilize their operating current 

Output 

4. Proposed Method 

Behavioral design of amplifiers sees stages as “black boxes” and is not interested in 

exactly how they are implemented. It is important only to know the input and output 

parameters. Structural design is related to explanation of the possible structure and this 

task is multi-variant. Following the configuration from Figure 3, the amplifier has to pos-

sess input, intermediate, and output stages. It is known that the output stage does not 

amplify the voltage signal, but it is responsible for small output resistance. This means 

that the input and intermediate stages have to deliver the required amplification. The 

feedback configuration is considered to be the same in the amplifier design. 

Machine learning algorithms as a part of artificial intelligence have recently been uti-

lized to assist in the engineering tasks related to the design process in electronics, inte-

grating some approaches in EDA software. Huang et al. explored the contemporary sci-

entific achievements in this area and reported enormous interest in automating a wide 

variety of engineering activities through the usage of machine learning in different EDA 

tools [26]. Ren noted the role of machine learning in solving multiple EDA problems [27]. 
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He summarized the applications of various machine learning algorithms for more effi-

cient workability of EDA software and for improving designer efficacy.  

In this work, a machine learning-driven approach was used to study data about the 

stage type—input, intermediate, and output—assisting the designer to make a choice 

about the type of the most suitable stages for realization of a three-stage amplifier. More-

over, machine learning models predict some important parameters of each stage type. The 

proposed method for amplifier design through machine learning is presented on Figure 

5. It is a two-step predictive method: in the first step, the stage type is predicted, and in 

the second step, some typical parameters for each stage type are forecasted. The sugges-

tion is that a library with amplifier stages exists and data regarding the function and struc-

ture of each stage are gathered. Datasets are learnt by supervised machine learning algo-

rithms, including those for rules extraction, which results in models capable of predicting 

the stage type (input, intermediate, output) and some main parameters of each stage.  

 

Figure 5. Method for amplifier design through machine learning. 

4.1. Datasets Preparation 

The dataset, presented in Table 2, is formed considering 30 different stages and their 

main parameters. It is used in the first step from the proposed method to predict the stage 

type and stage logic. 

Table 2. Dataset for prediction of the stage type. 

�� �� ��� ��� CMRR �� Circuit Stage Type 

high n/a high medium high n/a 
diff. pair with re-

sistive load 
input 

higher n/a high medium high n/a 
diff. pair with 

active load 
input 

high n/a high medium higher n/a 
diff. pair with 

current source 
input 

high high medium medium n/a n/a common emitter intermediate 

higher high medium high n/a n/a 
common emitter 

with active load 
intermediate 

does not 

amplify 
high high Low n/a medium 

push-pull class 

AB 
output 

… … … … … … … … 

Data for Stage1 

Machine 

learning 

Stage 

type 

Data for Stage2 

Data for Stage n 

Input stage 

Intermediate stage 

Output stage 

prediction 

Machine 

learning 

Machine 

learning 

Machine 

learning 

 Gain 

 Input resistance 

 Suppression 

 Gain 

 Resistance 

 Output resistance 

 Output power 

prediction 

… 
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For realization of the second step of the method, datasets of the parameters included 

in the library stages are prepared. All values of parameters are received after mathemati-

cal calculations and certain methodologies for analog design with bipolar transistors, as 

follows [28–31]. The used methodologies are summarized through different algorithms. 

For example, Algorithm 1 shows the main calculations for obtaining the parameters of 

output stage 8. Algorithm 2 is applied for collecting the data for intermediate stage 2 and 

Algorithm 3 for the input stage 4. Respectively, Tables 3–5 present a part of the gathered 

datasets for output stage 8 (with 161 records), intermediate stage 2 (with 988 records), and 

input stage 4 (451 records) according to defined Algorithms 1–3. The datasets for other 

stages are gathered in a similar way. For demonstration, the power transistors 2SCR587D3 

and 2SAR586D3 [32,33] (for output stage), middle power transistors 2SCR563F3 and 

2SAR563F3 [34,35] (for intermediate stage), low power transistor 2N3904 [36] (for input 

stage), and diode 1N5819 [37] are chosen. 

Algorithm 1: Design of output stage 

Preliminary data: load resistance �� = 8 Ω, output power �� = 10 W, voltage supply 

��� = 12 V; choice of power transistors and their parameters, taken from datasheet 

specifications [32,33] 

1. Calculating the voltage on the load ��� = �2����;  

2. Calculating the current through the load ��� =
���

���
; 

3. Calculating ��,� =
���,�

���
 (���,� ≤ 0.1���); 

4. Calculating �� =
���

��,����,�/���,�
, (��,� = (0.01 ÷ 0.05)���). 

 

Algorithm 2: Design of intermediate stage 

Preliminary data: taken from datasheet specifications [34,35] 

1. Calculating ���,� ≈ (3 ÷ 5)
���

���,�,�
; 

2. Calculating ���,� =
����.�

���,�
, ����,� ≈ 2��� ; 

3. Calculating V��,� = ����,� + ����,�; 

4. Calculating ��,� =
�������,�

���,�
. 

 

Algorithm 3: Design of input stage 

Preliminary data: choice of low power transistor and its parameters, taken from 

datasheet specification: ��, ���, ℎ��, ℎ��, ℎ��, �� [36] 

1. Calculating �� =
���(����)

��
, (��� = ��� = �� = −��� ��� ��� = ��� = �� ≈ ��); 

2. Calculating ��� = ��� = �� =
������

��
, (��� = ��� = �� = �� + ���); 

3. Calculating �� = ����||
��

�
; 

4. Calculating ��� ≈ 2���; 
5. Calculating ��� ≈ 2��; 
6. Calculating ���� ≈ 2���� . 

Table 3. Parameters of output stage. 

���, � ���, � ���, � ��, Ω ��, Ω ��, Ω 

1.2 1.2 1.58 0.75 0.75 24 

1.1 1.1 1.58 0.69 0.69 23 

1 1 1.58 0.63 0.63 22 

… … … … … … 
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Table 4. Parameters of intermediate stage. 

���, �� ���, �� ���, �Ω ���, �Ω ��, �Ω ��, �Ω 

14.7 14.7 1.63 1.63 42 42 

15.19 15.19 1.57 1.57 42 42 

15.68 15.68 1.53 1.53 42 42 

… … … … … … 

Table 5. Parameters of differential pair. 

��, �Ω ��, �� ��, �Ω ��, ��  �� ���, �Ω ���, �Ω 

22.6 0.5 5.4 19.23 67.432 12 10.8 

18.833 0.6 4.5 23.076 71.618 13 9 

16.142 0.7 3.857 26.923 74.941 14 7.714 

14.125 0.8 3.375 30.769 77.641 15 6.75 

12.555 0.9 3 34.615 79.881 16 6 

11.3 1 2.7 38.461 81.768 18 5.4 

… … … … … … … 

5. Results  

To verify the proposed two-step method and applicability of machine learning in 

support of amplifier design, the functions and structure of the stages and the collected 

data, as presented in Tables 1–5 and the schematics in Figure 4, are considered. Let us 

suppose that the designer is required to build an amplifier with the following parameters: 

input resistance ��� = 7 kΩ, load resistance �� = 8 Ω, output power �� = 10 W, amplifica-

tion � = 1200, voltage supply ��� = 12 V. In the first step, the correct stages have to be 

chosen to satisfy the formulated user requirements. For this purpose, the designer can rely 

on machine learning predictions regarding which stage is suitable for usage as an input, 

intermediate, and output stage. Moreover, logic generated by rule induction algorithms 

can support their decision making. 

For the dataset from Table 2, the Decision Tree algorithm was applied in the environ-

ment of RapidMiner Studio [38]. The created model for prediction of the stage type is 

characterized with 89.74% accuracy for the ratio of training/testing data of 60%/40%.  

Figure 6 presents the probability of correct predictions, which is given through con-

fidence (confidence for predicting input, intermediate, and output stages). A larger value 

of confidence (the maximum value is 1 and the minimum value is 0) means a greater prob-

ability of true correct predictions. It can be seen that the confidence of input stages is 1, 

while the confidence of intermediate and output stages is smaller than 1. 
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Figure 6. Confidence of predicted stage type: (a) input stage; (b) intermediate stage; (c) output stage; 

(d) comparison of confidence for different stage types. 

For the same dataset, two algorithms for rule extraction were applied: Rule induction 

and Trees to rules. Through Rule induction machine learning techniques, several formal 

rules can be generated in the form if–then–else, driven by the collected data. The ad-

vantages of these techniques lead to a better explanation and understanding the logic of 

the examined problem [39,40], in our case, the amplifier construction. When the first algo-

rithm rule induction is applied, the following result is obtained: 

If ���� = ���, then it is an Output stage; 

If ��� = ℎ��ℎ, then it is an Input stage; 

else it is an Intermediate stage.  

These extracted rules indicate the stage type according to some typical parameters. 

The exploration of the generated logic says that, if the output resistance of a given stage 

is low, then this stage is suitable as an output stage; if the input resistance is high, then 

this is an input stage, and, in other cases, the stage is intermediate.  

At the application of the second algorithm, Trees to rules, the achieved results outline 

another rule logic for identification of the stage type. If CMRR is high, then this is the 

input stage. If CMRR is not an important parameter for a given stage and input resistance 

is high, then the stage is an output stage. If the input resistance has a medium value and 

CMRR is not an important parameter, then the stage is intermediate. 

If ���� = ℎ��ℎ, then it is an Input stage; 

If ���� �� ��� ������� and ��� = ℎ��ℎ, then it is an Output stage; 

If ���� �� ��� ������� and ��� = ������, then it is an Intermediate stage. 

The findings indicate that the algorithms for rules induction are very useful for data 

mining and knowledge discovery in the area of electronics, as the generated logic can be 

a supportive tool and easily integrated in EDA software. The automatic generation of for-

mal rules and formalization of the process of analog circuit design can be considered to 

be an advantage for designers.  

In the second step, four machine learning algorithms are used: Decision Tree, Ran-

dom Forest, Gradient Boosted Tree, and Support Vector Machine [41,42], to find the best 
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model for prediction of the parameters of different types of stages. Machine learning mod-

els are created taking into account the datasets for each stage considering its typical pa-

rameters. 

Figure 7 presents only the prediction charts of the created predictive models for input 

stage 4. It can be seen that the best solution for this regression task is the Support Vector 

Machine algorithm. Similar results are obtained for other stages. 

 
(a) 

 
(b) 

 
(c) 
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Figure 7. Prediction charts: (a) Decision Tree; (b) Random Forest; (c) Gradient Boosted Trees; (d) 

Support Vector Machine. 

The learners are compared as they were evaluated using standard metrics for ma-

chine learning through parameters: root mean square error (RMSE), absolute error (AE), 

and squared error (SE) (Figure 8). The smallest errors were obtained for Support Vector 

Machine.  

 

Figure 8. Comparison of the applied learners. 

6. Case Study 

This section demonstrates the amplifier building, taking into account the support re-

ceived by machine learning and the results obtained in previous sections. The amplifier 

design begins at the back and moves forward, i.e., from the design of the output stage to 

the input and intermediate stages. The designer is supported in the first step with charts 

similar to that presented on Figure 9. Here, the designer can gather information about 

suitable stages for usage as output stages. It can be seen that these are: complementary 

output pair in class B, complementary output pair in class AB, and complementary output 

pair with Darlington transistors in class AB. Then, the designer will decide to use the com-

plementary output pair in class AB, because of the obtained information from the rules 

logic created by applying rule induction machine learning algorithms. This decision is 

also in line with the user's predefined specification, in which there are no additionally 

defined parameters for the stage, apart from the output power and the load. This gives 

the designer the possibility of choosing a simpler stage with a smaller number of compo-

nents that is capable of satisfying the user requirements. 

0

0.1

0.2

0.3

0.4
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Figure 9. Dependence between circuits of stages and their suitability for realizing the amplifier out-

put (s—suitable, ns—not suitable). 

In the second step, for the output stage, ��  and �� are known and the designer has to 

obtain the values of the included resistors ��, ��, and ��, which can easily be taken from 

the prediction chart for the output stage presented in Figure 9. There is no need for the 

designer to perform the calculations presented in previous sections or to recreate the da-

tasets for the stages in the library. Once the machine learning models are created, they can 

be used repeatedly. The designer only needs to use the machine learning results and the 

predicted values of the parameters. Let us suppose that the voltage value ���,� is 1 V; then, 

the predicted resistor value ��,� of 0.63 Ω can be found from the prediction chart (Figure 

10). Using a similar chart, the value of the resistor �� can be predicted, as here it is 22 Ω 

considering the operational regime of the transistor ��. In practice some diodes can be 

used instead of ��. 

 

Figure 10. Predicted dependence between ��,� and ���,�. 

The intermediate stage is designed taking into account Figure 11, where the designer 

can see the dependence between predicted resistors ���,� at a given current ���,�. The re-

sistors ���,� are selected from the prediction chart to be 1.63 kΩ at the current of 14.7 mA. 

The resistors ��,� are chosen to have a value of 42 kΩ at a given current through the diodes 

��,�. 
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Figure 11. Predicted dependence between ���.� and ���,�. 

The design of the input stage is facilitated through the predicted chart on Figure 12, 

in which the dependence between �� and ��  is presented. At the current of �� = 1 mA, the 

predicted values of the collector and emitter resistors are respectively 2.7 and 11.3 kΩ. 

 

Figure 12. Predicted dependence between �� and ��. 

Finally, the negative feedback also has to be considered, because the user requires 

the amplification to be 1200. The feedback is realized through two resistors, as the re-

sistance of the first ��� is chosen by the designer and the second ��� is calculated accord-

ing to the equation: ��� = 1 +
���

���
. The resistors ��� = ��� are selected with an appropriate 

value of 18 kΩ to match the input impedance of the amplifier. Then, ��� is calculated from 

the above-mentioned equation to be 15 Ω. The constructed amplifier according to the ini-

tial user’s requirements and designer’s choices, which are supported through machine 

learning, is presented in Figure 13. 
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Figure 13. The constructed amplifier. 

7. Conclusions 

The paper presents a two-step method for facilitating the design of analog amplifiers 

using machine learning algorithms and rule induction techniques. In the first step, the 

designer is assisted with suggestions about the most suitable stages for realization of am-

plifiers considering the predictions regarding the stage types and generated rules logic. In 

the second step, some parameters of a given stage type are indicated to support the de-

signer’s choice regarding the most relevant stage according to the predefined user speci-

fications. The method was verified in the design of a three-stage amplifier, for which the 

functions and main parameters of the building stages are known. As a learner in the first 

step, the Decision Tree algorithm, from supervised machine learning, was applied to solve 

the classification task and achieved the best accuracy of 89.74%. Extracted logic is also 

demonstrated through usage of two different rule induction algorithms. In the second 

step, four machine learning algorithms are employed to learn data about different ampli-

fier stages and to solve a regression task. The smallest errors were found with the use of 

Support Vector Machine.  

The concept of a library of open machine learning models of circuits is introduced to 

assist the designer in the important, complex, and time- and effort-consuming activities 

that are typical for the design process of analog circuits, devices, and modules at struc-

tural, behavioral, and physical levels. 

The Gajski–Kuhn Y-chart is extended to an X-chart, considering the increasing im-

portance of machine learning in the design process of electronic circuits, and is adapted 

to the design of analog circuits. A framework for analog circuit design, taking into account 

the possibility of machine learning to support almost all design phases at behavioral, 

structural, and physical level, is proposed.  
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