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Abstract: In order to solve the problems in fuzzy computation tree logic model checking with cost
operator, we propose a fuzzy decision process computation tree logic model checking method with
cost. Firstly, we introduce a fuzzy decision process model with cost, which can not only describe the
uncertain choice and transition possibility of systems, but also quantitatively describe the cost of the
systems. Secondly, under the model of the fuzzy decision process with cost, we give the syntax and
semantics of the fuzzy computation tree logic with cost operators. Thirdly, we study the problem
of computation tree logic model checking for fuzzy decision process with cost, and give its matrix
calculation method and algorithm. We use the example of medical expert systems to illustrate the
method and model checking algorithm.

Keywords: fuzzy model checking; fuzzy decision processes; fuzzy computation tree logic; cost
operator

1. Introduction

Model checking is an important formal verification method. Because of its automatic,
model checking has been widely used in the analysis and verification of computer hard-
ware and software systems, communication protocols, security protocols and so on. Model
checking is mainly composed of three parts: the first is to model the system under consider-
ation, the second is to use formal language to describe the properties, and the third is to
use a model checking algorithm to systematically check whether or not the given model
satisfies these properties [1].

Classical model checking [2,3] was formulated for verifying the qualitative properties
of systems. However, the Boolean result is not enough for the models with quantitative
information, such as a 90 percent probability of the system crashing during operation. At
present, more and more complex computer systems have the characteristics of randomness,
uncertainty and inconsistency. In order to deal with the verification of complex systems,
many quantitative model checking methods have been proposed by academia.

Probabilistic model checking [4–8] mainly deals with the problem of model checking
for systems with uncertainties generated by stochastic processes. Its goal is to determine
the accuracy of probabilistic systems for quantitative probability specifications. Sometimes
models may contain inconsistencies as they connect conflict points or contain components
designed by different designers independently. In order to verify complex systems with
inconsistencies and uncertainties, multi-valued model checking [9–12] is proposed. Fuzzy
model checking [13–20] pays more attention to the true value of the properties, which is
another kind of uncertainty, caused by unclear concept extension [21–23]. Both possibility
model checking [13,14], and generalized possibility model checking [15,16,24] are based
on possibility measure, a combination of possibility measure theory in fuzzy set with
model checking. Possibilistic Kripke structure is used to model the system, and possibilistic
temporal logic is used to describe properties. Li Yongming et al. [14] use the operators
in possibilitic computation tree logic to replace the existence and arbitrary quantifiers
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of classical computation tree logic to calculate the possibility that the model satisfies the
properties. In the process of calculating the possibility measure, the possibility of the path
cylinder set after reaching the state also participates in the calculation, but these calculations
can be ignored in most systems. Pan Haiyu et al. [19] use fuzzy Kripke structure to model
the systems, fuzzy computation tree logic(FCTL) to describe properties and study fuzzy
model checking.

Fuzzy Kripke structure is characterized by a state-to-state transition without a cost.
However, in daily life, the transition may be different and have some cost [25]. For example,
consider the disease diagnosis system studied in [14,19,26]. Suppose there are multi-steps
treatments A and B for a disease, and different treatment needs different costs for each
step during the process. The models in the literature [14,19,26] can only describe the
situation that experts have been using treatment A or B during the treatment but cannot
describe the situation where experts use A as the first and third steps and use B as the
other steps. In addition, the cost of treatments is also unable to represent and verify. For
the above reasons, we have done this paper. First, we define a fuzzy decision process
model with a cost function, which can not only describe the nondeterministic choices but
also describe the quantitative properties. Second, we introduce the definition of scheduler
into the uncertain selection of actions so that the fuzzy decision process with cost function
can be transformed into a fuzzy Kripke structure with a cost function. Then, we present
the syntax and semantics of fuzzy computation tree logic with the cost operator. Finally,
we calculate the quantitative possibility and cost of the problem according to the model
checking algorithm. The main contributions of this paper are as follows.

• A fuzzy decision process model with cost function is defined, which can describe the
cost and other quantitative properties of a fuzzy system. The action property in the
model is used to describe the uncertain action selection of the model, and the cost
property is used to describe the cost of the system.

• The FCTL is extended to FCTL with cost operator. The fuzzy computation tree logic
with cost operator inherits the existence and arbitrary quantifiers of classical temporal
logic and adds operators about cost.

• The fuzzy computation tree logic model checking quantitative calculation formula and
algorithm are given. At the same time, the complexity of the algorithm is analyzed.

The paper is organized as follows: in Section 2, the basic theoretical knowledge of
fuzzy mathematics and fuzzy Kripke structure are given. In Section 3, we define a fuzzy
decision process model with a cost function. In Section 4, we define fuzzy computation tree
logic with a cost operator. In Section 5, we give the fuzzy computation tree logic model
checking quantitative calculation formula and algorithm. Section 6 is an example. Section 7
summarizes this paper.

2. Preliminaries

A fuzzy set is a mathematical concept proposed by Zadeh in 1965. Fuzziness, in
general, refers to any indistinct phenomena, where there is no clear boundary between
“stability” and “instability”, “healthy” and “unhealthy”. The transition from one state to
another is a continuous process when quantitative changes accumulate and eventually
result in a qualitative change, which is due to the uncertainty caused by the breaking of the
law of excluded middle. To model and verify fuzzy systems, we provide some necessary
knowledge, which includes the fuzzy set, fuzzy set operation, fuzzy matrix operation,
closure and others.

Definition 1 ([27]). Let X be a universal set. A fuzzy set A of X is a function which associates
each element in X a value in the interval [0, 1],, i.e., A : X −→ [0, 1]. For x ∈ X, A(x) is the
membership of x in the fuzzy set A.
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We use F (X) to represent all fuzzy sets in X,, i.e., F (X) = {A | A : X −→ [0, 1]}.

Definition 2 ([27]). Let A, B ∈ F (X), we use A ∪ B, A ∩ B, Ac to represent the union, intersec-
tion and complement of A and B. The definition is as follows.
(A ∪ B)(x) = A(x) ∨ B(x) = max{A(x), B(x)},
(A ∩ B)(x) = A(x) ∧ B(x) = min{A(x), B(x)},
Ac(x) = 1− A(x).

Furthermore, we have De Morgan’s laws.

(A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc.

Fuzzy matrix is a kind of special matrix, in which the value of each element is in the
interval [0, 1]. It has some interesting operations and natures as follows.

Definition 3 ([28]). Let R and S be two fuzzy matrixes with m rows and n columns, i.e., R =
(rij)m×n, S = (sij)m×n.
The standard operations on fuzzy matrixes R, S are defined in the following manner:
R = S, if and only if rij = sij for all i, j.
R ⊆ S, if and only if rij ≤ sij for all i, j.
R ∪ S = (rij ∨ sij)m×n.
R ∩ S = (rij ∧ sij)m×n.
Rc = (1− rij)m×n.

Definition 4 ([28]). Let R be a fuzzy matrix with m rows and n columns, S be a fuzzy matrix with
n rows and l columns, i.e., R = (rij)m×n, S = (sij)n×l .The composition operation of R and S is

R ◦ S = (tij)m×l , where tij =
n
∨

k=1
(rik ∧ skj), (i = 1, 2, ..., m, j = 1, 2, ..., l). For fuzzy matrixes R,

S, T the composition operation has some laws.

(R ◦ S) ◦ T = R ◦ (S ◦ T);

(R ∪ S) ◦ T = (R ◦ T) ∪ (S ◦ T).

Let X be a universal set. For the fuzzy matrix R = (R(s, t))s,t∈X, we use R+ to
denote its transitive closure. When X is finite, and X has | X | elements, then R+ =
R ∪ R2 ∪ ...∪ R|X| [29], where Rk+1 = Rk ◦ R for any positive integer number k. The Kleene

closure R∗ = R0 ∪ R+, for each 1 ≤ s, t ≤| S |, R0(s, t) =
{

1 s = t
0 s 6= t

.

Transition systems or Kripke structures are the key models for model checking. Cor-
responding to fuzzy model checking, we expend the notion of fuzzy Kripke structures,
defined as follows.

Definition 5 ([19]). A fuzzy Kripke structure(FKS) is a tuple K = (S, P, I, AP, L), where

• S is a countable, non-empty set of states,
• P : S × S −→ [0, 1] is the fuzzy transition. For each s ∈ S, there exist t ∈ S such that

P(s, t) > 0,
• I : S −→ [0, 1] is the initial fuzzy distribution function. The initial state is s, and the truth

value is I(s),
• AP is the set of atomic propositions,
• L : S× AP −→ [0, 1] is a fuzzy labeling function. L(s, p) is the truth value to the atomic

proposition p in state s.
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The transition of FKS is certain for a pair of states, i.e., P(s, t) is unique. However, on
many occasions, we can transmit from one state to another by many methods. In other
words, P(s, t) is not certain. We carry out the fuzzy decision processes with a cost which
are uncertain in the transition and have a function of cost. For the conditions of daily life,
we use the natural number set N as the range of the cost function as an example.

3. Fuzzy Decision Processes with Cost

Fuzzy systems are often used to describe the medical expert systems. Due to the
different judgment standards of each expert on the patient’s condition and treatment effect,
it establishes the model better. At the same time, there are many new problems caused by
a variety of treatment options for the same disease. For instance, how to choose the best
treatment option in a variety of options? How to evaluate the cost of various treatment
options? FKS cannot model the interleaving behavior and the cost of concurrent processes
in an adequate manner. For this purpose, we extend FKS to an uncertain system model
with cost. The specific definition is as follows.

Definition 6. A fuzzy decision process with cost (FDPC) is a tuple M f = (S, Act, P, I, AP, L, C),
where

• S is a countable, non-empty set of states,
• Act is the set of actions,
• P : S× Act× S −→ [0, 1] is the fuzzy transition. For each s ∈ S and α ∈ Act, there exists

t ∈ S which let P(s, α, t) > 0,
• I : S −→ [0, 1] is the initial fuzzy distribution function. For s ∈ S, the truth value is I(s),
• AP is the set of atomic propositions,
• L : S× AP −→ [0, 1] is a fuzzy labeling function. L(s, p) is the truth value to the atomic

proposition p in state s.
• C : S× Act −→ N is a cost function. For each s ∈ S and α ∈ Act, C(s, α) is the cost of that

the action α is selected in state s.

If S, Act and AP are finite, we say the M f is finite. We say that action α is enabled in
state s if there exists a state t ∈ S such that P(s, α, t) > 0. Act(s) denotes the set of actions
which can be enabled in state s.

∧
π = s0α0s1α1s2...sn−1αn−1sn denotes a finite path of M f , and π = s0α0s1α1s2... ∈

(S× Act)ω denotes an infinite path of M f . Paths(s) denotes the set of the infinite paths
which begin from state s. Path f in(M f ) denotes the set of finite paths which begin from
all states of M f . Paths(M f ) is the set of infinite paths which begin from all initial states
of M f .

Example 1. Figures 1–4 is a simple, in which there are three transitions represented by α, β and γ.
The model has three states s0, s1 and s2. The variables in the state indicate the atomic proposition a
and b. Different states have different memberships of atomic propositions. Therefore, we use fuzzy
values to describe them. When action αi is used in state si, cost function C(si, αi) is generated.
When using a single transition α or β or γ, the FKSs are shown in Figures 1–3. The FDPC produced
by them is shown in Figure 4. The transition possibility is given by the number on the connecting

line, and the cost is indicated by the underlined number in the figure. For example, s0
α,0.8,160−−−−→ s1

indicates that in state s0, using treatment scheme α, the possibility of transition to state s1 is 0.8,
and the treatment cost is 160.
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Figure 1. FKS transmitted by α.

Figure 2. FKS transmitted by β.
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Figure 3. FKS transmitted by γ.

Figure 4. FDPC created by above FKSs.
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FDPCs are more complex than FKSs because of the interleaving of the transitions. For
example, for a states sequence s0s1s2, there is only one possibility in an FKS, but it may be
multiple possibilities in a FDPC, such as s0αs1βs2 or s0γs1βs2 or the others. We introduce a
scheduler to convert FDPC into FKS with cost. In this way, the relevant methods in FKS
can be used.

Definition 7. Let M f = (S, Act, P, I, AP, L, C) be a finite FDPC. Adv : S −→ 2Act is a function
of M f . For each s ∈ S, there is Adv(s) ⊆ Act(s).

Under the scheduler Adv, PathAdv(s) denotes the set of infinite paths which start from
the state s, Path f in

Adv(M f ) denotes the set of finite paths which start from all initial states in
M f . PathAdv(M f ) denotes the set of infinite paths which start from all initial states in M f .

We often care about the maximum (or minimum) possibility. We select the maximum
(or minimum) possibility of transition from state s to t by action in Adv(s) as an example to
introduce our thought of scheduler. If there are two or more actions in Adv(s) such that
P(s, αj, t) = P(s, αk, t) = ∨

αi∈Adv(s)
P(s, αi, t) for αj, αk, αi ∈ Adv(s), we can select the action

by the algebraic product P(s, αi, t) ·C(s, αi). Through the operation of a scheduler, an FDPC
can be switched to an FKS with cost.

Remark 1. It is easy to prove that the select operations do not change the maximum or minimum
possibility of the Adv, because we can use the actions which are selected by us to replace the actions
in the maximum or minimum possibility path.

Example 2. For the FDPC of Figure 4, suppose the scheduler function is Adv(s0) = {α, β},
Adv(s1) = {β, γ}, Adv(s2) = {γ}. The FDPC of Adv, the maximum possibility transition
FDPC of Adv and the minimum possibility transition FDPC of Adv are shown in Figures 5–7. In
fact, Figures 6 and 7 are FKSs with cost.

Figure 5. FDPC of Adv.
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Figure 6. The maximum possibility transition FDPC of Adv.

Figure 7. The minimum possibility transition FDPC of Adv.

The actions are eliminated in the conversion period, so we design an action index
matrix to store those actions. The transition matrix in the corresponding FKS and the index
matrix for recording actions under a specific scheduler are given below.
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Let M f = (S, Act, P, I, AP, L, C) be a finite FDPC and π = s0α0s1α1s2... ∈ Paths(s) be
a path of M f .

Pα is a | S | × | S | fuzzy matrix of transition possibility under the action α. For each
s, t ∈ S,

Pα(s, t)
de f
= P(s, α, t).

The left of the equation is the direct transition which transmit from s to t in FKS which
is transmitted by α with cost, but the right is the direct transition which transmit from s to t
by act α in FDPC.

PAdv−max is a | S | × | S | fuzzy matrix which denotes the matrix of maximum
transition possibility of Adv. For each s, t ∈ S,

PAdv−max(s, t)
de f
= ∨

α∈Adv(s)
P(s, α, t).

TAdv−max is a | S | × | S | action index matrix which records the actions creating the
maximum transition possibility. For each s, t ∈ S,

TAdv−max(s, t)
de f
= argmax

α∈Adv(s)
P(s, α, t).

PAdv−min is a | S | × | S | fuzzy matrix which denotes the matrix of minimum
transition possibility of Adv. For each s, t ∈ S,

PAdv−min(s, t)
de f
= ∧

α∈Adv(s)
P(s, α, t).

TAdv−min is a | S | × | S | action index matrix which records the actions creating the
minimum transition possibility. For each s, t ∈ S,

TAdv−min(s, t)
de f
= argmin

α∈Adv(s)
P(s, α, t).

We often pay attention to the maximum and minimum possibility of FDPC, but they
are the special Adv where Adv(s) ≡ Act(s) for all s ∈ S. We use the special symbol
αmax, αmin to denote the index of this Adv.

Pαmax is a | S | × | S | fuzzy matrix which denotes the matrix of maximum transition
possibility of FDPC. For each s, t ∈ S,

Pαmax (s, t)
de f
= ∨

α∈Act(s)
P(s, α, t).

Tαmax is a | S | × | S | action index matrix which records the actions creating the
maximum transition possibility. For each s, t ∈ S,

Tαmax (s, t)
de f
= argmax

α∈Act(s)
P(s, α, t).

Pαmin is a | S | × | S | fuzzy matrix which denotes the matrix of minimum transition
possibility of FDPC. For each s, t ∈ S,

PAdv−min(s, t)
de f
= ∧

α∈Act(s)
P(s, α, t).

Tαmin is a | S | × | S | action index matrix which records the actions creating the
minimum transition possibility. For each s, t ∈ S,

Tαmin(s, t)
de f
= argmin

α∈Act(s)
P(s, α, t).

Cα is a | S | ×1 matrix declaring the cost activating action α from state s, for each s ∈ S,

Cα
de f
= C(s, α).

Example 3. For the FDPC of Figure 4.
The action α transition possibility matrix and the cost matrix activating action α is

Pα =

 0.2 0.8 0.4
0.1 0.3 0.5
0.2 0.3 0.8

, Cα =

 160
180
100

.
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The action β transition possibility matrix and the cost matrix activating action β is

Pβ =

 0.3 0.7 0.2
0.2 0.4 0.3
0.1 0.5 0.4

, Cβ =

 100
115
70

.

The action γ transition possibility matrix and the cost matrix activating action γ is

Pγ =

 0.5 0.6 0.1
0.4 0.7 0.2
0.5 0.6 0.3

, Cγ =

 68
73
40

.

The maximum transition possibility matrix, maximum transition possibility action
index matrix, minimum transition possibility matrix and minimum transition possibility
action index matrix is

Pαmax =

 0.5 0.8 0.4
0.4 0.7 0.5
0.5 0.6 0.8

, Tαmax =

 γ α α
γ γ α
γ γ α

,

Pαmin =

 0.2 0.6 0.1
0.1 0.3 0.2
0.1 0.3 0.3

, Tαmin =

 α γ γ
α α γ
β α γ

.

Under the maximum transition possibility matrix and minimum transition possibility
matrix, the FDPC of Figure 4 turns into the FKSs with cost in Figures 8 and 9.

Figure 8. FDPC of Pαmax .

Since the cost is generated in the process of each activation action, in order to solve the
cost-related problems in model checking, we determine the cost through a deterministic
selection strategy for the action, and then calculate the expected cost. Because model
checking pays more attention to the possibility of transition, this paper takes the maximum
possibility of one-step transition as the selected strategy. First, we select the action by the
above matrix. Then, we select the successor state by the maximum possibility.
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Figure 9. FDPC of Pαmin .

Definition 8. Let M f = (S, Act, P, I, AP, L, C) be a finite FDPC and π = s0α0s1α1s2... ∈

Paths(s) be a path of M f . cost[= k](π)
de f
= C(sk−1, αk−1) denotes the instantaneous cost of the

step k.

Under the scheduler Adv, we use each step to choose the maximum possibility to
transmit from the current state as an example, and the step k instantaneous expected cost is
defined as

Exs
Adv(cost[= k])

de f
=

( ∧
0<j≤k

( ∨
tj∈S

PAdv(tj−1, tj))) · C(tj−1, αk−1).

We use cost[≤ k](π)
de f
=

k
∑

i=1
C(si−1, αi−1) to denote the cumulative cost of the first k

steps. The cumulative expected cost of the first k steps is defined as

Exs
Adv(cost[≤ k])

de f
=

k

∑
i=1

Exs
Adv(cost[= i]).

The previous descriptions are all about the expected cost without limiting the states in
the path. However, in the actual process, some restrictions may be added to the states in
the path.

cost[♦F](π) = cost(
∧
π)

de f
=

n
∑

i=1
C(si−1, αi−1) denotes the cumulative cost that the path

would reach the state in F, where F ⊆ S,
∧
π = s0α0...sn is the prefix of π and sn ∈ F but

the other states in
∧
π is not in F. Exs

Adv(cost[= n(♦F)]) denotes the skep n instantaneous
expected cost under the scheduler Adv which is the deformation of Exs

Adv(cost[= k]),
defined as below.

Exs
Adv(cost[= 1(♦F)])

de f
=( ∨

t∈F
PAdv(s, t)) · C(s, α),
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Exs
Adv(cost[= k(♦F)])

de f
=

( ∧
0<j<k

( ∨
t∈S/F

PAdv(tj−1, tj)) ∧ PAdv(tk − 1, t)) · C(tj−1, αk−1).

Exs
Adv(cost[≤ k(♦F)]) denotes the first steps k cumulative expected cost under the

scheduler Adv which reaches F in step k, defined as below,

Exs
Adv(cost[≤ 1(♦F)])

de f
= Exs

Adv(cost[= 1(♦F)]),

Exs
Adv(cost[≤ k(♦F)])

de f
=

(
k−1
∑

i=1
(( ∨

t∈F
( ∧

0<j<k
( ∨

s∈S/F
PAdv(tj−1, tj))))·

C(sj−1, αj−1)) + (( ∨
t∈F

( ∧
0<j<k

( ∨
s∈S/F

PAdv(tj−1, tj) ∧ PAdv(sk−1, t)))) · C(sk−1, αk−1))).

Exs
Adv(cost[♦F]) is the cumulative expected cost from s to the state in F, defined

as below,

Exs
Adv(cost[♦F])

de f
= sup

1≤k≤n
Exs

Adv(cost[≤ k(♦F)]).

Where n is the max step of all paths that can reach F under the restrictive condition
′No or one ring′. Why do we have the restrictive condition ′No or one ring′? Because it has
no contribution for transition possibility changing. Without the amount of rings, all states
of the path which can reach F are less than or equal | S/F | +1, thus we can get that the
max skep n ≤| S/F |.

4. FCTL with Cost Operator

We present the FCTL with cost operators in this section, i.e., expand FCTL for our
FDPC with cost operator. We expand FCTL [19] with the cost operator. The syntax and
semantics are as below.

Definition 9 (FCTL syntax). The FCTL state formula is defined inductively as follows,
Φ ::= true | a | Φ1 ∧Φ2 | ¬Φ | ∃ϕ | ∀ϕ | E(= k) | E(≤ k) | E(Φ),
where ϕ is a path formula, a ∈ AP.
Furthermore, the FCTL path formula is,
ϕ ::=©Φ | Φ1 tΦ2,
where Φ, Φ1 and Φ2 are state formulas.

Definition 10 (FCTL semantics). Let M f = (S, Act, P, I, AP, L, C) be an finite FDPC, || Φ ||:
S −→ [0, 1] be a function. For FCTL with cost, the semantic of state formula Φ is defined as follows.

|| true || (s) = 1,

|| a || (s) = L(s, a),

|| Φ1 ∧Φ2 || (s) =|| Φ1 || (s)∧ || Φ2 || (s),
|| ¬Φ || (s) = 1− || Φ || (s),

|| ∃ϕ ||Adv (s) = ∨
π∈PathsAdv(s)

|| ϕ || (π),

|| ∀ϕ ||Adv (s) = ∧
π∈PathsAdv(s)

|| ϕ || (π),

|| E(= k) ||Adv (s) = Exs
Adv(cost[= k]),

|| E(≤ k) ||Adv (s) = Exs
Adv(cost[≤ k]),

|| E(Φ) ||Adv (s) = Exs
Adv(cost[♦Sat(Φ)])

,

where Sat(Φ) = {s ∈ S | || Φ || (s) > 0}.
For the given scheduler Adv and π ∈ PathsAdv(s), the semantic of path formula ϕ is defined

as below.
|| ©Φ ||Adv= PAdv(s0, s1)∧ || Φ || (s1),
|| Φ1 tΦ2 ||Adv (π)
=|| Φ2 || (s)∨ ∨

j>0
(|| Φ1 || (s0)∧ ∧

k<j
(PAdv(sk−1, sk))∧ || Φ1 || (sk)∧ (PAdv(sj−1, sj))∧ ||

Φ2 || (sj)).
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5. Model Checking Fuzzy Computation Tree Logic Based on Fuzzy Decision Processes
with Cost

The FCTL model checking problem on FDPC is defined as the following. Given a
FDPC M f , a state s of M f , a FCTL state formula Φ and a step k, then calculate the true
value of state s satisfying the state formula or the expect cost. We often consider the
maximum and minimum possibilitic truth values. We give the computing method of
|| ∃©Φ ||max (s), || ∃©Φ ||min (s), || ∀©Φ ||max (s), || ∀©Φ ||min (s), || ∃Φ1 tΦ2 ||max
(s), || ∃Φ1 t Φ2 ||min (s), || ∀Φ1 t Φ2 ||max (s), || ∀Φ1 t Φ2 ||min (s), || E(= k) ||max
(s), || E(= k) ||min (s), || E(≤ k) ||max (s), || E(≤ k) ||min (s), || E(Φ) ||max (s) and
|| E(Φ) ||min (s) as below. There are some useful matrixes and operations given.

Let M f = (S, Act, P, I, AP, L, C) be a finite FDPC, DΦ be a | S | × | S | fuzzy diagonal
matrix for state formula Φ. For each s, t ∈ S,

DΦ(s, t)
de f
=

{
|| Φ || (s) s = t

0 Otherwise
PΦ is a | S | ×1 fuzzy matrix. For each s ∈ S,

PΦ(s)
de f
= || Φ || (s).

We use Pα|max| to realize the transition of only choosing the maximum truth value
transition using action α. Pα|max| is a | S | × | S | fuzzy matrix and defined as that for each
s, t ∈ S,

Pα|max|(s, t)
de f
=

{
P(s, α, t) t = argmax

t∈S
f (P(s, α, t), cost(s, α))

0 Otherwise
where f is a function mapping P× C to [0,1]. f is decided by the need in usual. In this
paper, we set f (P(s, α, t), cost(s, α)) = P(s, α, t) if there is only one maximum transition
from s to t. When it is multiple, we select the first maximum transition by elements in
the matrix.

Through those matrixes, we can reduce the state transition matrix in FKS to a sparse
matrix containing only one-step maximum possibility.

E is a | S | ×1 fuzzy matrix with all elements equal to 1. We use it to turn the matrix
into a vector.

We also use an auxiliary matrix identified as DF, for the restricted set F. DF is defined
below.

DF =

 D[0, 0] · · · D[0, n]

· · ·
... · · ·

D[n, 0] · · · D[n, n]

,

where D[i, j] =
{

1 sj ∈ F
0 sj /∈ F

Pα|F
de f
= DF ∩ Pα is the restricted transition matrix under the act α which restrict only

transition to F. P′
α|F

de f
=(DS − DF) ∩ Pα is the restricted transition matrix under the act α

which cannot transmit to F. Using matrixes, we can describe the constraints.
Using our matrixes, we can re-represent the cost in Definition 8.
The first k steps cumulative expected cost
Exs

Adv(cost[≤ k])

=
k
∑

i=1
Exs

Adv(cost[= i])

=
k
∑

i=1
(( ∧

0<j≤i
( ∨

tj∈S
PAdv(tj−1, tj))) · C(ti−1, αi−1))

=
k
∑

i=1
(( ∧

0<j≤i
( ∨

tj∈S
∨

αj−1∈Adv(tj−1)
PAdv(tj−1, αj−1, tj))) · C(ti−1, αi−1))

=
k
∑

i=1
(( ∧

0<j≤i
( ∨

tj∈S
PAdv−max(tj−1, tj))) · C(ti−1, αi−1))
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=
k
∑

i=1
((PAdv−max|max| ◦ PAdv−max|max| ◦ · · · ◦ PAdv−max|max| ◦ E)(s) · Cαi−1(ti−1))

=
k
∑

i=1
((Pi

Adv−max|max| ◦ E)(s) · Cαi−1(ti−1)).

The restricted set F ⊆ S step k instantaneous expected cost
Exs

Adv(cost[= 1(♦F)])
= ( ∨

t∈F
PAdv(s, t)) · C(s, α)

= ( ∨
t∈F

∨
α∈Adv(s)

P(s, α, t)) · C(s, α)

= ((PAdv−max|F|max| ◦ E)(s) · Cα(s)
Exs

Adv(cost[= k(♦F)])
= ( ∨

t∈F
( ∧

0<j<k
( ∨

s∈S\F
PAdv(sj−1, sj)) ∧ PAdv(sk−1, t))) · C(sk−1, αk−1)

= ( ∨
t∈F

( ∧
0<j<k

( ∨
s∈S\F

∨
αj−1∈Adv(sj−1)

P(sj−1, αj−1, sj)) ∧ ∨
αk−1∈Adv(sk−1)

P(sk−1, αk−1, t))) · C(sk−1, αk−1)

= ((P′Adv−max|F|max| ◦ · · · ◦ P′Adv−max|F|max| ◦ PAdv−max|F|max| ◦ E)(s) · Cαk−1(sk−1))

= ((P
′k−1
Adv−max|F|max| ◦ PAdv−max|F|max| ◦ E)(s) · Cαk−1(sk−1))

The restricted set F ⊆ S first k steps cumulative expected cost
Exs

Adv(cost[≤ 1(♦F)])
= Exs

Adv(cost[= 1(♦F)])
= (PAdv−max|F|max| ◦ E)(s) · Cαk−1(s)
Exs

Adv(cost[≤ k(♦F)])

=
k−1
∑

i=1
(( ∧

0<j≤i
( ∨

s∈S\F
PAdv(sj−1, sj))) · C(sj−1, αj−1)) + ( ∨

t∈F
( ∧

0<j<k
( ∨

s∈S\F
PAdv(sj−1, sj)) ∧

PAdv(sk−1, t))) · C(sk−1, αk−1)

=
k−1
∑

i=1
((P

′i
Adv−max|F|max| ◦ E)(s) · Cαi−1(si−1))+ ((P

′k−1
Adv−max|F|max| ◦ PAdv−max|F|max| ◦E)(s) ·

Cαk−1(sk−1))
where Pα|F|max| is the operation that to Pα first count Pα|F and second count Pα|max| for Pα|F.
P′

α|F|max| is the operation that to Pα first count P′
α|F and second count Pα|max| for P′

α|F.
|| ∃ ©Φ ||max (s) is the maximum truth value of that there exists a path that starts

from state s and satisfies©Φ.

|| ∃©Φ ||max (s) = (Pαmax ◦ PΦ)(s). (1)

The proof is placed in Appendix A.
|| ∃ © Φ ||min (s) is the minimum truth value of that there exists a path that starts

from state s and satisfies©Φ.

|| ∃©Φ ||min (s) = (Pαmin ◦ PΦ)(s). (2)

The proof is placed in Appendix A.
|| ∀©Φ ||max (s) is the maximum truth value of that all of the paths which start from

state s satisfy©Φ.

|| ∀©Φ || max(s) = ((Pαmax ◦ DΦ)
c ◦ E)c(s) (3)

The proof is placed in Appendix A.
|| ∀©Φ ||min (s) is the minimum truth value of that all of the paths which start from

state s satisfy©Φ.

|| ∀©Φ || min(s) = ((Pαmin ◦ DΦ)
c ◦ E)c(s) (4)

The proof is placed in Appendix A.
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|| ∃Φ1 tΦ2 ||max (s) is the maximum truth value of that there exists a path that starts
from state s satisfies Φ1 tΦ2.

|| ∃Φ1 tΦ2 ||max (s) = ((DΦ1 ◦ Pαmax)
∗ ◦ PΦ2)(s) (5)

The proof is placed in Appendix A.
|| ∃Φ1 tΦ2 ||min (s) is the minimum truth value of that there exists a path that starts

from state s satisfies Φ1 tΦ2.

|| ∃Φ1 tΦ2 ||min (s) = ((DΦ1 ◦ Pαmin)
∗ ◦ PΦ2)(s) (6)

The proof is placed in Appendix A.
|| ∀Φ1 tΦ2 ||max (s) is the maximum truth value of that all of the paths which start

from state s satisfy Φ1 tΦ2.

|| ∀Φ1 tΦ2 ||max (s)

= (PΦ2 ∪ ([((DΦ1 ◦ Pαmax)
c ◦ DS)

c◦((DS ◦ (DΦ1 ◦ Pαmax)
c)c)∗ ◦ DΦ2 ]

c

◦E)c)(s) (7)

The proof is placed in Appendix A.
|| ∀Φ1 tΦ2 ||min (s) is minimum the truth values of that all of the paths that start from

state s satisfy Φ1 tΦ2.

|| ∀Φ1 tΦ2 ||min (s)

= (PΦ2 ∪ ([((DΦ1 ◦ Pαmin)
c ◦ DS)

c◦((DS ◦ (DΦ1 ◦ Pαmin)
c)c)∗ ◦ DΦ2 ]

c

◦E)c)(s) (8)

The proof is placed in Appendix A.
|| E(= k) ||max (s) is the skep k instantaneous expected cost of the path that starts

from state s under the maximum scheduler.

|| E(= 0) ||max (s) = 0,

|| E(= k) ||max (s) = (Pk
αmax|max| ◦ E)(s) · CTαmax (tk−1,tk)

(tk−1) (9)

where tm = argmax
tm∈S

(Pm
αmax|max|(s, tm)).

The proof is placed in Appendix A.
|| E(= k) ||min (s) is the skep k instantaneous expected cost of the path that starts from

state s under the minimum scheduler.

|| E(= 0) ||min (s) = 0,

|| E(= k) ||min (s) = (Pk
αmin|max| ◦ E)(s) · CTαmin (tk−1,tk)

(tk−1) (10)

where tm = argmax
tm∈S

(Pm
αmin|max|(s, tm)).

The proof is placed in Appendix A.
|| E(≤ k) ||max (s) is the first k steps cumulative expected cost of the path that starts

from state s under the maximum scheduler.
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|| E(≤ 0) ||max (s) = Exs
max(cost[= 0]) = 0

|| E(≤ k) ||max (s)

= Exs
max(cost[≤ k])

=
k

∑
i=1

((Pi
αmax |max| ◦ E)(s) · Cαi−1(ti−1))

=
k

∑
i=1

((Pi
αmax |max| ◦ E)(s) · CTαmax (ti−1,ti)

(ti−1)

|| E(≤ k) ||max (s) =
k

∑
i=1

((Pi
αmax |max| ◦ E)(s) · CTαmax (ti−1,ti)

(ti−1) (11)

where tm = argmax
tm∈S

(Pm
αmax|max|(s, tm)).

|| E(≤ k) ||min (s) is the first k steps cumulative expected cost of the path that starts
from state s under the minimum scheduler.

|| E(≤ 0) ||min (s) = Exs
min(cost[= 0]) = 0

|| E(≤ k) ||min (s)

= Exs
min(cost[≤ k])

=
k

∑
i=1

((Pi
αmin |max| ◦ E)(s) · Cαi−1(ti−1))

=
k

∑
i=1

((Pi
αmin |max| ◦ E)(s) · CTαmin (ti−1,ti)

(ti−1)

|| E(≤ k) ||min (s) =
k

∑
i=1

((Pi
αmin |max| ◦ E)(s) · CTαmin (ti−1,ti)

(ti−1) (12)

where tm = argmax
tm∈S

(Pm
αmin|max|(s, tm)).

|| E(Φ) ||max (s) is the cumulative expected cost of the path that starts from state s
and can reach a state in F under the maximum scheduler.

|| E(Φ) ||max (s)

= Exs
max(cost[♦Sat(Φ)])

= sup
1≤k≤|S|−|Sat(Φ)|

Exs
max(cost[≤ k(♦Sat(Φ))])

= sup
2≤k≤|S|−|Sat(Φ)|

{Exs
max(cost[≤ 1(♦Sat(Φ))]), Exs

max(cost[≤ k(♦Sat(Φ))])}

= sup
2≤k≤|S|−|Sat(Φ)|

{(Pαmax |Sat(Φ)|max| ◦ E)(s) · CTαmax (s,t)(s),

k−1

∑
i=1

((P
′i
αmax |Sat(Φ)|max| ◦ E)(s) · CTαmax (ti−1,ti)

(s))+

((P
′k−1
αmax |Sat(Φ)|max| ◦ Pαmax |Sat(Φ)|max| ◦ E)(s) · CTαmax (tk−1,tk)

(tk−1))} (13)

where t = argmax
t∈Sat(Φ)

(Pαmax|Sat(Φ)|max|(s, t)),

tm = argmax
tm∈S/Sat(Φ)

((P′
αmax|Sat(Φ)|max|)

m(s, tm)), if 1 ≤ m ≤ k− 1,

tm = argmax
tm∈Sat(Φ)

(((P′
αmax|Sat(Φ)|max|)

m◦P
αmax|Sat(Φ)|max|)(s, tm)) if m = k.



Entropy 2022, 24, 1183 17 of 27

|| E(Φ) ||min (s) is the cumulative expected cost of the path that starts from state s and
can reach a state in F under the minimum scheduler.

|| E(Φ) ||min (s)

= Exs
min(cost[♦Sat(Φ)])

= sup
1≤k≤|S|−|Sat(Φ)|

Exs
min(cost[≤ k(♦Sat(Φ))])

= sup
2≤k≤|S|−|Sat(Φ)|

{Exs
min(cost[≤ 1(♦Sat(Φ))]),

Exs
min(cost[≤ k(♦Sat(Φ))])}

= sup
2≤k≤|S|−|Sat(Φ)|

{(Pαmin |Sat(Φ)|max| ◦ E)(s) · CTαmin (s,t)(s),

k−1

∑
i=1

((P
′i
αmin |Sat(Φ)|max| ◦ E)(s) · CTαmin (ti−1,ti)

(s))+

((P
′k−1
αmin |Sat(Φ)|max| ◦ Pαmin |Sat(Φ)|max| ◦ E)(s) · CTαmin (tk−1,tk)

(tk−1))} (14)

where t = argmax
t∈Sat(Φ)

(Pαmin|Sat(Φ)|max|(s, t)),

tm = argmax
tm∈S/Sat(Φ)

((P′
αmin|Sat(Φ)|max|)

m(s, tm)), if 1 ≤ m ≤ k− 1,

tm = argmax
tm∈Sat(Φ)

(((P′
αmin|Sat(Φ)|max|)

m◦P
αmin|Sat(Φ)|max|)(s, tm)) if m = k.

According to (1)–(14), we provide three algorithms to solve the problem of FCTL
model checking with cost. Algorithm 1 is used to catch some values of some parameters
which would be used to calculate the cost operators. Algorithm 2 is used to calculate
the truth values of the formal FCTL state formulas. Algorithm 3 is used to calculate the
cost operators.

Algorithm 1 Catch the action

Require: a state s, the first k− 1 step transition matrix Pα, the step k transition matrix Pβ,
action index matrix Tα.

Ensure: the state tk−1 after k− 1 steps transition, the state tk after k steps transition, the
action of step k Tα(tk−1, tk).

1: for t ∈ S do
2: if Pk−1

α (s, t) > 0 then
3: tk−1 ⇐ t
4: end if
5: if (Pk−1

α ◦ Pβ)(s, t) > 0 then
6: tk ⇐ t
7: end if
8: end for
9: return tk−1, tk, Tα(tk−1, tk)

Algorithm 1 is proposed to get the action α and states sk−1 and sk in transition
sk−1

α−→ sk which are used in the computing of cost operators. By the definition of Pα|max|,
we can use the Pk−1

α (s, t) > 0 to be the determined condition of which is the successor state.
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Algorithm 2 Calculating the formal FCTL state formula

Require: a FDPC M f , a FCTL state formula Φ.
Ensure: the truth value of || Φ || (s).

1: if Φ = true then
2: return (1)s∈S
3: end if
4: if Φ = a ∈ AP then
5: return (|| a || (s))s∈S
6: end if
7: if Φ = ¬Φ then
8: return (1− || Φ || (s))s∈S
9: end if

10: if Φ = Φ1 ∧Φ2 then
11: return (|| Φ1 || (s)∧ || Φ2 || (s))s∈S
12: end if
13: if Φ = ∃©Φ then
14: return PAdv ◦ PΦ

15: end if
16: if Φ = ∀©Φ then
17: return ((PAdv ◦ DΦ)

c ◦ E)c

18: end if
19: if Φ = ∃Φ1 tΦ2 then
20: return (DΦ1 ◦ PAdv)

∗ ◦ PΦ2
21: end if
22: if Φ = ∀Φ1 tΦ2 then
23: return PΦ2 ∪ ([((DΦ1 ◦ PAdv)

c ◦ DS)
c◦((DS ◦ (DΦ1 ◦ PAdv)

c)c)∗ ◦DΦ2 ]
c ◦ E)c

24: end if

Algorithm 2 is proposed to calculate the quantitative possibility of state formula by
matrix operations based on (1)–(8).

Algorithm 3 is proposed to calculate the cost operators by matrix operations based on
(9)–(14).

Now let us analyze the time complexities of our algorithm. We would see the three
algorithms as one algorithm and analyze it.

Under the scheduler Adv, we can recursively calculate the truth value of || Φ || (s)
in step | Φ |, which is the number of the sub-formula of which is recursively defined as
below. If Φ ∈ AP ∪ {true}, then | Φ |= 1, | Φ1 ∧Φ2 |=| Φ1 | + | Φ2 | +1, | ¬Φ |=| Φ | +1,
| ∃ ©Φ |=| Φ |= 1, | ∀ ©Φ |=| Φ | +1, | ∃Φ1 tΦ2 |=| Φ1 | + | Φ2 | +1, | ∀Φ1 tΦ2 |=|
Φ1 | + | Φ2 | +1, | E(= k) |= 1, | E(≤ k) |= k and | E(Φ) |= k× (| Φ | +1).

The time complexity of calculating the formula Φ = a | Φ1 ∧Φ2 | ¬Φ is only contacted
with the size of FDPC M f and Φ, and is O(| S |). The time of calculating the formula
Φ = E(= k) | E(≤ k) is only contacted with the size of FDPC M f and Φ and k, and is
O(| S | ×k). The time of calculating the formula Φ = ∃ϕ | ∀ϕ is mainly contacted with
the time of calculating the transitive closure of PAdv, e.g., P∗Adv. We use the method of
literature [30], and the time complexities is O(| S |2 ×log | S |). The time of calculating the
formula Φ = E(Φ) is contacted with the time of catch and the time of matrix multiplication,
and is O(| S |4). Above all, we give the time complexities of our algorithm.
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Algorithm 3 Calculating the cost operators of FCTL

Require: a FDPC M f , step k, a FCTL state formula Φ.
Ensure: the value of E.

1: if Φ = E(= k) then
2: Call algorithm 1, put s, k, PAdv|max|, PAdv|max|, TAdv, get tk−1, tk, TAdv(tk−1, tk)

3: return (Pk
Adv|max| ◦ E)(s) · CTAdv(tk−1,tk)

(tk−1)

4: end if
5: if Φ = E(≤ k) then
6: for i⇐ 1 to k do
7: Call algorithm 1, put s, i, PAdv|max|, PAdv|max|, TAdv, get ti−1, ti, TAdv(ti−1, ti)

8: sum⇐ sum + (Pi
Adv|max| ◦ E)(s) · CTAdv(ti−1,ti)

(ti−1)

9: end for
10: return sum
11: end if
12: if Φ = E(Φ) then
13: Call algorithm 1,put s, 1, PAdv|Sat(Φ)|max|, PAdv|Sat(Φ)|max|, TAdv, get s0, s1, TAdv(s0, s1)

14: sum(0)⇐ (PAdv|Sat(Φ)|max| ◦ E)(s) · CTAdv(s0,s1)
(s)

15: for i⇐ 2 to | S | − | Sat(Φ) | do
16: for m⇐ 1 to i− 1 do
17: Call algorithm 1,put s, m, P′Adv|Sat(Φ)|max|, P′Adv|Sat(Φ)|max|, TAdv, get

sm−1, sm, TAdv(sm−1, sm)
18: sum(i)⇐ sum(i) + ((P′Adv|Sat(Φ)|max|)

m ◦ E)(s) · CTAdv(sm−1,sm)(sm−1)

19: end for
20: Call algorithm 1,put s, i, P′Adv|Sat(Φ)|max|, PAdv|Sat(Φ)|max|, TAdv, get

si−1, si, TAdv(si−1, si)
21: sum(i) ⇐ sum(i) + ((P′Adv|Sat(Φ)|max|)

i−1 ◦ PAdv|Sat(Φ)|max| ◦ E)(s) ·
CTAdv(si−1,si)

(si−1)

22: if sum(i) ≥ sum(0) then
23: sum(0)⇐ sum(i)
24: end if
25: end for
26: return sum(0)
27: end if

Theorem 1. Let M f = (S, Act, P, I, AP, L, C) be a finite FDPC, Φ be a FCTL formula and
k be a natural number. Then, the time complexities of calculating the truth values or expected
cost is O(size(M f )× poly(S)× | Φ | ×k), where size(M f ) is the size of FDPC M f , poly(S)
is a polynomials of | S |, | Φ | is the number of the sub-formula of | Φ |, and k is the given
natural number.

6. Illustrative Examples

A medical expert system is an intelligent computer system that collects, sorts and
analyzes a large number of cases by computer, concentrates on the diagnosis results of
medical experts, and diagnoses and treats patients. Because of the different judgment
standards of each expert for the degree of the patient’s conditions and the effect of the
treatment plan, using a fuzzy system can reflect the operation process of the system closer
to the real world. Figures 10–13 is a simple medical expert system, in which there are three
experts. Each expert gives different treatment plans, which are represented by α, β, γ. The
model has four states of the patients, respectively, represented by s0, s1, s2, s3. The variables
in the state indicate the patient’s health states, which can be divided into B(bad), G(general),
N(normal) and E(enough). Different experts have a different understanding of these four
health conditions. Therefore, we give fuzzy values to the four to show the health of patients.
When treatment scheme αi is used in state si, cost C(si, αi) will be generated, indicating the
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treatment cost of the scheme. When using a single treatment scheme, the state transition
of patients is shown in Figures 10–12. When three experts consult, a complex system
is synthesized, as shown in Figure 13. The connecting line with the arrow in the figure
indicates transition. The transition possibility is given by the number on the connecting line,

and the cost is indicated by the underlined number in the figure. For example, s0
α,0.8,160−−−−→ s1

indicates that the patient is in state s0, using treatment scheme α, then the possibility of
transition to state s1 is 0.8, and the treatment cost is 160.

Figure 10. The model of treatment options α.

Figure 11. The model of treatment options β.
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Figure 12. The model of treatment options γ.

Figure 13. The FDPC of medical expert system.

(1) || ∃© N ||max (s2) = 0.8, || ∃© N ||min (s2) = 0.3. || ∃© N ||max (s2) = 0.8 is the
maximum truth value of that there exists one plan where the patient starts from state s2 and
becomes normal after one treatment. || ∃© N ||min (s2) = 0.3 is the minimum truth value
of that there exists one plan where the patient starts from state s2 and becomes normal after
one treatment.

(2) || ∀© G ||max (s2) = 0.4, || ∀© G ||min (s2) = 0.1. || ∀© G ||max (s2) = 0.4 is the
maximum truth value of all of the plans to satisfy that the patient starts from state s2 and
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becomes general after one treatment. || ∀© G ||inx (s2) = 0.1 is the minimum truth value
of all of the plans to satisfy that the patient starts from state s2 and becomes general after
one treatment.

(3) || ∃G t E ||max (s1) = 0.5, || ∃G t E ||min (s1) = 0.4. || ∃G t E ||max (s1) = 0.5 is
the maximum truth value that there exists one plan that the patient starts from state s1,
keeps general in treatments and becomes enough finally. || ∃G t E ||min (s1) = 0.4 is the
minimum truth value that there exists one plan that the patient starts from state s1, keeps
general in treatments and becomes enough finally.

(4) || ∀G t N ||max (s1) = 0.4, || ∀G t N ||min (s1) = 0.1. || ∀G t N ||max (s1) = 0.4 is
the maximum truth value that all of the plans to satisfy that the patient starts from state
s1, keeps general in treatments and becomes enough finally. || ∀G t N ||min (s1) = 0.1 is
the minimum truth value that all of the plans to satisfy that the patient starts from state s1,
keeps general in treatments and becomes enough finally.

(5) || E(= 6) ||max (s0) = 51.1, || E(= 6) ||min (s0) = 22. || E(= 6) ||max (s0) = 51.1 is
the maximum skep 6 instantaneous expected cost of that the patient starts from state s0.
|| E(= 6) ||min (s0) = 22 is the minimum skep 6 instantaneous expected cost of that the
patient starts from state s0.

(6) || E(≤ 6) ||max (s0) = 383.5, || E(≤ 6) ||min (s0) = 158. || E(≤ 6) ||max (s0) =
383.5 is the maximum first 6 steps cumulative expected cost of that the patient starts from
state s0. || E(≤ 6) ||min (s0) = 158 is the minimum first 6 steps cumulative expected cost of
that the patient starts from state s0.

(7) || E(E) ||max (s0) = 254, || E(E) ||min (s0) = 70. || E(E) ||max (s0) = 254 is the
maximum cumulative expected cost of that the patient starts from state s0 and becomes
enough finally. || E(E) ||min (s0) = 70 is the minimum cumulative expected cost of that the
patient starts from state s0 and becomes enough finally.

7. Conclusions

This paper provides a polynomial model checking algorithm for the verification of
some quantitative properties in fuzzy systems in which in any state a nondeterministic
choice and cost between fuzzy sets exist. First, we define a fuzzy decision process model
with a cost function. This model can describe the cost consumption and other attributes
of a fuzzy system. By introducing the definition of the scheduler, we transmit FDPC into
a fuzzy Kripke structure. Next, we give the syntax and semantics of fuzzy computation
tree logic with a cost operator to describe the properties. Then, using fuzzy matrix and
matrix operations, the quantitative calculation of the computation tree logic model checking
on the fuzzy decision process model with the cost is introduced, and the corresponding
polynomial time algorithm is proposed.

There are several problems that are worth further study. First, it is interesting to
consider the linear temporal logic model checking in FDPC. Second, we would like to
extend this method used in this paper to multi-objectives model checking. Finally, we will
give some case studies on the methods proposed in this paper.
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Appendix A. Proof of (1)–(10)

Proof. (1)|| ∃©Φ ||max (s)
= ∨

π∈Pathsmax(s)
|| ©Φ || (π)

= ∨
π∈Pathsmax(s)

Pmax(s, t)∧ || Φ || (t)

= ∨
t∈S

( ∨
α∈Act(s)

P(s, α, t)∧ || Φ || (t))

= ∨
t∈S

(Pαmax(s, t)∧ || Φ || (t))
= (Pαmax ◦ PΦ)(s)

Proof. (2)|| ∃©Φ ||min (s)
= ∨

π∈Pathsmin(s)
|| ©Φ || (π)

= ∨
π∈Pathsmin(s)

Pmin(s, t)∧ || Φ || (t)

= ∨
t∈S

( ∧
α∈Act(s)

P(s, α, t)∧ || Φ || (t))

= ∨
t∈S

(Pαmin(s, t)∧ || Φ || (t))
= (Pαmin ◦ PΦ)(s)

Proof. (3)|| ∀©Φ || max(s)
= ∧

π∈Pathsmax(s)
|| ©Φ || (π)

= ∧
π∈Pathsmax(s)

Pmax(s, t)∧ || Φ || (t)

= ∧
t∈S

( ∨
α∈Act(s)

P(s, α, t)∧ || Φ || (t))

= ∧
t∈S

(Pαmax(s, t)∧ || Φ || (t))

=


∧

0≤k≤n
(Pαmax(s0, sk) ∧Φ(sk))

...
∧

0≤k≤n
(Pαmax(sn, sk) ∧Φ(sk))

(s)

=


1− ∨

0≤k≤n
(Pc

αmax(s0, sk) ∨Φc(sk))

...
1− ∨

0≤k≤n
(Pc

αmax(sn, sk) ∨Φc(sk))

(s)

=


 1

...
1

−


∨
0≤k≤n

(Pc
αmax(s0, sk) ∨Φc(sk))

...
∨

0≤k≤n
(Pc

αmax(sn, sk) ∨Φc(sk))


(s)

=


 1

...
1

−
 1− Pαmax(s0, s0) ∧Φ(s0)

...
1− Pαmax(sn, s0) ∧Φ(s0))

· · · 1− Pαmax(s0, sn) ∧Φ(sn)
. . .

...
· · · 1− Pαmax(sn, sn) ∧Φ(sn)

 ◦
 1

...
1


(s)

=


 1

...
1

− (

 1 · · · 1
...

. . .
...

1 · · · 1

− Pαmax ◦ DΦ) ◦

 1
...
1


(s)
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=


 1

...
1

− (Pαmax ◦ DΦ)
c ◦ E

(s)

= ((Pαmax ◦ DΦ)
c ◦ E)c(s)

Proof. (4)|| ∀©Φ || min(s)
= ∧

π∈Pathsmin(s)
|| ©Φ || (π)

= ∧
π∈Pathsmin(s)

Pmin(s, t)∧ || Φ || (t)

= ∧
t∈S

( ∧
α∈Act(s)

P(s, α, t)∧ || Φ || (t))

= ∧
t∈S

(Pαmin(s, t)∧ || Φ || (t))
= ((Pαmin ◦ DΦ)

c ◦ E)c(s)

Proof. (5)|| ∃Φ1 tΦ2 ||max (s)
= ∨

π∈Pathsmax(s)
|| Φ1 ∪Φ2 || (π)

= ∨
π∈Pathsmax(s)

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s)∧

∧
k<j

Pmax(tk−1, tk)∧ || Φ1 || (tk) ∧ Pmax(tj−1, tj)∧ || Φ2 || (tj)))

= ∨
t∈S

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s)∧

∧
0<k<j

( ∨
αk−1∈Act(tk−1)

P(tk−1, αk−1, tk)∧ || Φ1 || (tk))∧

∨
αk−1∈Act(tj−1)

P(tj−1, αj−1, tj)∧ || Φ2 || (tj)))

= ∨
t∈S

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s)∧

∧
0<k<j

(Pαmax(tk−1, tk)∧ || Φ1 || (tk)) ∧ Pαmax(tj−1, tj)∧ || Φ2 || (tj)))

=|| Φ2 || (s) ∨ ∨
j>0
∨

t∈S
(( ∧

0≤k<j
(|| Φ1 || (tk) ∧ Pαmax(tk, tk+1))∧ || Φ2 || (tj)))

= ((PΦ2 ∪ ∪j>0
(DΦ1 ◦ Pαmax)

j ◦ PΦ2)(s)

= ( ∪
j≥0

(DΦ1 ◦ Pαmax)
j ◦ PΦ2)(s)

= ((DΦ1 ◦ Pαmax)
∗ ◦ PΦ2)(s)

Proof. (6)|| ∃Φ1 tΦ2 ||min (s)
= ∨

π∈Pathsmin(s)
|| Φ1 ∪Φ2 || (π)

= ∨
π∈Pathsmin(s)

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s)∧

∧
k<j

Pmin(tk−1, tk)∧ || Φ1 || (tk) ∧ Pmin(tj−1, tj)∧ || Φ2 || (tj)))

= ∨
t∈S

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s)∧

∧
0<k<j

( ∧
αk−1∈Act(tk−1)

P(tk−1, αk−1, tk)∧ || Φ1 || (tk))∧

∧
αk−1∈Act(tj−1)

P(tj−1, αj−1, tj)∧ || Φ2 || (tj)))

= ∨
t∈S

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s)∧

∧
0<k<j

(Pαmin(tk−1, tk)∧ || Φ1 || (tk)) ∧ Pαmin(tj−1, tj)∧ || Φ2 || (tj)))

=|| Φ2 || (s) ∨ ∨
j>0
∨

t∈S
(( ∧

0≤k<j
(|| Φ1 || (tk) ∧ Pαmin(tk, tk+1))∧ || Φ2 || (tj)))

= ((PΦ2 ∪ ∪j>0
(DΦ1 ◦ Pαmin)

j ◦ PΦ2)(s)

= ( ∪
j≥0

(DΦ1 ◦ Pαmin)
j ◦ PΦ2)(s)

= ((DΦ1 ◦ Pαmin)
∗ ◦ PΦ2)(s)
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Proof. (7)|| ∀Φ1 tΦ2 ||max (s)
= ∧

π∈Pathsmax(s)
|| Φ1 ∪Φ2 || (π)

= ∧
π∈Pathsmax(s)

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s)∧

∧
k<j

Pmax(tk−1, tk)∧ || Φ1 || (tk) ∧ Pmax(tj−1, tj)∧ || Φ2 || (tj)))

= ∧
t∈S

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s) ∧ ∧
0<k<j

( ∨
αk−1∈Act(tk−1)

P(tk−1, αk−1, tk)∧

|| Φ1 || (tk)) ∧ ∨
αk−1∈Act(tj−1)

P(tj−1, αj−1, tj)∧ || Φ2 || (tj)))

= ∧
t∈S

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s) ∧ ∧
0<k<j

(Pαmax(tk−1, tk)∧ || Φ1 || (tk))∧

Pαmax(tj−1, tj)∧ || Φ2 || (tj)))
=|| Φ2 || (s) ∨ ∨

j>0
∧

t∈S
(( ∧

0≤k<j
(|| Φ1 || (tk) ∧ Pαmax(tk, tk+1))∧ || Φ2 || (tj)))

=|| Φ2 || (s) ∨ ∨
j>0

 K0
...

Kn

(s)

=|| Φ2 || (s) ∨ ∨
j>0
{E−

 J00... J0n
...

...
Jn0... Jnn

(s) ◦ E}(s)

=|| Φ2 || (s) ∨ ∨
j>0
{E− (DS −

 L0... L0
...

...
Ln... Ln

◦
 O0... On

...
...

O0... On

 ◦ · · · ◦
 O0... On

...
...

O0... On

 ◦ DΦ2) ◦ E}(s)

=|| Φ2 || (s) ∨ {E− [DS−
((DΦ1 ◦ Pαmax)

c ◦ DS)
c ◦ ((DS ◦ (DΦ1 ◦ Pαmax)

c)
c
)
∗ ◦ DΦ2 ] ◦ E}(s)

=|| Φ2 || (s) ∨ ([((DΦ1 ◦ Pαmax)
c ◦ DS)

c◦((DS ◦ (DΦ1 ◦ Pαmax)
c)c)∗ ◦ DΦ2 ]

c

◦E)c(s)
= (PΦ2 ∪ ([((DΦ1 ◦ Pαmax)

c ◦ DS)
c◦((DS ◦ (DΦ1 ◦ Pαmax)

c)c)∗ ◦ DΦ2 ]
c

◦E)c)(s)
where,
K0 = ∧

0≤u≤n
(|| Φ || (s0) ∧

0≤k≤n
Pαmax (s0, sk)) ∧

0≤m≤n
(|| Φ || (sk) ∧ Pαmax (sk, sm)) ∧ · · · ∧

0≤o≤n
(|| Φ || (so)∧

Pαmax (so, su))∧ || Φ2 || (su)
Kn = ∧

0≤u≤n
(|| Φ || (sn) ∧

0≤k≤n
Pαmax (s0, sk)) ∧

0≤m≤n
(|| Φ || (sk) ∧ Pαmax (sk, sm)) ∧ · · · ∧

0≤o≤n
(|| Φ || (so)∧

Pαmax (so, su))∧ || Φ2 || (su)
J00 = (|| Φ1 ||c (s0) ∨

0≤k≤n
Pc

αmax (s0, sk)) ∨
0≤m≤n

(|| Φ1 ||c (sk) ∨ Pc
αmax (sk, sm)) ∨ · · · ∨

0≤o≤n
(|| Φ1 ||c (so) ∨ Pc

αmax (so, s0))∨ || Φ2 ||c (s0)

Jn0 = (|| Φ1 ||c (sn) ∨
0≤k≤n

Pc
αmax (sn, sk)) ∨

0≤m≤n
(|| Φ1 ||c (sk) ∨ Pc

αmax (sk, sm)) ∨ · · · ∨
0≤o≤n

(|| Φ1 ||c (so) ∨ Pc
αmax (so, s0))∨ || Φ2 ||c (s0)

J0n = (|| Φ1 ||c (s0) ∨
0≤k≤n

Pc
αmax (s0, sk)) ∨

0≤m≤n
(|| Φ1 ||c (sk) ∨ Pc

αmax (sk, sm)) ∨ · · · ∨
0≤o≤n

(|| Φ1 ||c (so) ∨ Pc
αmax (so, sn))∨ || Φ2 ||c (sn)

Jnn = (|| Φ1 ||c (sn) ∨
0≤k≤n

Pc
αmax (sn, sk)) ∨

0≤m≤n
(|| Φ1 ||c (sk) ∨ Pc

αmax (sk, sm)) ∨ · · · ∨
0≤o≤n

(|| Φ1 ||c (so) ∨ Pc
αmax (so, sn))∨ || Φ2 ||c (sn)
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L0 =|| Φ1 || (s0) ∧
0≤k≤n

Pαmax (sn, sk)

Ln =|| Φ1 || (sn) ∧
0≤k≤n

Pαmax (sn, sk)

O0 = ∧
0≤k≤n

|| Φ1 || (sk) ∧ Pαmax (sk, s0)

On = ∧
0≤k≤n

|| Φ1 || (sk) ∧ Pαmax (sk, sn)

Proof. (8)|| ∀Φ1 tΦ2 ||min (s)
= ∧

π∈Pathsmin(s)
|| Φ1 ∪Φ2 || (π)

= ∧
π∈Pathsmin(s)

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s)∧

∧
k<j

Pmin(tk−1, tk)∧ || Φ1 || (tk) ∧ Pmin(tj−1, tj)∧ || Φ2 || (tj)))

= ∧
t∈S

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s) ∧ ∧
0<k<j

( ∧
αk−1∈Act(tk−1)

P(tk−1, αk−1, tk)∧

|| Φ1 || (tk)) ∧ ∧
αk−1∈Act(tj−1)

P(tj−1, αj−1, tj)∧ || Φ2 || (tj)))

= ∧
t∈S

(|| Φ2 || (s) ∨ ∨
j>0

(|| Φ1 || (s)∧

∧
0<k<j

(Pαmin(tk−1, tk)∧ || Φ1 || (tk)) ∧ Pαmin(tj−1, tj)∧ || Φ2 || (tj)))

=|| Φ2 || (s) ∨ ∨
j>0
∧

t∈S
(( ∧

0≤k<j
(|| Φ1 || (tk) ∧ Pαmin(tk, tk+1))∧ || Φ2 || (tj)))

= (PΦ2 ∪ ([((DΦ1 ◦ Pαmin)
c ◦ DS)

c◦((DS ◦ (DΦ1 ◦ Pαmin)
c)c)∗ ◦ DΦ2 ]

c

◦E)c)(s)

Proof. (9)|| E(= k) ||max (s)
= Exs

max(cost[= k])
= ( ∧

0<j≤k
( ∨

t∈S
Pmax(tj−1, tj))) · C(tk−1, αk−1)

= ( ∧
0<j≤k

( ∨
t∈S

∨
αj−1∈Act(tj−1)

P(tj−1, αj−1, tj))) · C(tk−1, αk−1)

= ( ∧
0<j≤k

( ∨
t∈S

Pαmax(tj−1, tj))) · C(tk−1, αk−1)

= (Pk
αmax|max| ◦ E)(s) · CTαmax (tk−1,tk)

(tk−1)

where tm = argmax
tm∈S

(Pm
αmax|max|(s, tm)).

Proof. (10)|| E(= k) ||min (s)
= Exs

min(cost[= k])
= ( ∧

0<j≤k
( ∨

t∈S
Pmin(tj−1, tj))) · C(tk−1, αk−1)

= ( ∧
0<j≤k

( ∨
t∈S

∧
αj−1∈Act(tj−1)

P(tj−1, αj−1, tj))) · C(tk−1, αk−1)

= ( ∧
0<j≤k

( ∨
t∈S

Pαmin(tj−1, tj))) · C(tk−1, αk−1)

= (Pk
αmin|max| ◦ E)(s) · CTαmin (tk−1,tk)

(tk−1)

where tm = argmax
tm∈S

(Pm
αmin|max|(s, tm)).
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