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Abstract: Graph neural networks (GNNs) with feature propagation have demonstrated their power
in handling unstructured data. However, feature propagation is also a smooth process that tends
to make all node representations similar as the number of propagation increases. To address this
problem, we propose a novel Block-Based Adaptive Decoupling (BBAD) Framework to produce
effective deep GNNs by utilizing backbone networks. In this framework, each block contains a
shallow GNN with feature propagation and transformation decoupled. We also introduce layer
regularizations and flexible receptive fields to automatically adjust the propagation depth and to
provide different aggregation hops for each node, respectively. We prove that the traditional coupled
GNNs are more likely to suffer from over-smoothing when they become deep. We also demonstrate
the diversity of outputs from different blocks of our framework. In the experiments, we conduct
semi-supervised and fully supervised node classifications on benchmark datasets, and the results
verify that our method can not only improve the performance of various backbone networks, but
also is superior to existing deep graph neural networks with less parameters.

Keywords: graph neural networks; block-based methods; network decoupling; adaptive receptive
fields

1. Introduction

Graph-structured data are widely used in various fields, such as social networks [1,2],
knowledge graphs [3,4], and citation networks [5,6]. Graph Neural Networks (GNNs) have
been widely used and have achieved state-of-the-art performance in many related applica-
tions, such as node classification [5–8], link prediction [9–11], and graph classification [12,13].
Feature propagation is a simple, efficient, and powerful GNN paradigm [14,15]. The main
idea behind it is to obtain new node representations by stacking multiple GNN layers to
aggregate the neighbor information of nodes using nonlinear transformations [16]. Graph
Convolutional Network [5] is one of the representative methods, which iteratively aggre-
gates the features of neighboring nodes using a normalized adjacency matrix. However, it
can only work with two to four layers, and when the model is deeper, the representation
ability will degrade rapidly. The reason is that when the GCN layers are continuously
stacked, the representations of nodes eventually converge to a specific value and become in-
distinguishable [17]. Some studies believe that GCN is a smoothing operation on the graph
using the Laplacian operator [18], so the above problem is also called the over-smoothing
problem [19].

In order to learn high-level node representations in large, sparsely connected graphs,
we have to increase model depth. For this sake, approaches that can alleviate over-
smoothing have been developed.

Some approaches simply modify the connections between GNN layers, such as
using residual connections and identity maps [20,21], skip connections [17], inception
structures [22], and self-attention for different neighbors [23,24]. However, the increase in
performance is still limited [21].
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In addition to these approaches, network decoupling is an important way to alleviate
over-smoothing. Traditional GNNs map from input to output space using feature transfor-
mation operation after feature propagation. However, recent studies have shown that too
many feature transformations can increase unnecessary redundant computation [25], cause
over-fitting [22], and accelerate over-smoothing [18,26]. Decoupled GNNs can solve such
problems by separating the transformation and propagation process, such as propagating
features multiple times and then performing a few feature transformations [26–29], or re-
versely [30,31]. Since the feature propagation process does not involve parameter training,
decoupled GNNs are also beneficial to the offline computation of the feature propagation
process for some giant graphs, which significantly reduces the training time.

However, these approaches can not adaptively learn the number of optimal transfor-
mations.

Another way to solve over-smoothing is to use a flexible receptive field for each node.
Traditional GNNs usually use a fixed receptive field, and the node representations output
by the last layer of a model only consider the neighborhood within a specific distance. Thus,
information during the propagation process is not fully utilized and not adjustable [32].
Some works try to make the receptive field of the node adaptively adjusted by combining
the outputs from different GNN layers [27,28,33]. Some methods choose to concatenate
multiple levels of features together [34], and some methods choose to add these features by
weights [28,30]. However, these approaches bring additional computational complexity.

In this work, we propose a novel decoupling approach, called a Block-Based Adaptive
Decoupling (BBAD) Framework, to improve the performance further with less compu-
tational complexity for deep networks. We use decoupled blocks to replace multi-layer
GNNs for feature propagation in this framework. Different backbone networks can be
used in each block, and we use an attention mechanism to assign weights to adjust the
receptive field. We also propose a method to automatically adjust the number of layers
in each block based on identity mapping and L1 regularization so that it can adaptively
balance the number of operations for feature transformation and propagation. Experiments
for semi-supervised and fully supervised node classification show that our framework can
improve the performance of backbone networks significantly and outperform existing deep
models with fewer parameters. The main contributions of this paper are as follows:

• We propose an adaptive block-based decoupling framework. It can combine shallow
models into a deep one, producing high-level feature representations and providing
flexible receptive fields for different nodes while reducing over-smoothing and over-
fitting. We also propose a layer regularization approach to automatically adjust the
propagation depth in decoupling blocks to control the decoupling rate.

• We prove that the traditional coupled GNNs are more likely to suffer from over-
smoothing when they become deep. We explore the importance of an appropriate
decoupling rate and demonstrate the diversity of outputs from different blocks of our
framework.

• We conduct semi-supervised and fully supervised node classifications on benchmark
datasets. The results verify that our method can not only improve the ability of various
backbone networks to acquire deep features, but also outperform existing deep graph
neural networks with fewer parameters.

2. Related Work

GNNs typically aim to find a convolution kernel suitable for graph structure data.
Some researchers have proven that the convolution operation on a graph could be ap-
proximated by the k-order polynomial of the Laplace operator of the graph [5,35]. For
example, Kipf et al. proposed that the graph convolution network (vanilla GCN) simplifies
the previous graph convolution model by the first-order approximation of the k-order
polynomial [5], and the representation of the graph convolution layer is obtained as

Hl+1 = σ
(

P̃HlW(l)
)

, (1)
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where Ã = A + I, P̃ = D−
1
2 ÃD−

1
2 is a normalized adjacency matrix, Hl+1 is the feature

matrix of layer l, W represents the learnable parameters of the linear transformation
layer, and σ represents a nonlinear activation function, such as RELU . GCN aggregates
neighboring node features by iteratively stacking multiple graph convolutional layers.
GCN makes the convolution operation on graphs simple, but as mentioned above, GCN
suffers from over-smoothing, so that GCN cannot take advantage of deep neural networks
to learn high-level representations.

Many approaches have been proposed to solve this issue. Modifying the structure
of feature propagation in the model is one of them, as shown in Figure 1. For example,
JKnet analyzed the failures in GCN from the spatial domain and proposed a feasible deep
GNN model, which adopts the structure of dense connections for feature propagation [17].
It concatenates the outputs from all the layers together, Hl = [Hl−1, . . . H0], and solves the
over-smoothing problem by combining node representations with different hops.

Figure 1. The illustration of four backbone networks. Benefiting from the flexibility and generality of
our framework, each block in our framework can use a different backbone network.

Some research demonstrates the necessity and superiority of decoupled GNNs the-
oretically, and removes feature transformation operations while only retaining feature
propagation layers, and the final classification layer [25]. Decoupling GNNs can improve
the flexibility of feature propagation and remove redundant parameters, which helps to
improve the ability of GNNs to acquire deep features. The feature propagation layer can be
expressed as

H(l) = SH(l−1), (2)

where Ã = A + I, S̃ = D−
1
2 ÃD−

1
2 , H(l) is the graph convolution output feature of the lth

layer.
On the other hand, Klicpera et al. argue that the size of the aggregated neighborhood

required in GNNs and the depth of the feature transformation are two completely orthogo-
nal aspects, so they propose APPNP based on personalized PageRank to solve the problem
of over-smoothing [31]. Formally, the definition of the aggregation layer is as follows

H(0) = σ(WX), (3)

H(l+1) = αP̃H(l) + (1− α)H(0), (4)

where P̃ is the same normalized adjacency matrix as in GCN, α ∈ [0, 1], and W represents the
learnable parameter and is shared for each APPNP layer to decouple the model. Thus, multi-
layer information aggregation performed from multi-hop neighbors will not significantly
increase the computational cost. To avoid over-smoothing, the input feature is partially
maintained by adding skip connections between the input layer and the current layer.

DAGNN adopts a similar shared feature transformation method [30]. It performs fea-
ture transformation on the initial features of nodes, and then performs feature propagation.
The outputs of the different layers are adaptively fused as follows

H f inal =
K

∑
l=0

θl H(l), (5)
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where H(l) represents the node representation of the output of the lth layer. By fusing the
node features of different neighborhoods, DAGNN effectively alleviates the over-smoothing
problem at the cost of computational complexity.

3. Block-Based Adaptive Decoupling Framework

We introduce our proposed adaptive block-based decoupling framework in this section.
Using blocks as the basic feature propagation units enables our architecture to be flexible
and versatile enough to be applied to different backbone GNNs.

3.1. Main Model

Our proposed framework comprises three parts: feature transformation, feature
propagation with adaptive depth, and flexible node receptive fields. An illustration of our
proposed framework is provided in Figure 2.

Figure 2. A visual illustration of our framework. It consists of feature transformations, feature
propagations with adaptive depth, and flexible node receptive fields. Through block-based feature
propagation with adaptive depth, we can adjust the decoupling rate automatically without redundant
feature transformation layers. The receptive field of each node is adaptively adjusted using recurrent
attention to obtain a personalized representation.

3.1.1. Initial Feature Transformation

Initial feature transformation is performed on the input features of nodes through a
single layer. As shown in Equation (6),

Z = σ(WX), (6)

where W is the linear transformation parameter shared by all feature propagation blocks,
X is the input feature of nodes, and σ is the activation function. We use RELU by default.
This step is similar to other decoupled GNN models.

3.1.2. Feature Propagation with Adaptive Depth

The core of GNN is feature propagation, because feature transformation alone cannot
use the neighborhood information. In order to alleviate over-smoothing and over-fitting
due to too many feature transformations in each block, we remove all feature transformation
operations and only retain the feature propagation operations between neighboring nodes.
Therefore, the k-th feature propagation layer in each block can be written as follows

m(k)
v = f (k)M

{
hk−1

u , u ∈ N(v)
}

, (7)
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h(k)v = f (k)C

(
mk

v, hk−1
v

)
, (8)

where h(k)v is the feature representation of the local node v after k feature propagation
operations, fM is a neighborhood information aggregation function, and m(k)

u is the feature
representation of node u; N(v) contains the neighboring nodes of v, and fC is a function that
decides how to combine h(k−1)

v and m(k)
v . Different GNNs have different definitions of fM

and fC; for example, in GCN, m(k)
v = SUM

{
hk−1

u , u ∈ N(v)
}

and h(k)v = ADD(mk
u, hk−1

v ).
The depth of feature propagation significantly affects the performance. Thus, each

block should control its depth to achieve the best performance. For this sake, we adopt an
identity map to control the depth of feature propagation of a single block. The overall node
representation in a block after k layers can be written as

Ĥ(k) = β(k)H(k) +
(

1− β(k)
)

Ĥ(k−1), (9)

where H(k) is the feature matrix composed of all node representation after feature propaga-
tion for k times; that is, H(k) =

[
h(k)v1 , h(k)v2 , · · ·

]
. Ĥ(k−1) is the output from the previous layer,

and Ĥ(k) is the final output of the k-th layer. β(k) corresponds to the control parameters
used by the k-th layer for identity mapping. When β(k) is close to zero, it means that the
operation of the k-th layer will be skipped, and the input is directly mapped to the output.
When β(k) is close to one, it means that the operation of the k-th layer will be passed to the
next layer. In this manner, the depth of the entire block can be adaptively tuned by changing
the value of β. We also add an L1-regularization term ∑k|βk| to control the sparseness of
β. Continuously minimizing the loss function through backpropagation can adaptively
optimize depth.

A decoupling block comprises multiple feature propagation layers without any feature
transformation layer. The feature propagation within the block is carried out layer by layer,
and any propagation structure as shown in Figure 1 can be used between layers to improve
the propagation ability. The calculation is as follows:

B(i) = prop
(

B(i−1)
)

, (10)

where prop represents multi-layer feature propagation, and B(i) represents the output of
the i-th block and also the input of the next block .

We also need to choose an appropriate ratio of the feature propagation layer number to
the feature transformation layers number; namely, the decoupling rate. In our framework,
we fix the number of feature transformation layers to be one, which means that only a
single feature transformation is performed at the end of each block. Since the number of
feature propagation of each block is adaptively changed, the decoupling rate of each block
can be adjusted automatically. These two steps can be written as follows:

B̂(i) = σ
(

W(i)B(i)
)

, (11)

where W(i) represents the linear transformation parameters corresponding to the i-th block,
and B̂(i) represents the feature representations that will be taken as input to the adaptive
node receptive fields and not passed to the next block.

3.1.3. Adaptive Node Receptive Fields

The output of each block in the framework corresponds to the node representation
after feature propagation with different hops. In the adaptive adjustment of node receptive
field, we aim to assign receptive fields of different sizes to different nodes, which can be
achieved by aggregating features from low-order and high-order neighbors from different
blocks using different weights. From the perspective of spectral domain analysis, it works
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similarly to a filter for different frequencies to better use the signals on the graph at various
frequencies. The calculation of this step is as follows

H f inal =
K

∑
l=0

αl B̂(l), (12)

where B̂(l) is the final output of the l-th block, αl measures the impact of the output of
the l-th block on the final node representation, and H f inal is the final output of the entire
framework.

To determine weights, we use a recursive attention mechanism. It recursively calcu-
lates how much discriminative information the current feature can bring to the previous
combined features to guide the weight assignment. Its calculation form is as follows

B̃(l) = B̂(l) ‖
l−1

∑
k=0

α(k)B̂(k), (13)

α̃(l) = δ
(

B̃(l) · s
)

, (14)

α(l) = eα̃(l)/
K

∑
k=0

eα̃(k) , (15)

where ‖ means the concatenation of two block outputs, and s is a learnable vector. B̃(l)

combines features from different propagation hops. If it contains most of the information
in ∑l−1

k=0 α(k)B̂(k); this means that the features of the neighborhood are very smooth, and B̃(l)

should be assigned with a smaller weight to avoid over-smoothing. On the other hand, if
the weight assigned to B̃(l) is large, it means that B̃(l) can contribute for more discriminative
information.

Our proposed framework can be applied to multiple graph-related downstream tasks,
and eventually, we will update all parameters in the whole architecture by optimizing
the loss function. Taking node classification as an example, we use the cross-entropy to
measure the differences between the softmax predictions and the ground-truth labels. The
final loss function can be as follows

L = − ∑
i∈Vi

∑
j

Yijlog
(

so f tmax
(

H f inal

)
ij

)
+ λ ∑

i
|βi|, (16)

where the first term is the cross-entropy loss function, and λ is to balance the two loss
terms.

3.2. Comparing with Existing Decoupling GNNs

In this section, we compare the similarities and differences between our framework
and existing decoupling approaches.

• Comparison with Deep Adaptive Graph Neural Network (DAGNN) [30]: The
decoupling method of this approach is to transform features first and then propagate
these features. Our framework can adopt different feature propagation structures in
each block, as shown in Figure 1, while DAGNN can only perform simple layer-by-
layer propagation. DAGNN is forced to output the results of each feature propagation
layer. Although it can fuse multi-hop neighborhoods, it ignores gains from the layer-
to-layer connections, such as skip residual connections, initial residual connections,
etc. Meanwhile, our model is block-based, utilizing the output of each block to
construct an adaptive receptive field, and different propagation structures can be
flexibly adopted within the block. So, our framework is more lightweight when
computing adaptive receptive fields. For example, if 64 layers of feature propagation
are to be performed, DAGNN needs to assign weights for 64 weights. In comparison,
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our model propagates eight layers per block and finally, it only needs to assign weights
for eight features. Experimental results also show that our method outperforms
DAGNN in both performance and complexity.

• Comparison with Decoupled GCN (DGCN) [26]: Alternatively, DGCN propagates
features first and then transforms them. The number of feature propagation layers is
the same as that of the feature transformation layer. DGCN assigns a parameter to
each layer to control the proportion of feature transformation, so that the parameters
of the model are generally unchanged. Our framework uses adaptive decoupling
blocks to reduce the number of model parameters.

3.3. Theoretical Analysis

We can consider the adaptive node receptive field as an ensemble approach by treating
different GNN network layers as different basic learners. Since the ensemble effectiveness
of basic learners depends on the diversity of learned features, we demonstrate that our
approach can provide diversified basic solutions before feeding into Equation (12). In
this analysis, we assume that node features are generated using normal distributions with
varying parameters, and the probability that a node shares the same feature distribution
parameters with another node is inversely proportional to their distance. Hereby, we define
the probability that two nodes have the same distribution as γk, where γ ∈ [0, 1], and k is
the distance between two nodes.

Without loss of generality, we can define two independent distributions as follows,
for a given node with its feature generated from N(µA, σA). Thus, the proportion of its
k-hop neighbors obtaining features from the same distribution is γk, and the features of the
remaining k-hop nodes are generated from N(µB, σB).

Theorem 1. The correlation between the output of the k1-th feature propagation block and that of
the k2-th block is

µk1

(
1− µk2

)
σ2

k2
+ µk2

(
1− µk1

)
σ2

k1(
σ2

k1
+ σ2

k2

)
σk1 σk2

, (17)

where

µk = γkµA + (1− γ)kµB, (18)

σk = γ2kσ2
A + (1− γ)2kσ2

B, (19)

with k = k1 or k2.

Proof. We use Xi
A ∼ N(µA, σA) and Xi

B ∼ N(µB, σB) to represent the corresponding
random variables, and i is an identifier. For the k-th block, we define the number of
aggregated features from neighborhoods as dk. According to the definition of feature
propagation, the aggregated feature can be represented as follows

Xk =
1
dk

γkdk

∑
i=0

Xi
A +

(1−γ)kdk

∑
i=0

Xi
B

. (20)

The corresponding expectation and variation are

E[Xk] = γkµA + (1− γ)kµB, (21)

D[Xk] = γ2kσ2
A + (1− γ)2kσ2

B. (22)
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Therefore, the covariance of the output from the k1-th block and that from the k2-th
block is

Cov
(
Xk1 , Xk2

)
(23)

=E[(Xk1 − E[Xk1 ])(Xk2 − E[Xk2 ])] (24)

=E[Xk1 Xk2 ]− E[Xk1 ]µXk2
− E[Xk2 ]µXk1

+ µXk1
µXk2

(25)

=E[Xk1 Xk2 ]− µXk1
µXk2

(26)

=
µk1 σ2

k2
+ µk2 σ2

k1

σ2
k1
+ σ2

k2

− µXk1
µXk2

(27)

=
µk1

(
1− µk2

)
σ2

k2
+ µk2

(
1− µk1

)
σ2

k1

σ2
k1
+ σ2

k2

. (28)

Thus, the correlation between the outputs of two blocks is

ρXk1
Xk2

=
Cov

(
Xk1 , Xk2

)√
D
(
Xk1

)√
D
(
Xk2

) (29)

=
µk1

(
1− µk2

)
σ2

k2
+ µk2

(
1− µk1

)
σ2

k1(
σ2

k1
+ σ2

k2

)
σk1 σk2

. (30)

where µk1 , µk2 , σk1 , and σk2 are calculated by Equations (21) and (22), with k = k1 or k2.
Theorem 1 is proved.

Next, we demonstrate the relationship between the decoupling rate and the over-
smoothing phenomenon. As matrix Ã is symmetric, its eigenvalues λ1 ≤ · · · ≤ λN are all
real numbers.

Lemma 1. (Augmented Spectral Property [18]) When the multiplicity of the largest eigenvalue λN
is M, there are the following properties: −1 < λ1, λN−M < 1, and λN−M+1 = · · · = λN = 1.

Definition 1. (M-dimensional sub-space [36]) An M-dimensional(M < N) sub-space in RN×C

is defined as follows:
M :=

{
H ∈ RN×C|H = ẼC, C ∈ RM×C

}
, (31)

where Ẽ = {ẽ1, · · · , ẽM} ∈ RN×M contains the bases of the largest eigenvalue of Ã in Lemma 1.
Namely, ẽm = D̃

1
2 um, where um(i) = 1 if node i belongs to the m-th connected components, and

vice versa. The M subspace only contains the degree information of the nodes, and is the space to
which the node representation converges when oversmoothing occurs.

Lemma 2. (Distance measure [18]) The distance between matrix H ∈ RN×M and M is dM(H) :=
infY∈M‖H −Y‖F, with the following properties

dM

(
ÃH

)
≤ ηdM(H), (32)

dM(HW) ≤ ϕdM(H), (33)

where η is the second largest eigenvalue of Ã, ϕ is the supremum of all singular values of all Wl ,
and both of them are less than one.
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We define that the output of a vanilla GCN with l feature propagation layers is Hl . We
also define the output of a block-based framework with multiple vanilla GCNs as Bk, with
decoupling rate Rd = 1− k

l .

Theorem 2. With the definitions above, the following properties hold

• dM(Hl) ≤ (ηϕ)ldM(X);
• dM(Bk) ≤ ηl ϕ(1−Rd)ldM(X).

Proof. For layer-based GCN, using Equations (32) and (33), we can have

dM(Hl+1) ≤ dM

(
ÃHlWl

)
(34)

≤ ηdM(HlWl) (35)

≤ ηϕdM(Hl). (36)

Then, we have the relationship between the input feature X and Hl

dM(Hl) ≤ (ηϕ)ldM(X). (37)

For the block-based decoupling GCNs, the relationship between the blocks is

dM(Bi+1) ≤ dM

(
Ã(l/k)BiWi

)
≤ η(l/k)ϕdM(Bi),

(38)

so the relation between Bk and the input feature X is

dM(Bk) ≤
(

η(l/k)ϕ
)k

dM(X) (39)

≤ ηl ϕkdM(X), (40)

dM(Bk) ≤ ηl ϕ(1−Rd)ldM(X) (41)

Theorem 2 is proven.

From this theorem, we can find that, given the same number of feature propagation
layers, our approach is less likely to converge to the over-smoothing state.

For different GNNs, dM(Hl) is different, and so is dM(Bk). For example, for ResGCN,
Hl is calculated as follows

H(l) = αH(l−1) + W(l−1) ÃH(l−1), (42)

Therefore, we have
dM(Hl) ≤ (ϕη + α)ldM(X), (43)

dM(Bk) ≤
(
(η + α)l + ϕ(1−Rd)l

)
dM(X). (44)

The calculation method is the same as that of Equations (34) and (37)–(39), so for
GNNs with different propagation structures, the required decoupling rates are different.
Our architecture solves this problem by adaptively adjusting the decoupling rate.

3.4. Importance of the Decoupling Rate

In this section, we discuss the importance of the decoupling rate with respect to the
number of layers in different models. In traditional GNNs, each feature propagation layer
is followed by a feature transformation layer, and the two operations are fully coupled.
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When we allow multiple feature propagation or transformation layers, we can define the
decoupling rate as follows:

Rd = 1− Lt

Lp
, (45)

where Lp is the number of feature propagation layers and Lt is the number of feature
transformation layers. Typically, as non-decoupled GNNs force feature propagation and
transformation to be performed simultaneously, we can have Lp = Lt. Using decoupled
GNNs usually increases the number of propagations to expand the range of the aggregated
neighborhood, so that Lp > Lt. Therefore, with Lp >= Lt, the decoupling rate is in [0, 1].
Thus, Rd is one minus the ratio of feature transformation layers to the feature propagation
layers.

Graphs are a kind of complex data, and feature propagation can effectively utilize the
topological characteristics of the node’s local neighborhoods, while feature transformation
can utilize the correlation between the node labels and features. Some studies believe that
too many feature transformations can damage the performance of GNNs [25,31], so only a
small number of feature transformations are retained after decoupling. For example, SGC
removes all the feature transformations before the output layer in GCN [25]. However, it
can achieve good performance with shallow layers, but does not perform well when using
deep layers. In the following examples, we demonstrate that an appropriate decoupling
rate is essential when the number of network layers varies.

We conduct node classification experiments on Cora and Citeseer, which are graphs
with sparse edges and which are likely to suffer from over-smoothing. In Figure 3a,b, we
can find that when the number of layers indicated by the horizontal axis changes, the best
choice of decoupling rate indicated by the vertical axis also changes. In Figure 3c, when
the depth is 4, 9, or 10, ResGCN requires one 100% decoupling rate, which means that
removing all feature transformation layers before the output layer is best. The decoupling
rate required by JKnet is less than that by ResGCN. The relationship between the two is
complex and cannot be described by a simple expression.

(a) Cora (b) Citeseer (c) node classification accuracy on Cora

Figure 3. (a,b) Optimum decoupling rates with different depths in Cora and Citeseer. (c) Different
feature transformation layers corresponding to the node classification accuracy on Cora.

We can also interpret these figures from another perspective. When we use a total
of 10 layers, we can see from Figure 3c that the accuracy varies as the number of feature
transformation layers changes. When the number of feature transformation layers is one, it
corresponds to the case that the total layer number is 10 and the decoupling rate is 90%.
in Figure 3b. From Figure 3c, we can see that the optimal decoupling rate is different
for different model depths, and that the differences in node classification accuracy under
different decoupling rates can be as much as 40%. Therefore, although both JKnet and
ResGCN have the ability to alleviate over-smoothing, their performances are still limited
decoupling rates, and an approach to automatically control the decoupling rate is necessary.
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4. Experiment

In this section, we perform experiments on node classifications to verify that our
proposed framework can effectively overcome over-smoothing problems when deepening
the backbone GNNs, which significantly improves the performance.

4.1. Dataset

In our experiments, assortative datasets and disassortative datasets are both verified.
Neighboring nodes are more likely to be in the same category in assortative networks.

Citation networks such as Cora, Citeseer, and Pubmed are assortative benchmark
datasets [37]. Each edge in these networks represents a citation relationship between
two research papers, and node features are the bag-of-words vectors of corresponding
paper abstracts. Each label indicates the category that the corresponding paper belongs to.
Webpage networks such as Texas, Cornell, Wisconsin, and Chameleon are disassortative
benchmark datasets. Edges in these networks represent hyperlinks between two web pages,
and features of nodes contain webpage information. Each label indicates the category that
the corresponding webpage belongs to.

Details of these datasets are recorded in Table 1.

Table 1. Datasets.

Dataset Class Nodes Edges Features

Cora 7 2708 5429 1433
Citeseer 6 3327 4732 3703
Pubmed 3 19,717 44,338 500

Chameleon 4 2277 36,101 2325
Cornell 5 183 295 1703
Texas 5 183 309 1703

Wisconsin 5 251 499 1703

4.2. Baseline and Setting

We compare our framework with a number of baseline approaches, including GCN,
GAT [5,17,22,23,31], which are shallow models that are prone to have over-smoothing
and over-fitting issues. JKnet, IncepGCN, and APPNP [17,22,31] are the models that try
to alleviate over-smoothing by modify the propagation structure. DAGNN is a model
that tries to overcome over-smoothing through decoupling feature transformation and
propagation [30]. In order to verify that our framework can not only extend the depth
of any kinds of GNNs, but also improve their performance to outperform existing deep
models, we adopt a variety of backbones: GCN, JKnet, IncepGCN, and APPNP.

We use the Adam SGD optimizer with a learning rate of 0.01 and an early stopping
patience of 100 epochs. We set the weight L2 regularization as 5 ×10−4, the dropout of
shared MLP as 0.6, and the dropout of MLP corresponding to each block as 0.2.

4.3. Experimental Results Analysis

For the semi-supervised node classification task, we use Cora, Citeseer, and PubMed
datasets, applying the standard fixed training/verification/testing splitting with 20 nodes
per class for training, 500 nodes for validation, and 1000 nodes for testing [38]. For the
fully supervised node classification, we use seven datasets: the Cora, Citeseer, PubMed,
Chameleon, Texas, Cornell, and Wisconsin datasets. We randomly split nodes of each
class into 60%, 20%, and 20% for training, validation, and testing, respectively. For each
experiment, we run them 10 times and report the mean classification accuracy. Tables 2 and
3 show the results.
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Table 2. Comparison on semi-supervised node classification in terms of accuracy.

Method Cora Citeseer Pubmed

GCN 81.5 71.1 79.0
GAT 83.1 70.8 78.5

APPNP 83.3 71.8 80.1
JKnet 81.1 69.8 78.1

DAGNN 84.4 73.3 80.5
IncepGCN 81.7 70.2 77.9

GCN-BBAD 84.3 (0.18) 72.6 (0.56) 79.9 (0.25)
APPNP-BBAD 84.9 (0.10) 73.4 (0.51) 80.9 (0.14)
JKnet-BBAD 83.6 (0.48) 71.6 (0.11) 79.5 (0.04)
Incep-BBAD 83.3 (0.29) 72.0 (0.17) 79.5 (0.08)

Table 3. Comparison on fully supervised node classification in terms of AC.

Method Cora Citeseer Pubmed Texas Cornell Wisconsin Chameleon

GCN 85.77 73.68 88.13 52.16 52.70 45.88 28.18
GAT 86.37 74.32 87.62 58.38 54.32 49.41 42.93

APPNP 87.87 76.53 89.40 65.41 73.51 69.02 54.30
JKnet 85.25 75.85 88.94 56.49 57.30 48.82 60.07

DAGNN 87.83 76.86 87.64 57.30 59.19 56.08 52.21
IncepGCN(Drop) 86.86 76.83 89.18 57.84 61.62 50.20 61.71

GCN-BBAD 87.42 75.91 88.25 72.73 72.97 77.45 54.91
APPNP-BBAD 88.09 77.03 89.63 80.54 75.95 81.57 59.12
JKnet-BBAD 87.38 74.62 88.99 79.73 81.08 84.31 60.81
Incep-BBAD 87.75 76.87 89.70 79.19 81.62 84.51 62.24

Our proposed framework has superior generality. Whether the backbone GNN is
likely to over-smooth, it can significantly improve its performance and outperform existing
deep models. The results on both semi-supervised and fully supervised tasks confirm our
view. It can effectively utilize deep model architectures to extract features from higher-
order neighbors. This performance gain is due to the decoupling blocks that can aggregate
multi-hop neighborhood features with adaptive depth, and the adaptive node receptive
fields that allow the model to adaptively adjust the ratio of low-pass and high-pass node
information.

4.4. Model Depth Analysis

In order to verify that our framework can alleviate over-smoothing issues with too
many layers, we compare our GCN-BBAD with the Vanilla GCN and the DropEdge GCN
under the same model depth. DropEdge is a framework for increasing model depth by
randomly dropping edges [22]. Figure 4 reports the results of comparative experiments
with different model depth. We perform experiments with 2/4/8/16/32/64 network layers
on datasets, including Cora, Citeseer, and Pubmed. The performance of the Vanilla GCN
degrades rapidly when the depth exceeds four layers. Although DropEdge performs better
than Vanilla GCN, our framework can significantly reduce the over-smoothing issue. We
attribute this phenomenon to the adaptive decoupling rate and the adaptive propagation
depth in each block. As shown in Table 2, our framework is also applicable to complex
backbone models such as JKnet, IncepGCN, and APPNP.
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(a) Cora (b) Citeseer (c) PubMed

Figure 4. Accuracy comparison for three datasets with various depths.

5. Conclusions

In this paper, we propose a novel Block-Based Adaptive Decoupling framework.
Our framework utilizes adaptive decoupling blocks instead of multiple layers, which
removes redundant feature transformation operations. We also propose a method based
on identity mapping to automatically tune feature propagation depth within each block.
We assign personalized node receptive fields to different nodes to effectively alleviate the
over-smoothing issue. We theoretically identified that our blocks can provide diversified
outputs, and we prove the effectiveness of the adoptive decoupling rate on over-smoothing.
We demonstrate the importance of the decoupling rate. The experimental results verify our
framework. This framework can also be used for many backbone networks to improve
their performance.
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