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Abstract: Considering the security of a communication system, designing a high-dimensional com-

plex chaotic system suitable for chaotic synchronization has become a key problem in chaotic secure 

communication. In this paper, a new 5-D hyperchaotic system with high order nonlinear terms was 

constructed and proved to be hyperchaotic by dynamical characterization characteristics, the max-

imum Lyapunov exponent was close to 2, and there was a better permutation entropy index, while 

a valid chaotic sequence could be generated in three cycles in the FPGA (Field Programmable Gate 

Array)-based implementation. A multivariable nonlinear feedback synchronous controller based on 

FPGA was proposed to design and implement synchronization of high order complex hyperchaotic 

systems. The results show that the error signal converged to 0 rapidly under the effect of the non-

linear feedback synchronous controller. This lays the foundation for the synchronization of high 

order complex chaotic systems. 

Keywords: complex chaotic system; nonlinear feedback control; chaotic synchronization; FPGA;  
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1. Introduction 

With the increasing demand for information security, secure communication tech-

nology research has become particularly important, and the application of chaos theory 

in secure communication has attracted increasing attention. Chaotic synchronization is a 

significant part of chaotic secure communication research. The transceiver system for cha-

otic secure communication has been extended from a low-dimensional chaotic system to 

a high-dimensional chaotic system. Creating high-dimensional complex chaotic systems 

and achieving chaotic synchronization have become the key in the research of chaotic se-

cure communication. 

In 1963, the American meteorologist E. N. Lorenz observed chaos in his atmospheric 

studies, opening the way for future exploration of chaos [1]. Chaos has favorable random-

ness and it is widely used in various fields such as secure communication [2], medical 

image processing [3–5], biomedical science [6,7], and finance [8–10]. In 1979, Otto Rössler 

proposed the first hyperchaotic system with two or more attractors and positive Lya-

punov exponents, its phase orbitals can be separated in multiple directions, and the alge-

braic structure and dynamical behavior are more complex, confidential, and impenetrable 

than ordinary low-dimensional chaotic systems, with greater potential for research and 

development. 

In [11], Chengqun zhou et al. constructed a four-dimensional hyperchaotic system 

based on the Lorenz system with the properties of stability, periodicity, multiple coexist-

ing attractors, multiplicative period, and Hopf bifurcation, the maximum Lyapunov ex-

ponent being 0.4934. Li et al. proposed a new four-dimensional hyperchaotic system with 

exponential terms, the basic dynamical properties and chaotic behavior of the new attrac-

tor were analyzed. The results showed that the new hyperchaotic system has an 

Citation: Wang, Y.; Li, X.; Li, X.; 

Guang, Y.; Wu, Y.; Ding, Q.  

FPGA-Based Implementation and 

Synchronization Design of a New 

Five-Dimensional Hyperchaotic  

System. Entropy 2022, 24, 1179. 

https://doi.org/10.3390/e24091179 

Academic Editor: Fernando  

Morgado-Dias 

Received: 28 June 2022 

Accepted: 20 August 2022 

Published: 24 August 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Entropy 2022, 24, 1179 2 of 21 
 

 

equilibrium point or a single equilibrium point. The maximum Lyapunov exponent of the 

hyper-chaotic system is 0.1782 [12]. Sundarapandian et al. proposed a new multi-stable 

four-dimensional hyperchaotic system and confirmed the special properties of the new 

system such as multi-stability of coexisting attractors by bifurcation diagram, phase dia-

gram, and dynamics analysis [13]. Bouteghrine et al. proposed a new multidimensional 

chaotic system with multiple parameters and nonlinear terms, and a two-phase algorithm 

was proposed to study the chaotic behavior using bifurcation and Lyapunov exponential 

theory [14]. 

Currently, there is little research on high-dimensional chaotic systems with high or-

der terms. Meanwhile, the maximum Lyapunov exponent of most hyperchaotic systems 

does not exceed 1. For hyperchaotic systems, the larger the Lyapunov exponent, the better 

the performance of the system. Thus, it is necessary to investigate high-dimensional, high 

order hyperchaotic systems with larger Lyapunov exponents. 

Compared with traditional programmable devices, FPGA (Field Programmable Gate 

Array) is of great interest to engineers because of the excellent properties such as design 

flexibility, high integration, and high-speed parallel processing, and is gradually occupy-

ing an increasing share in today’s digital information market. Yuan et al. implemented a 

chaotic circuit for a new Chen-like system by introducing the product and square terms 

of variable coefficients and using 32-bit fixed-point operations with the help of the 

Quartus II 13.0 platform from ALTERA [15]. Sun et al. similarly used the Lorenz system 

as the object and completed the chaotic system with a modular design approach in the 

form of data processing by floating-point operations through a hardware description lan-

guage [16]. Xue et al. completed a synchronization and corresponding confidential video 

communication system based on the hyperchaotic system using FPGA [17]. Liu designed 

and implemented the computing architecture of the Qi hyperchaotic system based on 

FPGA technology, which required 27 clock cycles to generate a new valid chaotic iteration 

value [18]. Tang et al. designed and implemented the computing architecture of the Chen 

hyperchaotic system based on FPGA technology, which required five clock cycles to gen-

erate a new valid chaotic iteration value [19]. In the investigation of FPGA-based imple-

mentation of chaotic systems, numerous clock cycles to generate a valid chaotic sequence, 

in the application to the field of secure communication, reduce the efficiency of the oper-

ation of encryption and decryption of plaintext data, thus reducing the overall efficiency. 

Chaotic systems are widely used in the field of secure communication because of their 

high initial value sensitivity and unpredictability, but they have also been considered un-

synchronizable for a long time. It was not until 1990 that T.L. Pecora and L.M. Carroll first 

proposed drive-response synchronization and observed synchronization in circuits, open-

ing the door for the study of chaotic synchronization methods and their applications [20]. 

Several chaotic synchronization methods have been proposed, including adaptive 

synchronization control [21], backstepping control [22], nonlinear feedback control [23], 

and drive-response synchronization control [24]. Moon Sungju et al. investigated the self-

synchronization problem of high-dimensional Lorenz systems and showed that satisfac-

tory synchronization results could not be obtained when the dimensions of the drive and 

response systems were different [25]. In [26], Dan Li et al. used a drive-response synchro-

nization control method to achieve two 6-vortex chaotic attractor synchronizations based 

on the recent multi-vortex chaotic attractor synchronization theory. Liu Yangzheng et al. 

constructed a new four-dimensional hyperchaotic Liu system based on the three-dimen-

sional Liu system. The chaotic synchronization of this hyperchaotic system was achieved 

by using a nonlinear feedback control method. Based on the stability theory of the system, 

the structure of the nonlinear feedback controller and the range of values of the feedback 

control gain when the system reaches chaotic synchronization were obtained [27]. Com-

pared with other synchronization methods, the nonlinear feedback synchronization con-

trol does not need to decompose the system and is more suitable for complex high-dimen-

sional chaotic systems. 
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In this paper, a five-dimensional chaotic system with cubic nonlinear terms is pro-

posed and implemented by FPGA. The Lyapunov exponential spectrum, bifurcation dia-

gram, permutation entropy, and heterogeneity of the new chaotic system are analyzed 

and the resulting sequences are tested with the NIST SP800-2 standard. A new five-di-

mensional hyperchaotic system based on FPGA is designed and implemented. In conjunc-

tion with the Lyapunov stability theory, a multivariate non-linear feedback synchronous 

controller is designed and analyzed. Finally, the FPGA hardware design is completed and 

validated at the board level using the Vivado development platform and the ARTIX-7 

development board. 

The subsequent sections of this paper are organized as follows: Section 2 describes 

the new 5-D hyperchaotic system used in this paper. The proposed non-linear feedback 

synchronous control by FPGA is described in Section 3. Section 4 presents the simulation 

results. Conclusions are drawn in Section 5. 

2. New 5-Dimensional Hyperchaotic System and Its Dynamical Properties 

2.1. Theory of Hyperchaotic System 

In 1963, in his work on the effects of atmospheric convection on climate, the American 

meteorologist Lorenz used Newtonian mechanics to establish a set of nonlinear differen-

tial equations, which can be expressed as follows: 

x = α(y x)

y = γx y xz

z = xy βz



 









 (1)

In 2005, Qi et al. proposed the Qi hyperchaotic system, which contains three subsys-

tems, Lorenz hyperchaotic, Chen hyperchaotic and Lü hyperchaotic, which can produce 

more complex dynamical properties with attractors showing biplanarity and a larger tra-

jectory traversal range in phase space [24]. Qi hyperchaotic can be expressed as: 

x = α(y x) + yzw

y = β(x + y) xzw

z = γz + ηxyw

w = σw + xyz

















 (2)

where x, y, z, w are state vectors. When α  =  50 , β  =  4 , γ  =  13 , σ  =  2 0 , η  =  4 , there exists two 

positive Lyapunov exponents and the system exhibits a hyperchaotic state. 

By simultaneously adding dimensionality and nonlinear terms to this system, this 

paper proposes a new 5-D chaotic system with cubic nonlinear terms, which can be de-

fined as: 

2

x = ay bx + cyz + yzw

y = dx + ly xz fv xzw

z = hz + y + xyw

w = jyz pw + xyz

v = k(x + v)



  



 











 (3)

where x, y, z, w, v represent state vectors and a, b, c, d, l, f, h, j, p, k represent constant 

parameters. 
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2.2. Dynamical Properties Analysis 

2.2.1. Dissipativity 

In relation to system (3) it is known that: 

yx z w v
V b + l h p + k

x y z w v

   
      

   
 




  
 (4)

When V = b  +  l h p  +  k  <  0   , the chaotic system is dissipative and converges ex-

ponentially, the rate of phase space convergence can be calculated to be: 

(b l+h+p k)

dv
 = (b l + h + p k)V

dt

dv
V = e

dt

  

  

 (5)

Namely, this chaotic system converges to a volume 
0V  at moment t to (b l+h+p k) e    . 

When time t tends to infinity, all the orbits of the system converge to a subset of zero 

measure, i.e., generating chaotic attractors. 

2.2.2. Lyapunov Exponents and Bifurcation Diagram 

Taking the parameters as a = 14, b = 0.5, c = 2, d = 2, l = 6, f = 4.5, h = 3, j = 0.5, p = 15, k = 

0.423, for the initial value of the chaotic system 10 0 0 0 0(x ,y ,z ,w ,v ) =  (1 ,0 .25,2 , ,1 .5) , the Lya-

punov exponents of the system can be obtained as 
1LE  = 1.9380, 2LE  = 0.1391,

3L E  = 0 .0 0 8 4 , 4LE  = 2.3637, 5L E  = 1 1 .1 3 2 8 ,  indicating the chaotic system is a hyper-

chaotic system. The partial phase diagrams of this hyperchaotic system are shown in Figure 

1.  

The Poincaré cross section converts the trajectory of a dynamical system to its inter-

section with the cross section to be studied. The continuous trajectory of the phase space 

is presented as some discrete points in the cross-section, the changes of the system mor-

phology can be judged by these discrete points: the quasi-periodic motion is presented as 

a closed curve; the periodic motion is presented as a small number of discrete points; the 

chaotic motion is presented as aggregated and dense points. Figure 2 shows the x-y cross 

section selection at z = 5. It can be observed that the points are clustered and dense, indi-

cating that the system is in a hyperchaotic state. 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 1. Phase diagrams of a hyperchaotic system. (a) Phase diagram of the x-y plane. (b) Phase 

diagram of the x-z plane. (c) Phase diagram of the x-w plane. (d) Phase diagram of the x-v plane. (e) 

Phase diagram of the y-z plane. (f) Phase diagram of the y-w plane. (g) Phase diagram of the z-v 

plane. (h) Phase diagram of the z−w plane. 
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Figure 2. Cross-sectional view of Poincaré. 

Such that a = 14, b = 0.5, c = 2, d = 2, l = 6, f = 4.5, h = 3, j = 0.5, p = 15, 0.2 k 1  , for 

the initial value 
0 0 0 0 0(x ,y ,z ,w ,v ) =  (1 ,0 .2 5 ,2 , 1 ,1 .5 ) , Figures 3 and 4 depict the variation of 

the Lyapunov exponent with the parameter k and the corresponding bifurcation diagram 

respectively. With the increase of k, the attractor exhibits a different form. For k = −0.095, 

one Lyapunov exponent is equal to zero, and the rest of the Lyapunov exponent is nega-

tive, representing that the attractor is in the form of a periodic attractor. For k = 0.055, there 

is a positive Lyapunov exponent and there exists a Lyapunov exponent equal to zero, 

indicating that the system is chaotic. For k = 0.423, there are two positive Lyapunov expo-

nents at this point, suggesting that the system is hyperchaotic. The bifurcation diagram 

also shows the system switching between the periodic, chaotic, and hyperchaotic state 

with the change of k. The specific values are shown in Table 1. The corresponding three-

dimensional phase diagrams of the system are shown in Figure 5. 

 

Figure 3. Spectrum of Lyapunov exponents. 

L
ya
pu
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Figure 4. Bifurcation diagram of x with k. 

Table 1. Lyapunov exponents and the corresponding attractor morphology. 

k LE1 LE2 LE3 LE4 LE5 Attractor Morphology 

−0.095 0.0137 −0.0810 −0.9829 −5.0398 −5.0774 Periodic attractor 

0.055 0.4044 0.0064 −0.1136 −1.4236 −10.9422 Chaotic attractor 

0.423 1.9380 0.1391 −0.0084 −2.3637 −11.1328 Hyperchaotic attractor 

 

 

  

(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 5. Phase diagrams of various attractor morphologies (a) x-y-z plane phase diagram of peri-

odic attractor, (b) y-v-w plane phase diagram of periodic attractor, (c) x-y-z plane phase diagram of 

chaotic attractor, (d) y-v-w plane phase diagram of chaotic attractor, (e) x-y-z plane phase diagram 

of hyperchaotic attractor, (f) y-v-w plane phase diagram of hyperchaotic attractor. 

Table 2 shows the comparison of the maximum Lyapunov exponent of the hyper-

chaotic system proposed in this paper with several hyperchaotic systems in the literature. 

As can be seen from Table 2, the maximum Lyapunov exponent of the five-dimensional 

hyperchaotic system proposed in this paper is 1.9380, which is much higher than the max-

imum Lyapunov exponent of other hyperchaotic systems, indicating that the system pro-

posed in this paper has a superior performance compared with other systems. 

Table 2. Comparison of the maximum Lyapunov exponent. 

Proposal The Maximum Lyapunov Exponent 

ours 1.9380 

Ref. [25] 1.0461 

Ref. [26] 0.7362 

Ref. [27] 1.0100 

Ref. [28] 0.0044 

Ref. [29] 1.0241 

2.2.3. Randomness and Initial Value Sensitivity 

The NIST system test standard was proposed by the National Institute of Standard-

ized Technology (NIST) and is widely used in sequential randomized testing. The output 

sequence is tested with the NIST-SP800-2 test suite and the data length is 1 × 106 bits. The 

significance level was determined to be 0.01. When p-value > 0.01, the test is qualified, and 

the results are shown in Table 3. It could be found that the output sequence of the new 

chaotic system passed the 16 NIST tests, and the results showed that the obtained se-

quence had good randomness. 

Table 3. NIST test of proposed 5−D hyperchaotic system. 

Testing Item p−Value(x) Result 

Approximate Entropy 0.210398 pass 

Block Frequency 0.180283 pass 

Cumulative Sum 0.582341 pass 

FFT 0.596701 pass 

Frequency 0.645639 pass 

Linear Complexity 0.151631 pass 

Longest Run 0.408543 pass 

NonOverlapping template 0.601890 pass 

Overlapping template 0.851142 pass 
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Random Excursion 0.621039 pass 

Random Excursions Variant 0.602752 pass 

Rank 0.298427 pass 

Runs 0.054103 pass 

Serial1 0.200412 pass 

Serial2 0.145922 pass 

Universal 0.304519 pass 

Initial value sensitivity is one of the characteristics of a non-linear dynamical system 

and a criterion for measuring the stochasticity of the system. According to the established 

dynamical equations, changing the initial value of the system will change the dynamical 

behavior dramatically. When the difference between the two initial conditions is small, 

the dynamic behavior will initially remain the same or behave similarly, and with the 

increase of time, the dynamic behavior will be significantly different. 

V(t) for example, the output sequence, is shown in Figure 6a for the initial value 

0 0 0 0 0(x ,y ,z ,w ,v ) =  (1 ,0 .1 ,0 ,0 ,0 ) and in Figure 6b for 
0 0 0 0 0(x ,y ,z ,w ,v ) =  (1 ,0 .1 ,0 ,0 ,0 .0 001) . 

Observing the two figures, it is clear that even if the initial value is only modified by 

0.0001, the output trajectory remains similar only at the beginning, and the trajectory is 

completely distinct as the time and number of iterations increase. This indicates that the 

system has favorable initial value sensitivity. 

  
(a) (b) 

Figure 6. Time-series diagram comparison of v(t) (a) 
0 0 0 0 0(x ,y ,z ,w ,v ) = (1,0.1,0,0,0)  sequence; (b) 

0 0 0 0 0(x ,y ,z ,w ,v ) = (1,0.1,0,0,0.0001)  sequence. 

2.2.4. Permutation Entropy 

The complexity of a chaotic system refers to the degree to which a chaotic sequence 

is close to a pseudo-random sequence using a correlation algorithm. The larger the com-

plexity value, the closer the sequence is to a random sequence, and the higher the corre-

sponding security. The permutation entropy algorithm belongs to one of the algorithms 

for calculating the complexity of a chaotic system, and the permutation entropy algorithm 

can be expressed as follows: 

(a) There exists a time series of length N x (1 ),x (2 ) ,x (3 ) ,.. .,x (N ) , embedding dimension 

m with time delay t for phase space reconstruction. 

(b) The reconstructed subsequence can be expressed as X ( i ) , where 

X (i) =  x (i),x(i+ t),...,x(i+(m 1)t) , and the reconstructed matrix Y is obtained, which can 

be expressed as: 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

t 104
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0

1
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3
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x(1) x(1+t) L x(1+(m 1)t)

x(2) x(2+t) L x(2+(m 1)t)

Y= x(j) x(j+t) L x(j+(m 1)t)

M M L M

x(i) x(i+t) L x(i+(m 1)t)









 
 
 
 
 
 
  

 (6)

where i =  N (m 1)t  , each row of the matrix Y is a reconstructed component, and there 

are i reconstructed components. By reordering each reconstructed component X ( i )  in 

ascending order, the column indices of the positions of the elements in the vector are ob-

tained to form a set of symbolic sequences  1 2 mS ( l )= j , j , . . . , j , l= 1 ,2 , . . . , i , and i m ! , thus are 

mapped to  1 2 mj , j , . . . , j . 

(c) Calculating the number of occurrences of each symbol sequence divided by the total 

number of occurrences of m! different symbol sequences as the probability of the oc-

currence of that symbol sequence, it can be expressed as  1 2 iP ,P ,...,P . 

(d) The entropy of the permutation of the time series can be expressed as: 

1

)jH(m) Pln(
i

j
j

P


   (7)

(e) where 
iP  =  1 /m ! , that is, each symbol has an equal probability, at this point the com-

plexity of the time series is the highest, the permutation entropy is the largest, the 

permutation entropy is ln(m !) , and for the convenience of representation, H (m )  is 

normalized and expressed as follows: 

H(m)
0 1

ln(m!)
   (8)

Taking the x(t) series as an example, the proposed system time series in this paper 

was compared with other literature, and the results are shown in Table 4. 

Table 4. Comparison of permutation entropy value. 

Hyperchaotic System m t PE 

Ours 3 1 0.7024 

Ref. [28] 3 1 0.6841 

Ref. [29] 3 1 0.5714 

Ref. [30] 3 1 0.6201 

As can be seen from Table 4, it can be concluded that the chaotic system proposed in 

this paper produces a higher entropy of sequence permutation, i.e., a higher complexity 

of the sequence, which can be effectively applied to improve security performance in areas 

such as secure communication. 

In summary, a five-dimensional hyperchaotic system containing three nonlinear 

terms is proposed. The analysis of dynamics characteristics shows that the maximum Lya-

punov exponent of the system can reach 1.9380, and from the analysis of permutation 

entropy it can be concluded that the new hyperchaotic system has a better permutation 

entropy exponent of 0.7042, which indicates that its complexity is higher and the corre-

sponding security is higher; The proposed hyperchaotic system contains five signal vari-

ables and ten system parameters, multiple signal variables and system parameters make 

the key space larger, and its application to the field of confidential communication and 

image encryption can greatly enhance the security of the system and improve the confi-

dentiality of communication. 
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3. FPGA-Based Hyperchaotic Synchronization Design 

3.1. Hyperhaotic Synchronization Algorithm Design 

Since FPGA can only process discrete digital signals, 5-D hyperchaotic systems need 

to discretize. Currently, the main discretization methods comprise the Runge–Kutta and 

Euler discretization. The Runge–Kutta method offers higher accuracy, while the hardware 

implementation is more difficult and consumes more hardware resources. In contrast, the 

Euler discretization method provides a relatively well-balanced compromise between 

hardware resource consumption and accuracy. Considering the large hardware over-

heads associated with longer data formats, this paper adopts a 24-bit fixed-point format, 

of which the higher 6 bits are the integer parts, where the highest bit is the sign bit and 

the lower 18 bits are the fractional parts. 

The Euler discrete master system can be formulated as: 

2

x(n+1)=[ay(n) bx(n) + cy(n)z(n) + y(n)z(n)w(n)] T + x(n)

y(n+1)=[dx(n) + ly(n) x(n)z(n) fv(n) x(n)z(n)w(n)] T + y(n)

z(n+1)=[ hz(n) + y(n) + x(n)y(n)w(n)] T + z(n)

w(n+1)=[ jy(n)z(n) pw(n) + x(n)y(n)z(n)



  



 





] T + w(n)

v(n+1)=[k(x(n) + v(n))] T + v(n)





 (9)

similarly, the Euler discrete slave system can be formulated as: 

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 2

2
1 1 1 1 1 1 1 3

x (n+1)=[ay (n) bx (n) + cy (n)z (n) + y (n)z (n)w (n)] T + x (n) + u

y (n+1)=[dx (n) + ly (n) x (n)z (n) fv (n) x (n)z (n)w (n)] T + y (n) + u

z (n+1)=[ hz (n) + y (n) + x (n)y (n)w (n)] T + z (n)+u



  









1 1 1 1 1 1 1 1 1 4

1 1 1 1 5

w (n+1)=[ jy (n)z (n) pw (n) + x (n)y (n) z (n)] T+w (n) + u

v (n+1)=[k(x (n) + v (n))] T + v (n) + u

 





 (10)

where T is the sampling period and T = 2 × 108, x (n ),y (n ),z (n ),w (n ),v (n )  represent state 

dynamics for the master system, and 
1 1 1 1 1x (n),y (n),z (n),w (n),v (n)  represent state dynam-

ics for the slave system, a, b, c, d, l, f, h, j, p, k are the parameters. The error dynamic 

system is obtained as: 

x y x 1 1 1 1 1 1

y x y 1 1 v 1 1 1 2

z z 1 y 1 1 1

e =T [ae be + c(y (n)z (n) y(n)z(n)) + y (n)z (n)w (n) y(n)z(n)w(n)] + u

e =T [de + le (x (n)z (n) x(n)z(n)) fe x (n)z (n)w (n) + x(n)z(n)w(n)] + u

e =T [ he + (y (n)+y(n))e + x (n)y (n)w (n) x(

    

 

 

  

  3

w 1 1 w 1 1 1 4

x v 5

n)y(n)w(n)] + u

e =T [ j(y (n)z (n) y(n)z(n)) pe + x (n)y (n)z (n) x(n)y(n)z(n)] + u

e =T [k(e + e )] + 

-

uv

  









 (11)

where 
x 1e = x (n ) x (n ) , 

y 1e = y ( n ) y (n ) , 
z 1e = z (n ) z ( n ) , 

w 1e =w (n) w (n) , 

v 1e = v (n ) v (n ) , 
iu (i= 1 ,2 ,3 ,4 ,5 )  is the synchronous controller. The target is to design a 

controller for master and slave systems such that the global synchronization holds. It 

means that the synchronization error converges to zero and stays in its vicinity:  

lim e(t) 0
t

  (12)

Theorem 1. The master system (9) and the slave system (10) can be globally synchronized by the 

following controller: 
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1 1 y 1 1 1 1 1

2 1 x y 1 1 v 1 1 1

3 1 y 1 1 1 1

u =x(n) x (n) T [ae +cy (n)z (n) cy(n)z(n)+y (n)z (n)w (n) y(n)z(n)w(n)]

u =y(n) y (n) T [de +2le x(n)z(n)+x (n)z (n) fe +x(n)z(n)w(n) x (n)z (n)w (n)]

u =z(n) z (n) T [e (y (n)+y(n))+x (n)y (n)z (n) x

   

 





  

  



4 1 1 1 1 1 1

5 1 v x

(n)y(n)z(n)]

u =w(n) w (n) T [j(y(n)z(n) y (n)z (n))+x (n)y (n)z (n) x(n)y(n)z(n)]

u =v(n) v (n) T [2ke +ke ]

   

 





 (13)

Proof of Theorem 1. Considering the Lyapunov function as: 

2 2 2 2 2

x y z w v

1
V(e)= (e + e + e + e + e ) 0

2
  (14)

derivative of (14) can be represented as: 

y w vx z
x y z w v

1
x y x 1 1 1 1 1

2
y x y 1 1 v 1 1 1

z z 1

Δe Δe ΔeΔe ΔeΔV(e)
=e +e +e +e +e

T T T T T T

u
=e [ae be +c(y (n)z (n) y(n)z(n))+y (n)z (n)w (n) y(n)z(n)w(n)+ ]

T

u
+e [de +le (x (n)z (n) x(n)z(n)) fe x (n)z (n)w (n)+x(n)z(n)w(n)+ ]

T

+e [ he +(y (n)+y(n)

  

   

 3
y 1 1 1

4
w 1 1 w 1 1 1

5
v x v

u
)e +x (n)y (n)w (n) x(n)y(n)w(n)+ ]

T

u
+e [ j(y (n)z (n)-y(n)z(n)) pe +x (n)y (n)z (n) x(n)y(n)z(n)+ ]

T

u
+e [k(e + e )+ ]

T



  

 (15)

by substituting Equation (13) into Equation (15), 
ΔV(e)

T
can be obtained as: 

y w vx z
x x y y z z w w v v

2 2 2 2 2
x y z w v

e e ee eΔV(e)
=e ( be )+e ( le )+e ( he )+e ( pe )+e ( ke )

T T T T T T

1 1 1 1 1
=( b )e +( l )e +( h )e +( p )e +( k )e <0

T T T T T

         

         

 (16)

Since ΔV(e)/T  is negative definite, the error dynamics system is globally asymptoti-

cally stable according to the Lyapunov stability theorem, and the master system and slave 

system errors will eventually converge to zero to reach full synchronization, regardless of 

the initial value. □ 

3.2. FPGA-Based Hyperchaotic Synchronization Design 

Figure 7 provides the top-level architecture for the hyperchaotic synchronization sys-

tem. To begin with, different 120-bit keys are input for the master and the slave system, 

and the intermediate signals, chaos_x [23:0], chaos_y [23:0], chaos_z [23:0], chaos_w [23:0], 

chaos_v [23:0], are generated by the hyper_chaos_generate module. All these are trans-

mitted to the syn_hyper_chaos module, and the synchronized sequence and error signal 

are output under the operation of the non-linear feedback synchronization controller in 

the syn_hyper_chaos module, with the system reaching full synchronization when the 

error signal value is 0. The individual signal definition in Figure 7 is described in Table 5. 
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syn_hyper_chaos

hyper_chaos

chaos_x[23:0]

chaos_y[23:0]

chaos_z[23:0]

chaos_w[23:0]

chaos_v[23:0]

hcg_valid

key_tx[119:0]

tx_valid

rst_n

clk
syn_x[23:0]

syn_y[23:0]

syn_z[23:0]

syn_w[23:0]

syn_v[23:0]

syn_valid
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rx_valid

error_x[23:0]

error_y[23:0]

error_z[23:0]

error_w[23:0]

error_v[23:0]

syn_hyper_chaos_generate

 

Figure 7. Top-level architecture of the hyperchaotic synchronization system. 

Table 5. Signal definition. 

Signal Signal Definition 

clk The system clock 

rst_n The reset signal 

key_tx [119:0] Initial key on the transmitter  

tx_valid Transmit initial key valid signal 

key_rx [119:0] Initial key on the receiver  

rx_valid Receive initial key valid signal 

syn_x/syn_y/syn_z/ 

syn_w/syn_ v [23:0] 
The synchronised sequence 

error_x/error_y/error_z/ 

error_w/error_v [23:0] 
Sequence error 

In order to prevent the multiplication result from overflowing, saturation truncation 

and rounding operations are required. In addition, the sign bit is also expanded to prevent 

data overflow when adding two data. In the hardware implementation, the multiplier 

consumes much more resource than the adder and subtractor. In order to reduce the num-

ber of multipliers, the parameters of the hyperchaotic system are obtained by shifting in 

this paper; the algorithm flow diagrams of the master system and the slave system are 

shown in Figures 8 and 9, where “>>“ indicates a right shift operation, “+” indicates an 

addition operation, and “  ” indicates a subtraction operation, “×” for multiplication, 

“round” for rounding, “saturation cut off” means saturation cut-off. 

The hyper_chaos module and the syn_hyper_chaos module use the Verilog HDL to 

develop a state machine to implement the above operations. The workflow of the hy-

per_chaos module state machine is shown below. 

(1) The state machine is asynchronous reset, when the reset signal is valid, all signals are 

initialized, and the state converts to S0. 

(2) S0: The initial key key_tx [119:0] is assigned to chaos_x [119:96], chaos_y [95:72], 

chaos_z [71:48], chaos_w [47:24], chaos_v [23:0], while the output valid signal is 

pulled up, indicating that the output is valid at the time, the state converts to S1. 

(3) S1: Complete the shift operation and pull down the output valid signal, then the state 

converts to S2. 

(4) S2: When the state converts to S2, the result of S1 is added and subtracted, and the 

result of the operation needs to be extended by one sign bit in order to prevent the 

overflow of the sum. This paper completes polynomial multiplication and fractional 

bit processing operations in the outside of the always block; first, the characteristics 

of the sign bit and the truncated part to determine the need of a carry bit—if the 
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number is positive, the highest bit of the truncated part is 1—then it is necessary to 

generate a carry bit. If the number is negative, it is necessary to determine whether 

the highest bit of the truncated part and the other bits in addition to the highest bit 

have 1, if that situation exists it is not necessary to generate a carry bit. After calcu-

lating the carry bit, it is added to the number after the truncated decimal bit to com-

plete the rounding operation, and at the same time, to prevent overflow when adding 

the carry bit, it is necessary to carry out a sign bit expansion, and then the state con-

verts to S3. 

(5) S3: In S2 we have completed the processing of fractional bits, in S3 we mainly deal 

with integer bits. We need to truncate the extra integer bits: if the part to be truncated 

and the highest bit after truncation is the same, that is, all 0 or all 1, then the part to 

be truncated is the extension of the sign bit, directly truncated; if different, the sign 

bit is judged, if positive, it will be changed to the maximum value that can be stored 

in the required format data, if negative, it will be changed to the minimum value that 

can be stored in the required format data. The final result is assigned to chaos_x, 

chaos_y, chaos_z, chaos_w, chaos_v, and then the valid signal of output is pulled up, 

the state converts to S1, the data is transferred to the syn_hyper_chaos system, and 

the set of data generation is completed.  

The state machine workflow of the syn_hyper_chaos module is similar to that of the 

hyper_chaos and is shown below. 

(1) The state machine is asynchronous reset, when the reset signal is valid, all signals are 

initialized and then the state converts to S0. 

(2) S0: The initial key key_rx [119:0] is assigned to syn_x [119:96], syn_y [95:72], syn_z 

[71:48], syn_w [47:24], syn_v [23:0], the first output sequence is the initial key, in the 

second iteration, the output of the hyper_chaos module will be input to the syn_hy-

per_chaos module to participate in circular iteration, and then the output valid signal 

is pulled up, indicating that the output is valid at this time, and the state converts to 

S1. 

(3) S1: To complete the shift operation and pull down the output valid signal, in the 

syn_hyper_chaos module, the output needs to add error signals, the value of the er-

ror signal is the difference between the syn signal and the chaos signal, at this point 

the valid signal of error is pulled up and then the state converts to S2. 

(4) S2: When the state converts to S2, the result of S1 is added and subtracted, and the 

result of the operation needs to be extended by one sign bit in order to prevent the 

overflow of the sum. The same as the hyper_chaos module, the syn_hyper_chaos 

module completes polynomial multiplication and fractional bit processing opera-

tions in the outside of the always block. The valid signal of error is pulled down and 

the state converts to S3. 

(5) S3: In S2 we have completed the processing of fractional bits, in S3 we deal mainly 

with integer bits. We need to truncate the extra integer bits and assign the final result 

to syn_x, syn_y, syn_z, syn_w, syn_v, the valid signal of output is pulled up, and 

then the state converts to S1, the set of data generation is finished. 
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Figure 8. Algorithm flow diagram of the Master System. 
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Figure 9. Algorithm flow diagram of the Slave System. 
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4. Simulation Results 

The chip model chosen for this paper is Xilinx Airtex-7 series xc7a100tfgg484-2, as 

shown in Figure 10. The development board model used is the Xilinx Artix-7 series 

AX7103 development board. Simulation is completed by vivado2019.1 and mod-

elsim2017.4. The simulation results of the new 5-dimensional hyperchaotic system based 

on FPGA are shown in Figure 11. The initial key is set as 120′h040000_ 

010000_080000_FCFFFF_060000. Compared with MATLAB simulation data, both results 

are consistent. It indicates that the result of the digital design of the FPGA-based chaotic 

system is accurate. Furthermore, it takes three clock cycles to generate a valid data which 

greatly improves the efficiency of the system compared with the contents of the refer-

ences. Meanwhile, the modelsim simulation data were exported and the corresponding 

NIST tests performed, and the results are shown in Table 6. The test results show that the 

chaotic sequences generated by the digitized hyperchaotic system still have high random-

ness. The RTL view of the chaotic synchronous top-level design is shown in Figure 12.  

 

Figure 10. Xilinx Artix-7 Series AX7103 Development Board. 

 

Figure 11. x, y, z, w, v time-series diagram for modelsim simulation. 

Table 6. NIST test results of the digitized chaotic sequence. 

Testing Item p-Value(x) Result 

Approximate Entropy 0.352142 pass 

Block Frequency 0.199847 pass 

Cumulative Sum 0.421255 pass 

FFT 0.751245 pass 

Frequency 0.604212 pass 

Linear Complexity 0.320412 pass 

Longest Run 0.201485 pass 

Non-Overlapping template 0.581245 pass 

Overlapping template 0.782121 pass 

Random Excursion 0.604712 pass 
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Random Excursions Variant 0.580073 pass 

Rank 0.300047 pass 

Runs 0.067581 pass 

Serial1 0.200412 pass 

Serial2 0.102476 pass 

Universal 0.294578 pass 

 

Figure 12. Chaotic synchronization RTL view. 

By observing Figure 12, it can be seen that Figure 12 corresponds to the top-level 

design in Section 3. Table 7 shows the resource consumption and the result of the FPGA-

based synchronization design of the hyperchaotic system is shown in Figure 13, Figure 14 

provides a partial view of the simulation results. It can be determined that the output time 

of the first synchronization sequence is 0.00066 ms under the 50 MHz clock condition, and 

when 0.00096 ms, error_x [23:0], error_y [23:0], error_z [23:0], error_w [23: 0], and error_v 

[23:0] are all zero, achieving complete synchronization of two hyperchaotic systems with 

the same structure and different initial values, with a very minimal establishment time, 

and thus demonstrating the superior performance of hardware implementation of hyper-

chaotic synchronization. 

Table 7. Table of resource consumption. 

Resource Utilization Available Utilization% 

LUT 2477 41,000 6.04 

LUTRAM 26 13,400 0.19 

FF 1963 82,000 2.39 

DSP 40 240 16.67 
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Figure 13. RTL view of chaotic synchronization. 

 

Figure 14. Partial view of chaotic synchronization results simulated with modelsim. 

To show the design results more clearly, in this paper, the modelsim simulation data 

of the chaotic synchronous system are exported to generate .dat files and input into 

MATLAB R2018 to generate the final error result graph as shown in Figure 15. 

  
(a) (b) 

e
1
n

e
2
n
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(c) (d) 

 

 

(e)  

Figure 15. Error result of MATLAB simulation. (a) Diagram of errorx simulation result, (b) diagram 

of errory simulation result, (c) diagram of errorz simulation result, (d) diagram of errorw simulation 

result, (e) diagram of errorv simulation result. 

It can be concluded form Figure 15 that the error of each output sequence soon 

reaches 0, indicating that the above design is correct. Compared with the software imple-

mentation of chaos synchronization, the hardware implementation has high stability and 

does not show significant fluctuations in the error convergence process. Due to the high-

speed performance of the hardware itself, the FPGA-based chaotic synchronization time 

is much shorter than the software-based chaotic synchronization time. Compared with 

the content of the same field, the overall convergence speed of the synchronous controller 

designed in this paper is rapid, indicating that at the same clock rate, the synchronous 

controller only needs a few iterations to achieve full synchronization, which demonstrates 

the excellent performance of the FPGA-based chaotic synchronous design. 

5. Conclusions 

In this paper, a new five-dimensional chaotic system suitable for synchronization 

was constructed and its phase diagrams observed by MATLAB simulation. The analysis 

of the Lyapunov exponent spectrum and bifurcation diagram shows that the chaotic sys-

tem has hyperchaotic characteristics, and the maximum Lyapunov exponent is 1.9380 

with a favorable permutation entropy index. A new five-dimensional hyperchaotic sys-

tem based on FPGA was designed and implemented. Simulation results show that the 

FPGA-based hyperchaotic system designed in this paper can generate a chaotic sequence 

in three clock cycles. In addition, the synchronization of the hyperchaotic system was also 

investigated. A multivariate nonlinear feedback synchronization controller was proposed, 

and the synchronization control of the high-dimensional hyperchaotic system with higher 

order terms was designed and implemented based on FPGA. The simulation result shows 

that two hyperchaotic systems with the same structure and different initial values can be 

e
3
n

e
4
n

e
5
n



Entropy 2022, 24, 1179 20 of 21 
 

 

synchronized quickly under the effect of the controller, which proves the validity of the 

designed controller. 
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