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Abstract: Attention mechanisms can improve the performance of neural networks, but the recent 
attention networks bring a greater computational overhead while improving network performance. 
How to maintain model performance while reducing complexity is a hot research topic. In this pa-
per, a lightweight Mixture Attention (MA) module is proposed to improve network performance 
and reduce the complexity of the model. Firstly, the MA module uses multi-branch architecture to 
process the input feature map in order to extract the multi-scale feature information of the input 
image. Secondly, in order to reduce the number of parameters, each branch uses group convolution 
independently, and the feature maps extracted by different branches are fused along the channel 
dimension. Finally, the fused feature maps are processed using the channel attention module to 
extract statistical information on the channels. The proposed method is efficient yet effective, e.g., 
the network parameters and computational cost are reduced by 9.86% and 7.83%, respectively, and 
the Top-1 performance is improved by 1.99% compared with ResNet50. Experimental results on 
common-used benchmarks, including CIFAR-10 for classification and PASCAL-VOC for object de-
tection, demonstrate that the proposed MA outperforms the current SOTA methods significantly by 
achieving higher accuracy while having lower model complexity. 

Keywords: convolutional neural networks; feature fusion; pyramid architecture; channel attention; 
skip connection 
 

1. Introduction 
The Convolutional Neural Network (CNN) has excellent feature learning ability and 

has been rapidly developed [1–4] in the field of computer vision, such as image classifica-
tion [5,6], object recognition [7–9], and semantic segmentation [10–12]. Since the AlexNet 
[1] network was proposed, researchers have aproposed many other methods to improve 
the performance of the network. For example, the attention mechanism in natural lan-
guage processing is introduced into computer vision, which can improve the performance 
of the network [13–18]. SENet, which obtains the channel attention weight vector by learn-
ing the interaction between channels, is the most representative. And the channel weight 
vector is used to scale each channel in the input feature map to highlight the useful fea-
tures and suppress the useless features. 

Many researchers have improved the SENet network to obtain the performance gain, 
but these methods easily suffer from greater computational overhead 

Qin et al. [14] introduced discrete cosine transformation into the CNN and proposed 
a new multi-spectral channel attention mechanism. The frequency domain component in-
dex needs to be selected by three criteria and thus the model is complex. Wang et al. [15] 
proposed a local cross-channel interaction strategy without dimensionality reduction, 
which can be efficiently implemented via 1-D convolution. However, the 1-D convolution 
layer is difficult to model the channel information, resulting in a small network 
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effectiveness gain. According to the input multi-scale information, Li et al. [16] used a 
channel attention mechanism to adaptively adjust the receptive field of each neuron in 
order to obtain performance gains while bringing greater model complexity. Besides the 
channel attention mechanism, some researchers have also introduced spatial attention 
mechanisms to the network, such as the SGE [17], DAN [18] and PSANet [19], to improve 
its performance. Nevertheless, there is a lack of channel feature modeling and this leads 
to more floating-point operations. Some researchers have shown that combining channel 
and spatial attention mechanisms can further improve network performance [12,20,21]. 
But these methods also bring more computational overhead, making the network effi-
ciency worse. In order to reduce the complexity of the network, other studies have tried 
to simplify the structure of channel or spatial attention [22,23]. For example, Zhang et al. 
[22] used grouped convolution to process the input feature map, thereby reducing the 
parameters and computational complexity. However, this method fails to establish long-
range dependency. Although the above methods can improve the performance of the net-
work to a certain extent, they also bring greater computational overhead and higher 
model complexity. They can also only obtain information in the local range of the input 
feature map, which is ineffective at constructing large-scale dependence. Therefore, build-
ing a low-load and low-complexity network is a problem. This paper proposes a low-load 
and high-performance MA (Mix Attention, MA) module to solve this problem. 

The proposed MA module can process the input tensor at multiple scales. Specifi-
cally, the multi-branch structure is used to aggregate the information of the input feature 
map. Meanwhile, each branch can effectively extract spatial information from each chan-
nel feature map at different scales by compressing the channel dimension of the input 
tensor. The feature maps then extracted from each branch are merged by splicing. Thus, 
neighbor scales of contextual features can be merged more accurately. Finally, the cross-
dimensional interaction is constructed by extracting the channel attention weight of the 
multi-scale feature map. Softmax operation is used to recorrect the attention weight of the 
corresponding channel, so as to establish the long-range dependence of the channel. The 
MA module is used to replace the 3 × 3 convolution in the ResNet residual block to obtain 
an efficient mixture attention (Efficient Mixture Attention, EMA) module. A network ar-
chitecture EMANet with strong feature expression ability is established by stacking the 
EMA modules. The main contributions of this paper are as follows: 
1. An effective MA module is proposed, which can extract multi-scale spatial infor-

mation and establish channel long-range dependence. MA is a plug and play module 
that can be applied to various computer vision task architectures to improve the per-
formance of the model. 

2. An effective backbone network EMANet is obtained by using the MA module instead 
of 3 × 3 convolution in the ResNet network, which can obtain rich feature infor-
mation. 

3. Experimental results on mini-ImageNet, CIFAR-10 and PASCAL-VOC2007 datasets 
indicate that the proposed EMANet network achieves a distinguished performance 
compared with other attention networks while maintaining low complexity. 
The rest of the paper is organized as follows: Section 2 introduces the channel atten-

tion mechanism and presents a pyramid compression hybrid module method. Section 3 
quantitatively and qualitatively evaluates the performance of the proposed method and 
compares it with the baseline and existing state-of-the-art methods. Finally, Section 4 sum-
marizes the work of this paper. 

2. Methods 
2.1. Channel Attention Module 

The channel attention module has been widely used since it was proposed by Jie Hu, 
and is mainly used in various computer vision tasks. By learning correlations between 
channels in the input feature map, it dynamically weights each channel to enhance useful 
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features and suppress noise. For a given feature map C H WX × ×∈ , where C, H, W indicate 
the channel number, spatial height and width, respectively, an SE block consists of two 
parts: squeeze and excitation, which are used to encode the global information and cali-
brate the channel correlation, respectively. Generally, the global average pooling is used 
to compress the two-dimensional feature map into a real number, which has a global re-
ceptive field, followed by two fully connected hidden layers. The output of each fully 
connected layer has an activation function, which is ReLU (Rectified Linear Unit, ReLU) 
and Sigmoid, respectively. The linear information between channels is more effectively 
combined by using two fully connected layers. The average-pooling function is defined 
as: 

( ) ( )
1 11 ,    

H W

c sq c c
i j

z F x x i j
H W

− −

= =
× ∑∑  (1) 

where H, W indicate the height and width of the feature map, and ( ),cx i j  represents a 
pixel in the feature map. 

The c-th channel attention weight can be written as: 

( ) ( )( )( )1 0c ex c cW F z W W zσ δ= =  (2) 

where δ  represents the rectified linear unit ReLU operation, ( )/
0

n n rW ×∈  and 
(n / )

1
r nW ×∈  represent the weight of the fully connected layer, and the symbol σ  repre-

sents the excitation function; usually, the channel weight vector is obtained by using the 
Sigmoid function, and n and r represent the number of channels and the channel decay 
rate, respectively. By using the excitation function, the channel weight can be allocated, 
so as to extract information more effectively. The channel attention weight generation pro-
cess introduced above is named as the squeeze and excitation weight (SEW) module, and 
the schematic diagram of the SEW module is shown in Figure 1. 

 
Figure 1. The squeeze and excitation weight module. 

2.2. Hybrid Attention Module 
This paper takes into account the hybrid idea of the ConvMixer [24] and the ad-

vantages of the multi-branch architecture of EPSANet [25]. Firstly, the input feature map 
is processed by multi-branch architecture, and each branch uses depthwise convolution 
to mix the spatial locations. Afterward, pointwise convolution is used to mix the channel 
locations. Large kernel convolution is used in depthwise convolution to mix remote spa-
tial location information, so as to construct long-range dependence while obtaining larger 
receptive fields. Finally, a mixed attention MA module is proposed, which is composed 
of four parts, as shown in Figure 2. Firstly, by executing the Mixer and Concat (MC) mod-
ule, the multi-scale mixed feature map is obtained. Secondly, the SEW module is executed 
on the multi-scale mixed feature map to obtain the channel weight vector. Thirdly, Soft-
max function recorrects the channel weight vector to obtain the calibrated multi-scale 
channel weight vector. Fourthly, the calibrated weight vector is multiplied by the corre-
sponding channel of the multi-scale mixed feature map. And finally, a refined feature map 
which is richer in multi-scale feature information is obtained and used as the output. 

As shown in Figure 2, in the MA module, the main operation for multi-scale mixed 
feature extraction is the MC module, and the overall structure of the module is shown in 
Figure 3. In order to extract multi-scale spatial information, the input feature map is 
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processed in a multi-branch way, the channel dimension of the input tensor of each branch 
is C , and the output channel dimension is ' /C C S= , where S  represents the number 
of branches. By doing this, more abundant spatial location information can be obtained. 
The different spatial resolutions and depths can be generated by using multi-scale convo-
lutional kernels in a pyramid structure. And the spatial information with different scales 
on each channel-wise feature map can be effectively extracted by squeezing the channel 
dimension of the input tensor. For each branch, it learns multi-scale mixed spatial infor-
mation independently and establishes cross-dimensional interaction in a wide range. 
However, when the size of the convolution kernel increases, the hyperparameters also 
gradually increase. Therefore, in order to perform multi-scale convolution on the input 
tensors without increasing computational costs, grouped convolutions are heavily ap-
plied in the convolutional layers. At the same time, to select different group sizes without 
increasing the amount of parameters, referring to EPSANet network architecture design 
rules, the correlation between the multi-scale kernel size and group size can be defined 
as: 

1
22

K

G
−

=  (3) 

where K represents the size of the convolution kernel and G is the size of the group; the 
effectiveness of this formula has been proved in the ablation study. For each branch, the 
spatial dimension of the input tensor is first compressed to extract local information, and 
the feature map generation function is defined as: 

'( { ( , , )}),        i=0,1,2,...,S-1i i iC C
z BN Conv X k Gσ

→
=  (4) 

where the size of the i-th convolution kernel is ( )2 1 1ik i= × + + , the size of the i-th group 

is ( 1)/22 ik
iG −= , σ represents the activation function GELU, and BN is the BatchNorm [26], 

which regularizes the tensors after activation to speed up the training of the model; 
' ' 'C H W

iz × ×∈  represents feature maps with different scales, followed by the hybrid mod-
ule. In order to mix the remote spatial location information, we increase the size of the 
convolution kernel to 9. Meanwhile, in order to prevent the increase of the convolution 
kernel size from causing more computational overhead and parameter numbers, we use 
deep convolution in this paper. According to research in the literature [27], if there is no 
identity shortcut in deepwise convolution of the large kernel, it is difficult to make it work. 
Therefore, a parallel shortcut branch was added for this paper. Referring to the Feed-For-
ward Network (FFN) design of ViTs architecture, we use a similar CNN-style block com-
posed of shortcut, SoftBAN, one 1 × 1 layers and GELU to mix channel location infor-
mation. Hence, each branch in the MC module is very similar to the Transformer struc-
ture. And by doing this, a larger combined receptive field can be obtained, and the cross-
dimensional interaction of channels is established. In the operation of the mixing module, 
the spatial dimension and channel dimension of the tensor are not changed. The mixing 
operation function is defined as: 

' ( { ( , 9)})i i iz BN ConvDeptwise z k zσ= = +  (5) 
' '( { int ( ( ))})i i iF BN ConvPo wise SoftBAN z zσ= +  (6) 

where SoftBAN  is an improvement to IEBN [28]; please check Appendix A for detailed 
proof. 
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Figure 2. The overall architecture of the mixture attention module. 

 

Figure 3. Overall architecture of MC module. 

By extracting the channel attention weight information from the multi-scale prepro-
cessing feature map, the channel weight vectors with different scales are obtained. The 
channel attention weight vector can be expressed as: 

( ),     i=0,1,2,..., 1i iSEW F Sϕ = −  (7) 

where 
' 1 1C

iϕ
× ×∈  is the attention weight, and the ( )SEW   function obtains the attention 

weight from the input feature maps at a different scale. Due to the introduction of multi-
branch architecture and the allocation of different convolution kernel sizes for each 
branch, the MA module can fuse context information at different scales, and under the 
holding of large kernel residual convolution, it is possible to generate better pixel-level 
attention for advanced semantic feature maps. In addition, in order to achieve the inter-
action of attention information and the fusion of cross-dimensional vectors without de-
stroying the original channel attention weight vector, the whole channel attention weight 
vector is obtained by a concatenation method, as shown in Equation (8): 

0 1 2 1([ , , ,..., ])SCatϕ ϕ ϕ ϕ ϕ −=  (8) 

where ϕ  is a multi-scale weight attention vector. 
Soft attention is used across the channel to adaptively select different spatial scales, 

which are guided by the channel weight vector iϕ . A soft weight assignment is given by: 

1

exp( )
Soft max( )

exp( )

i
i i S

i
i

at
ϕ

ϕ
ϕ

−= =

∑
 

(9) 
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Softmax is used to obtain multi-scale channel recalibration weights, which contain all 
local information in space and attention weights in channels. By doing this, the interaction 
between local and global attention is realized. Next, the channel attention vectors of the 
feature calibration are fused and spliced in a concatenation manner, so the entire channel 
attention vector can be expressed as: 

0 1 2 1([ , , ,..., ])Sat Cat at at at at −=  (10) 

where at  represents the attention weight vector of the multi-scale channel after attention 
interaction. We multiply the recalibrated weight iat  of the multi-scale channel attention 
with the feature map iF  of the corresponding scale as: 

,     i=0,1,2,...,S-1i i iY F at= ⊗  (11) 

where ⊗  denotes channel-wise multiplication, and iY  refers to the feature map 
weighted by the multi-scale channel attention weight vector, which has stronger feature 
representation and modeling capability, The concatenation operator is more efficient than 
the summation operator because it maintains the feature representation intact without 
destroying the information of the original feature map. In summary, the procedure to ob-
tain optimized output can be written as: 

0 1 2 1([ , , ,..., ])SY Cat Y Y Y Y −=  (12) 

From the above analysis, the MA module proposed in this paper can integrate multi-
scale spatial information and cross-channel attention into the blocks of each feature group. 
Therefore, the MA module can obtain better information interaction between local and 
global channel attention. 

2.3. Network Design 
The network architecture refers to the design of ResNet, as shown in Figure 4. There 

are two main factors to consider in choosing the residual network architecture. First, the 
residual network is the best performing convolutional neural network architecture in var-
ious computer vision tasks. It is meaningful to use the residual network as the backbone 
network to verify whether the MA structure is conducive to the mainstream CNN. Sec-
ond, the residual network is conducive to the training of the network, so that the potential 
performance of the network is released. The overall architecture of the network is shown 
in Table 1. The MA module is used to replace the 3 × 3 convolutional layer in the residual 
network architecture, and the rest of the architecture remains unchanged. We name this 
network architecture EMANet. 

 
Figure 4. Illustration and comparison of ResNet Block, SENet Block and our proposed EMANet 
Block. 
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Table 1. Network architecture of the proposed EMANet. 

Output ResNet-50 EMANet 
112 112×  7 7× , 64, stride 2 

56 56×  3 3× max pool, stride 2 

56 56×  
1 1, 64
3 3, 64 3
1 1, 256

× 
 × × 
 × 

 
1 1, 64

64 3
1 1, 256

× 
 × 
 × 

MA,  

28 28×  
1 1, 128
3 3, 128 4
1 1, 512

× 
 × × 
 × 

 
1 1, 128

128 4
1 1 512

× 
 × 
 × 

MA，
，

 

14 14×  

1 1, 256
3 3, 256 6
1 1, 1024

× 
 × × 
 × 

 
1 1, 256

256 6
1 1, 1024

× 
 × 
 × 

MA,  

7 7×  
1 1, 512
3 3, 512 3
1 1, 2048

× 
 × × 
 × 

 
1 1, 512

512 3
1 1, 2048

× 
 × 
 × 

MA,  

1 1×  7 7×  global average pool, 1000-d fc 

3. Experimental Verification and Results Analysis 
In order to verify the effectiveness of the model proposed in this paper, performance 

tests were performed based on mini-ImageNet, CIFAR-10 and PASCAL-VOC2007 da-
tasets. All models were trained on NVIDIA RTX 3060Ti GPUs with 8 GB of VRAM and 16 
GB of RAM, and the system was Ubuntu 20.04.4 LTS. The code and models are available 
at https://github.com/Xsmile-love/pytorch-emanet-master (accessed on 12 June 2022). 

3.1. Dataset 
For classification tasks, this paper uses mini-ImageNet dataset and CIFAR-10 dataset 

to verify the effectiveness of the proposed model. The mini-ImageNet dataset contains 100 
categories, each category contains 600 images, with a total of 60,000 images; the size of 
each image is not fixed, the training dataset contains 48,000 images, and the validation 
dataset contains 12,000 images. The CIFAR10 dataset contains 10 categories of color im-
ages, each category contains 6000 images, each image size is 32 × 32; CIFAR-10 is a small 
dataset, a total of 60,000 images. A total of 50,000 images are used as the validation setand 
the rest are used as the validation set. For the object detection task, the PASCAL-VOC2007 
dataset is generally used to verify the effectiveness of the model, which contains a total of 
21,504 images; the training set contains 16,552 images, and the validation set contains 4952 
images, with a total of 20 categories. 

3.2. Experimental Parameter Settings 
For the mini-ImageNet image classification task, the data is first augmented with ran-

dom cropping, random horizontal flipping and normalization. The optimization is per-
formed by using the stochastic gradient descent (SGD) with weight decay of 1 × 10−4, mo-
mentum is 0.9, cross entropy loss is used as the loss function, and the epoch is 120; the 
initial learning rate is set to 0.1 and is adjusted by the factor ( )int 300.1 epoch , and the batch 
size is set to 16. For the CIFAR-10 dataset, random cropping, random horizontal flipping 
and normalization are used to enhance the dataset. The SGD is used with a weight decay 
of 0.0005, the momentum is 0.9, cross entropy loss is adopted to train all models, the learn-
ing rate is initially set as 0.1 and is adjusted by CosineAnnealingLR; the T_max and epoch 
are set as 200. For the object detection task, the Adam is used with a weight decay of 
0.0005, StepLR is used as a learning strategy, step size is set as 1, gamma is 0.96, and the 



Entropy 2022, 24, 1180 8 of 13 
 

 

backbone network uses ImageNet 1k dataset to pre-train the weight. At the beginning of 
the training, the backbone network is frozen for 50 epochs. At this time, the region pro-
posal network is trained. The learning rate in the freezing phase is 0.0001, and the batch 
size is set to four. All parameters are trained in the unfreezing stage, and the epoch is 100, 
since the memory usage is relatively large at this time, the batch size is set as two, and the 
learning rate in the unfreezing stage is 0.00001.  

3.3. Image Classification Results 
We compared EMANet with the current SOTA attention methods. The evaluation 

metrics included both efficiency (i.e., network parameter and GFLOPs) and effectiveness 
(i.e., Top-1 or Top-5 accuracy). As shown in Table 2, the EMANet network proposed in 
this paper achieved the best accuracy on Top-1, which outperforms ResNet [4] by an above 
absolute 1.99%, although ResNet [4] is 10.9% larger in parameter and 8.5% larger in com-
putation. Compared with the EPSANet [23] network, the number of parameters and float-
ing-point operations per second was increased by 0.62 and 0.11, respectively, but the Top-
1 accuracy was increased by 0.83%. Therefore, it is worth increasing these parameters and 
floating-point operations per second. Furthermore, with comparable or less complexity 
than ECANet [13], EMANet achieves above absolute 1.08% gain in performance in terms 
of Top-5 accuracy, which demonstrates the superiority of adaptive aggregation for a mul-
tiple branch. 

Table 2. Comparison of various attention models on mini-ImageNet in term of network parameters, 
FLOPs, Top-1 and Top-5 validation accuracy. 

Networks Parameters (M) FLOPs (G) Top-1 (%) Top-5 (%) 
SENet [13] 25.01 3.84 79.99 94.48 
ResNet [4] 22.61 3.83 78.43 93.50 
FcaNet [14] 25.01 3.83 79.20 93.77 

ECANet [15] 22.61 3.83 78.49 93.50 
EPSANet [25] 19.76 3.37 79.59 93.75 

CBAM [12] 26.77 3.84 79.80 94.52 
SA-Net [22] 24.37 3.83 78.79 93.78 

EMANet 20.38 3.53 80.43 94.58 

In order to verify the generalization ability of the model, experiments were carried 
out on the CIFAR-10 dataset, and the experimental results are shown in Table 3. 

Table 3. Performance comparison of various attention models on CIFAR-10 dataset. 

Network Parameters (M) FLOPs (G) Accuracy (%) 
ResNet [4] 22.43 1.215 93.62 
CBAM [12] 24.83 1.222 93.43 
SA-Net [22] 22.43 1.216 93.79 
SENet [13] 24.83 1.219 95.35 
FcaNet [14] 24.83 1.217 95.49 

ECANet [15] 22.43 1.217 95.35 
EPSANet [25] 19.58 1.066 95.32 

EMANet 20.20 1.119 95.61 

As can be seen from Table 3, the EMANet network proposed in this paper achieves 
the optimal result of 95.61% on accuracy, which verifies the generalization ability of the 
MA module. It is lower than other methods except that the number of parameters and 
floating-point operations are 0.62 and 0.05 higher than EPSANet [25], respectively. For 
example, compared with the SENet [13] network, the number of parameters was reduced 
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by 18.6% and the computational cost is reduced by 8.20%. Figure 5 visually shows that the 
model proposed in this paper significantly outperforms other networks. The above results 
show that the MA module proposed in this paper improves the performance of the net-
work to a certain extent, and maintains fewer parameters, which proves the effectiveness 
of the MA module. 

 
Figure 5. Comparisons of recently SOTA attention models on mini-ImageNet, using ResNets as 
backbones, in terms of accuracy, network parameters, and FLOPs. The size of circles indicates the 
FLOPs. 

3.4. Network Visualization Results 
In order to validate the effectiveness of the MA module more intuitively, nine images 

were sampled from the ImageNet-1k validation set, and Grad-CAM [29] was used to vis-
ualize the heatmap of layer4.2 feature maps in the EMANet network. Grad-CAM is a re-
cently proposed visualization method, which uses the gradient to calculate the im-
portance of spatial position in the convolution layer. Since the gradients are computed for 
unique classes, the Grad-CAM results can clearly demonstrate the regions that the net-
work focuses on. By observing the regions that are considered to be very important for 
the prediction category, it can be seen how the network makes good use of features. For a 
fair comparison, heatmaps of layer4.2 feature maps in the ResNet50 network are also 
drawn. Figure 6 visualizes the Grad-CAM results. 

 
Figure 6. Sample visualization on ImageNet-1k val split generated by Grad-CAM. All target layers 
selected are “layer4.2”. 

It can be clearly seen from Figure 6 that the Grad-CAM mask of the network with the 
MA module can cover the target object region better than other methods. In other words, 
the network integrated with the MA module learns to take advantage of information in 
the target object region and aggregate features from it. Therefore, the MA module pro-
posed in this paper can indeed enhance the expression ability of the network. 
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3.5. Object Detection Results 
In order to validate the ability of the EMANet network to handle downstream tasks, 

pre-training was performed on the ImageNet-1k dataset, but due to the limitation of com-
puter computing power, the remaining backbone networks listed in Table 4 were not pre-
trained, and the pretraining weights provided by the original author was used to train 
Faster-RCNN [30] on the PASCAL-VOC2007 dataset, and evaluate the bounding box Av-
erage Precision (AP) for object detection. We implemented Faster-RCNN using the 
MMDetection toolkit. As shown in Table 4, in the object detection task, EMANet achieved 
the best performance. Similar to image classification, the bounding box AP is 8.20% higher 
than ResNet [4], while the number of parameters and floating-point operations per second 
are 8.20% and 15.50% less than ResNet50, respectively. Compared with other attention 
networks, EMANet achieved the best performance in all metrics. It is worth noting that 
the EMANet network achieved 84.80% on AP50, which is 4.30%, 2.50% and 3.8% higher 
than SENet [13], FcaNet [14], and ECANet [15], respectively. The experimental results 
demonstrate that the proposed EMANet has good expression ability; when the complexity 
of the network is decreased, the performance is improved consistently, which proves the 
powerful feature expression ability of the EMANet network. 

Table 4. Object detection results of different attention methods using Faster-RCNN on PASCAL 
VOC2007 val dataset (AP50: AP at IoU = 0.50, AP75: AP at IoU = 0.75). 

Backbone Parameters (M) FLOPs (G) mAP AP AP50 AP75 APS APM APL 
SENet [13] 30.98 351.76 80.77 48.1 80.5 50.3 13.3 34.1 54.3 
ResNet [4] 28.47 317.98 78.60 45.7 78.3 47.8 6.7 32.3 51.6 
FcaNet [14] 30.98 351.63 82.53 49.4 82.3 52.6 10 34.9 55.8 

ECANet [15] 28.47 351.11 81.41 48.4 81 50.9 10.2 32.9 55.1 
EMANet 26.13 268.57 85.20 53.9 84.8 59 13.6 37 61.1 

3.6. Ablation Study 
In the pyramid architecture, a huge increase in the amount of parameters will e result 

from the increase in convolution kernel size. In order to extract multi-scale information 
from the input feature map without increasing the computational cost, this paper realized 
the balance between model accuracy and complexity by adjusting the convolution group 
size parameter, and improved the model performance by adjusting the kernel size of deep 
convolution kernel to mix long-distance spatial information. 
1. Convolution group size 

As shown in Table 5, this paper decreased the number of parameters and floating-
point operation by adjusting group size. In the multi-branch architecture, as the size of 
the convolution kernel increases, the amounts of parameters will increase significantly. In 
order to extract multi-scale spatial information, the complexity is decreased by adjusting 
the group size of different branches. From the experimental results in Table 5, when the 
group size is (1, 4, 8, 16), a good balance can be achieved between accuracy and complex-
ity; the experiments are performed on the mini-ImageNet dataset. 

Table 5. Influence of group size and kernel size on model performance. 

Group Size Kernel Size Parameters (M) FLOPs (G) Top-1 Acc (%) Top-5 Acc (%) 
(4,8,16,16) 9 16.499 2.914 78.16 93.29 

(16,16,16,16) 9 15.525 2.759 78.05 93.11 
(1,4,16,16) 9 19.460 3.388 79.84 93.93 
(1,4,8,16) 9 20.378 3.533 80.43 94.58 
(1,4,8,16) 5 20.176 3.461 72.77 90.28 
(1,4,8,16) 7 20.263 3.492 78.30 93.33 
(1,4,8,16) 13 20.695 3.646 79.29 93.83 
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2. Mixed operation kernel size 
Mixing large-range spatial location information is achieved by adjusting the kernel 

size in deep convolution. It can be seen from Table 5 that with the increase in kernel size, 
the Top-1 accuracy increases gradually, but when the kernel size is 13, the performance is 
significantly reduced. Therefore, the kernel size of nine is selected to mix spatial location 
information in this paper. 

4. Conclusions 
The purpose of the research in this paper was to improve the performance of the 

model with reduced complexity. To achieve the goals, we proposed a plug-and-play mod-
ule, i.e., MA, which can effectively extract multi-scale spatial information and important 
cross-dimensional features. Therefore, it can enhance the expressiveness of the network. 
By leveraging an improved multi-branch architecture and channel attention mechanism, 
the MA module can efficiently aggregate multi-scale contextual features and image-level 
category information. Extensive qualitative and quantitative experiments demonstrate 
that the EMANet network proposed in this paper achieves the best performance across 
image classification and object detection tasks compared with other attention methods. 

In the future, we will focus on the following tasks: 
• The MA module will be further improved to become a lightweight plug and play 

module. 
• We will use Mask-RCNN and RetinaNet detectors to verify the generalization ability 

of the EMANet model on the MS-COCO dataset. 
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Appendix A 
Inspired by the Feed-Forward Network (FFN) which has been widely used in trans-

formers [31] and MLPs [32], we use a similar CNN-style block composed of shortcut, soft-
BAN, one 1 × 1 layers, GELU and BN; the structure is shown in Figure 3: we take the 
network without the normalization layer in the CNN-style block as the baseline. SoftBAN 
is an improvement on IEBN, as shown in Figure A1. We use the Softmax function to re-
calibrate the weight vector in IEBN, and the performance is further improved. The exper-
imental results are shown in Table A1, where symbol + represents the combination of the 
baseline and the corresponding component, and this architecture is referred to as Soft-
BAN. 
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Figure A1. Overall structure of SoftBAN. 

It can be seen from Table A1 that the softBAN proposed in this paper is 0.17% and 
0.42% higher than BN and IEBN respectively, and 0.16% higher than the baseline. The 
above results indicate the effectiveness of SoftBAN. Therefore, SoftBAN is used to nor-
malize the spatial mixed feature map in this paper. 

Table A1. Accuracy comparison between SoftBAN and unnormalized, BN, and IEBN on CIFAR-10 
dataset. 

Components Accuracy (%) 
Baseline 95.45 

+BN 95.44 
+IEBN 95.19 

+SoftBAN 95.61 
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