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Abstract: It is often claimed that the entropy of a network’s degree distribution is a proxy for its
robustness. Here, we clarify the link between degree distribution entropy and giant component
robustness to node removal by showing that the former merely sets a lower bound to the latter for
randomly configured networks when no other network characteristics are specified. Furthermore,
we show that, for networks of fixed expected degree that follow degree distributions of the same
form, the degree distribution entropy is not indicative of robustness. By contrast, we show that the
remaining degree entropy and robustness have a positive monotonic relationship and give an analytic
expression for the remaining degree entropy of the log-normal distribution. We also show that degree-
degree correlations are not by themselves indicative of a network’s robustness for real networks. We
propose an adjustment to how mutual information is measured which better encapsulates structural
properties related to robustness.

Keywords: complex networks; network robustness; degree distribution entropy; remaining degree
entropy; mutual information of networks

1. Introduction

Complex networks are large structures of interrelated objects often found in the real
world, with examples found throughout various scientific fields such as biology [1], ecol-
ogy [2], sociology [3] and economics [4]. A large body of work is dedicated to measuring
and understanding the properties of complex networks [5] using mathematical and com-
putational methods. One approach to evaluating the properties of complex networks is
through information theory. Information theory was introduced by Claude Shannon in
his pioneering paper from 1948 [6] and is at the heart of all digital communication today,
including efficient data compression. E.T. Jaynes, in his famous paper from 1959, derived
equilibrium statistical mechanics from a maximisation principle of Shannon entropy [7].
The tools of statistical mechanics have been successfully used to describe and explain
topology, growth, attack tolerance and other properties of complex networks (for a review,
see [8]).

Information theory has been successfully applied to complex networks in a variety of
ways. For example, the dynamical evolution of networks has been studied with measures
based on Shannon entropy and divergence [9,10], information-theoretic frameworks based
on maximum entropy of network ensembles explain the occurrence of different network
models [11-13], as well as heterogeneity in network configurations [14], and a widely used
clustering algorithm is based on efficient information compression [15].

The robustness of complex networks is of interest in many of their application areas.
Several types of robustness exist, most importantly structural tolerance against random
node removal and against targeted node removal (for a review, see [16]). Percolation studies
have shown, for example, that scale-free networks display exceptional robustness against
random node removal [17]. The metric most frequently used to measure this robustness is
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the critical fraction, which measures how many nodes must be removed from a network on
average before it breaks apart.

In this paper, we examine the relationship between the heterogeneity of a network’s
degree distribution and its robustness against random node removal. This is motivated
by the observation that scale-free networks, which are said to have heterogeneous degree
distributions, are highly robust against random node removal [17,18]. Additionally, the
variance is a form of heterogeneity measure [19], and since the variance is related to an
analytic result for the critical fraction [20], one may conclude that heterogeneity implies
robustness in networks.

Wang et al. [21] define the Shannon entropy based on a network’s degree distribution
as a measure of heterogeneity. They find that, under certain conditions, this entropy
positively correlates with a network’s critical fraction. As a result, they conclude that
heterogeneity and robustness are connected.

However, their analysis is limited in scope, as they only consider a narrow range
of networks and only measure heterogeneity in one sense. We examine the relationship
between robustness and degree distribution entropy for a wide variety of degree sequences
from real-world networks, finding that a network’s entropy alone gives a lower bound
for its critical fraction. Additionally, we compare heterogeneity to robustness for artificial
networks with restricted expected degree values, using the remaining degree entropy [22]
as well as degree distribution entropy. We find that heterogeneity measured by remaining
degree entropy increases monotonically with critical fraction, whereas degree distribution
entropy does not.

Other entropy measures may be defined on networks, such as mutual information [22].
This measures the correlation between the degree values of neighbouring nodes in a
network. Correlations are often used to predict network robustness [23,24], although we
show this is of limited effectiveness on real networks. We propose an adjustment to mutual
information such that it measures both correlations and clustering, where clustering is
a measure of common neighbours shared by adjacent nodes. We show that this mutual
information with clustering is indicative of changes to robustness in ways that mutual
information is not.

2. Background
2.1. Network Robustness

This paper will examine the relationship between network robustness and entropy
measures. We define network robustness generally as a network’s ability to withstand
damage, and in the context of this paper, we consider it to be a network’s ability to stay
connected as nodes are removed. In this sense, a network’s robustness may be measured by
identifying the fraction of nodes that must be removed before its “giant component” breaks
apart, where the giant component is the largest connected component (LCC) in the network
that is also significantly larger than any of the other components. This fraction is known as
the “critical fraction”, and the larger it is, the more robust the network is said to be.

Robustness may be measured in other ways, such as examining the average size of the
LCC throughout node removal [25] or how efficiently the information may be transported
throughout a network [26]. However, for consistency with prior work in this area, we
only consider the critical fraction. When a network undergoes node removal, nodes may
be removed in a random order which models random failures or removed according to a
specific ordering, corresponding to a targeted attack. The most simplistic targeting strategy
is to remove higher degree nodes first, but other strategies exist such as removing nodes
based on how many second neighbours they have [27] or the proportion of shortest paths
which pass through a node [28].

One significant result for predicting the critical fraction for random failures is the
Molloy-Reed criterion [20], which states that a randomly configured network will have a
giant component if )

W > 2, 1)
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where (k) is the expected degree of the network (i.e., the average degree) and (k?) is the
expected degree square. Note that we take “randomly configured” to be synonymous
with “configured according to the configuration model”, where the configuration model is
described in the [29]. The critical fraction is then given by the formula

fe=1-7a— 2)

This applies to a network of any given degree sequence, but only if the network is
randomly configured.

If the network is non-randomly configured, the critical fraction may be computa-
tionally simulated using a method outlined by Newman and Ziff [30]. The Newman-Ziff
algorithm constructs the specified network by activating one node at a time, adding edges
between active nodes if they exist in the network. As each node is added the size of the LCC
is recorded. By choosing some arbitrary threshold size above which the LCC is considered
to be the giant component, such as 1% of the maximum possible component size, the critical
fraction may be estimated as

Ny,
fe=1- N ®3)
where Njo, is the number of active nodes when the LCC is 1% of its maximum size, and
N is the total number of nodes in the desired network. This measures the robustness of a
non-randomly configured network.

2.2. Heterogeneity Measures

The heterogeneity of the link distribution of networks may be measured with the
degree distribution entropy and the remaining degree entropy. The degree distribution
entropy of a network is defined as [21]

N-1

H(p) = - ) p(k)in p(k), )

k=0

where N is the number of nodes in the network and p(k) is the probability of a node having
degree k. This entropy measures the heterogeneity of the degree distribution.

However, this entropy measures heterogeneity in only one sense. While a network
with maximum degree distribution entropy would have a uniform distribution of nodes
of different degree values, it would have far more edges belonging to high degree nodes
than edges belonging to low degree nodes. We describe this sort of heterogeneity as
“node-centric”, and ask: what if one wished to measure a network’s heterogeneity in a
more “edge-centric” sense? For this, we may use the remaining degree distribution and its
associated entropy.

The remaining degree distribution gives the probability of landing on a node with k
“remaining” degree when choosing an edge at random and traversing the edge in either
direction with equal probability [23]. The remaining degree of a node is its degree minus
one, describing the number of edges attached to the node while omitting the edge that
has been traversed across. The remaining degree distribution g(k) is related to the degree
distribution p(k) by the equation

_ (k+1)p(k+1)
qlk) = SR ©

Randomly choosing an edge and then traversing along it means that one is more
likely to arrive at high-degree nodes than if nodes are randomly chosen. The remaining
degree distribution captures this fact by providing a higher “weighting” to the probability
of landing on high degree nodes than the degree distribution does, and so it provides a
different perspective on the structure of a network.
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The remaining degree entropy is defined as [22]

Z q(k)In q(k (6)

k+1=0

The remaining degree entropy measures the heterogeneity with respect to the dis-
tribution of edges belonging to nodes of different degree values, and consequently, the
remaining degree entropy is large for networks where there are many more low degree
nodes than high degree nodes. Therefore, degree distribution entropy and remaining
degree entropy describe network heterogeneity in two different senses.

2.3. Mutual Information

Degree distribution and remaining degree entropy do not take network configuration
into account, and so can only describe the properties of randomly configured networks.
One aspect of network configuration which affects robustness is degree-degree correla-
tion [23,24], and in an information-theoretic framework, this may be measured by mutual
information.

In general, mutual information is defined for two random variables, K and K’, with
joint probability distribution g(k, k") and the corresponding marginal probability distribu-
tions, gx (k) and g/ (k') [31]. For the purpose of this paper, g(k, k") is the joint remaining
degree distribution of neighbouring nodes in a network, and the marginals are identical
by construction such that gx = g = ¢. In this case, the mutual information, I(g(k); g(k’)),
for a joint remaining degree distribution of neighbouring nodes q(k, k') with respective
marginals (k) and q(k’) is given by

I(q(k) Z Z qkk’ln(

k-+1=0 k' +1=0 q

q k’)) @

where q(k, k') is the (joint) probability of an edge connecting a node of remaining degree k
with a node of remaining degree k’. Mutual information is zero when q(k, k") = q(k)gq(k)
for all k and k' values, i.e., when there is no correlation between the remaining degree
values of neighbouring nodes in the network. Conversely, mutual information is maximum
(and takes the value I(q(k); q(k")) = H(q)) when q(k, k") = 0 for all k, k’ pairs except one,
for which g(k, k') = q(k"). In this case, the remaining degree values of neighbouring nodes
are maximally correlated, and so nodes of remaining degree k’ are connected only to nodes
of remaining degree k.

2.4. Probability Distributions

It is commonly believed that most networks have a power-law degree distribu-
tion [32-34], and various models of network evolution produce power-law networks [35].
However, this has recently been called into question by Brodio and Clauset [36], who
find that a log-normal distribution is a better descriptor of degree distribution for many
networks in the real world. This is possibly because networks tend towards power-law
distributions on an infinite scale, but since real-world networks are finite, they display
log-normal degree distributions on smaller scales [37].

We incorporate both perspectives here by examining both power-law and log-normal
degree distributions. The discrete power-law distribution has probability values described
by [38]

k*lx
Z;?:O (1’1 + Kmin ) -

where ky,;, is the minimum degree and Y ;" (1 + ky,;,) ~* is a normalisation term.

p(k) = (8)
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The log-normal distribution has probability values given by [39]

n — )2
plk) = k(T\l/ZTTeXp( - O@Ty)) ©)

where y and ¢ are the mean and standard deviation parameters respectively for the normal
distribution that the log-normal distribution is based on. Note that for computational
simulations of networks discrete distributions are used, but for analytic results we assume
continuous distributions.

3. Results
3.1. The Entropy-Robustness Plane

First, we consider how degree distribution entropy and critical fraction relate to one
another. To do this, we compare the Molloy-Reed critical fraction (Equation (2)) and
degree distribution entropy values (Equation (4)) calculated from the degree distributions
of 89 real-world networks. The data and sources for each network are provided in the
Supplementary Materials, and the results are given in Figure 1.
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Figure 1. Molloy-Reed critical fraction against degree distribution entropy for real network distribu-
tions and the lower critical fraction boundary given by the truncated normal distribution.

Note that, since only degree distributions are used, these results treat the real-world
networks as if they were randomly configured. From Figure 1, we can see that the Molloy-
Reed critical fraction is not a function of degree distribution entropy, although we can see
that as degree distribution entropy increases, there is an increasing lower boundary for the
critical fraction. The reason for this boundary is found in the maximum entropy principle.
Given a critical fraction and, thus, a ratio of first and second moments, there exists a degree
distribution on Ny which maximises the entropy. This is a truncated normal distribution
for the range [0, c0) [40], with a degree distribution given by the equation

— )2
plk) = $e><p( - %) (10)

where y and ¢ are the mean and standard deviation parameters of a non-truncated normal
distribution and Z = %(erf(giﬁ) + 1) under the constraint of k € [0,00). The truncated

normal distribution maximises entropy for a given first and second moment, however,
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specifying a critical fraction value only restricts the ratio between the first and second
moment, and so it is necessary to identify the exact parameters which give the maximum
entropy truncated normal distribution for a given critical fraction. To do this, we look for
the ratio between u and o which satisfies these conditions. For the following derivation,
we treat the truncated normal distribution as continuous.
The ratio between the first and second moments of the truncated normal distribution

is given by

(K2) @+’ +po

) =9 (11)

ptoz

2
where ¢ = }exp( 552), and the entropy of the truncated normal distribution is

H(p) = In(v2meoZ) — L2 (12)

Rearranging Equations (11) and (12) for o and equating them to one another gives

¢y (k)
eXp(H(PH{%) (§+ XG3

13
2meZ 1 _|_ _|_ V‘P 13)
which may then be rearranged to give a new expression for H(p) in the form
_ [ L AN
H(p) = ln[W\/Zme(ZE +¢)] -1+ + 2 -5 (14)
where £ 5 is the only variable term when <<kk>> is held constant. Differentiating w.r.t. and
setting & aH = 0 gives
1 Ep(-9yL4d
0= 57 S Z)+£( + 2 _q). (15)
L+ 2 ¢H + + 1 27 Zo
Equation (15) may then be solved numerically, giving
K
— =~ 0.84 1
S~ 0.84, (16)

)

which is the ratio between y and ¢ that maximises entropy for some value of << B

The entropy of the truncated normal distribution where £ = 0.84 is shown in Figure 1. By
identifying the boundary to the ‘forbidden’ region in the entropy robustness plane, we obtain
a lower bound for the critical fraction of randomly configured networks with a given degree
distribution entropy value and prove that heterogeneity, as measured by degree distribution
entropy, guarantees a certain amount of robustness.

As a final remark, it is worth pointing out that there is an upper bound to the robustness
of randomly configured networks given by the leading eigenvalue of its non-backtracking
matrix [14]. How these two bounds relate is an open question.

3.2. Distribution Entropies and Robustness

Second, we consider how degree distribution entropy and remaining degree entropy
relate to robustness against random failures for random networks with a fixed expected
degree. While previous findings suggest that degree distribution entropy is a measure of
robustness [21], we find in the following that this entropy does not increase monotonically
with the critical fraction. Instead, we find that the remaining degree of entropy increases
monotonically with the critical fraction.
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We measure the degree distribution entropy, remaining degree entropy and Molloy-
Reed critical fraction for discrete power-law and log-normal distributions with (k) = 10
and compare entropies with critical fraction values. These results are given in Figure 2.

(a) (b)
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Figure 2. Comparison of degree entropies and critical fraction for random failures on randomly
configured networks with power-law and log-normal degree distributions. In (a), degree distribution
entropy values “loop back” on themselves for both distributions. In (b), remaining degree distribution
increases monotonically with a critical fraction for both distributions. The theoretical curve is
calculated using Equation (20) for (a) and Equation (23) for (b).

In order to simulate distributions that mimic finite real-world networks, we truncate
their degree values from above, setting k;;» = 1000, and renormalise the degree distribu-
tions accordingly. For the power law distribution, this allows us to consider distributions
where a > 1, which better encompasses degree distributions found in the real world [36,38]
than restricting « values to « € (2,3), as done in [21].

In Figure 2a, we can see that the relationship between degree distribution entropy and
critical fraction loops back on itself, so for either distribution there can be two networks
with the same expected degree and degree distribution entropy that have very different
critical fraction values. By contrast, in Figure 2b we see that the remaining degree entropy
increases monotonically with the critical fraction.

These relationships between entropies and critical fraction cannot be shown analyti-
cally for the non-truncated power-law distribution when 1 < a < 2, since the distribution’s
moments are all infinite when a < 2. However, it is possible to show the relationship
between entropies and critical fraction for the non-truncated continuous log-normal distri-
bution as follows.

For the continuous log-normal distribution, the ratio between the first and second
moments is given by

K2 3
and the degree distribution entropy is
1
H(p) = 5+ In(cVv2rm) + . (18)

Using the fact that (k) = exp(u+ %02) is constant, it is possible to rearrange
Equations (17) and (18) to get

k= (kexp(a?), (19)

H(p) = %(1 — 0?) +In((k)ov/270). (20)
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Uomﬂk)dk“'”” A - 02— Ing)

Both Equations (19) and (20) are functions of ¢. % (and thereby critical fraction)

always increases as ¢ increases, and it is trivial to differentiate H(p) by o to show that
it reaches its maximum at ¢ = 1, substantiating the turning point in degree distribution
entropy shown in Figure 2a. Equation (20) is used to calculate the log-normal (theoretical)
curve in Figure 2a.

To show that log-normal remaining degree entropy always increases monotonically
with critical fraction, we first need the remaining degree distribution for the log-normal,

given by
1 (In(k) — p)*
k) = ————exp| — —=5—). 21
q(k) Bovin p( 52 ) 1)
For mathematical consistency, the index of k is not increased by 1, instead the range of

q(k) shifts from k € [—1,00 — 1) to k € [0, 00). This gives remaining degree entropy of the
form

(In(k) — y)Z) {_ (In(k) — w)* _ In((k)o \/271)} ik (22)

2 2

0 +/0 g(K)dkIn((K)ov/270),

and making use of the fact that [~ q(k)dk = 1 and %kv}%ﬂ(y — 02 —1In(k)) — 0 for both
k — 0and k — oo gives

H(g) = 5(1+0%) +In((k)ov27), (23)
which always increases with ¢ and therefore also always increases with critical fraction
when (k) is held constant. Equation (23) is used to calculate the log-normal (theoretical)
curve in Figure 2b. The discrepancy between the numerical and theoretical results for the
log-normal distribution occurs because the numerical results are generated using a discrete
truncated log-normal distribution, whereas the theoretical results assume a non-truncated
continuous distribution.

These results indicate that remaining degree entropy is a more reliable indicator of
network robustness than degree distribution entropy and better captures the underlying
structural factors that determine the robustness of a network. In particular, for networks
with log-normal degree distributions, we have proved that remaining degree distribution
increases monotonically with Molloy-Reed critical fraction.

3.3. Mutual Information and Robustness

The preceding results demonstrate the conditions under which degree entropies are
indicative of robustness, but these results only apply to networks which are randomly
configured. One information-theoretic approach to describing non-random network config-
uration is mutual information, which measures degree-degree correlations.

It has been suggested that degree-degree correlations are indicative of network robust-
ness [23,24]. However, these claims rest upon the assumption that the network in question
must be locally tree-like (i.e., the local neighbourhood of any given node must have a
structure that is similar to a tree), and this is often not the case for real-world networks.

Orsini et al. [41] find that for various real-world networks, keeping degree-degree
correlations constant while randomising other aspects of the structure is insufficient for
preserving global network properties such as average betweenness centrality [42] or the
average length of the shortest paths between each possible pairing of nodes. Instead,
keeping the average clustering for each node degree value constant preserves the global
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network properties they consider. Note that “average clustering” refers to the probability
of two nodes with a common neighbour also sharing an edge with one another. In the
following, we demonstrate the fact that mutual information as previously defined is
insufficient for measuring network structure that is relevant to robustness, and we propose
an alteration to mutual information such that it captures both correlations and clustering.

First, we consider a real-world social network based on Facebook pages that mutually
“like” one another, called “fb-pages-tvshow” in the Supplementary Materials [43]. This
network has its configuration altered while keeping its degree-degree correlations constant
by repeatedly applying an edge swap algorithm [41]. This algorithm chooses two edges
such that one node of one edge has the same degree value as one node of the other edge.
The edges are then rewired by swapping the nodes with an equal degree with one another.
This algorithm is depicted in Figure 3.

Figure 3. Diagram of the correlation preserving edge swap. Two edges are chosen such that they
each have one node with the same degree value (in this case, the green nodes with degree k). The
edge endpoints are then swapped, altering the network configuration while keeping degree-degree
correlations the same.

This edge swap algorithm is repeatedly applied to the social network, with critical
fractions for random failures and targeted attacks being measured at set intervals. For
targeted attacks, nodes are targeted based on degree values, simulating the scenario in
which nodes are removed in descending degree value order. Critical fraction values (not to
be confused with the Molloy-Reed critical fraction) are calculated using the Newman-Ziff
algorithm for percolation along with Equation (3), and the results are given in Figure 4.
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Figure 4. Simulated critical fraction values against number of correlation preserving edge swaps for
the “fb-pages-tvshow” social network [43]. (a) shows data for robustness against random failures,
and (b) is for robustness against targeted attacks. Critical fraction measurements were taken 100 times
for each interval, with average values and standard deviation being recorded.

After each edge swap the social network’s mutual information value of
I(gq(k); q(k")) = 0.7556 remains unchanged, but as can be seen in Figure 4, critical frac-
tion values for both random failures and targeted attacks increase significantly. This
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demonstrates that the mutual information, and by extension degree-degree correlations,
are unable to capture all of the information about a network’s configuration that relates
to robustness.

In order to both capture aspects of network configuration relevant to robustness
and determine when correlations are likely to be indicative of robustness, we propose an
alteration to the mutual information. The mutual information as defined in Equation (7)
is dependent upon the joint probability, q(k, k'), of randomly selecting an edge which
connects a node of the remaining degree k with a node of remaining degree k’. In order to
incorporate information about clustering, when recording the degree values of any two
nodes which share an edge, we exclude edges which go to common neighbours from either
nodes’ degree value. An explanatory diagram is shown in Figure 5.

Figure 5. Diagram of connections for two adjacent nodes. Nodes A and B have one common
neighbour with which they form a triangle, and the edges leading to that node are shown as dashed
lines. For the “standard” joint distribution these edges are included when counting the degree values
of A and B, but for the joint distribution “with clustering” they are not counted.

By defining the joint distribution in this way, we can measure mutual information such
that it provides more information about network structure. We would expect this “mutual
information with clustering” to be more indicative of robustness against node removal
since adjacent nodes sharing a common neighbour (i.e., being in a triangular cluster) does
not make them any more or less likely to remain connected to one another as nodes are
removed from the network.

We repeat the same edge swapping procedure as before, keeping correlations constant
and measuring the mutual information with clustering at set intervals. The mutual infor-
mation with clustering can change as a network undergoes correlation preserving edge
swaps, and the results are shown in Figure 6.

From Figure 6, we see that changes in mutual information with clustering correlate
with changes in robustness against both random failures and targeted attacks, even with
degree-degree correlations remaining unchanged.
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tvshow” social network [43] undergoing edge swaps, for (a) random failures and for (b) targeted attacks.

4. Discussion

In Section 3.1, we found that a randomly configured network’s heterogeneity, as
measured by the degree distribution entropy, sets the lower bound on the network’s
robustness against random failures as measured by the Molloy-Reed critical fraction. This
result tells us that a randomly configured network’s heterogeneity “guarantees” a certain
minimum amount of robustness. However, degree distribution entropy by itself does not
act particularly well as a measurement of network robustness, as it can only be used to
provide a range of possible critical fraction values for a network.

Our results in Section 3.2 show that heterogeneity, as measured by remaining degree
entropy, is a better measure of network robustness than heterogeneity as measured by
degree distribution entropy when comparing networks of fixed expected degree. This is
because the degree distribution entropy can take on different values for the same critical
fraction when the expected degree is constant. By contrast, we observed that the remaining
degree entropy increases monotonically for critical fraction values when the expected
degree is constant. Additionally, our findings go against those of Wang et al. [21], who
state that optimising the robustness of a power-law network with a fixed expected degree
is the same as maximising its degree distribution entropy. This is because our methodology
allows us to consider a wider range of networks. Instead, we find that optimising the
robustness of a power-law (or log-normal) network is the same as maximising its remaining
degree entropy:.

One possible reason for the remaining degree entropy being more indicative of robust-
ness than degree distribution entropy is that the degree distribution is a distribution across
a somewhat arbitrarily labelled collection of nodes. The degree values of nodes act as labels
for this distribution, but the degree values themselves have no impact on the probability
of selecting certain nodes. Since network robustness is determined by how nodes are
connected to one another, it is perhaps unsurprising that the remaining degree distribution
is more relevant, since its probabilities are “weighted” by degree values. Nodes with high
degree values are weighted more heavily than low degree nodes by the remaining degree
distribution; the degree distribution weighs high degree and low degree nodes equally.

Finally, in Section 3.3 we can see that degree-degree correlations can fail to be indicative
of robustness against random failures and targeted attacks on real networks, since they
do not take clustering into account. Instead, it is possible to measure both correlations
and clustering together using altered mutual information, and this is more indicative of
network robustness. One consideration for further research is a more in-depth study of
how best to incorporate information about both correlations and clustering into models of
network robustness, as existing models only include one or the other.
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5. Conclusions

In conclusion, we have investigated several degree entropy and degree-degree correla-
tion measures defined on networks, delineating how they should be interpreted and how
they relate to network robustness. In particular, we have proven that degree distribution
entropy sets the lower bound for the robustness against random failures on all randomly
configured networks. Additionally, we have shown that, for a fixed expected degree, a
network’s heterogeneity as measured by the remaining degree entropy is a better indicator
of robustness against random failures than its degree distribution entropy. Finally, we
demonstrated that degree-degree correlations are not necessarily indicative of robustness,
finding that measuring both correlations and clustering together is a more informative and
reliable estimator of robustness.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/e24091182/s1, Table S1: Real world network data for comparing
entropy and critical fraction.
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