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Abstract: This paper proposes an accurate short-term prediction model of bike-sharing demand
with the hybrid TCN-GRU method. The emergence of shared bicycles has provided people with a
low-carbon, green and healthy way of transportation. However, the explosive growth and free-form
development of bike-sharing has also brought about a series of problems in the area of urban gov-
ernance, creating a new opportunity and challenge in the use of a large amount of historical data
for regional bike-sharing traffic flow predictions. In this study, we built an accurate short-term pre-
diction model of bike-sharing demand with the bike-sharing dataset from 2015 to 2017 in London.
First, we conducted a multidimensional bike-sharing travel characteristics analysis based on explan-
atory variables such as weather, temperature, and humidity. This will help us to understand the
travel characteristics of local people, will facilitate traffic management and, to a certain extent, im-
prove traffic congestion. Then, the explanatory variables that help predict the demand for bike-
sharing were obtained using the Granger causality with the entropy theory-based MIC method to
verify each other. The Multivariate Temporal Convolutional Network (TCN) and Gated Recurrent
Unit (GRU) model were integrated to build the prediction model, and this is abbreviated as the
TCN-GRU model. The fitted coefficient of determination R2 and explainable variance score (EVar)
of the dataset reached 98.42% and 98.49%, respectively. Meanwhile, the mean absolute error (MAE)
and root mean square error (RMSE) were at least 1.98% and 2.4% lower than those in other models.
The results show that the TCN-GRU model has strong efficiency and robustness. The model can be
used to make short-term accurate predictions of bike-sharing demand in the region, so as to provide
decision support for intelligent dispatching and urban traffic safety improvement, which will help
to promote the development of green and low-carbon mobility in the future.

Keywords: short-term demand prediction; bike-sharing; travel characteristics analysis; hybrid
TCN-GRU model

1. Introduction

With the gradual improvement of people’s living standards and the enhancement of
environmental awareness, the series of negative social impacts brought about by rapid
economic growth, such as traffic congestion, environmental degradation and noise pollu-
tion caused by overloaded motor vehicle usage, have undoubtedly led to an increasing
demand for green and low-carbon means of travel. Bike-sharing has not only made a con-
tribution to low-carbon environmental protection, but also alleviated the problem of “hu-
man transportation” in the area of public transportation to a certain extent. However, the
explosive growth and “free-range” development of bike-sharing has also brought about
a series of problems: first, given the lack of supervision, the excessive proliferation of bike-
sharing has caused a waste of resources and urban “bicycle pollution”; second, the lack
of overall layout planning for bike-sharing parking has led to the occupation of crowded
public land; third, the free-moving bikes are unevenly distributed in time and space, and
their operation and maintenance is not timely.
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Building a prediction model based on the historical data of bike-sharing demand can
effectively explain the time series characteristics of this phenomenon, but the influence of
other elements in the bike-sharing system is not considered; thus, there is a certain one-
sidedness, and a limit to the ability to explain and predict the fluctuation mechanism of
bicycle travel demand [1]. Related studies have found that factors affecting the demand
for bike-sharing rides include external factors such as weather, air quality, spatial location,
user price sensitivity, and chance events, in addition to historical data on travel demand
[2]. Through a survey of bike-sharing programs in Beijing, Campbell et al. [3] pointed out
that the main factors affecting the demand for bike-sharing are distance, temperature, pre-
cipitation, and air quality, and that the users’ own demographic characteristics (including
income, gender, and occupation) have no significant effect on the demand for bicycles.
Matton et al. [4] pointed out that climatic conditions such as temperature, wind, and pre-
cipitation are the main factors affecting the demand for bike-sharing, and Faghih et al. [5]
suggested that point-in-time factors are also important variables affecting the demand for
bike-sharing, including the time of day, whether it is a weekend, and peak hours. In ad-
dition, weather factors and point-in-time factors [6-8], population density [9,10], the avail-
ability of bicycle lane facilities [10-12], and distance to the urban CBD and universities
[5,10,13] are also related to the demand for bike-sharing.

Therefore, some studies have started to incorporate external factors such as weather,
time factors and holiday factors into the independent variables of bike-sharing demand
prediction. Li et al. [14] established an LSTM linear regression model considering the dis-
tance variable of users’ rides, and the results of the study show that the prediction accu-
racy was improved compared with the existing time series prediction models. Li et al. [15]
proposed a prediction method based on a clustering algorithm with an augmented regres-
sion tree model based on weather conditions, temperature, and wind speed, so as to pre-
dict the number of rentals and returns of bicycles at stations separately. Chen et al. [16]
argued that the demand for bike-sharing is affected not only by general factors such as
time and weather, but also by contingent factors such as traffic events, and proposed a
dynamic cluster-based forecasting framework.

From the perspective of forecasting model development, statistical methods such as
the Autoregressive Integrated Moving Average model (ARIMA) were first applied to
solve the bike-sharing cycling demand forecasting problem. Statistical inferential forecast-
ing methods based on statistics include traditional models such as ARIMA models, re-
gression analysis and Markov chains [17]. Andreas et al. [18] developed a prediction
model based on a differential sliding average autoregressive model, using operational
data from bicycle companies and data from bike-sharing in the Barcelona community, to
forecast the number of available bicycles at each bicycle station. To investigate the char-
acteristics and patterns of peak bicycle demand hours, Lin et al. built an ARIMA model
[19]. Yan et al. [20] considered both the temporal and spatial dependence of bicycle bor-
rowing and returning demand. For the time series, the cyclicality and trend of bicycle
travel demand were obtained by building an ARIMA model considering seasonal pat-
terns; for the spatio-temporal dependence, the inter-cluster transfer characteristics were
portrayed by building a Bayesian transfer network model. Zhou et al. proposed a predic-
tion method based on the Markov chain model. The study evaluated the model using data
from the public bicycle system in Zhongshan City. The results of the case analysis verify
the high prediction accuracy and generalization ability of the Markov chain model [21].

The traditional statistical methods are more sensitive to data, and the presence of
data noise can greatly reduce the reliability of model parameter estimation. At the same
time, there is a certain degree of spatial and temporal dependence between the demand
for bike-sharing trips and external influences such as weather, and the prediction models
based on statistical methods have weak explanatory power for the complex nonlinear re-
lationships between bicycle demand and the influencing factors. In the era of big data,
nonparametric methods can handle massive traffic trip data and discover the dynamic
characteristics of the bicycle system.
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Nonparametric methods include machine learning methods and deep learning meth-
ods. Using machine learning methods such as random forests [22], Bayesian networks
[23], GBDT [24] and artificial neural networks (ANN) [25], nonlinear prediction models
can be built based using a large amount of bike-share historical travel data to predict fu-
ture bike-share demand at any time interval. In addition, deep learning methods are grad-
ually being used to predict short-term bikeshare demand. Wang et al. [26] used a long
short-term memory (LSTM) neural network and gated recursive units (GRU) to predict
short-term bicycle availability. Chen et al. [27] proposed a recurrent neural network
(RNN) using time, weather, and seasonal data to predict the rental and return demand for
each station in the system. Zhang et al. [28] proposed a deep learning model for the short-
term prediction of bike-sharing demand, considering the correlation between bike-shar-
ing users and public transportation riders. He et al. [29] proposed a bike-share demand
prediction (BDP) model that incorporates a temporal convolutional network (TCN) and a
self-attention mechanism. The BDP model extracts feature information with multiple in-
puts of multiple sources of data, and uses the parallelism of the self-attention mechanism
to improve the training speed. A better prediction accuracy is obtained in comparison
with other models. Ma et al. [30] proposed a Spatio-Temporal Graphical Attention Long-
Term Memory (STGA-LSTM) neural network framework for predicting demand for bike-
sharing at the station level using a multi-source dataset. This short-term prediction model
can be used to help bike-sharing users make better route choices, and help operators im-
plement dynamic redistribution strategies. Mehdizadeh et al. [31] proposed a hybrid
CNN-LSTM model for the short-term prediction of mountain biking demand, which had
considerable prediction accuracy during the COVID-19 pandemic after adding additional
variables such as weather conditions and time of day.

The research for this thesis includes two main aspects: (1) mining the travel pattern
of bike-sharing users, analyzing the travel characteristics of residents, and providing ref-
erences for bicycle demand prediction; (2) making accurate predictions of bike-sharing
demand, improving the bicycle turnover rate, and providing a decision basis for the intel-
ligent scheduling of regional bike-sharing.

The study is divided into the following sections: Section 1 focuses on the study back-
ground, study content and literature review. Section 2 mainly concerns data description
and pre-processing, including a preliminary correlation analysis. Section 3 mines the bike-
sharing trip characteristics through multiple dimensions, such as time, temperature, hu-
midity, and weather. Section 4 introduces the TCN model, MIC variable selection method,
GRU model, hybrid time series model and evaluation indicators. This is followed by mul-
tiple rounds of comparison experiments for validation. Sections 5 and Section 6 are the
discussion and conclusions sections, respectively.

2. Data Overview and Preprocessing
2.1. Data Overview

This paper used the London bike-sharing public dataset as the subject of the study.
The dataset recorded a total of 17,414 data points (one data point generated every hour,
i.e., 24 data points per day) for the London area from 4 January 2015 to 3 January 2017.
The dataset recorded the influencing factors, such as weather and travel time, related to
the demand of bike-sharing; we performed a data background gain by adding data nouns
such as “Hour” and “Month” with timestamp information. The descriptions of the data
terms and examples are shown in Table 1.
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Table 1. Data set fields description.

Field Name Description Example
timestamp Timestamp for grouping data together 4 January 2015, 12:00
demand Counting of new bike share 182
t1 Actual temperature (°C) 3.0
t2 Subjective perception of temperature (°C) 2.0
hum Humidity percentage (%) 93.0
wind_speed Wind speed value (km/h) 6.0

Sunny: 1, Less Cloudy: 2, Cloudy: 3, Over-

weather_code cast:4, Rainy: 7, Storms: 10, Snowy: 26 3
is_holiday Holiday: 1, Non-holiday: 0 0
is_weekend Weekend: 1, Non-weekend: 0 1
season Spring: 0; Summer: 1; Autumn: 2; Winter: 3 3
hour 24 h per day 12
day_of_month Natural days per month 1
day_of_week Monday: 0, ..., Sunday: 6 1
month January: 1, ..., December: 12 6

2.2. Data Preprocessing

Since the dimensionality and magnitude of each variable are not uniform, to elimi-
nate the influence of magnitude and to speed up model training, the normalization
method was used to normalize the data. This involves a linear transformation of the orig-
inal data that maps the data values to the [0, 1] interval. The transformation function is
shown in Equation (1):

g o X min 1)

max —min

where max is the maximum value of the data, and min is the minimum value.

2.3. Correlation Analysis

There is correlation between different features in the data, resulting in feature redun-
dancy. In addition, not all influencing factors are related to the demand for bike-sharing.
The correlation analysis aimed to investigate the correlation between bike-sharing varia-
bles, i.e., a preliminary analysis of other variables that are correlated with the demand for
bike-sharing. After the normality test, the data of most of the variables used in this study
did not conform to a normal distribution. Therefore, we used Spearman’s rank correlation
coefficient for measuring the linear correlation between the variables [32].

The rank is the average descending position of a number in the overall data. If X and
Y are two observed variables with sample size n, and for each sample (X, Y;), the corre-
sponding rank is (x;,y;), then the Spearman’s rank correlation coefficient p between these
two variables is determined via Equation (2).

—q1— 6 X(xi —yi)?

nn? —1) @

The Spearman’s rank correlation coefficient ranges within [-1, 1]. When the absolute
value is close to 1, this indicates that the two variables are more strongly correlated. When
the value is positive, if one of the two characteristics shows an increasing trend, the other
also tends to increase, and when the value is 1, it indicates a perfect positive correlation;
when the value is negative, if one of the two characteristics tends to increase, the other
tends to decrease, and when the value is -1, it indicates a perfect negative correlation;
when the value is 0, this indicates a perfect non-correlation (the tendency of one to change
does not change with that of the other). In general, the absolute value of the correlation
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coefficient in the range of (0.8, 1.0) is considered as very strong correlation, while the range
(0.6, 0.8) is considered strong correlation, (0.4,0.6) moderate correlation, (0.2, 0.4) weak
correlation, and (0, 0.2) very weak or no correlation.

The results of the correlation analysis between demand and each variable are shown
in Figure 1, which shows that the actual temperature t1 is highly correlated with the sub-
jectively perceived temperature t2, and there is a problem of feature redundancy. In addi-
tion, temperature demand shows a weak positive correlation with temperature, while de-
mand shows a moderate negative correlation with humidity, a very weak positive corre-
lation with temperature, and a very weak negative correlation with weather and season.
The correlation analysis can roughly determine the linear relationship between demand
and its influencing factors. In order to obtain the trend of demand under its different in-

fluencing factors, data mining methods can be used to analyze the travel characteristics of
bike-sharing.
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Figure 1. Bike-sharing demand correlation analysis heat map.

3. Bike-Sharing Travel Characteristics Analysis

As an important means of transportation for urban residents, bike-sharing often pre-
sents different characteristics due to a variety of factors, which must be explored for the
purpose of traffic management. Therefore, based on the considered dataset, we explored
bike-sharing travel characteristics via several dimensions such as time, temperature, hu-
midity, and weather [33].

3.1. Bike-Sharing Travel: Time Characteristics Analysis
3.1.1. Demand Varies with the Hours and Months

First, we assessed the distribution of the demand for bike-sharing in different
months, and the results are shown in Figure 2. The demand shows an obvious single
hump shape that develops with the month, i.e., the demand for bike-sharing in the area

gradually increases from January until it peaks in July, and it then starts to decrease month
by month.
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Figure 2. Box plot of demand for bike-sharing in different months.

Next, we determined the distribution of bike-sharing demand at different times of
the day, and the results are shown in Figure 3. The demand shows an obvious double-
hump shape that develops with the time of the day, that is, the demand for bike-sharing
in the area is high at 7 and 8 a.m. and 5 and 6 p.m. This result coincides perfectly with
people’s commuting time to and from work on weekdays, and also reflects that bike-shar-
ing is in the highest demand when people commute to and from work, suggesting that
bike-sharing can provide convenience for people’s work travel.

tiii. @ %%%é BE%%%%%

2a 3a 4a S5a 6a 7a 8a 9a 10a lla 12p 1p 2p 3p 4p Sp 6p 7p 8 9p 10p llp
Hour

Figure 3. Box plot of demand for bike-sharing at different hours.

We analyzed the distribution of bike-sharing demand by month at different moments
of the day with bubble chart statistics, where in larger bubbles indicate higher demand.
The statistical results are shown in Figure 4. As can be seen, the vast majority of months
show a double-hump distribution of demand. However, in December, demand for shared
bikes increases when people are at work, while demand is roughly the same throughout
the afternoon from 12:00 to 6:00, with no clear trend. This may have more to do with the
local climate as well as holidays.
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Figure 4. Time bubble map of bike-sharing demand.

It is known from the previous analysis that July is the month with the highest de-
mand for bike-sharing; so, we took July 2016 as the research object and analyzed the daily
demand changes in this month using heat maps, and the statistical results are shown in
Figure 5. It can be seen that there is an obvious cycle pattern in the demand distribution,
with every seven days being a cycle, and the demand distribution on five of the days cor-
responds to the weekday travel characteristics, i.e., the obvious double-hump feature of
on and off work. This also reflects the obvious difference in the distribution of demand on
weekdays and non-working days. There is a high demand for bike-sharing on July 30 and
31, which may be related to the local Prudential Ride London event, a popular ride that
locals say turned London into a bicycle-centric environment.
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Figure 5. Bike-sharing demand time heat map.
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3.1.2. Demand Varies with Working and Nonworking Days

We found in the previous analysis that there is a significant difference in the distri-
bution of bike-sharing demand between weekdays and non-weekdays. Therefore, we
took weekends and holidays as the research object and used weekday data for compara-
tive analysis, and the analysis results are shown in Figure 6. It can be seen that the distri-
bution of people’s travel characteristics on holidays and weekends is roughly the same.
On weekdays, 8:00 and 17:00 and 18:00 are the peak times for car use, which coincides
with the time points for going to and leaving work. In the case of nonworking days 14:00-
15:00 is the real peak period of car usage. This reflects people’s preference for using shared
bikes to travel in the afternoon during nonworking days.
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Figure 6. Bike-sharing demand on working and nonworking days.

3.1.3. Demand Varies with the Season

In addition, we analyzed the distribution of bike-sharing demand by season at dif-
ferent moments of the day through line graph statistics. The results are shown in Figure
7.1t can be seen that the trend of bike-sharing demand is more or less the same in different
seasons, with higher demand in summer and autumn, and the lowest in winter, which is
obviously related to the seasonal climate.
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Figure 7. Bike-sharing demand in different seasons.

3.2. Bike-Sharing Travel: Meteorology Characteristics Analysis

Many studies have shown that, as external environmental factors, weather type [34],
temperature [35], and air quality [36], also have direct and indirect effects on travel char-
acteristics. To investigate the influence of weather characteristics on bike-sharing trips, we
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obtained the trends of bike-sharing demand with wind speed, humidity, weather type,
and temperature using line plots as well as box plots. The results are shown in Figure 8.
It can be seen that there is a local peak at a wind speed of 25 km/h, and the demand de-
creases at higher and lower wind speeds. There is a negative correlation between air hu-
midity and demand; that is, with greater air humidity, the overall demand shows a de-
creasing trend. In weather codes 2 and 3, that is, when the weather type is either less
cloudy or cloudy, the demand is larger; when the weather is more severe, the demand
gradually decreases, and when the weather code is 26 (snow), the demand is almost 0. The
demand shows a trend of increasing first and then decreasing with the rise in temperature;
that is, below the temperature is 25 °C, the demand shows a relatively strong positive
correlation with temperature, and after the temperature exceeds 25 °C, the demand shows
a relatively weak negative correlation with temperature.
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Figure 8. Bike-sharing demand under different meteorological conditions.

3.3. Bike-Sharing Travel: Characteristics Analysis Based on Granger Causality Test

The correlation analysis lacks an explanation for the causal mechanism of the fluctu-
ation in bike-sharing demand, and we next explore the impact of weather and other char-
acteristics on the demand for bike-sharing travel from the causality perspective. Weather
data indicators include t1, hum, weather_code and wind_speed. In order to further screen
the indicators that help predict the demand for bike-sharing travel, this paper uses the
Granger causality test method for weather and other features’ screening. The basic idea of
the method is that [37], if a series X helps to explain the future trend of series Y —that is,
in the regression model of series Y regarding its own historical information, adding the
historical information of X will significantly improve the explanatory power of the regres-
sion model —then series X is the Granger cause of series Y.

Before Granger causality tests were performed on the weather indicator grid, the unit
root method was used to perform a smoothness test. For non-stationary series, differenc-
ing was performed until it passed the stationarity test. The results of the causality test for
each variable at the significance level @ = 0.05 are presented in Table 2.

Table 2. Results of causality tests for each variable.

Variable Original Hypothesis F-Statistic Probability (p)
f tl is not a bike-sharing demand Granger rea- 2308794 8075 x 108
son
hum hum is not a bike-sharing demand Granger 257 9023 1.296 x 109

reason
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windspeed is not a bike-sharing demand
Granger reason
weather code is not a bike-sharing demand
Granger reason

weather_code 20.1423 0.0728

wind_speed 5.1211 0.2036

When p < 0.05 rejects the original hypothesis, this indicates that there is a Granger
causality with statistical significance between weather indicators t1, hum and the demand
for bike-sharing, i.e., adding weather indicators t1 and hum to the model helps predict the
demand.

The analysis of bike-sharing travel characteristics in London reveals that both point-
in-time factors [5] and weather conditions [4] affect the variation in bike-sharing demand
to varying degrees. There is consistency and interoperability between our analysis and
the results of other literature analyses. In addition, we found that the factors influencing
bike-sharing demand were roughly the same across regions, i.e., differences in regional
attributes, culture, climate, and ethnicity do not affect travel characteristics. A survey of
the Beijing [3] bike-sharing program also found that users’” own demographic characteris-
tics do not have a significant effect on bicycle demand.

4. Bike-Sharing Short-Term Demand Prediction

The bike-sharing demand data are susceptible to the influence of time, climate and
traffic management policies, showing strong volatility and nonlinearity. The bike-sharing
demand data used in this paper are hourly, and the sample size is relatively small. The
deep neural network has a strong fitting ability for nonlinear data but is prone to the risk
of overfitting in the case of small samples. Based on the above analysis, this paper has
tried to combine the typical models of deep learning temporal prediction, GRU and TCN,
with the principle of the least-squared error sum. In so doing we aimed to reduce the
possibility of overfitting and to take advantage of the fitting of deep learning models on
nonlinear and non-stationary data, in order to improve the prediction ability of the mod-
els.

4.1. Temporal Convolutional Network (TCN)

TCN is a novel architecture based on a Convolutional Neural Network (CNN). Un-
like general CNNs, TCNs use structures such as expanded causal convolution and resid-
ual blocks [38—40]. This gives them the ability to extract features and achieve prediction
from large sample time series, and TCNs can effectively address the performance degra-
dation of deep networks during network training. TCN consists of dilated, causal 1D fully
convolutional layers with the same input and output lengths. The convolution in the TCN
model is causal convolution, wherein the layers are causally related to each other, thus
ensuring that no historical information or future data will be missed. In addition, TCN
can map sequences of arbitrary length to output sequences of the same length, using re-
sidual modules and dilation convolution to better control the memory length of the model
and improve the predictive power.

4.1.1. TCN Modeling

Supposing that the input sequence is given as {x4, x,, ---, x;}, and the expected pre-
dicted output is {J;,9,, -, ¥}, the equation of the predicted output versus the input se-
quence can be presented by Equation (3):

G129 = fxy, %2, 0, %) 3)

where J; is only related to the input sequence at time ¢ and in the past, and is independent
of any future input. The purpose of TCN modeling is to establish a mapping relationship
f between the input and output sequences, and its objective function is to minimize the
error loss between the actual output {y;,y,,**, .} and the predicted values {§,, ¥,, -, P¢}.
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4.1.2. Extended Causal Convolution

The causal convolutions were originally proposed in the WaveNets [41] networks for
learning the input audio data before moment t to predict the output at moment t + 1.
Compared to RNNs, no circular connections are used in models using causal convolu-
tions, so time series data can be input in parallel, which allows for faster network training,
especially for large-sample time series [42]. However, standard causal convolution re-
quires increasing the receptive field of neurons in the neural network by stacking many
network layers or using very large convolutional kernels when dealing with large sample
time series. For this reason, TCN uses the Dilated Causal Convolution (DCC) technique
to achieve an increase in the perceptual field without a significant increase in computa-
tional cost. DCC is a convolution operation that performs a step-skipping operation on
the input sequence, and its expression is given by Equation (4):

k
F(i) = ) h(Dx(i - dj) @)
j=1

where F (i) is the convolution result for the ith element in the sequence {x, x,, -+, x¢}; h(j)
is the convolution kernel, and for a one-dimensional sequence its convolution kernel size
K =1 X k; d is the expansion factor (when d = 1, that is the standard causal convolution).

The structure of DCC is shown in Figure 9 (K = 1 X 2 and d = 2! — 1, 1 is the number
of hidden layers). Compared with standard causal convolution, DCC allows the output to
be associated with as many inputs as possible with the same number of network layers.
Multilayer stacking combined with extended causal convolution also allows deep learn-
ing networks to achieve very large sensory fields with fewer network layers [43]. Moreo-
ver, the sliding operation of the convolution kernel on the input data allows the TCN to
handle inputs of variable length. Thus, in conjunction with the updating of the model’s
input data (i.e., the predicted values from the previous moment are added to the input as
information), new predictions can be continuously computed and output.

Output

) Hidden Layer

) Hidden Layer

O Input

Figure 9. Schematic diagram of extended causal convolution.

4.1.3. Residual Block

Residual Block (RB) is proposed to solve the degradation problem of deep learning
networks, and its core idea is to introduce a “jump connection” operation that skips one
or more layers [44]. Assuming that x is the input of the residual block, the output o of the
residual block is shown in Equation (5), which is the result of linear variation and mapping
through the activation function. Since the residual x(x) will not be zero in practice, the
stacked layers in the deep learning network can always learn new features, so the learning
performance of the deep network will not degrade [45].

In TCN modeling, using a network structure combining RB and DCC can effectively
improve the feature learning capability and robustness of TCN models.

o = Activation(x + k(x)) 5)
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4.2. Gated Recurrent Unit (GRU)

LSTM [46] and GRU [47] show strong potential applicability in the data prediction
problem studied in this paper, with GRU performing slightly better. Compared with the
LSTM method, GRU requires fewer training parameters, is easier to converge and can
reduce the risk of model overfitting in the case of limited time series data. GRU optimizes
the three gate functions of LSTM, turning the set of forgetting gates and input gates into
a single update gate, and mixing the neuron states with the hidden states. This can effec-
tively alleviate the problem of “gradient disappearance” in RNN networks and reduce the
number of parameters of LSTM network units, shortening the training time of the model.
The basic structure is shown in Figure 10, and the mathematical description is shown in
Equations (6)—(10):

re = oW - [he-1,%c]) (6)

u = oWy - [he—1, x]) @)

hy = tanh(W¥ - [r, * he_1, x.]) (8)
he = (1 —u)*he_q +up*hy 9)
ye =W, - hy) (10)

where x;, hi_y, h, 7, Uy, hy and y, are the input vector, the state memory variable of the
previous moment, the state memory variable of the current moment, the state of the up-
date gate, the state of the reset gate, the state of the current candidate set, and the output
vector of the current moment, respectively. W;,, W,, W; and W, are the weight parameters
used for multiplying the update gate, reset gate, candidate set, and output vector with the
connection matrix composed of x; and h;_4, respectively; I denotes unit matrix; - denotes
the matrix dot product; * denotes the matrix product; and ¢ denotes the sigmoid activa-
tion function.

» © ()
Reset Gate

Figure 10. GRU model’ internal structure.

GRU uses update and reset gates as core modules. The splicing matrix of the input
variable x; and the state memory variable h,_; of the previous moment, are input into the
update gate after sigmoid nonlinear transformation, which determines the extent to
which the state variable of the previous moment is brought into the current state. The reset
gate controls the amount of information that was written to the candidate set at the pre-
vious moment, stores the information at the previous moment by I — u, times h,_,, rec-
ords the information at the current moment by u, times f;, and sums the two as the output
of the current moment.
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4.3. Hybrid Multivariate Bike-Sharing Demand Prediction Model

Hybrid model forecasting is used to try to combine different forecasting models and
the information they provide to derive a hybrid forecasting model in the form of an ap-
propriate weighted average. The key to hybrid model forecasting is how to find out the
weighting coefficients, which makes the hybrid forecasting model more effective in im-
proving the forecasting accuracy.

Different forecasting models have their own strengths, and a better linear hybrid
forecasting model can be obtained by the linear combination of different forecasting mod-
els. The linear hybrid forecasting model’s form is shown in Equation (11):

m
Ve = Z WiYit) (11)
i=1

{w1+w2+---+wm=1 (12)

(IJLZO

where ¥, is the combined forecast value at moment t; y;( is the forecast value of the ith
forecast model at moment t; W = (wq, Wy, "+, wy,)7 is the weighting coefficient of the lin-
ear combination of m forecast models and satisfies the requirement, as shown in Equation
(12).

The key to the linear combination prediction model is to determine a reasonable
number of weights w;, based on the principle of the minimum sum of squares of errors
(SSE) [48], which can make the prediction model more effective and accurate.

n n m
SSE = Z e = Z(Z wiey) = WTEW (13)
i=1

{minSSE = WTEW 14)
S.LR,W=1W =0
E7'R,,T
Wo=o——p = (15)
RnE-'R,,T

where, e;; = Yy — Yi(r) denotes the forecast error of the ith forecast model at moment ¢;
Y(¢) is a sequence of actual values of a certain index of a forecast object; e; = y;) — ¥, de-
notes the forecast error of the linear combination model at moment t ; E =
(eit)mxn(eit)men is the information error matrix; the optimal weighting coefficient W, is
obtained by solving the optimal solution of the linear programming problem, where R,,
is an m-dimensional row vector with all elements of 1, and the guaranteed non-negative
optimal weighting coefficients enable the linear combinatorial model to effectively im-
prove the prediction accuracy.

Our hybrid multivariate bike-sharing demand forecasting model based on the prin-
ciple of minimum error sum of squares is shown in Figure 11.
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Figure 11. Basic structure of bike-sharing demand prediction combination model.

4.4. Variables Selection

The entropy of the variables in the data set will have a direct impact on the prediction
model, and this paper uses the maximum information coefficient (MIC) [49] method based
on entropy theory for variable selection. MIC is a combination of information theory and
probability [50] based on mutual information, and is used to detect nonlinear correlations
between different variables and eventually obtain a measure of the strength of dependen-
cies between variables. The maximum information coefficient achieves universality and
equilibrium, where universality, with the help of MIC, can discover functional and non-
functional relationships between variables; equilibrium, with the help of MIC, can be used
to compare the strength of relationships between different variables, both horizontally
and vertically.

Suppose that, in the data set D, the sample size is s, where an explanatory variable
X ={x;,i=1.2,-,s} and the explanatory variable Y = {y;,i = 1,2,---,5}; the MIC(X,Y)
between these two variables is calculated as follows.

(1) Calculate the mutual information MI(X,Y) between the explanatory variable X and

the explained variable Y:
Z Zp(x y) log LD p(xi,yi)
YT p G ()

V€Y x;€EX

MIC (X,Y) (16)

where p(x;, y;) is the joint density function of the variables X and Y. p(x;) is the marginal

probability density function of the explanatory variable X, and p(y;) is the marginal prob-

ability density function of the explanatory variable Y.

(2) The variables X and Y are divided into a grid of m * n defined as G = (m, n). To obtain
the grid division that maximizes the MI, the value of MI is normalized. This normal-
ized maximum MI can be expressed as follows:

MIpic(X,Y)
lo.gmm{m n}

where MI"p (X, Y) is the maximum M/ of data set D under grid G.
(3) The MIC is defined as the maximum MI under all grids G, calculated as follows:

MIp (X, Y) = (17)
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{MIC(X, Yy = max (Mlpc(X,Y)} 18)

B(s) = s%

where B(s) is the maximum number of unit grids as a function of the number of samples.

The larger the value of MIC(X,Y), the stronger the correlation between variables X
and Y. Therefore, we calculate the MIC values between all explanatory and explained var-
iables, and select the characteristics according to Equation (19):

MIC(X,Y) =6 (19)

where 6 is the lowest variable selection threshold.

4.5. Model Evaluation Methods

To validate and compare the accuracy as well as the robustness of the models, we
used R?, EVar, MAE, MedAE, and RMSE as evaluation metrics, respectively.
(1) Coefficient of determination (R2)

The coefficient of determination characterizes the extent to which the regression
model explains the variation in the dependent variable, or the goodness of fit of the model
to the observations.

_ il i = 9)°

T —9)?
Here, y; is the actual value of the ith data point; J; is the corresponding predicted value;
and y; is the mean value of the time series. In general, the value of the coefficient of deter-
mination R? ranges from 0 to 1, where an R? equal to 0 means that the model cannot pre-
dict the target variable at all, and an R? equal to 1 means that the model can make a perfect
prediction. R? can also have negative values, in which case the model’s prediction ability
is not as good as calculating the mean of the target variable directly.
(2) Explainable Variance Score (EVar)

The explainable variance score measures the degree to which the dispersion of errors

between all predicted and actual values is similar to the dispersion of the true values
themselves.

R? = (20)

EVar=1- M (21)
Var(y)
A larger value of EVar indicates the better prediction ability of the model, and the
best possible value is 1.
(3) Mean Absolute Error (MAE)
The mean absolute error is the expectation of the absolute value of the error between
the predicted and actual values at each moment in time.

N
1
MAE = 2 |y~ 9 22)
i=1

(4) Median Absolute Error (Med AE)
The median absolute error is the median of the absolute error of the predicted and
actual values for all data points. The metric is robust to outliers.

MedAE = median(|ly, — 9|, lyny = i) (23)

(5) Root Mean Square Error (RMSE)

The mean square error calculates the mean of the square of the error between the
predicted and true values. The root mean square error, on the other hand, is the open
square of the mean square error, which is consistent with the target variable in terms of
magnitude.
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(24)

4.6. Verification Experiment and Result Analysis

To verify the validity of the proposed multivariate hybrid time series model, we con-
ducted a validation experiment on the London area bike-sharing data set. The MIC
method was first used for the variable selection part of this study, and the MIC values
between the variables are shown in Figure 12.
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Figure 12. Heat map of MIC values between different variables.

The number of explanatory variables was studied in descending order according to
the magnitude of MIC values between each explanatory variable and the dependent var-
iable, and R2, EVar, MAE, and RMSE were used as measures.

It can be seen from Figure 13 that the model works best when the number of features
is 5. That is, the lowest feature selection threshold § = 0.07 and the combination of ex-
planatory variables chosen is {hour, hum, t1, is_weekend, day_of_week}. It can be seen
that the set of selected explanatory variables includes not only hour, weekend and day of
week, which closely correspond to the morning and evening peaks of people commuting
to work, but also includes the weather characteristics t1 and hum obtained by using
Granger causality tests.
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Figure 13. Comparison of the effects of models with different quantitative characteristics.

We performed a parameter search with the goal of the optimization of the effect of
the hybrid model. The parameter search results of the TCN and GRU models are shown
in Tables 3 and 4.

Table 3. Parameter setting of the TCN model.

Parameter Value
Time Steps 13
Nb_filters 64
Kernel_size
Nb_stacks 1
Epochs 80
Batch Size 32
Drop out 0.2
Dilations [1,2,4,8,16, 32, 64]
Skip_connections True
Kernel_initializer he_normal
Optimizer Adam
Activation Function Rectified linear unit (ReLU)
Loss Function Mean Squared Error (MSE)

Table 4. Parameters setting of GRU model.

Parameter Value
Time Steps 13
Input Layer Units Number 100
Output Layer Units Number 1
Hide Layer Number 2
Hide Layer Units Number 100
Epochs 50
Batch Size 16
Learning Rate 0.001

Optimizer Adam
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We conducted two experiments: univariate prediction of the demand for bike-shar-
ing and multivariate prediction of the demand for bike-sharing, respectively. Univariate
prediction refers to the demand for bike-sharing as the only input without considering
other explanatory variables. Multivariate forecasting, on the other hand, considers the in-
fluence of other explanatory variables on demand with the demand of bike-sharing as
input, and obtains the corresponding explanatory variables through variable selection
methods, which are also used as inputs to the model.

The comparison models used for the experiments include:

(1) Support Vector Regression (SVR) [51] (kernel = ‘rbf’, C = 1.0, max_iter = -1);

(2) XGBoost [52] (max_depth = 6, learning_rate =0.1, eta = 1);

(3) ARIMA [53] (autocorrelation order: p = 9, difference order: d = 1, moving average
orders: q =0);

(4) ARIMAX (autocorrelation order: p = 9, difference order: d = 1, moving average or-
ders: q = 8, exogenous variables: hour, hum, t1, is_weekend, day_of_week);

(6) LSTM (input_size = 6, hidden_size = 100, num_layers = 2, batch_size = 64, drop-
out=0.2);

(6) History Average Model (HA) (history time step = 13);

(7) Prophet [54] (growth = “linear”, freq = "H”, interval_width = 0.95);

(8) DeepAR [55] (input_size = 6, hidden_size = 64, num_layers = 3).

After averaging results over several iterations of the experiment, we determined the
performance of each model on this dataset, and the specific evaluation metrics are shown
in Table 5.

Table 5. Prediction results of each model.

Metrics

R2 EVar MedAE MAE RMSE
Model
L HA 0.4859 0.5234 457.8242 618.9324 864.8123
Univariate
Prophet 0.5971 0.6616 4289174 504.2642 716.3489
SVR 0.8287 0.8892 381.6209 308.4608 375.5922
ARIMA 0.8379 0.8919 257.3966 297.9913 370.8495
XGBoost 0.9657 0.9669 383.0468 111.5021 205.4212
LSTM 0.9730 0.9748 315.4528 112.4182 178.9126
GRU 0.9767 0.9769 312.3578 112.8749 171.3778
TCN 0.9806 0.9813 288.7231 89.8644 154.1625
TCN-LSTM 0.9808 0.9817 50.5265 90.0193 152.5853
TCN-GRU 0.9819 0.9825 52.1868 90.0910 149.3043
Multivariate DeepAR 0.7278 0.7861 401.2352 456.8923 613.7432
ARIMAX 0.8529 0.8990 250.8287 285.9122 358.4603
TCN 0.9829 0.9837 49.1962 86.2586 143.8991
GRU 0.9817 0.9813 72.7963 104.2761 154.4806
LSTM 0.9799 0.9807 61.567 98.7257 156.6573
TCN-LSTM 0.9833 0.9841 48.1795 84.6395 142.0784
TCN-GRU 0.9842 0.9849 47.7591 82.9933 138.7543

As can be seen from Table 5, the univariate model’s predictions are less effective
overall than the multivariate model’s predictions, which indicates that the prediction per-
formance of the model can be effectively improved with the inclusion of the selected ex-
planatory variables; for example, the MAE and RMSE of the multivariate predictions are
reduced by 7.0977 and 13.831, respectively, for the TCN-GRU model we used. In addition,
some models such as DeepAR and Prophet may show non-adaptability to this dataset,
and our experimental results are only better than those of the HA model. The hybrid
model performs better than the single model in multivariate prediction, which proves that
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the hybrid model we use is more efficient and accurate based on the minimum sum of
squares of errors.

The fit of our proposed multivariate TCN-GRU model to the actual values of bike-
sharing demand for the last 480 data points (20 days) of the test set is shown in Figure 14.
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Figure 14. Fitting curve for bike-sharing demand data prediction.

5. Discussion

In recent years, bike-sharing has become an important way for people to travel in an
environmentally conscious way. However, this free-form development mode has gradu-
ally revealed many problems, such as over-placement, the serious waste of public re-
sources, and excessive growth, causing huge costs for urban management. The phenom-
enon of the indiscriminate parking of bike-sharing vehicles has led to a large number of
public resources, such as subway station entrances, bus stops, bicycle lanes and pedestrian
lanes, being occupied. The surge in the number of shared bicycles not only affects the
cityscape, but also affects the safety of other public transportation. The uneven distribu-
tion of bicycles makes it difficult to meet the volatile users’ travel demands. These prob-
lems are new challenges for urban transportation managers.

To address the above problems, we took advantage of the fitting of deep learning
models on nonlinear and nonsmooth sample data, and we used TCN and GRU models
for bike-sharing demand prediction on the data set, combining the models with the prin-
ciple of the minimum error sum of squares. The hybrid model improved the prediction
accuracy, reduced the error, and effectively avoided the overfitting phenomenon. The ex-
periments also proved that the models were less effective than multivariate prediction in
the univariate prediction of bike-sharing demand, which meant that adding explanatory
variables such as time, humidity, and temperature to the model input could improve the
prediction effect. The R2 and EVar of the proposed multivariate TCN-GRU model in this
paper were improved by at least 0.0023 and 0.0024, respectively, and the MedAE, MAE,
and RMSE decreased by at least 2.7674, 7.026, and 10.55, respectively, compared with uni-
variate forecasting models. At the same time, the R2 and EVar values of this model im-
proved by at least 0.0009 and 0.0008, respectively, and the Med AE, MAE, and RMSE de-
creased by at least 0.4204, 1.6462, and 3.3241, respectively, compared with other multivar-
iate forecasting models. In order to achieve a more intuitive comparison of the prediction
accuracy, we drew a scatter density plot of the prediction effect of the compared models,
as shown in Figure 15. In the comparison, we can see that the density distribution of the
predicted values of the univariate SVR model, as well as the multivariate ARIMAX model,
are not uniform, the distribution is relatively more dispersed, and the prediction effect is
average. Our proposed multivariate TCN-GRU model predicts the values, while converg-
ing towards the actual values, and the fitting effect is better. Thus, we have established an
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Figure 15. Model scatter density plot. (a) Univariate SVR scatter density plot. (b) Univariate TCN-
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There are still several areas for improvement in this study.

The combined model proposed in this paper showed good results in short-term bike-
sharing demand prediction, and when we tried long-term prediction, the results
were not satisfactory. Later, we will try to combine other models to improve perfor-
mance in long-term prediction.

In this study, we used a small-scale parameter-tuning method based on a grid search,
and subsequently we considered other optimization algorithms for parameter
searching which might improve the performance of the model.

Due to limited data conditions, we were unable to obtain the main gathering loca-
tions of bike-sharing in the region, and thus could not extract spatial characteristics
that could be used for further research following demand prediction.

6. Conclusions

In this paper, we built an accurate model that can be used for the short-term predic-

tion of bike-sharing demand, using bike-sharing data from 2015 to 2017 in the London
area. First, we analyzed multidimensional bike-sharing travel characteristics based on the
explanatory variables such as weather, temperature, and humidity to understand the
travel characteristics of local people, and thus facilitate traffic management and, to a cer-
tain extent, improve traffic congestion. Considering the nonlinear relationship between



Entropy 2022, 24, 1193 21 of 23

each explanatory variable and bike-sharing demand, we used the MIC method for varia-
ble selection, where variables were then used as part of the model input, and the experi-
ments proved that adding explanatory variables could greatly improve the prediction per-
formance of the model. In addition, considering the problems of over-fitting and poor
stability that arise when using a single model on a small sample of data, we proposed a
hybrid multivariate TCN-GRU model with the principle of the minimum error sum of
squares, and the model showed strong efficiency and robustness. This can facilitate the
accurate short-term prediction of bike-sharing demand in the region, which in turn pro-
vides decision support for intelligent dispatching and urban traffic safety improvements.
It will also help to promote the development of green and low-carbon mobility in the fu-
ture.

This study focuses on the possible prediction of factors affecting future bike-sharing
in the London area by studying the time series data of bike-sharing traffic demand. Prob-
ably due to sensitivity issues, the data we obtained are limited, and we have been unable
to obtain the actual locations of the main concentrations of shared bicycles, i.e., individual
stations in the area. It would be useful to conduct a more in-depth study of intelligent
scheduling, if the researchers can obtain the specific cluster locations of shared bikes in
this area.
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