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Abstract: The acoustic characteristics of cries are an exhibition of an infant’s health condition and 
these characteristics have been acknowledged as indicators for various pathologies. This study fo-
cused on the detection of infants suffering from sepsis by developing a simplified design using 
acoustic features and conventional classifiers. The features for the proposed framework were Mel-
frequency Cepstral Coefficients (MFCC), Spectral Entropy Cepstral Coefficients (SENCC) and Spec-
tral Centroid Cepstral Coefficients (SCCC), which were classified through K-nearest Neighborhood 
(KNN) and Support Vector Machine (SVM) classification methods. The performance of the different 
combinations of the feature sets was also evaluated based on several measures such as accuracy, F1-
score and Matthews Correlation Coefficient (MCC). Bayesian Hyperparameter Optimization 
(BHPO) was employed to tailor the classifiers uniquely to fit each experiment. The proposed meth-
odology was tested on two datasets of expiratory cries (EXP) and voiced inspiratory cries (INSV). 
The highest accuracy and F-score were 89.99% and 89.70%, respectively. This framework also im-
plemented a novel feature selection method based on Fuzzy Entropy (FE) as a final experiment. By 
employing FE, the number of features was reduced by more than 40%, whereas the evaluation 
measures were not hindered for the EXP dataset and were even enhanced for the INSV dataset. 
Therefore, it was deduced through these experiments that an entropy-based framework is success-
ful for identifying sepsis in neonates and has the advantage of achieving high performance with 
conventional machine learning (ML) approaches, which makes it a reliable means for the early di-
agnosis of sepsis in deprived areas of the world. 

Keywords: newborn cry diagnostic system; Spectral Entropy; sepsis; fuzzy entropy; Bayesian  
Hyperparameter Optimization 
 

1. Introduction 
Studies conducted by the United Nations Children’s Fund (UNICEF) report that 7000 

newborns die every day from mostly treatable causes, which amounts to 2.6 million neo-
nates per year. Although neonates constitute the most vulnerable group, they are also the 
most difficult to interact with; in-depth examinations and medications are intricate and 
seldom prescribed. The main challenge in working with neonates is that their only means 
of communication is crying. According to UNICEF reports, newborn mortality is mainly 
attributable to infectious pathologies such as sepsis and meningitis. These two pathologic 
conditions together comprise a 15% share of all neonate death causes, especially in middle 
and lower-income countries [1]. 

Crying is the result of cooperation between numerous organs in the body, such as 
the respiratory system, central and peripheral nervous system, and a variety of muscles 
and limbs. If any organs fail to function properly, a cry different from a healthy one is 
expected [2]. As early as the 20th century, it was observed that the cry of neonates diag-
nosed with certain pathologies was different from healthy neonates [3]. This led to further 
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investigation of cries and the use of sound spectrographic analysis. The results claimed 
that the cry signal conveys a significant amount of information about a newborn’s health. 
The researchers developed a more accurate system since the spectrographs could not cap-
ture all the abnormalities and disorders in a cry signal; therefore, the automatic newborn 
cry diagnostic systems (NCDSs) were designed and proposed [4–9]. 

NCDS architectures are designed to serve different purposes. These purposes include 
detecting the reason for crying in healthy infants [10,11], such as pain, hunger, etc., seg-
menting the crying episodes into expiration and inspiration [12], detection of the cry from 
the surrounding environment [13] and diagnosis of pathologies [14–16]. The design pro-
posed in this study focuses on the last category of NCDSs where the goal is to discriminate 
between healthy and septic infants [17]. Similar to other audio analysis systems, the NCDS 
consists of three main stages: pre-processing, feature extraction and classification, as seen 
in Figure 1. 

 
Figure 1. The block diagram of the NCDS. 

Mel-frequency Cepstral Coefficients (MFCC) are one of the most common features in 
the analysis of audio signals. They have been employed in the detection of many health 
conditions, such as cleft palate [18], asphyxia [19,20], respiratory distress syndrome [4] 
and hearing impairment [21], and have demonstrated efficient performance. Other feature 
sets, including fundamental and resonant frequencies [22], Linear Prediction Coding 
(LPC) [23] and prosodic features [24], have been explored in the feature extraction step of 
other NCDS designs. Various entropy feature sets were utilized in order to identify deaf 
neonates from the healthy group [21], for detection of asphyxia in newborns [25] and for 
automated detection of the cry [26]. It has been reported that approximate entropy has 
different levels across healthy and pathologic newborns [27]. We extracted Spectral En-
tropy Cepstral Coefficients (SENCC) and Spectral Centroid Cepstral Coefficients (SCCC) 
and combined them. The combination of these features provides more analysis for the 
study of septic cry signals. Finally, the feature sets are fed to a classifier and the predicted 
class labels are the output of the NCDS. 

Spectral Centroid (SC) has been studied in order to find the reason for crying [28,29] 
and to detect infants with developmental disorders [30]. This feature has shown promis-
ing results in musical applications for studying timbre [31] and medical studies such as 
detecting Alzheimer’s disease based on Electroencephalogram (EEG) signals [32]. To the 
best of our knowledge, cepstral analysis of this feature set has not been explored in NCDS 
designs so far. For a long time, crying has been treated similarly to the speech signal, and 
the features that showed potential in speech recognition tasks have been employed in cry 
research. This study aims to introduce the features that have been prevalent in the study 
of music to cry-based applications since the cry signal has harmonic components and 
rhythm [22,24]. In the next step of NCDSs, many different classification approaches have 
been explored. Support Vector Machine (SVM) [33,34], Probabilistic Neural Network 
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(PNN) [24], Forest [35], Decision Trees [29], K-nearest Neighborhood (KNN) [36], and dis-
criminant analysis are some of the algorithms implemented in this field [37]. 

Hyperparameter Optimization (HPO) was introduced in the 1990s [38,39] when sev-
eral studies reported that adjusting various hyperparameters led to better results across 
different datasets [40]. HPO is employed to enhance the performance of the default set-
tings provided by conventional machine learning (ML) architectures [41,42]. Moreover, 
Fuzzy Entropy (FE) has been studied previously for many applications in the biomedical 
field, such as medical database classification [43], and also tested on the Parkinson’s data-
base for feature selection purposes, which was able to achieve an accuracy of 98.28% [44].  

The contribution in this study has several aspects: first, the identification of septic 
newborns using their cry signals is of great significance, which has considerable potential 
and has been rarely looked at so far. To the best of our knowledge, even though sepsis is 
taking the lives of many newborns every day, there is only one other very recent study 
dedicated to this pathology. The second contribution is our approach in the design of an 
NCDS with different feature sets, their combination, and unique HPO for each feature set 
and classifiers, in order to identify septic newborns. Lastly, we employed a feature selec-
tion method based on Fuzzy Entropy (FE Selection) in order to select the features with the 
highest information content and to reduce the feature space dimensionality [45,46]; to the 
best of the authors’ knowledge, this method has not been explored in research associated 
with NCDS so far. There are many other entropy-based features and methods present in 
the literature. FE selection was chosen for this study due to its simplicity and the fact that 
it does not burden the system with complex computational costs [47]. Moreover, Lee et al. 
[45] stated that their FE-based feature selection method enhanced the classification rate by 
discarding the features that were detrimental and affected by noise. The term sepsis refers 
to an infection that enters the bloodstream. Medical studies suggest that major infections, 
including sepsis, are associated with tenacious crying, and therefore, for a neonate with 
persistent crying, the predominant manifestation of sepsis should be seriously considered 
[48]. Expedient diagnosis is of utmost importance for this pathology and medical staff 
should be alert to the risk factors of sepsis in neonates [49]. It should be mentioned that 
there are other effective approaches to the study of sepsis in newborns, which range from 
studying heart rate monitoring to biosensing and electrochemical detection [50,51]. How-
ever, we proposed this study as an early and simple alert for diagnosing sepsis without 
the need for any clinical equipment, or even contact with the newborn, which would be 
complementary in adding information regarding sepsis. The areas that suffer the most 
from septic mortality have a lack of pediatricians and are categorized among low-income 
countries. Thus, a method that is simple and has efficient performance is preferred to one 
benefiting from complicated architecture and high computational requirements. 

This article aims to provide an automated approach for identifying septic neonates 
through the development of a Newborn Cry Diagnostic System (NCDS). Furthermore, 
our goal is to assess the performance of the existing methods in the fields of ML and 
speech analysis in order to provide a simple tool for early diagnosis of sepsis in infants. It 
is noteworthy that there are a very limited number of studies dedicated to the automatic 
identification of septic newborns so far, and we will address them in the following sec-
tions. Therefore, there is a lacuna in the studies regarding the automatic analysis of sepsis 
in neonates. The methodology section explains the data acquisition process, participants 
and NCDS stages with a detailed description of the features and classifiers. Next, we ex-
pound the NCDS evaluation methods and the results in terms of the evaluation metrics 
are presented. We will then discuss the achieved results and compare them to the work 
of other researchers. The final section is dedicated to the conclusion. 
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2. Methodology 
2.1. Cry Dataset and Recording Procedure 

The database used for this study was created in collaboration and cooperation with 
Al-Raee and Al-Sahel hospitals in Lebanon and Saint Justine Hospital in Montreal, Can-
ada. Most of the infants chosen for this study were neonates by the definition of UNICEF, 
which means they were less than four weeks old. The large number of cases and the di-
versity of race and pathologies make this database exceptional from all the other data-
bases. The signals were recorded in the hospital environment; they were recorded in dif-
ferent conditions and times, such as after birth, when infants were placed in intensive care 
units, in the maternity room (either public or private), etc. 

The crying reasons were not the same for all the infants; for example, cries may be 
due to wet diapers, hunger, fear, etc. These reasons were determined according to the 
conditions causing the cry with the help of medical staff and the infant’s guardians. They 
were also based on the various tests performed after birth [52]. The dataset acquisition 
and the selection of the neonates that participated in this study were not limited to a spe-
cific cry stimulus, making our study a comprehensive one. 

The recorder utilized for this database was an Olympus hand-held digital two-chan-
nel device. It had a sampling frequency of 44.1 kHz and 16 bit resolution. The recorder 
was placed 10 to 30 cm from the newborn’s mouth. There was no well-defined procedure 
during the acquisition of the cry sounds. Therefore, during the data collection process, 
unwanted information and noises, such as staff chatter, medical instrument beeps, the cry 
of the other newborns, and other environmental noises and sounds, were also recorded. 
Hence, we consider our database a real corpus recorded in an actual clinical environment. 
Table 1 is a description of the cry database used in this study. 

Table 1. Description of the cry database. 

 Septic Healthy 
Gender 11 Males and 6 Females 55 Females and 53 Males 
Weight 3.03 ± 0.40 kg 3.50 ± 0.55 kg 

APGAR Score 8 to 10, measured 2–3 times 9–10, measured 2–3 times 
Babies’ Ages 1 to 53 days old 
Prematurity Full term 

Gestational Age 38 ± 1 week 

Origin 
Canada, Haiti, Portugal, Syria, Lebanon, Algeria, Palestine, 

Bangladesh, Turkey 
Race Caucasian, Arabic, Asian, Latino, African, Native Hawaiian, Quebec 

Reason for 
Crying 

Birth cry, hunger, dirty diaper, discomfort, needs to sleep, cold, pain 

The pathology group selected for this study was sepsis. Our database includes 108 
full-term healthy neonates and 17 neonates that were marked as having sepsis by the med-
ical staff through in-depth examinations. There are 53 cry signals recorded from the septic 
neonates in total, which means each newborn has more than one recording in the data-
base. In order to obtain a balanced study, the same number of samples were chosen from 
the full-term healthy neonates’ group. The healthy samples were selected completely ran-
domly and without any pre-specified conditions in order to maintain the proposed NCDS 
free of any bias towards race, reason for crying and origin. In order to have a balanced 
study, we randomly selected an equal number of samples from both groups. As shown in 
Table 2, the control group consisted of randomly chosen samples from the whole healthy 
dataset of 108 healthy newborns to match the number of samples from the septic group. 
We wanted our NCDS to include newborns from all races, genders and any cry stimuli. 
The only remaining difference in the two datasets is the number of males and females. 
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However, it has been shown that the length of vocal cords is the factor that determines 
the fundamental frequency of newborn cries as well as other characteristics, and this is 
similar across male and female neonates and does not have any meaningful impact on the 
cry [53]. The average lengths of expiratory and inspiratory cries were 0.72 and 0.21 s, re-
spectively. We set a condition to only select the samples with a length of more than two 
consecutive windows (17 ms = two 10 ms windows with 30% overlap) in order to achieve 
a reliable analysis of the dataset. 

Table 2. Specifications of EXP and INSV datasets for healthy and pathologic cry signals. 

 
No. of 

Healthy 
No. of 
Septic 

No. of Train 
Samples 

No. of Test 
Samples 

Available 
Time (s) 

EXP 1132 1132 1585 679 1773.66 
INSV 461 461 646 276 442.27 

2.2. Dataset Preprocessing 
Neonates have no significant control over their cries and therefore can only have a 

few of the respiratory maneuvers present in adults. Lester et al. [54] reported that the cry 
pattern of newborns often shows an expiration phase that is five times longer than the 
inspiration, which was confirmed by the durations of signals for the expiration and voiced 
inspiration in our dataset. 

The process of segmenting and labeling the cry signals was manual and rather per-
ceptive, and consequently a time-consuming one as well. The usual method was to detect 
the start and end of a cry unit by visual and auditory investigation of the spectrogram of 
the cry signal [12]. 

Our team of researchers annotated the labels corresponding to various segments of 
cry signals for this study using WaveSurfer software, as in Figure 2. The recordings of our 
corpus have been manually annotated to mark the start and endpoints of each vocaliza-
tion. A newborn cry can comprise typical cry sounds, glottal sounds, hiccups, short pause 
segments between cries and faint cries [5]. The inspiration is believed to contain infor-
mation pointing to pain and distress cries [55]. 

 
Figure 2. Labels annotated using WaveSurfer software for a cry signal. 

The power needed for driving the expiratory phase of a cry is stored during inspira-
tion. Usually, cries occur during this respiratory phase, so this segment contains the main 
information [5]. Additionally, voiced inspiration has proven to be significant in the study 
of pathologic neonates [52]. Therefore, INSV and EXP units are used separately for this 
study in order to discriminate between healthy and pathologic cries. 

2.3. Feature Extraction 
In the process of generating a cry sound, the impulses produced by the glottis pass 

through the vocal tract, which acts as a filter. In other words, the vocal tract filters the 
glottal impulses so as to produce the desired sounds [56]. The Cepstrum is a homomor-
phic transformation that allows for the discrimination of the source and filter [57]; there-
fore, cepstral analysis was employed here. Furthermore, the cry signal is non-stationary 
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and dynamic. Hence, an entropy-based feature vector that can capture the presence of 
complexity in the cry signal is indispensable in the study of newborn pathology diagnosis 
[58]. Our dataset was recorded in real-world conditions; therefore, the presence of noise 
was inevitable. In other biological signals, the noise is treated differently based on the 
purpose and applications [59]. In this regard, as suggested by the previous researchers in 
our lab [33], we addressed this issue by studying both INSV and EXP datasets in order to 
be able to have a more reliable representation of the results. Alaie et al. [33] mentioned 
that EXP cries are more reliable in terms of estimating the true value. Furthermore, the 
acquisition of the cry signals was done in the same conditions for both healthy and septic 
newborns, and all the steps for the analysis of both groups were similar. The biological 
signals are associated with nonstationarities. Maganin et al. [60] reported that these non-
stationarities may have detrimental effects on the results. In order to overcome the diffi-
culties in processing and the classification of the nonstationary cry signal, it is standard 
practice to employ filter banks and a sliding window of short length (10 ms) [61]. The 
windowing of the nonstationary signal has been introduced as a solution for achieving a 
locally stationary signal [62]. In this study, the Hamming window and Mel-filter banks 
were utilized before extracting the features. Each of the introduced feature sets was tested 
both individually and combined with other features. In the next step, these feature sets 
were fed to the KNN and SVM classifiers, and the hyperparameters for each of them was 
optimized using the BHPO method. 

2.3.1. Mel-Frequency Cepstral Coefficients (MFCC) 
Prior to the extraction of MFCC features, the cry signal needs to be pre-emphasized, 

which means that the signal is filtered by H(z) = 1 − a𝑧𝑧−1 as the transfer function of the 
signal. This filtering allocates higher gains to higher frequencies. In this study, the value 
of a was selected equal to 0.97 based on previous researchers’ work [33]. Extracting 
MFCCs consists of four main steps, which are described here [26]: 
1. Applying a windowing criterion to the signal: The window was applied to enhance 

the harmonics, smooth the edges and decrease the edge effect of applying a Discrete 
Fourier Transform (DFT) to the signal. Here, the Hamming window with a frame size 
of 10 ms and 30 percent overlap between consecutive frames was selected. 

2. Implementing the DFT: In order to obtain the magnitude spectrum of each window, 
the DFT is applied to the cry signal. In this study, overlapping triangular filters were 
employed; the number of filters used varied in general between 13 and 24. The MFCC 
features were computed from 13 filter banks. 

3. Computing the logarithm of magnitude and scaling the frequencies on a Mel scale: 
The magnitude spectrum was multiplied by every triangular Mel weighting filter to 
calculate the Mel spectrum. The Mel spectrum should be represented on a log scale 
to be prepared for the next step. Equation (1) gives the Mel scale of frequency 𝑓𝑓. 

𝑀𝑀(𝑓𝑓) = 1125 𝑙𝑙𝑙𝑙(1 + 𝑓𝑓/700) (1) 

4. Taking the inverse Discrete Cosine Transform (iDCT) of the signal: As mentioned 
before, the energy levels of adjacent bands tend to be correlated due to the smooth 
form of the vocal tract. Therefore, the transformed Mel-frequency coefficients must 
undergo an iDCT that results in separable cepstral coefficients. The first few MFCC 
coefficients might be sufficient for a robust representation of the system [63]. There-
fore, the first 13 coefficients were extracted in this study. 
MFCCs often only contain the information from one window; hence, these cepstral 

coefficients are considered static features. In order to gain information on the temporal 
dynamics, cepstral coefficients’ first and second derivatives should be calculated, which 
are known as delta and delta-delta coefficients, Equation (2). 
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∆𝑛𝑛=  
∑ 𝜃𝜃(𝑐𝑐𝑛𝑛+𝜃𝜃 − 𝑐𝑐𝑛𝑛−𝜃𝜃)Θ
𝜃𝜃=1

2∑ 𝜃𝜃2Θ
𝜃𝜃=1

 (2) 

where ∆𝑛𝑛  is a delta coefficient from discrete-time n computed in interval of the static co-
efficients 𝑐𝑐𝑛𝑛−Θ  to 𝑐𝑐𝑛𝑛+Θ ; the value of Θ  is usually set to 2 [61]. The delta-delta coefficients 
are calculated with delta coefficients in a similar manner. The dynamic features help us 
capture the spectral changes in the cry signal. Finally, the dynamic MFCC features are 
added to the feature vector, and together they form the MFCC feature set with a total of 
39 features. 

2.3.2. Spectral Entropy Cepstral Coefficients (SENCC) 
Spectral Entropy (SEN) evaluates the signal’s energy distribution uniformity. This 

measure is an indicator of the complexity of the signal. It can also be employed to capture 
the peakiness in a signal. Figure 3 illustrates the SEN of multiple episodes of expiration 
cry for a healthy infant as opposed to an infant diagnosed with sepsis. The entropy levels 
for a septic cry are lower, which was also deduced in previous works [64]. 

 
Figure 3. Spectral entropy for 20 EXP utterances from one healthy neonate and 20 EXP utterances 
from one septic neonate. 

In order to compute the SEN, the spectrum is written in terms of a Probability Mass 
Function (PMF)-like function, Equation (3). 

𝑥𝑥𝑖𝑖  =  𝑋𝑋𝑖𝑖
∑ 𝑋𝑋𝑖𝑖𝑁𝑁
𝑖𝑖=1

   for i = 1 to N (3) 

Here, (the uppercase) 𝑋𝑋𝑖𝑖, appearing in the nominator and denominator, is the energy 
of ith frequency component of the spectrum. The PMF of the spectrum is represented by 
(the lowercase) x = (x1,…,xN), and the number of points in the spectrum is specified by N. 
The entropy of each frame was computed from Equation (4) [65]. 

H = -� xi .  log2xi

N

i=1

 (4) 

 In order to detect the position of peakiness or flatness present in the spectrum, a 
process similar to the extraction of the MFCCs was employed. The fast Fourier Transform 
(FFT) of each frame was calculated. Following the calculation of the FFT, the achieved 
spectrum was mapped to the Mel-scale in order to mimic the signal based on the human 
sound perception model. Then, the SEN was computed from the Mel-spectrum. Finally, 
DCT was applied to decorrelate between the coefficients and further improve the results, 
and 13 SENCC coefficients were obtained. 
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2.3.3. Spectral Centroid Cepstral Coefficients (SCCC) 
SC is a measure of the shape of the spectrum of the signal and the position of the 

mass of the spectrum. The mean value of SC was shown to be a discriminative feature [66] 
that indicates where the major energy of the signal is concentrated. SC is expected to be 
higher for the “brighter sounds” and has been widely employed in the study of timbre for 
music applications [58]. It is also a discriminative feature in the measurement of tone in 
audio signals [67]. Figure 4 presents how the cries of the neonates suffering from sepsis 
are associated with lower tone, as is listed as one of the red-flag listings associated with 
neonatal sepsis [68]. 

 
Figure 4. Spectral centroid for 15 EXP utterances from one healthy neonate and 15 EXP utterances 
from one septic neonate. 

SC denotes the center of the signal’s gravity and is computed by taking the weighted 
mean of the frequency bins. The SC value, Ci of the i-th window, is computed using Equa-
tion (5). 

Ci= 
∑   kXi(k)

WfL
k=1

∑   Xi(k)
WfL
k=1

 (5) 

where 𝑥𝑥𝑖𝑖(𝑙𝑙) are the i-th window samples, and Xi(k) are the DFT coefficients. The SC 
cepstral coefficients’ extraction procedure is similar to what was described for MFCC and 
SENCC, except that for the SCCC feature vector, the first five coefficients were extracted. 

2.4. Feature Reduction 
The first and most crucial aspect of post-processing is to reduce the dimensionality 

of the feature vectors to decrease the storage and computational costs. Feature reduction 
includes all the techniques that aim to make a compact feature set out of the original sets 
while trying to keep as much information as possible. Camargo et al. [69] suggested a 
simple and rapid method that reduces data through statistical operations such as mini-
mum, maximum, average and standard deviation. Messaoud et al. [7] also proposed an 
arithmetic method by averaging MFCCs over a time axis. Matikolaie et al. [4] further in-
vestigated the use of statistical methods in the compression of the MFCC feature set and 
reported that this method was effective in terms of computational costs and classification 
accuracy. In order to reduce the dimensionality of the MFCC feature set, the statistical 
approach was employed, and the mean value of each MFCC coefficient over the time axis 
of each signal was calculated. 

2.5. Fuzzy Entropy Based Feature Selection 
As explained in the previous sections, entropy is associated with the uncertainty of a 

given variable. Here, we aim to focus on the concept of fuzzy entropy, which calculates 
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entropy through a fuzzy c-means clustering algorithm. This method is called Fuzzy En-
tropy Selection of the features (FE Selection). In general, fuzziness refers to a possibilistic 
point of view, while the aforementioned entropy measure focuses on randomness and has 
a probabilistic perspective. This method was chosen because it is very fast and imposes a 
negligible computational cost on the system [47]. 

Trivedi et al. [70] introduced a Fuzzy c-Partition model that computed the member-
ship of each feature dimension and its corresponding FE. Suppose a finite set where Y = 
{𝑦𝑦1, 𝑦𝑦2, …, 𝑦𝑦𝑛𝑛}, a set of real 𝑐𝑐 ×  𝑙𝑙 matrices denoted by 𝑉𝑉𝑐𝑐𝑛𝑛, and 𝑐𝑐 is an integer so that 
2 ≤ 𝑐𝑐 < 𝑙𝑙. The fuzzy c-partition space, 𝑀𝑀𝑓𝑓𝑐𝑐, for Y is given by Equation (6). 

𝑀𝑀𝑓𝑓𝑐𝑐 =  �𝑈𝑈 ∈ 𝑉𝑉𝑐𝑐𝑛𝑛| 𝑢𝑢𝑖𝑖𝑖𝑖 ∈ [0, 1],∀𝑖𝑖, 𝑘𝑘; �𝑢𝑢𝑖𝑖𝑖𝑖

𝑐𝑐

𝑖𝑖 = 1

= 1,∀𝑘𝑘;  0 < �𝑢𝑢𝑖𝑖𝑖𝑖

𝑐𝑐

𝑖𝑖 = 1

< 𝑙𝑙,∀𝑖𝑖� (6) 

This means that membership values of 𝑦𝑦𝑗𝑗   in the 𝑐𝑐 subsets could be obtained from 
the 𝑗𝑗th column of matrix U, which is from 𝑐𝑐 ×  𝑙𝑙 dimensions. The grade of membership 
of 𝑦𝑦𝑖𝑖  in the ith fuzzy subset of Y is represented by 𝑢𝑢𝑖𝑖𝑖𝑖  =  𝑢𝑢𝑖𝑖(𝑦𝑦𝑖𝑖). Therefore, the member-
ship of each pattern 𝑦𝑦𝑖𝑖  in all subsets is calculated and then normalized. Instead of apply-
ing this algorithm to each pattern, it is applied to each feature similar to previous studies 
[47]. The FE is calculated based on the matching degree, 𝐷𝐷𝑐𝑐 , described by Equation (7), 
where 𝑢𝑢𝑐𝑐 is the membership of the feature 𝑦𝑦𝑑𝑑   in each of our two classes, denoted by c 
for each class and C for the set of the two classes [45]. 

𝐷𝐷𝑐𝑐 =  
∑ 𝑢𝑢𝑐𝑐  (𝑦𝑦𝑑𝑑)𝑦𝑦𝑑𝑑∈𝑐𝑐

∑ 𝑢𝑢𝑐𝑐 (𝑦𝑦𝑑𝑑)𝑦𝑦∈𝐶𝐶
 (7) 

The FE of the elements of each of these classes is achieved through Equation (8). 

𝐹𝐹𝐹𝐹𝑐𝑐 =  −𝐷𝐷𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑐𝑐 (8) 

Finally, the overall FE is given by Equation (9): 

𝐹𝐹𝐹𝐹 =  � 𝐹𝐹𝐹𝐹𝑐𝑐
𝐶𝐶

𝑐𝑐=1
= 𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦 + 𝐹𝐹𝐹𝐹𝑆𝑆𝐻𝐻𝑆𝑆𝐻𝐻𝑖𝑖𝑐𝑐  (9) 

The main interpretation of the FE is very similar to the SEN which was described 
before; higher entropy translates to lower information content. We based our feature se-
lection on the fact that smaller FE values contribute more to the recognition of septic in-
fants. Thus, we first calculated the average FE value across the features and set this value 
as a threshold for our feature selection. In the next step, we imposed a condition where 
only the features with FE values lower than the overall average FE should be selected and 
formed a new feature set to be fed into the classifier. This condition secures the selection 
of features with minimum overlap and also will likely result in a lower misclassification 
possibility, which will be evaluated by the Matthews Correlation Coefficient (MCC) meas-
ure. 

2.6. Classification 
The performance of the feature sets was tested by the two classification methods of 

KNN and SVM in order to discriminate between the healthy and septic neonates. Each 
EXP or INSV cry episode was treated as a sample and the classifier assigned a label of 
healthy or septic to it. Both classification methods benefit from five-fold cross-validation 
in order to avoid over-fitting and ensure credibility. The models were tuned with the 
BHPO method in order to enhance the performance of each model. 

2.6.1. K-Nearest Neighborhood (KNN) 
This method is an efficient yet simple method of classifying data. As the name of this 

method suggests, the features with similar values belong to the same class. The KNN clas-
sifiers often use Euclidean distance for the measurement of the distance between data 
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points. This classifier has three bases for classification: sets of labeled data, a distance 
measure and, finally, the number of neighbors, which is denoted by K. In other words, 
KNN classifies a given sample based on the majority vote of the neighborhood and the 
distance [71,72]. The number of neighbours was automatically tuned with the BHPO 
method in the first step, which in all of the given experiments returned K = 1 as the best 
choice. The other hyperparameter selected for tuning is the type of distance used with 
each feature set. The distance measures included in this optimization include Minkowski, 
Chebyshev, Euclidean, standard Euclidean, cosine, Jaccard, Manhattan and Hamming. 

2.6.2. Support Vector Machine (SVM) 
SVM has a broad application in the classification of audio signals. An SVM differen-

tiates between two cases by implementing a hyperplane. SVM is inspired by the statistical 
learning theory and the Vapnik–Chervonenkis (VC) dimension. The optimal hyperplane 
is constructed when the distance between the hyperplane and data is considerable. The 
linear data can be classified by simply constructing a straight hyperplane, while the non-
linear data should be made linearly separable for the purpose of classification. It means 
that the data must pass through a transformation into high-dimensional space, which is 
known as the kernel function [73]. The gaussian kernel is used in this study. The hyperpa-
rameters selected for HPO were kernel scale and box constraint. The BHPO was used for 
the tuning of the mentioned hyperparameters of the SVM model as well. 

2.6.3. Bayesian Hyperparameter Optimization (BHPO) 
In order to maintain the classification errors at a minimum while achieving high per-

formance in a ML problem, HPO methods are used. A majority of ML designs include 
hyperparameters. With recent advances in the field of automated ML, various methods 
such as random search, grid search and Bayesian optimization have been introduced that 
no longer require human efforts for tuning these hyperparameters. More importantly, the 
hyperparameters are tailored to meet the requirements of each specific task and the results 
are reproducible. The basis of HPO is finding the optimal value for the hyperparameters 
in a finite set of predefined values, in order to minimize or maximize an objective function 
(e.g., model performance). The common challenge with these grid search and random 
search methods is the high number (~90 iterations) of function evaluations needed to ob-
tain minimal error, which in turn is not cost-effective and may cause curse of dimension-
ality [74]. BHPO is also an iterative method in which the acquisition function and the 
probabilistic surrogate model are the vital elements. The model is constantly updated 
based on the objective function evaluation, which is expressed as Equation (10) [75]: 

𝑥𝑥∗ = 𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑖𝑖𝑙𝑙
𝑥𝑥∈𝑋𝑋

𝑓𝑓(𝑥𝑥) (10) 

The methodology in summary is deduction of the information on the model in each 
iteration based on new hyperparameters and the resulting model performance. When the 
number of determined iterations ends, the global optimal hyperparameter configuration 
is reported. In order to establish the local optimal hyperparameter, the acquisition func-
tion employs the predictive information of each possible hyperparameter configuration. 
BHPO requires far fewer iterations when compared to the other two methods and all the 
experiments in this study were performed with only 30 iterations. 

3. Evaluation and Results 
The features introduced in this study were extracted and fed to the classifiers with 

the purpose of distinguishing between healthy and septic neonates. In order to compare 
their abilities to reach that goal, several experiments were conducted which were com-
prised of different feature sets, implementing the features individually or combined, and 
two classification methods with a wide range of parameters. Finally, the models were 
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tuned to obtain the best performance. In this framework, the following feature sets were 
used: 
• MFCC; 
• SENCC; 
• SCCC; 
• MFCC + SENCC; 
• SENCC + SCCC; 
• MFCC + SCCC; 
• MFCC + SENCC + SCCC. 

Five-fold cross-validation was carried out after feeding each feature set to the classi-
fier. This means that one fold of data was treated as the test data in each iteration of the 
training process, and the other four were the training folds. This process was repeated 
until all the folds had been used as the test fold. This process was repeated for both EXP 
and INSV datasets. 

3.1. Evaluation Criteria 
There are different approaches to evaluating a system’s performance. One of the 

main measures for that purpose is accuracy. Accuracy is the ratio of correct decisions to 
the total number of cases, Equation (11). 

Acc = 
TP+TN

TP+TN+FN+FP
 (11) 

where N stands for negative and P stands for positive, and T and F stand for true and 
false. However, when the task is diagnosing a pathology, it is of utmost importance that 
the system does not miss a pathologic case. A confusion matrix is defined for the binary 
classification task where the problem is the discrimination between healthy and patho-
logic cries, as shown in Figure 5. In this study, the positive label stands for septic infants 
and the negative label stands for healthy (not septic). 

  True Class 

  Septic (P) Healthy (N) 

Pr
ed

ic
te
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C
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ss

 

Septic (T) 
True Positive 

(TP) 

False Positive 

(FP) 

Healthy (F) 
False Negative 

(FN) 

True Negative 

(TN) 

Figure 5. The confusion matrix for a binary classification. 

The True Positive Rate (TPR) is referred to as sensitivity, hit rate or recall. In the con-
cept of this study, recall is also an important measure as it demonstrates how many true 
septic cases have been captured by the NCDS. Hence, recall owes its importance to the 
fact that a false healthy detection is not desirable, Equation (12) [76]. 

TPR =  
TP

TP + FN
 (12) 

The Positive Predictive Value (PPV) is another measure and is also referred to as pre-
cision. In this framework, precision is the probability that a septic case is predicted as 
septic, Equation (13). 
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PPV =  
TP

TP + FP
 (13) 

The next evaluation measure is called the F1-score, which shows the balance between 
precision and recall and is a good measure of the system’s performance. Mathematically, 
the F1-score is the harmonic mean of precision and recall, Equation (14). 

F1 =  
TP

TP + 0.5 ( FP + FN)
= 2.

precision . recall
precision + recall

 (14) 

Finally, the MCC considers all the information in a contingency matrix. The value of 
this measure belongs to the [−1, +1] interval where 0 denotes a random distribution, −1 
shows complete misclassification and +1 corresponds to perfect classification [77]. 

The MCC is computed using Equation (15): 

MCC =  
TP × TN − FP × FN

�(TP + FN)(TN + FP)(TP + FP)(TN + FN)
 (15) 

The MCC measure is highly informative for binary classification tasks in general [78]. 
Since we have a healthy versus septic classification problem in this study, implementing 
the MCC is considered beneficial and proper. 

3.2. Results 
The results of different experiments conducted in this study are given in Tables 3–10. 

As previously mentioned, we analyzed the performance of feature sets for two separate 
datasets of EXP and INSV. Moreover, KNN and SVM were employed as the classifiers in 
this study. The feature sets were used both individually and jointly. They were concate-
nated so that we could compare the performance of larger feature sets as opposed to the 
individual feature sets. It is noteworthy that our findings regarding the behavior of feature 
sets were consistent with medical findings and other researchers’ work, as discussed in 
Sections 2.3.2 and 2.3.3. Regarding the evaluation criteria discussed in the previous sec-
tion, the higher the value of each measure, the better the performance of our NCDS. The 
results presented in this section are all in the form of average and standard deviation of 
five-fold cross validation values. For all the measures, the values represent percentages 
except for the MCC measure, which is unitless and belongs to the [−1, 1] range. 

Table 3. Evaluation metrics for the MFCC feature set. 

MFCC 
EXP INSV 

SVM KNN SVM KNN 
Accuracy (%) 88.07 ± 0.98 81.97 ± 0.70 89.06 ± 1.80 85.36 ± 0.49 

Recall (%) 85.71 ± 1.91 91.67 ± 1.83 91.85 ± 2.96 92.74 ± 0.33 
Precision (%) 90.38 ± 0.74 72.48 ± 1.93 86.38 ± 1.05 78.30 ± 0.81 

Specificity (%) 89.72 ± 0.72 76.56 ± 1.01 86.58 ± 1.16 80.36 ± 0.61 
F-score (%) 87.66 ± 1.13 83.42 ± 0.67 89.13 ± 1.90 86.11 ± 0.42 

MCC 0.76 ± 0.02 0.65 ± 0.01 0.78 ± 0.04 0.72 ± 0.01 
Distance/Kernel 

Scale 
1.7864 Cosine 5.8165 Cosine 
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Table 4. Evaluation metrics for the SENCC feature set. 

SENCC 
EXP INSV 

SVM KNN SVM KNN 
Accuracy (%) 71.55 ± 0.70 72.02 ± 0.82 69.20 ± 0.85 65.00 ± 1.71 

Recall (%) 42.50 ± 1.42 44.88 ± 1.85 37.04 ± 1.74 58.81 ± 3.13 
Precision (%) 100.00 ± 0.00 98.60 ± 0.24 100.00 ± 0.00 70.92 ± 2.01 

Specificity (%) 100.00 ± 0.00 96.93 ± 0.43 100.00 ± 0.00 65.95 ± 1.82 
F-score (%) 59.64 ± 1.40 61.33 ± 1.68 54.04 ± 1.84 62.15 ± 2.29 

MCC 0.52 ± 0.01 0.52 ± 0.01 0.48 ± 0.01 0.30 ± 0.03 
Distance/Kernel 

Scale 
0.0116 Cosine 0.1063 Chebyshev 

Table 5. Evaluation metrics for the SCCC feature set. 

SCCC 
EXP INSV 

SVM KNN SVM KNN 
Accuracy (%) 71.46 ± 0.67 72.02 ± 0.77 69.06 ± 0.83 68.12 ± 0.87 

Recall (%) 42.32 ± 1.35 45.60 ± 1.73 36.74 ± 1.71 37.33 ± 1.93 
Precision (%) 100 ± 0.00 97.90 ± 0.24 100.00 ± 0.00 96.03 ± 0.81 

Specificity (%) 100 ± 0.00 95.52 ± 0.39 100.00 ± 0.00 90.04 ± 1.72 
F-score (%) 59.46 ± 1.33 61.71 ± 1.55 53.72 ± 1.82 52.75 ± 1.91 

MCC 0.52 ± 0.01 0.51 ± 0.01 0.48 ± 0.01 0.41 ± 0.02 
Distance/Kernel 

Scale 
0.0089 Jaccard 0.0129 Hamming 

Table 6. Evaluation metrics for the combination of SCCC and SENCC feature set. 

SCCC + SENCC 
EXP INSV 

SVM KNN SVM KNN 
Accuracy (%) 71.55 ± 0.70 72.52 ± 0.89 69.06 ± 0.83 65.72 ± 1.24 

Recall (%) 42.50 ± 1.42 47.80 ± 2.13 36.74 ± 1.71 58.52 ± 2.10 
Precision (%) 100.00 ± 0.00 96.73 ± 0.38 100.00 ± 0.00 72.62 ± 2.28 

Specificity (%) 100.00 ± 0.00 93.50 ± 0.48 100.00 ± 0.00 67.21 ± 1.68 
F-score (%) 59.64 ± 1.40 63.23 ± 1.79 53.72 ± 1.82 62.54 ± 1.47 

MCC 0.52 ± 0.01 0.51 ± 0.01 0.48 ± 0.01 0.31 ± 0.03 
Distance/Kernel 

Scale 
0.0951 Jaccard 0.0764 Cosine 

Table 7. Evaluation metrics for the combination of SCCC and MFCC feature set. 

MFCC + SCCC 
EXP INSV 

SVM KNN SVM KNN 
Accuracy (%) 81.50 ± 1.46 82.44 ± 0.65 88.41 ± 1.77 87.25 ± 0.94 

Recall (%) 83.69 ± 2.40 89.05 ± 1.42 89.19 ± 3.25 92.74 ± 1.61 
Precision (%) 79.36 ± 1.53 75.98 ± 0.98 87.66 ± 1.47 81.99 ± 2.28 

Specificity (%) 79.89 ± 1.31 78.41 ± 0.62 87.38 ± 1.39 83.17 ± 1.62 
F-score (%) 81.74 ± 1.57 83.39 ± 0.69 88.25 ± 1.92 87.68 ± 0.84 

MCC 0.63 ± 0.03 0.66 ± 0.01 0.77 ± 0.04 0.75 ± 0.02 
Distance/Kernel 

Scale 
6.5705 

Standard 
Euclidean 

2.5893 Manhattan 
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Table 8. Evaluation metrics for the combination of SENCC and SENCC feature set. 

MFCC + SENCC 
EXP INSV 

SVM KNN SVM KNN 
Accuracy (%) 89.99 ± 0.71 86.83 ± 0.44 88.19 ± 1.42 84.57 ± 0.75 

Recall (%) 88.15 ± 1.75 91.07 ± 0.87 88.89 ± 3.31 90.07 ± 0.66 
Precision (%) 91.78 ± 0.75 82.68 ± 1.56 87.52 ± 1.19 79.29 ± 0.92 

Specificity (%) 91.31 ± 0.65 83.76 ± 1.10 87.22 ± 0.94 80.64 ± 0.79 
F-score (%) 89.70 ± 0.83 87.26 ± 0.31 88.02 ± 1.61 85.10 ± 0.70 

MCC 0.80 ± 0.01 0.74 ± 0.01 0.76 ± 0.03 0.70 ± 0.01 
Distance/Kernel 

Scale 
2.1612 Minkowski 4.5656 Correlation 

Table 9. Evaluation metrics for the combination of all feature sets. 

All Features 
EXP INSV 

SVM KNN SVM KNN 
Accuracy (%) 85.71 ± 1.17 82.77 ± 0.29 89.42 ± 1.01 85.87 ± 0.92 

Recall (%) 78.75 ± 3.34 85.03 ± 1.54 91.41 ± 1.62 94.22 ± 0.97 
Precision (%) 92.54 ± 1.26 80.29 ± 1.51 87.52 ± 1.63 77.87 ± 1.36 

Specificity (%) 91.21 ± 1.04 80.93 ± 0.93 87.54 ± 1.42 80.31 ± 1.02 
F-score (%) 84.48 ± 1.62 83.05 ± 0.38 89.42 ± 1.00 86.71 ± 0.84 

MCC 0.72 ± 0.02 0.66 ± 0.01 0.79 ± 0.02 0.73 ± 0.02 
Distance/Kernel 

Scale 
2.3092 Euclidean 3.8005 Cosine 

Table 10. Evaluation metrics after applying FE Selection to the best feature sets of previous experi-
ments. 

FE Selection 
EXP: MFCC + SENCC INSV: All Features Combined 
All FE Selection All FE Selection 

Accuracy (%) 89.99 ± 0.71 88.51 ± 0.77 89.42 ± 1.01 91.81 ± 0.75 
Recall (%) 88.15 ± 1.75 89.11 ± 1.32 91.41 ± 1.62 93.23 ± 0.44 

Precision (%) 91.78 ± 0.75 87.93 ± 0.84 87.52 ± 1.63 90.66 ± 1.18 
Specificity (%) 91.31 ± 0.65 87.86 ± 0.76 87.54 ± 1.42 89.07 ± 1.25 

F-score (%) 89.70 ± 0.83 88.47 ± 0.81 89.42 ± 1.00 91.10 ± 0.77 
MCC 0.80 ± 0.01 0.77 ± 0.02 0.79 ± 0.02 0.84 ± 0.01 

Number of 
Features 

52 27 57 35 

Table 3 presents the results for the evaluation of the MFCC feature set for EXP and 
INSV datasets. Furthermore, the MFCC feature set was evaluated with the use of the HPO 
method. We used BHPO for both classifiers, as mentioned in the previous sections. Fi-
nally, the performance of this feature set was tested with the KNN and SVM classifiers. 
The HPO led to consistent enhancement of accuracy and F-score measures across both 
datasets for the MFCC feature set. The SVM classifier had better performance in the eval-
uation of the MFCC feature set in both datasets in terms of all the evaluation measures 
except for recall, where the KNN classifier showed better performance. The best results 
achieved by this feature set are highlighted. 

Overall, the highest achieved F-score and accuracy for the EXP dataset were 88.07% 
and 87.66%, respectively. In this regard, the performance of the NCDS with the INSV da-
taset was superior to the EXP dataset; the highest overall results obtained for this dataset 
in terms of F-score and accuracy were 89.06% and 89.13%, respectively. 
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As can be seen in Tables 4 and 5, the performance of our NCDS with the SENCC and 
the SCCC feature sets were similar; both feature sets achieved 72.02% accuracy measures 
(with different standard deviations). Furthermore, the SENCC and the SCCC feature sets 
obtained 61.33% and 61.71%, respectively, for F-score with the KNN classifier for the EXP 
dataset. Also, both datasets and feature sets obtained 100% precision and specificity with 
the SVM classifier. In the evaluation of the INSV dataset, KNN had better performance in 
terms of accuracy and F-score. The best F-score for the SENCC dataset was achieved with 
the KNN classifier for the INSV dataset, which was equal to 62.15%. Regarding the SCCC 
feature set, the highest F-score was 61.71% for the EXP dataset using the KNN classifica-
tion method. 

In the next step, the framework of feature combination was investigated. We exam-
ined all possible combinations of these feature sets that were made possible through their 
concatenation. The results of these combinations are presented in Tables 6–9. It can be 
observed that using the SVM classification method, the combination of SENCC and SCCC 
was dominated by the SENCC feature set for the EXP dataset and by SCCC for the INSV 
method since, despite the difference in their kernel scales, there was not a change in the 
evaluation measures. The overall best accuracy and F-score for the combination of SCCC 
and SENCC belonged to the KNN classification of the EXP dataset with 72.52% and 
63.23%, respectively. 

The addition of the SCCC feature set to the MFCC feature set with the SVM classifier 
achieved the results of 88.41% and 88.25% for accuracy and F-score measures with the 
INSV dataset, as seen in Table 7. Furthermore, using the KNN classifier with the EXP da-
taset resulted in better performance in terms of accuracy and F-score, with 82.44% and 
83.39%, respectively. 

As can be interpreted from Table 8, the best performance in terms of accuracy and F-
score measures for the EXP dataset across all the experiments was achieved by the com-
bination of the MFCC and SENCC feature sets. The highest accuracy and F-score among 
all the experiments on the EXP were 89.99% and 89.70%, respectively. Regarding the EXP 
dataset, the accuracy and F-score measures were enhanced by 1.92% and 2.04%, respec-
tively, compared to the MFCC feature set, which had the highest accuracy and F-score 
among the individual datasets. 

Finally, the combination of all the individual feature sets with the SVM classification 
resulted in the highest accuracy and F-score across all the experiments for the INSV da-
taset, with 89.42% for both measures, as seen in Table 9. The combination of all individual 
feature sets enhanced these two measures by 0.36% and 3.31%, respectively, compared to 
the MFCC feature set, which achieved the best results among the individual feature sets. 

As our final experiment, we computed the FE measure for the best two experiments 
discussed above and selected the most compatible features in each presented feature set. 
These two experiments included the combination of the MFCC and SENCC features for 
the EXP dataset and the combination of all features for the INSV dataset, both classified 
using the SVM method. Table 10 represents the results of applying the FE selection 
method to these two experiments. 

According to the evaluation measures studied here, the FE selection method was 
highly successful. Implementing fewer features resulted in a negligible decrease in the 
evaluation measures for the EXP dataset. As for the INSV dataset, the FE selection led to 
enhancement of all the evaluation measures, which marked the highest accuracy and F-
score measures across all the experiments with 91.81% and 91.10%, respectively. Figure 6 
summarizes the results of the experiments in terms of F-score and accuracy measures for 
the SVM classifier that yielded the best results for a clearer comparison.  
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Figure 6. Best F-score and accuracy measures for the SVM classifier in each feature set. 

4. Discussion 
This study further explored sepsis in newborns by the means of studying their cry 

signal through developing an NCDS design. Even though sepsis is associated with high 
mortality rates in newborns, only one recent work in our lab has studied the cries of septic 
infants in parallel to the study presented here. The previous study in our lab did not dis-
cuss the performance of the system in terms of the accuracy measure [37]. In this study, 
accuracy as well as several other evaluation measures were included to help better study 
the performance of NCDSs for diagnosing septic newborns. Our goal was to build upon 
the previous work and also design a simple model that could achieve improved or com-
parable performance. Moreover, it is worth highlighting this research’s novelty in terms 
of analyzing the infant cry from the perspective of musical machine-learning applications. 
Most of the works addressing infant cries have treated the cry signal as a pre-speech au-
dio. We believed that the harmonic nature of the infant cry, as well as the natural differ-
ences in the voice generation organs of infants and adults, had the potential to be analyzed 
with the features and methods that have shown promising results in the field of musical 
signal processing. There is meager information on the behaviour of pathologic cries based 
on analysis of the SC, and this work is the only study that combines SC with cepstral 
analysis in the study of pathologic newborn cries. 

Nowadays, many audio recognition system designs benefit from state-of-the-art 
deep learning and ML methods. However, the main challenge in studying pathology-re-
lated applications is the acquisition of relevant data. The occurrence of a specific pathol-
ogy in any given time interval in newborns is not predictable and meeting the ethical and 
technical requirements to include cry samples in a database calls for extreme measures. 
Therefore, this study explored different approaches to make the best use of the available 
data. The limitations of the data impose many challenges in NCDS design. Inspired by 
[37], we also addressed this issue by segmenting each cry signal into multiple expiratory 
and inspiratory episodes in order to treat each segment as a sample. Despite our efforts to 
make the analysis in this study unbiased towards race, origin and other factors, it should 
be noted that the system might still suffer from a low generalization power since it was 
designed based on a limited number of participants. Therefore, future research should be 
devoted to further investigate this matter. Moreover, the data dimensionality imposed 
more challenges in the process of feature extraction. It is common practice in NCDS stud-
ies to use statistical measures with extracted features to reduce computational costs [4,7]. 
The statistical method was chosen to ensure that our results are comparable to the previ-
ous studies. Furthermore, extra attention should be paid to the details in the design of 
conventional models because limited data may lead to overfitting of the classifiers. We 
addressed this challenge by using BHPO for both the SVM and KNN classification meth-
ods. As can be interpreted from Table 6, the accuracy of the NCDS was enhanced up to 
89.42% for the INSV dataset. Also, we believed that the characteristics that were reported 
in the medical studies conducted on septic cries could be better analyzed through cepstral 
analysis of the SC and the SEN features, which was confirmed by our findings. Through 
the implementation of these features, the presented work was made capable of obtaining 
F-scores of 89.70% for the EXP dataset and 89.42% for the INSV dataset, which were both 
superior to the previous study [37]. Therefore, we were able to show that even a single 
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episode (as opposed to the All Episode voting scheme) analysis of the cry signal could 
achieve reassuring performance with careful selection of the parameters. 

As mentioned, the performance of the system was tested with the two different clas-
sification approaches of SVM and KNN, and SVM showed superiority in a majority of 
experiments. The recall measure was an exception to this conclusion, where KNN showed 
better performance. The presented study also showed that elevating the number of fea-
tures in a pattern recognition problem does not always enhance the system’s performance. 
The predictive performance of the system depends on many different factors. 

As was mentioned previously, the high discriminative power of inspiratory cries in 
the study of pathologic newborns has been neglected in many works. However, the high 
values of the evaluation measures achieved for this dataset show the potential for further 
investigation of inspiratory cries, which was consistent with previous studies in our lab. 

As discussed in Section 3, the entropy levels differ across healthy and septic infants, 
which is also reported by other researchers where healthy newborn cries were distin-
guished from pathologic cries [27]. The same explanation applies to the SC of the infant 
cries, which marks these feature sets as potential biomarkers for further study of septic 
newborns. The SENCC measure alone could achieve 72% accuracy with the SVM classi-
fier; it yields the highest performance in this study when combined with the MFCC feature 
sets. 

Figure 7 shows the elapsed time for extracting each of our feature sets for EXP and 
INSV datasets. The elapsed times are rational in terms of the duration of datasets and the 
number of coefficients in each feature set. Nevertheless, it was validated that extracting 
the SENCC and SCCC features does not aggravate the system’s complexity in terms of 
computational costs, and they have similar performance and run-times. 

 
Figure 7. The elapsed time for the extraction of features. 

It has been reported that the aggregation of multiple classifiers, with the intention of 
having the classifiers compensate for the errors of each other, does not yield good results 
and only burdens the system with more complexity and computational cost [37]. In order 
to overcome this issue, we utilized BHPO with only 30 iterations, which is a low-cost and 
fast method. We were able to outperform the mentioned model in terms of F-score by 
between 3–6% for both datasets. 

None of the conducted experiments showed misclassification in terms of the MCC 
measure since they all had positive values. Moreover, all the combined feature sets for the 
EXP dataset yielded MCC values higher than 0.50. MCC values consider all elements from 
a confusion matrix; thus, their high value means prediction had satisfactory performance 
in terms of TP, TN, FN and FP. The same explanation applies to the INSV dataset, except 
for the feature set formed by the combination of the SENCC and SCCC features. 
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As a final contribution, we further explored the use of entropy-based measures in the 
framework of diagnosing pathologies in infants based on their cry signals. By calculating 
the FE of the combined feature sets, we were able to remove redundant features, and also 
identified which features yielded better information in the feature set. After calculating 
the average FE across all measures, we set a threshold for the selection of the features and 
removed all the features with a higher FE value than the average. As a result, the system’s 
accuracy for the EXP dataset was not notably hindered by removing more than 40% of the 
features, and it was even enhanced in terms of the recall measure. Moreover, all of the 
evaluation measures were enhanced for the INSV dataset, which shows the reliability of 
this feature selection method in selecting the most prominent features. Figure 8 shows the 
difference in the evaluation measures for the best experiments in each dataset, after re-
moving nearly 50% of the features based on their FE. 

 
Figure 8. The comparison of results before and after applying the FE Selection method. 

The results from these experiments also highlighted the fact that incrementing the 
number of features may not always lead to higher accuracy or enhanced performance of 
the system. Furthermore, it is noteworthy that understanding the information content of 
the feature space and selection of the most compatible features accordingly improves the 
performance of the system, as seen through the INSV dataset experiments where using 
FE selection enhanced the system’s performance by an average of 2%. 

As discussed before, high recall values show the ability of the NCDS in the successful 
detection of septic cases. The MFCC feature set had the best performance in terms of recall 
among all the individual feature sets with 92.74% for the INSV dataset. The overall highest 
recall was obtained by combining all feature sets for the INSV dataset with 94.22%. 

The implementation of the FE was a successful experiment in addition to all other 
presented experiments on the septic newborn cry signals. Our main achievement through 
the study of FE was to reduce the feature space by more than 40% while keeping the same 
performance; however, the improvement from the FE alone was limited. This experiment 
was simply carried out to evaluate if the system could benefit from further simplification 
and to eliminate the features corrupted by noise. We tried to develop each stage of the 
proposed NCDS in a way that was not explored well enough or not investigated in the 
field of NCDS designs. This included the analysis of septic newborn cries in NCDSs for 
only the second time ever, introducing the use of cepstral coefficients of entropy and cen-
troid to NCDS design, the ways we manipulated these features in order to study the new-
born cries, the use of FE for feature selection, and employing BHPO for both the SVM and 
KNN methods, all of which, to the best of our knowledge, was unprecedented in NCDSs. 
We acknowledge that the study presented here cannot cover all aspects of the study of 
septic newborn cries and may be improved upon in many ways. There is an unceasing 
need for more studies in this field. The authors suggest exploring more classification 
schemes such as naïve Bayesian, Ensemble classifier, etc., and fusing their outcomes to 
form a more precise decision. There are more in-depth ideas for investigation that can 
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assess the effect of the inevitable noise in the biological signals, as well as exploring other 
entropy-based measures, which could not be explored in the scope of this study. 

5. Conclusions 
In the presented study, sepsis was targeted as one of the leading mortality causes of 

neonates worldwide. The main goal was to develop a simple NCDS which is capable of 
detecting septic infants without the need for in-depth and invasive clinical tests. The re-
cording of the cries does not need any complicated equipment, it can be done with a com-
mercial handheld recorder, and it does not require any special conditions (our database 
was recorded in maternity rooms, NICUs, etc.). It does not even necessitate touching the 
newborn. We believed it was worth exploring how the cries of septic newborns would be 
different from those of healthy newborns as a complementary method to other means 
present in the literature. The novelty of our proposed work is in taking common tools in 
audio, music and speech processing, combining them, and tuning them in such a way that 
the final design is still simple but is able to achieve high performance in comparison to the 
other similar methods that are computationally expensive. The proposed NCDS could be 
employed as an early alarm for medical staff to detect possible pathologic neonates as 
soon as possible. Within this framework, entropy was utilized in various stages of the 
architecture, and yet it avoided complicated designs as well as any need for high-end 
technologies. We studied the infant cries with a musical perspective by employing SEN 
and SC features and their combination with cepstral analysis. These feature sets were clas-
sified using KNN and SVM classifiers that were tuned specifically for each of the feature 
sets and datasets by the BHPO methods. We also introduced a FE feature selection frame-
work for the first time in the study of pathologic infant cry signals. By using this method, 
we further simplified our NCDS design and removed nearly half of the redundant, low-
impact and noise-affected features. The performance of our design was evaluated using 
two separate datasets of expiratory cries (EXP) and inspiratory cries (INSV) with various 
evaluation measures such as accuracy, F-score and MCC. The achieved results showed 
promising potential in every step of the study. Each stage of the design further improved 
the system’s performance, at least in terms of one of the evaluation metrics. The best re-
sults in terms of accuracy and F-score measures were achieved by combining all the intro-
duced features after FE selection for the INSV dataset with the SVM classifier, and these 
were 91.10% and 91.81%, respectively. These results also highlight the importance of INSV 
cries as potential biomarkers, which has been neglected in many infant cry studies. Fi-
nally, we concluded that the framework presented here has promising potential in stud-
ying and diagnosing sepsis in newborns all around the world as a non-invasive means, 
especially in areas that are facing challenges with a lack of experts and specialists. 

For a list of all acronyms, please see Appendix A. 
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Appendix A 

Table A1. List of acronyms. 

Full Name Acronym 
Mel-frequency Cepstral Coefficients MFCC 
Spectral Entropy Cepstral Coefficients SENCC 
Spectral Centroid Cepstral Coefficients SCCC 
Electroencephalogram  EEG 
K-nearest Neighborhood KNN 
Support Vector Machine SVM 
Newborn Cry Diagnostic Systems NCDS 
Expiratory Cries EXP 
Voiced Inspiratory Cries  INSV 
United Nations Children’s Fund UNICEF 
Linear Prediction Coding LPC 
Probabilistic Neural Network PNN 
Hyperparameter Optimization HPO 
Bayesian Hyperparameter Optimization BHPO 
Machine Learning ML 
Respiratory Distress Syndrome RDS 
Discrete Fourier Transform DFT 
Discrete Cosine Transform DCT 
Spectral Entropy SEN 
Probability Mass Function PMF 
Fast Fourier Transform FFT 
Spectral Centroid SC 
Fuzzy Entropy Selection of the features FE Selection 
Fuzzy Entropy FE 
True Positive Rate TPR 
Predictive Positive Value PPV 
Matthews Correlation Coefficient MCC 
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