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The state-of-health (SOH) of lithium-ion batteries is one of the important core

issues of battery management systems (BMS). After the battery reaches its end

of life (EOL), its safety performance will deteriorate rapidly, which will be a huge

threat to electric vehicles (EVs). Therefore, the accurate SOH prediction can

ensure the safety and reliable operation of the battery, which is a critical and

challenging issue. Accordingly, this paper proposes a novel SOH prediction

method for lithium-ion batteries based on the long short-term memory (LSTM)

neural network combined with attention mechanism (AM). First, moving

average filter is applied to the lithium-ion battery capacity data for the

purpose of reducing noise. Then, according to the battery capacity data of

different datasets and different discharge rates, different weights are given to

the LSTM hidden layer by AM to enhance the important information, so as to

complete SOH prediction. Finally, the model is tested on new data and

compared with the current data-driven prediction model. The experiment

results show that the proposed SOH prediction method is more accurate,

simple and robust. Furthermore, the SOH prediction method proposed in this

paper is full of promising for practical EVs applications.
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1 Introduction

With the advancement of science and technology, the energy and environmental crisis

are deepening, and the development of new energy vehicles has become an important part

of sustainable development (Yao et al., 2021). With the advantages of high energy density,

long life, low self-discharge rate, low cost, wide operating temperature range and reliable

cleanliness (Schmuch et al., 2018; Zubi et al., 2018; Shang et al., 2020), lithium-ion

batteries have been widely used in EVs, power sources, secondary charging and energy
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storage devices, and mobile wearable devices (Wang et al., 2022a;

Wang et al., 2022b). Lithium-ion batteries have become the

major power source for driving electric vehicles (EVs) (Wei

et al., 2018). The aging process of lithium-ion batteries

continues as the charge/discharge cycle number increases (Liu

et al., 2020a; Li et al., 2021). When the lithium-ion battery ages

below the end of life (EOL) point, its performance will decrease

dramatically and the probability of dangerous accidents will

increase noticeably, resulting in devastating and unmeasurable

consequences (Liu et al., 2020b; Xiong et al., 2020). For instance,

a TeslaModel S suddenly caught fire in an underground garage in

Shanghai on 21 April 2019. A Samsung Galaxy S10 mobile phone

was damaged by self-ignition during charging in 2019. The

investigation found that all these accidents were linked to the

aging of lithium-ion batteries. Therefore, it is critical to

accurately predict the state of health (SOH) of lithium-ion

batteries (Wang et al., 2020; Shi et al., 2021; Yang et al., 2021;

Chen et al., 2022).

The SOH of lithium-ion batteries describes to what extent the

current lithium-ion battery is aging relative to a brand-new one

(Kim et al., 2020). With the aging of lithium-ion batteries in the

process of use, the battery performance will deteriorate, which is

mainly manifested in the decay of battery capacity and the

increase of internal resistance (Fan et al., 2020). Accordingly,

battery capacity and internal resistance are often used as the

indicators for SOH estimation of batteries (Pan et al., 2018;Wang

et al., 2019). The SOH is respectively defined in terms of capacity

and internal resistance as follows (Wang et al., 2021; Tan et al.,

2022):

SOH � Ccurrent

Cnew
× 100% (1)

SOH � REOL − Rnow

REOL − Rnew
× 100% (2)

where Cnew and Ccurrent are the rated and current capacity,

respectively, Rnow, REOL, and Rnew are the current internal

resistance, the internal resistance at the EOL and the internal

resistance at the brand-new state of the battery, respectively.

In this paper, according to Eq. 1, the SOH is defined in terms

of capacity, which is the ratio of the current available capacity to

the rated capacity of the battery. For lithium-ion batteries on new

energy vehicles, when the available capacity drops to 70% of the

rated capacity, it can be considered to have reached the EOL.

Since the SOH of the lithium-ion battery cannot be measured

directly by the sensor, it can only be estimated indirectly by the

capacity data measured during each charge/discharge cycle.

Currently, there are mainly two types of SOH estimation

methods, model-based methods and data-driven methods.

The model-based methods usually need to model the

lithium-ion battery using priori knowledge and identifying the

aging characteristic parameters by least-squares or observation

methods, and then use the aging index to estimate SOH. Bi et al.

(2020) achieved the simultaneous estimation of SOH and aging

parameters by building a physics-based life model and using

particle filters with real time current and terminal voltage

measurements, which can predict lithium-ion battery failure

due to local aging. This method requires knowledge of the

constituent materials of the lithium-ion battery and the

electrochemical reactions of the lithium-ion battery. Messing

et al. (2021) demonstrated that the electrochemical impedance

spectroscopy was able to trace the short-term relaxation effect at

different SOH of the lithium-ion battery, and therefore, proposed

a SOH estimation method based on the electrochemical

impedance spectroscopy and the relaxation effect. The method

requires an impedance measurement device, which is expensive

and not easy to operate. Luo et al. (2021) constructed a

mathematical model through the constant phase element

parameters in the equivalent circuit model of electrochemical

impedance spectroscopy for fast SOH estimation of retired

batteries. Yang et al. (2020) introduced a fractional impedance

model based on the Grünwald-Letnikov definition and used

least-squares to identify the battery parameters. Then a back

propagation neural network is introduced to SOH estimation

based on the combination of the identified model parameters and

the interval capacity. Zhang et al. (2022) proposed a novel SOH

estimation method by combining the voltage-capacity (VC)

model based incremental capacity analysis (ICA) with the

support vector regression (SVR). After correlation analysis of

these extracted health features with the reference battery

capacity, SVR was used to construct the SOH estimation

model by selecting two lithium-ion batteries with different

chemical compositions. To sum up, the above model-based

methods require a large amount of priori knowledge and

frequent revision of the model depending on the lithium-ion

battery type and the operating condition, which is unsuitable for

online estimation.

The data-driven methods have significant advantages over

the model-basedmethods, which are more accurate and adaptive.

The data-driven methods are suitable for online estimation and

requires neither the knowledge of the electrochemical reactions

nor the establishment of accurate battery model. The SOH

estimation can be achieved by the data obtained in the

lithium-ion battery aging test experiments. Yang et al. (2018)

proposed a Gaussian process regression (GPR) model based on

the charging curves. Four specific parameters extracted from the

charging curves were used as the input of the GPR model, and

afterwards the correlation between the selected features and SOH

was analyzed using gray correlation analysis, and next the SOH

estimation was completed.Whereas, the GPRmodel is unsuitable

for the prediction of data with strong nonlinear. Niu et al. (2021)

proposed a model combining long short-term memory (LSTM)

and fully connected (FC) network to accomplish the SOH

estimation. The LSTM learned the long-term correlation of

battery degradation trends, and the FC network acted as a

firewall in the transmission process. Nevertheless, when the

time series input is too long, the LSTM tends to lose the
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information about the series, thus makes the model less accurate.

Qian et al. (2021) proposed a SOH estimation method based on

one-dimensional convolutional neural network (1D CNN).

Random segments of the charging curve were used as input.

A linear decreasing weighted particle swarm optimization

algorithm was used to optimize some hyperparameters of the

neural network. This method cannot effectively learn the capacity

degradation trend with a single CNNmodel when encountering a

sudden upward or a sudden downward change in capacity data.

Chang et al. (2021) proposed a wavelet neural network combined

with genetic algorithm for SOH estimation. After the incremental

capacity curve was obtained, the important health feature

variables were extracted using Pearson correlation coefficients,

and then the initial parameters of the wavelet neural network

were optimized using a genetic algorithm. This method can

effectively extract local information, but cannot globally learn

the capacity degradation trend effectively. Cui et al. (2021) used a

coupling-loop nonlinear auto regressive neural network for SOH

prediction, in which the weights of the neural network were

optimized by the Bayesian regularization algorithm. It can be

noted that the above data-driven-based methods are not

dependent on the battery model and do not require the

measurement of open circuit voltages. As a result, data-based

methods have become a hot research topic for SOH estimation.

The SOH of lithium-ion batteries is a time series of

performance degradation. The previous researches based on

the data-driven method tended to lose sequence information,

which had difficulty in capturing the long-term dependent

characteristics of the aging process of batteries. There is still a

problem of low accuracy when performing complex nonlinear

time series forecasting. To achieve better approximation of the

function and improve the estimation accuracy of SOH, this paper

proposed an attention mechanism (AM) combined with the

LSTM network model, hereafter referred to as AM-LSTM.

First, the discharge capacity data for each complete charge/

discharge cycle is extracted from the dataset, and the moving

average filter is applied for noise reduction. Then, the capacity

data collected at the end of each charge/discharge cycle is used as

input, and AM is introduced based on LSTM. The AM is a

resource allocation mechanism that assigns different weights to

input features and thus highlights the role of important

information. The AM-LSTM is used to train and predict the

capacity value of the next stage to determine whether the SOH

reaches EOL and thereby how the battery should be handled.

Finally, validation is performed on the NASA battery dataset and

the university of Maryland battery dataset with different types,

different rated capacities and different charge/discharge rates.

The results show that the method proposed in this paper has high

accuracy, obvious simplicity and excellent robustness.

The remainder of the paper is organized as follows: Section 2

describes the proposed SOH prediction method based on the

AM-LSTM model. Section 3 presents the experimental datasets

and the performance evaluation indicators used in this paper.

Section 4 analyzes the experimental results and validates the

accuracy and robustness of the proposed method in comparison

with three other SOH prediction methods. Section 5 summarizes

the work done in this paper.

2 The proposed state-of-health
prediction method based on
AM-LSTM model

2.1 Data preprocessing based on the
moving average filter and min-max
normalization

After obtaining the battery datasets, the capacity data

collected at the end of each charge/discharge cycle should first

be extracted. In the process of data acquisition, there may be

missing or abnormal data due to human factors or system

problems. To better estimate and predict this capacity, it is

necessary to clean up the data using the moving average filter

and the min-max normalization. The purpose of the moving

average filter is to reduce the noise of the data. The moving

average filter is to consider N successively acquired sample values

as a queue. The length of the queue is fixed to N. Each time an

unknown data is sampled, the sampled data is put at the end of

the queue, and the data at the top of the queue is discarded,

following the first in first out (FIFO) principle. The new filtering

result is obtained by taking the arithmetic average of the N data in

the queue.

Min-max normalization algorithm is used to normalize the

capacity data in order to speed up the training of the model,

improve the prediction accuracy, and ensure the faster

convergence of the program when running. Min-max

normalization restricts the capacity data to a specific range

that is needed after processing. In this paper, the capacity data

is mapped to be processed within the range of 0–1. The definition

of min-max normalization is as follows:

xnorm � x − xmin

xmax − xmin
(3)

where xnorm is the min-max normalized capacity data, x is the real

capacity data, xmax and xmin are the maximum and minimum

values in the real capacity data respectively. The min-max

normalized capacity data are in the interval [0,1].

2.2 Long short-term memory architecture

The LSTM network is a temporal recurrent neural network

(RNN), which is one of the most widely used neural networks in

nonlinear dynamic systems (Graves, 2012; You et al., 2017; Tan

and Zhao, 2019). It can effectively handle time series data and is

mainly used to solve the long-term dependence problem present
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in RNN. The LSTM is a specific kind of RNN that also has a

chain-like structure. It has four neural network layers, each of

which interacts with each other in an exceptional way. As a

nonlinear model, the LSTM can be used as a complex nonlinear

unit for constructing larger deep neural networks. The main

breakthrough of LSTM compared with traditional recurrent

neural networks is the design of memory cells. Memory cells

have the function of selective memory, which can selectively

remember the important information and filter out the noisy

information to reduce the memory burden.

The basic structure of LSTM is shown in Figure 1. Where xt is

the input, ht-1 is the output of the previous unit, ht is the output of

the current unit, Ct-1 is the previous memory cell state, Ct is the

memory cell state, σ is the Sigmoid-type activation function, tanh

is the hyperbolic tangent-type activation function, ft is the forget

gate, it is the input gate, and Ot is the output gate. A state of

transmission unit is equivalent to a conveyor belt that runs

through the entire structure, it should ensure the invariance of

the information transfer in the process by only some linear

action. The LSTM also has an excellent characteristic of

managing the information transmission through threshold,

which selectively allowing information to pass through.

The processing flow of the LSTM algorithm is as follows:

Step 1: Taking the input xt of the current layer and the output ht-1
of the previous layer as input, Eq. 4 is used to calculate the forget

gate ft value. The forget gate determineswhich information coming

from the preceding unit needs to be discarded from the unit state.

ft � σ(Wxfxt +Whfht−1 + bf) (4)

where ft is the output of forget gate,Wxf andWhf is the weights of

the linear relationship, bf is the bias.

Step 2: Update state information and decide which new

information need to be stored in the unit state. It is controlled

by two parts, one of which is a sigmoid layer that determines

which ones need to be updated. Eq. 5 is used to calculate the input

gate it value. Then, Eq. 6 is used to create a vector gt in the tanh

function. It contains the brand-new information which can be

added to the new unit state. After that, the unit state is updated by

combining the information from these two parts. First, the state

of the old unit is updated. Second, new information is inputted to

the new unit state. Then, the update gate operation is completed.

it � σ(Wxixt +Whiht−1 + bi) (5)
gt � tanh(Wxgxt +Whght−1 + bg) (6)

where it is the output of the update gate, gt is a vector created by

the tanh function.Wxi,Whi,Wxg, and Whg are the weights of the

linear relationship, bi and bg are the biases.

Step 3: Using Eq. 7 to update the memory cell information. The

memory cell information is updated from Ct-1 to Ct. The memory

cell information can be selectively modified through the

operation of the forget gate and the input gate. The memory

cell information at this moment can be obtained.

Ct � Ct−1 ⊙ ft + gt ⊙ it (7)

where Ct is the memory cell state, Ct-1 is the previous memory cell

state, ⊙ is the Hadamard product.

Step 4: Outputting a new state information. Eq. 8 is used to

calculate the output gate Ot value. The sigmoid layer is used to

determine the information related to the memory cell state to be

output, and then tanh function is used to process the memory cell

state using Eq. 9. The multiplication operation of the two parts of

information is the new state information to be output, using

Eq. 10.

Ot � σ(Wxoxt +Whoht−1 + bo) (8)
mt � tanh(Ct) (9)
ht � Ot ⊙ mt (10)

where Ot is the output of the output gate, Wxo and Who are the

weights of the linear relationship, bo is the bias,mt is the output of

the memory cell passing through the tanh layer, ht is the output of

the current unit.

2.3 Attention mechanism architecture

The AM is derived from simulations of human brain

attention (Niu et al., 2021). It is based on the core idea that

the human brain allocates more attention to the important

information due to its limited information-processing ability.

The AM is reflected in themodel by assigning different weights to

the input features by means of probability assignment,

highlighting the inputs that have greater impact on the results

and ignoring the irrelevant information. It helps the model to

FIGURE 1
The basic structure of LSTM.
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improve accuracy without increasing the computation and

storage complexity of the model. In this paper, the AM is

introduced to improve the situation that the LSTM network

loses important capacity data information due to the excessive

length of the temporal data by replacing the random assignment

of weights with the probabilistic assignment of weights. The

structure of AM is shown in Figure 2, where xt is the input

capacity data at moment t, ht is the output of the LSTM layer at

moment t.

According to Eq. 11, et is the value of the hidden layer vector

ht after one fully connected layer operation. According to Eq. 12,

at is the attention weight of the t-th input. st is the output of the

attention layer at moment t using Eq. 13.

et � u tanh(wht + b) (11)

at � exp(et)∑t
j�1
exp(ej) (12)

st � ∑i
t�1
atht (13)

where et is the probability distribution, u and w are the weights,

and b is the bias.

2.4 AM-LSTM overall architecture

The overall structure of SOH prediction model designed in

this paper is shown in Figure 3. The model mainly consists of an

input layer, a LSTM layer, an attention layer, a dense layer, and

an output layer.

The meaning of each layer in the model is as follows:

(1) The input layer: The capacity data are extracted at the end of

each charge/discharge cycle of a lithium-ion battery and the

moving average filter is introduced to preprocess the capacity

data. The data are also min-max normalized and input into

the SOH prediction model.

(2) The LSTM layer: The information is judged by many LSTM

units. The important information is saved and the

unimportant information is forgotten. Back propagation

updates the parameters to achieve better output results.

(3) The attention layer: The AM is introduced and placed after

the LSTM layer. The output of the LSTM layer is the input of

the attention layer. The weight matrix is calculated using

probabilistic assignment of weights. By keeping the

intermediate outputs of the LSTM encoder for the input

capacity sequences, a model is then trained to selectively

learn these inputs and associate the output capacity

sequences with them at the model output.

(4) The dense layer: The association between features is

extracted and mapped to the output by the nonlinear

variation of the dense layer.

(5) The output layer: The output of the dense layer is inversely

min-max normalized to obtain the predicted values.

Suppose the input and output of the AM-LSTM model are X

and Z, respectively. The relationship between the input and

output can be expressed by a function F(Χ|Θ) consisting of a

nonlinear mapping and learning parameters as:

Ζ � F(Χ|Θ) � fL(/f2(f1(Χ|θ1)
∣∣∣∣θ2)∣∣∣∣θL) (14)

where the computation process of the f(·|θ) is the LSTM layer,

the attention layer and the dense layer, Θ is the set of parameters

θ.

In order to make the prediction results have their physical

meaning, the prediction results need to be inversely min-max

FIGURE 2
The structure of AM.

FIGURE 3
The overall structure of SOH prediction model.
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normalized. The inverse min-max normalization equation is as

follows:

x � xnorm × (xmax − xmin) + xmin (15)

where x is the real predicted capacity data, xnorm is the

normalized capacity data, xmax and xmin are the maximum

and minimum values in the real capacity data.

2.5 State-of-health prediction process by
AM-LSTM model

The flow chart of SOH prediction for batteries based on

AM-LSTM model is shown in Figure 4, including the offline

part and the online part. A relatively excellent model is

trained by the acquired data onto AM-LSTM network in

the offline part. Then the optimal prediction model is

selected for online SOH prediction by comparing the

validation errors in the training process. Future capacity

data are predicted by inputting the known capacity data

into the AM-LSTM network in the online part, to determine

whether the SOH reaches the EOL. The battery should

be abandoned when the SOH exceeded the EOL. When

the SOH does not reach the EOL, the next prediction is

continued.

3 Experimental datasets and
performance evaluation

3.1 The NASA dataset and the university of
Maryland dataset

The NASA dataset was provided by the Prognostics Center of

Excellence (PCoE) at NASA Ames (Saha and Goebel, 2007; Saha

and Goebel, 2008). The test platform includes a programmable

DC power supply, a thermostat, sensors, a data logger, and an

electrochemical impedance spectrum tester. It is widely used in

the study of aging characteristics of lithium-ion batteries. The

experiments were conducted with 18,650 lithium-ion batteries.

These lithium-ion batteries were run through three different

operational profiles (charge, discharge and electrochemical

impedance spectroscopy). Charging was done with 1.5A

constant current until the battery voltage reaches 4.2V, and

then continued in constant voltage mode until the charging

current drops to 20 mA. In this process, the battery terminal

FIGURE 4
The flowchart of the SOH prediction based on the AM-LSTM model.
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voltage, the battery output current, the battery temperature, the

charger voltage, the charger current, and the data-acquisition

time were recorded. When discharging, a 2A constant current

discharge was used until the voltages of batteries B5 and

B6 dropped to 2.7 and 2.5V, respectively. In this course, the

battery terminal voltage, the battery output current, the battery

temperature, the load voltage, the load current, the data

acquisition time and the discharge capacity of the batteries up

to their respective cut-off voltages were recorded. For impedance

measurements, the internal impedance of the battery was

measured using electrochemical impedance spectroscopy (EIS)

with a frequency sweep from 0.1 Hz to 5 kHz, recording the

sensor current value, the cell current value, and the ratio of the

two currents. Repeated charge and discharge cycles result in the

accelerated aging of the batteries. In this paper, B0007 (B7) is

used to train the model, and B0005 (B5) and B0006 (B6) are

used to test the model. This study sets the EOL to 70% of the

rated capacity, which means that the battery capacity decays

by 30%.

Battery capacity data of the university of Maryland dataset

were obtained by continuous charge/discharge experiments

using the Arbin BT2000 battery experimental system from the

Center for Advanced Life Cycle Engineering (CALCE) (He et al.,

2011; Xing et al., 2013). The experiments were conducted with

CS2 and CX2 lithium-ion batteries, which were different from

18,650 lithium-ion batteries. The charging and discharging

experiments were carried out at room temperature, and the

voltage and current data of the battery were recorded at

certain time intervals. The impedance was obtained by

scanning the electrochemical impedance spectrum for lithium-

ion batteries with a frequency scan range of 0.1–50 Hz. In this

paper, two types of batteries, CS2 series and CX2 series, are

selected. Both types of batteries were charged with constant

current and voltage, first at a constant current rate of 0.5°C to

bring the voltage to 4.2 V, then maintaining 4.2 V until the

charging current drops to 0.05 A. When discharging, each

battery was discharged at a set discharge rate until the voltage

drops to 2.7 V. These lithium-ion batteries were tested by charge/

discharge cycles. Since the chemical composition and rated

capacity of the three lithium-ion batteries in the two datasets

are different, the battery characteristics are not the same, so the

models have to be trained separately according to the different

battery types. Battery capacity data are randomly selected for

training model. In Section 4, CS2_35 (CS35) is used to train the

model and CS2_36 (CS36) is used to test the model. CX2_36

(CX36) is used to train another model, and CX2_8 (CX8),

CX2_16 (CX16), CX2_37 (CX37) and CX2_38 (CX38) are

used to test the model.

The accuracy and robustness of the proposed method is

tested on the NASA dataset and the university of Maryland

dataset. In order to express each property of the battery more

clearly, Table 1 shows the properties of all batteries.

Since the measured initial capacity of a lithium-ion battery is

slightly larger than its rated capacity, the starting point of the

capacity will be larger than the rated capacity point, so the SOH is

greater than 100%. The capacity data are subjected to the moving

average filter. The moving window size is set to three due to the

small amount of data in the NASA dataset. However, the moving

window size is set to five since the university of Maryland dataset

has a large amount of data.

Capacity degradation curves for B5 and B6 from the NASA

dataset are shown in Figure 5A. The capacity degradation curve

sometimes has an upward bulge, called the capacity regeneration

phenomenon. The capacity regeneration phenomenon can be

considered as a sudden fluctuation of available capacity during

battery degradation, which is mainly caused by electrochemical

battery relaxation after a suspension or idle period. The capacity

of B5, B6, and B7 drop faster mostly because the charge and

discharge current are higher, accelerating the aging degree of the

battery. University of Maryland dataset are shown in Figures

TABLE 1 Detailed parameters of all batteries.

Battery dataset Batteries Rated capacity
(Ah)

EOL (Ah) Charge current
(A)

Discharge current
(A)

Ambient temperature
(°C)

NASA B5 2 1.4 1.5 2 24

B6 2 1.4 1.5 2 24

B7 2 1.4 1.5 2 24

University of Maryland CS35 1.10 0.770 0.550 1.100 25

CS36 1.10 0.770 0.550 1.100 25

CX8 1.35 0.945 0.675 4.050 25

CX16 1.35 0.945 0.675 0.675 25

CX36 1.35 0.945 0.675 1.350 25

CX37 1.35 0.945 0.675 1.350 25

CX38 1.35 0.945 0.675 1.350 25

The capacity degradation curves of the ten batteries are shown in Figure 5.
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5B,C. When the capacity drops to 0.8Ah, the capacity of

CS35 and CS36 drops sharply, as shown in Figure 5B. This

indicates that when the real capacity reaches about 70% of the

rated capacity, the battery performance drops sharply and the

battery should be replaced as soon as possible or appropriate

measures should be taken. Figure 5C represents the battery

capacity degradation curves of CX8, CX16, CX36, CX37, and

CX38, where degradation curve of CX8 fluctuates greatly since its

discharge rate is 3.0°C. The effective cycle numbers of CX16 are

longer because its discharge rate is only 0.5°C. The discharge rate

of CX36, CX37, and CX38 is 1.0°C and the degradation trends is

relatively smooth. Therefore, the degradation rate is directly

related to the discharge rate.

3.2 Prediction Performance Evaluation

After training the network, it was necessary to evaluate the

performance of well-trained AM-LSTM capacity prediction

model. In order to effectively evaluate the proposed method,

three performance evaluation indicators are used. The most

commonly used performance indicators are the root mean

square error (RMSE), mean absolute error (MAE), and

R-square (R2). The closer the RMSE or MAE is to zero, the

higher the accuracy of the proposedmethod. R2 is the goodness of

fit, which is the degree to which the predicted capacity curve fits

the real capacity curve. The closer the R2 is to one, the closer the

predicted capacity value is to the real capacity value. The

calculation equation is as follows:

RMSE �
												
1
n
∑n
t�1
(Ct − Ĉt)2√

(16)

MAE � 1
n
∑n
t�1

∣∣∣∣Ct − Ĉt

∣∣∣∣ (17)

R2 � 1 −
∑n
t�1
(Ct − Ĉt)2

∑n
t�1
(Ct − �C)2 (18)

where Ct is the real capacity data,Ĉt is the predicted capacity data,
�C is the average of the real capacity data and n is the cycle

number.

4 Experimental results and discussion
of the proposed state-of-health
prediction method

In this section, the accuracy and robustness of the proposed

AM-LSTM-based SOH prediction method are verified. From the

comparative perspective, performance comparisons are made

using other existing neural network models, including CNN,

FIGURE 5
The capacity degradation curves of the ten batteries: (A) the real capacity of B5, B6, and B7 batteries from the NASA dataset; (B) the real capacity
of CS35 and CS36 batteries from the university of Maryland dataset; (C) the real capacity of CX8, CX16, CX36, CX37, and CX38 batteries from the
university of Maryland dataset.
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RNN, and LSTM. In Section 4.1, the comparison is conducted in

terms of different datasets. Two batteries fromNASA dataset and

two batteries from university of Maryland dataset are selected as

experimental subjects. In Section 4.2, the comparison is made

from the perspective of different discharge rates, and three

batteries from university of Maryland dataset are selected as

testing subjects.

In this study, all the tests are implemented in PyCharm

Community Edition 2021.2.3 with an AMD R7-5800H CPU and

a RTX3050Ti graphics processing unit (GPU). The proposed

network, as well as the three neural networks is compared, has a

sequence length of 3 for each input to the network. The number of

input nodes of the proposed AM-LSTMmodel is 3 and the number

of output nodes is 1. The training is stateless, and the network uses

the default trainingmethod of Keras, i.e., stateless LSTM. Thismodel

all uses a single-tier architecture. The number of nodes in LSTM

layer, Attention layer and Dense layer are set to 64, 2, and

1 respectively. The number of nodes in the LSTM network layer

of the proposed method is 64, which is determined based on the

amount of data, the type of task, the acceptable computational

complexity considerations and some priori knowledge of the

authors. The activation functions of LSTM layer and Attention

layer are both tanh function. The error function is the mean square

error function. Optimization function of the Adam algorithm

adaptively updates the learning rate. And four neural networks

are implemented in python 3.6 using the deep learning framework

Keras. The network structure is clear and the proposedmethodAM-

LSTM is simple.

4.1 The accuracy and robustness of the
proposed method to different datasets

To verify the accuracy and robustness of the proposed method

to different datasets, the NASA dataset and the university of

Maryland dataset are selected in this work. In the training

phase, the whole training dataset is divided into two parts,

namely, the training data and the validation data. The previous

50% capacity data of the training dataset are used for training the

network and the other 50% are used for validation. The training

data are all presented to the network and the parameters are

updated according to the error function. The validation data are

used to evaluate the generalization ability of the network to avoid

overfitting and to stop training when the error no longer decreases.

In the testing phase, the new data can be used directly to evaluate

the performance of the trained model without relearning.

In the NASA dataset, B7 battery is selected for training. The

battery capacity data is randomly selected for the training model.

The iteration numbers are set to 300 and the batch-size are set to

10. After training the AM-LSTM capacity prediction model, it is

crucial to verify the capacity prediction performance of the model

on untrained batteries. So, B5 and B6 batteries are selected for

whole life cycle testing using the B7 trained model.

In the university of Maryland dataset, two types of batteries

are selected, that are CS and CX. CS35 and CX36 batteries are

selected for independent training, respectively. The iteration

numbers are set to 500 and the batch-size are set to 10. After

the training, CS36 is selected for whole life cycle testing using the

CS35 trained model. And CX37 is selected for testing using the

CX36 trained model.

Depending on the battery type, Table 2 details the

performance of the training process, i.e., the RMSE of the

training data and the RMSE of the validation data.

Firstly, considering from the result aspect, it can be seen from

the above table that the RMSE of the validation data is slightly

larger than the RMSE of the training data, which is comparable to

the training set, without overfitting. And the three models are

tested well on the new battery, which proves that the proposed

method has good generalization and no overfitting phenomenon.

Secondly, considering from the network structure aspect, the

proposed method only involves the LSTM and the attention

mechanism and the fully connected layer, and the network

structure is not particularly complicated, so it will not cause the

overfitting phenomenon. In summary, considering both the results

and the network structure, thismodel is basically free of overfitting.

The capacity prediction results of the proposed method for

different batteries from different datasets compared with three

other kinds of neural networks are shown in Figure 6.

As can be seen from Figure 6, the capacity of the two batteries

in the NASA dataset fading faster than that of the two batteries in

the university of Maryland dataset, but the proposed method can

still predict the capacity of the batteries accurately. In addition,

from Figure 6, it can be seen that the capacity regeneration

phenomenon is more obvious for B5 and B6 batteries, while it is

not obvious for CS36 and CX37 batteries. The other three

existing algorithms do not have good stability for capacity

regeneration phenomenon prediction. However, the proposed

AM-LSTMmodel is not affected by the uncertainty caused by the

capacity regeneration phenomena. It is worth noting that the B5,

CS36, and CX37 are three lithium-ion batteries of different types

and have different rated capacities. But the proposed method still

shows an outstanding prediction performance. Another

noteworthy point is that the discharge cut-off voltage of

B5 battery is 2.7°V and the discharge cut-off voltage of

B6 battery is 2.5°V. From Figures 6A,B, it can be seen that the

proposed prediction method is not affected by the different

discharge cut-off voltages of the batteries. In addition, the

three existing algorithms gradually increase the error in the

TABLE 2 Training performance of the models.

B7 CS35 CX36

Training data RMSE 0.0055 0.0022 0.0024

Validation data RMSE 0.0064 0.0045 0.0033
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late stage of capacity prediction, while the proposed method does

not show a similar situation. In practical applications, end of life

is usually late in the life of the battery, so accurate prediction of

late battery capacity is also critical. Table 3 further shows the

performance of the proposed method compared with the other

three methods for untrained batteries capacity data from NASA

dataset and university of Maryland dataset.

The proposed method RMSEs of B5, B6, CS36, and

CX37 batteries are 0.0073, 0.0127, 0.0037, and 0.0017,

respectively. For the above mentioned batteries, the MAEs are

0.0059, 0.0091, 0.0023, and 0.0013, respectively. For the RMSEs

of the four batteries, the proposed method reduces the RNN

results by 35.40%, 42.79%, 49.32%, and 72.58%, respectively. The

proposed method in this paper reduces by at least 35.4% over the

other three methods. For the MAEs of four batteries, the

proposed method is 0.0015, 0.006, 0.0024, and 0.0027 lower

than the optimal results of the three existing algorithms,

improving the prediction accuracy by at least one-fifth. For

the average of the MAE evaluation indicator of the four

batteries, the proposed method is at least 3.275*10–3 lower

than the other three methods. The R2 of the proposed method

is closer to 1 than all the other three methods, indicating that the

proposed method has the best goodness of fit for the capacity

prediction curves. All of the three evaluation indicators in Table 3

show that the proposed method has the highest prediction

accuracy. Because the AM controls the output of the LSTM,

the AM gives different weights to the LSTM output so that the

final prediction result is the most accurate.

In conclusion, the prediction results of the four batteries

confirm that the proposed AM-LSTM model have an excellent

FIGURE 6
The capacity prediction results of the proposedmethod for different batteries from different datasets compared with three other kinds of neural
networks: (A) the capacity prediction result of B5 battery from the NASA dataset; (B) the capacity prediction result of B6 battery from the NASA
dataset; (C) the capacity prediction result of CS36 battery from the university of Maryland dataset; (D) the capacity prediction result of CX37 battery
from the university of Maryland dataset.

TABLE 3 The performance evaluation indicators of the proposed
method compared with other neural networks.

Evaluation
indicators

Methods B5 B6 CS36 CX37

RMSE CNN 0.0152 0.0278 0.0104 0.0097

RNN 0.0113 0.0222 0.0073 0.0062

LSTM 0.0126 0.0223 0.0094 0.0051

AM-LSTM 0.0073 0.0127 0.0037 0.0017

MAE CNN 0.0112 0.0218 0.0072 0.0058

RNN 0.0074 0.0151 0.0047 0.0045

LSTM 0.0092 0.0160 0.0065 0.0040

AM-LSTM 0.0059 0.0091 0.0023 0.0013

R2 CNN 0.9933 0.9864 0.9984 0.9944

RNN 0.9963 0.9914 0.9992 0.9977

LSTM 0.9954 0.9912 0.9987 0.9984

AM-LSTM 0.9984 0.9972 0.9998 0.9998
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prediction ability with strong robustness and could effectively

predict the battery capacity at different datasets. In fact, the decay

rate of the battery capacity, the battery capacity regeneration

range, the battery type and the discharge cut-off voltage of the

battery do not affect the prediction accuracy of the proposed

method. Moreover, it is important to note that the proposed AM-

LSTM model provides the best battery capacity prediction in the

entire degradation process compared with the CNN, the RNN

and the LSTM methods. The SOH prediction methodology

described in the paper can be used to other types of cyclically

operating electrochemical batteries. Our model makes a more

reliable and more accurate SOH prediction of lithium-ion

batteries, which can provide more reliable SOH reference

to guarantee system security and reduce the cost of using

batteries.

4.2 The accuracy and robustness of the
proposed method to different discharge
rates

In this section, the model trained with the CX36 battery in

the previous section is still used, and the CX16, CX38, and

CX8 battery capacity data are selected for testing. Among

them, the discharge rates of CX16, CX38, and CX8 batteries

are 0.5C, 1.0C, and 3.0C, which simulate the decelerated

motion, uniform motion and accelerated motion of new

energy vehicles, respectively. The capacity prediction results

of the proposed method for different discharge rates of

batteries compared with three other kinds of neural

networks are shown in Figure 7. It can be seen that the

capacity degradation curve shakes violently when the new

energy vehicle does deceleration or acceleration motion,

which is directly related to the size of the discharge rate.

As the battery discharge rate increases, the battery capacity

decay rate accelerates sharply. Therefore, it can be inferred

that the size of the discharge rate affects the remaining useful

life of the battery.

As can be seen from Figure 7, the CNN model-based

prediction method has the largest prediction error. Because

the elements of the CNN are independent of each other, and

the input and output are also independent, so the CNN is not

exactly suitable for learning capacity time series, and the

results are not good. In the prediction problem of capacity

time series studied in this paper, the elements are all

interconnected. The RNN method and the LSTM method

FIGURE 7
The capacity prediction results of the proposed method for different discharge rates of batteries compared with three other kinds of neural
networks: (A) the capacity prediction result for CX16 battery with a discharge rate of 0.5C; (B) the capacity prediction result for CX38 battery with a
discharge rate of 1.0C; (C) the capacity prediction result for CX8 battery with a discharge rate of 3.0C.
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are better than the CNN method for prediction. In

comparison with the CNN model, the RNN and the LSTM

models can predict the capacity more accurately because they

have memory functions. The RNN can be considered as a deep

feedforward neural network where all layers share the same

weights, but it is difficult to learn and retain information over

time. To solve this problem, the LSTM with a special implicit

unit is used in order to preserve the input for a long time. The

main difference between the LSTM and the RNN is that the

LSTM adds a processor to the algorithm to determine whether

the information is useful or not, and this processor is called a

memory cell. The LSTM is well adapted to the dependence of

long time sequences and solves the gradient vanishing

problem of the RNN. Now it is being proved that the

LSTM is an effective technique for solving long time

sequence dependence problems. Therefore, the LSTM is

well suited for the capacity sequence prediction problem.

The proposed method in this paper uses a combination of

the LSTM neural network and the AM. The AM is a resource

allocation mechanism that assigns different weights to input

features so that important features do not disappear with

increasing step size, thus highlighting the role of important

information and making it easier for the model to handle long

time series of dependencies. The AM gives enough attention to

the critical information to highlight the role of important

information, which in turn improves the prediction accuracy

of the model. The AM is placed after the LSTM network, and

by obtaining the importance of the output features of the

LSTM layer and replacing the random assignment of weights

with probabilistic assignment of attention weights, the

network is made to focus on the important capacity time

series features in order to finally output more accurate

capacity prediction results. So the AM-LSTM model has

the best prediction effect.

From Figure 7, it can be seen that the higher the discharge

rate of the battery, the shorter its useful life. As can be seen from

Figures 7A–C, the capacity degradation curve of the

CX16 battery undergoes a slight fluctuation in the middle

period and a moderate fluctuation in the later period, and the

CX8 battery fluctuates sharply throughout the whole cycle. From

Figure 7B it can be seen that the CX38 battery is relatively

smooth. Although the fluctuation characteristics of the capacity

degradation curves vary considerably, it is observed that the

whole degradation trend is well predicted, implying the

satisfactory long-term capture performance of the AM-LSTM

model. It is noteworthy that during the long-term prediction of

capacity, the other three existing methods cannot predict

accurately in the late stage of capacity prediction, while the

proposed method can always maintain a stable and accurate

prediction.

Table 4 illustrates the performance of the proposed method

compared with the other three methods for batteries capacity

data of different discharge rates. The evaluation indicators of the

proposed method are all better than the other three methods.

Both long-term decline trend and short-term regeneration

phenomena are well captured as desired by using the AM-

LSTM model. It is worth noting that the proposed method

still keeps good prediction performance for high discharge

rate of 3.0C. For CX8 battery, the RMSE of the proposed

AM-LSTM model is just 0.0151, which is 33.5%, 24.1%, and

9.0% less than the CNN, the RNN and the LSTM, respectively.

For the RMSEs of CX16, CX38, and CX8 batteries, the proposed

method reduces 16.13%, 56.18%, and 9.04% over the LSTM

algorithms. For the MAEs of the above battery, the proposed

method reduces 32.5%, 69.01%, and 22.12% over the LSTM

algorithms. For MAEs, the proposed method reduces by at

least 22.12% compared to other methods. It can be seen that

the AM can well capture the importance of capacity data features

and assign effective attention weights, better build the prediction

model, and effectively improve the prediction accuracy of the

model. To sum up, the above experimental analyses show that the

efficient capacity prediction can be achieved with excellent

accuracy and good robustness to different discharge rates.

Moreover, the proposed method can be applied to the online

estimation of SOH in various states of motion. The prediction

accuracy improvement of the proposed method in this paper is

significant for the lithium-ion battery SOH prediction.

From Figures 6, 7, the difference in the capacity prediction

curves is not very obvious visually. However, in the case of CX37,

its MAE evaluation indicator is 77.58% better than that of the

CNN method, and the capacity degradation interval of CX37 is

[1.3631, 0.8576], with a degradation size of 0.5055, which is

already a greater improvement. The prediction accuracy

improvement of the proposed method in this paper is

significant for the lithium-ion battery state of health

TABLE 4 The predicted evaluation indicators of the proposed method
compared with other three capacity prediction methods.

Evaluation Indicators Methods CX16 CX38 CX8

RMSE CNN 0.0085 0.0153 0.0227

RNN 0.0075 0.0102 0.0199

LSTM 0.0062 0.0089 0.0166

AM-LSTM 0.0052 0.0039 0.0151

MAE CNN 0.0049 0.0078 0.0164

RNN 0.0043 0.0062 0.0140

LSTM 0.0040 0.0071 0.0113

AM-LSTM 0.0027 0.0022 0.0088

R2 CNN 0.9950 0.9967 0.9749

RNN 0.9961 0.9985 0.9807

LSTM 0.9973 0.9989 0.9866

AM-LSTM 0.9981 0.9998 0.9890
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prediction. First, from a safety perspective, lithium-ion batteries

may increase the chances of dangerous accidents if they are not

replaced promptly after reaching their end of life. It will also

cause the battery’s energy storage capacity to decrease, and the

lack of energy storage will be charged more frequently, reducing

the driver’s experience. Second, in terms of cost, if lithium-ion

batteries are replaced with new ones before they reach their end

of life, it will increase the financial burden on new energy

automobile owners. Therefore, the accuracy improvement of

the proposed prediction method can make more rational use

of lithium-ion batteries, so this slight improvement can make a

substantial difference.

As can be seen from Sections 4.1, 4.2, the three performance

evaluation indicators RMSE, MAE, and R2 are all better than the

other three capacity prediction methods for different datasets

and different discharge rates. Furthermore, the method proposed

is not affected by the dataset, the capacity degradation rate, the

capacity regeneration extent, the battery type, the discharge cut-

off voltage and the discharge rate, and can still accurately predict

future capacity data. Therefore, the accuracy, robustness and

simplicity of the proposed method in this paper are fully and

effectively demonstrated.

5 Conclusion

In this study, a novel battery SOH prediction method of LSTM

neural network combined with AM is proposed. The attention

mechanism gives enough attention to the critical capacity feature

information to highlight the role of important information, which

in turn improves the prediction accuracy of the model. The

proposed method captures the fundamental relationship between

capacity decay data and performs SOH prediction for lithium-ion

batteries. The NASA dataset and the university of Maryland dataset

are used to validate in the paper. The experimental results show that

the proposed AM-LSTM method has excellent accuracy and

robustness as well as strong generalization ability under different

capacity degradation rates, different capacity regeneration extents,

different battery types, different discharge cut-off voltages and

different discharge rates. In addition, the superiorities of the

AM-LSTM model proposed in this paper is verified by a

comparative study with CNN, RNN, and LSTM methods. The

results show that the proposed method outperforms the other three

methods in all performance indicators.

Accurate battery SOH prediction can make more

reasonable use of lithium-ion batteries, effectively avoid

irreversible consequences of battery overuse, and fully

utilize batteries to reduce the economic burden of new

energy vehicle owners. Simultaneously, the AM-LSTM

model developed in this paper can be trained offline and

implemented online, which enables online prediction of

capacity. It is worth mentioning that the proposed method

is highly accurate, robust and simple, and has the potential to

be used for online SOH prediction of the electric vehicles

which are powered by lithium-ion batteries.
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Nomenclature

Abbreviations

AM Attention mechanism

AM-LSTM Long short-term memory neural network and

attention mechanism

BMS Battery management systems

CALCE Center for advanced life cycle engineering

EIS Electrochemical impedance spectroscopy

EVs Electric vehicles

EOL End of life

FC Fully connected

FIFO First in first on

GPR Gaussian process regression

GPU Graphics processing unit

ICA Incremental capacity analysis

LSTM Long short-term memory

MAE Mean absolute error

NASA National Aeronautics and Space Administration

PCoE Prognostics center of excellence

RMSE Root mean square error

RNN Recurrent neural network

R2 R-square

SOH State of health

SVR Support vector regression

VC Voltage capacity

1DCNN One-dimensional convolutional

neural network
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