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Abstract: Automated essay scoring aims to evaluate the quality of an essay automatically. It is one of
the main educational application in the field of natural language processing. Recently, Pre-training
techniques have been used to improve performance on downstream tasks, and many studies have
attempted to use pre-training and then fine-tuning mechanisms in an essay scoring system. However,
obtaining better features such as prompts by the pre-trained encoder is critical but not fully studied.
In this paper, we create a prompt feature fusion method that is better suited for fine-tuning. Besides,
we use multi-task learning by designing two auxiliary tasks, prompt prediction and prompt matching,
to obtain better features. The experimental results show that both auxiliary tasks can improve model
performance, and the combination of the two auxiliary tasks with the NEZHA pre-trained encoder
produces the best results, with Quadratic Weighted Kappa improving 2.5% and Pearson’s Correlation
Coefficient improving 2% on average across all results on the HSK dataset.

Keywords: automated essay scoring; natural language processing; multi-task learning; pre-trained
language model; hierarchical structure model

1. Introduction

Automated essay scoring (AES), which aims to automatically evaluate and score
essays, is one typical application of natural language processing (NLP) technique in the
field of education [1]. In earlier studies, a combination of handcrafted design features
and statistical machine learning is used [2,3], and with the development of deep learning,
neural network-based approaches gradually become mainstream [4–8]. Recently, pre-
trained language models have gradually become the foundation module of NLP, and the
paradigm of pre-training, then fine-tuning, is also widely adopted. Pre-training is the most
common method for transfer learning, in which a model is trained on a surrogate task
and then adapted to the desired downstream task by fine-tuning [9]. Some research has
attempted to use pre-training modules in AES tasks [10–12]. Howard et al. [10] utilize
the pre-trained encoder as a feature extraction module to obtain a representation of the
input text and update the pre-trained model parameters based on the downstream text
classification task by adding a linear layer. Rodriguez et al. [11] employ a pre-trained
encoder as the essay representation extraction module for the AES task, with inputs at
various granularities of the sentence, paragraph, overall, etc., and then use regression as
the training target for the downstream task to further optimize the representation. In this
paper, we fine-tune the pre-trained encoder as a feature extraction module and convert the
essay scoring task into regression as in previous studies [4–7].

The existing neural methods obtain a generic representation of the text through a hier-
archical model using convolutional neural networks (CNN) for word-level representation
and long short-term memory (LSTM) for sentence-level representation [4], which is not
specific to different features. To enhance the representation of the essay, some studies have
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attempted to incorporate features such as prompt [3,13], organization [14], coherence [2],
and discourse structure [15–17] into the neural model. These features are critical for the AES
task because they help the model understand the essay while also making the essay scoring
more interpretable. In actual scenarios, prompt adherence is an important feature in essay
scoring tasks [3]. The hierarchical model is insensitive to changes in the corresponding
prompt for the essay and always assigns the same score for the same essay, regardless of
the essay prompt. Persing and Ng [3] propose a feature-rich approach that integrates the
prompt adherence dimension. Ref. [18] improves document modeling with a topic word.
Li et al. [7] utilizes a hierarchical structure with an attention mechanism to construct prompt
information. However, the above feature fusion methods are unsuitable for fine-tuning.

The two challenges in effectively incorporating pre-trained models into AES feature
representation are the data dimension and the methodological dimension. For the data
dimension, the use of fine-tuning approaches to transfer the pre-trained encoder to down-
stream tasks frequently necessitates sufficient data, and there has been more research on
both training and testing data from the same target prompt [4,5], but the data size is rela-
tively small, varying between a few hundred and a few thousand, and pre-trained encoders
cannot be fine-tuned well. In order to solve this challenge, we use the whole training set,
which includes various prompts. In terms of methodology, we employ the pre-training and
multi-task learning (MTL) paradigms, which can learn features that cannot be learned in a
single task through joint learning, learning to learn, and learning with auxiliary tasks [19],
etc. MTL methods have been applied to several NLP tasks, such as text classification [20,21],
semantic analysis [22] et al. Our method creates two auxiliary tasks that need to be learned
alongside the main task. The main task and auxiliary tasks can increase each other’s
performance by sharing information and complementing each other.

In this paper, we propose an essay scoring model based on fine-tuning that utilizes
multi-task learning to fuse prompt features by designing two auxiliary tasks, prompt
prediction, and prompt matching, which is more suitable for fine-tuning. Our approach can
effectively incorporate the prompt feature in essays and improve the representation and
understanding of the essay. The paper is organized as follows. In Section 2, we first review
related studies. We describe our method and experiment in Sections 3 and 4. Section 5
presents the findings and discussions. Finally, in Section 6, we provide a conclusion, future
work, and the limitations of the paper.

2. Related Work

Pre-trained language models, such as BERT [23], BERT-WWM [24], RoBERTa [25],
and NEZHA [26], have gradually become a fundamental technique for NLP, with great
success on both English and Chinese tasks [27]. In our approach, we use the BERT and
NEZHA feature extraction layers. BERT is the abbreviation of Bidirectional Encoder
Representations from Transformers, and it is based on transformer blocks that are built
using the attention mechanism [28] to extract semantic information. It is trained on two
unsupervised tasks using large-scale datasets: masked language model (MLM) and next
sentence prediction (NSP). NEZHA is a Chinese pre-training model that employs functional
relative positional encoding and whole word masking (WWM) rather than BERT. The
pre-training then the fine-tuning mechanism is widely used in downstream NLP tasks,
including AES [11,12,15]. Mim et al. [15] propose a pre-training approach for evaluating the
organization and argument strength of essays based on modeling coherence. Song et al. [12]
present a multi-stage pre-training method for automated Chinese essay scoring that consists
of three components: weakly supervised pre-training, supervised cross-prompt fine-tuning,
and supervised target-prompt fine-tuning. Rodriguez et al. [11] use BERT and XLNET [29]
for representation and fine-tuning of English corpus.

The essay prompt introduces the topic, offers concepts, and restricts both content and
perspective. Some studies have attempted to enhance the AES system by incorporating
prompt features in many ways, such as by integrating prompt information to determine if
an essay is off-topic [13,18] or by considering prompt adherence as a crucial indicator [3].
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Louis and Higgins [13] improve model performance by expanding prompt information
with a list of related words and reducing spelling errors. Persing and Ng [3] propose
a feature-rich method for incorporating the prompt adherence dimension via manual
annotation. Klebanov et al. [18] also improve essay modeling with topic words to quantify
the overall relevance of the essay to the prompt, and the relationship between prompt
adherence scores and total essay quality is also discussed. The methods described above
mostly employ statistical machine learning, prompt information is enriched by annotation
and the construction of datasets, as well as the construction of word lists and topic word
mining. While all of them are making great progress, the approaches they are employing
are more difficult to directly transfer to fine-tuning. Li et al. [7] propose a shared model
and an enhanced model (EModel), and utilize a neural network hierarchical structure with
an attention mechanism to construct features of the essay such as discourse, coherence,
relevancy, and prompt. For the representation, the paper employs GloVe [30] rather than a
pre-trained model. In the experiment section, we compared our method to the sub-module
of EModel (Pro.) which incorporates the prompt feature.

3. Methods
3.1. Motivation

Although previous studies on automated essay scoring models for specific prompts
have shown promising results, most research focuses on generic features of essays. Only
a few studies have focused on prompt feature extraction, and no one has attempted to
use a multi-task approach to make the model capture prompt features and be sensitive to
prompts automatically. Our approach is motivated by capturing prompt features to make
the model aware of the prompt and using pre-training and then the fine-tuning mechanism
for AES. Based on this motivation, we use a multi-task learning approach to obtain features
that are more applicable to Essay Scoring (ES) by adding essay prompts to the model input
and proposing two auxiliary tasks: Prompt Prediction (PP) and Prompt Matching (PM). The
overall architecture of our model is illustrated in Figure 1.

Figure 1. The proposed framework. “一封求职信” is the prompt of the essay, the English translation
is “A cover letter”. “主管您好” means “Hello Manager”. The prompt and essay are separated by
[SEP].

3.2. Input and Feature Extraction Layer

The input representation for a given essay is built by adding the corresponding token
embeddings Etoken, segment embeddings Esegment, and position embeddings Eposition. To
fully exploit the prompt information, we concatenate the prompt in front of the essay.
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The first token of each input is a special classification token [CLS], and the prompt and
essay are separated by [SEP]. The token embedding of the j-th essay in the i-th prompt can
be expressed as Equation (1), Esegment and Eposition are obtained from the tokenizer of the
pre-train encoder.

E(i)(j)
token =

{
E(i)

prompt, E(i)(j)
essay

}
. (1)

We utilize the BERT and NEZHA as feature extraction layers. The final hidden state corre-
sponding to the [CLS] token is the essay representation re for essay scoring and subtasks.

3.3. Essay Scoring Layer

We view essay scoring as a regression task. To enable data mapping regression prob-
lems, the real scores are scaled to the range [0, 1] for training and rescaled during evaluation,
according to the existing studies:

s(i)(j) =
score(i)(j) −min

(
score(i)

)
max

(
score(i)

)
−min

(
score(i)

) , (2)

where s(i)(j) is the scaled score for i-th prompt j-th essay, and score(i)(j) is the actual score for
i-th prompt j-th essay, max

(
score(i)

)
and min

(
score(i)

)
are the maximum and minimum of

the real scores for the i-th prompt. The input is essay representation re from the pre-trained
encoder, which is fed into a linear layer with a sigmoid activation function:

ŝ = σ(Wes · re + bes), (3)

where ŝ is the predicted score by AES system, σ is the sigmoid function, Wes is a trainable
weights, and bes is a bias. The essay scoring (es) training objective is described as:

`osses(s, ŝ) =
1
N

N

∑
k

(
sk − ŝk

)2
. (4)

3.4. Subtask 1: Prompt Prediction

The definition of prompt prediction is giving an essay to determine which prompt
it belongs to. We view prompt prediction as a classification task. The input is essay
representation re, which is fed into a linear layer with a softmax function. The formula is
given by Equation (5):

û = softmax
(
Wpp · re + bpp

)
, (5)

where û is the probability distribution of classification results , Wpp is a parameter matrix,
and bpp is a bias. The loss function is formalized as follows:

`osspp(u, û) = − 1
N

N

∑
k

C

∑
c=1

f
(

u(k), c
)

log
(

p(k)(c)pp

)
, (6)

f (x, y) =

{
1 i f x = y

0 else x 6= y
, (7)

where u(k) is the real prompt label for the k-th sample, p(k)(c)pp is the probability that the
k-th sample belongs to the c-th category, C denotes the number of prompts, which in this
study is ten.
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3.5. Subtask 2: Prompt Matching

The definition of prompt matching is giving a pair of a prompt and an essay, and to
decide if the essay and the prompt are compatible. We consider prompt matching to be a
classification task. The following is the formula:

v̂ = softmax
(
Wpm · re + bpm

)
, (8)

where v̂ is the probability distribution of matching results, Wpm is a parameter matrix, and
bpm is a bias. The objective function is shown in Equation (9)

`osspm(v, v̂) = − 1
N

N

∑
k

M

∑
m=0

f
(

v(k), m
)

log
(

p(k)(m)
pm

)
, (9)

where v(k) indicates whether the input prompt and essay match. p(k)(m)
pm is the likelihood

that the matching degree of k-th sample falls into category m. m denotes the matching
degree, 0 for a match, 1 for a dismatch. The distinction between prompt prediction and
prompt matching is that as the number of prompts increases, the difference in classification
targets leads to increasingly obvious differences in task difficulty, sample distribution and
diversity, and scalability.

3.6. Multi-Task Loss Function

The final loss function for each input is a weighted sum of the loss functions for
essay scoring and two subtasks: prompt prediction and prompt matching, with the loss
formalized as follows:

`ossMTL = α · `osses + β · `osspp + γ · `osspm, (10)

where α,β, and γ are non-negative weights assigned in advance to balance the importance of
the three tasks. Because the objective of this research is to improve the AES system, the main
task should be given more weight than the two auxiliary tasks. The optimal parameters in
this paper are α : β = α : γ = 100:1, and in Section 5.3, we design experiments to figure out
the optimal value interval for α, β, and γ.

4. Experiment
4.1. Dataset

We use HSK (HSK is the acronym of Hanyu Shuiping Kaoshi, which is Chinese Pinyin
for the Chinese Proficiency Test). Dynamic Composition Corpus (http://hsk.blcu.edu.cn/
(accessed on 6 March 2022)) as our dataset as in existing studies [31]. HSK is also called
“TOEFL in Chinese”, which is a national standardized test designed to test the proficiency
of non-native speakers of Chinese. The HSK corpus includes 11,569 essays composed by
foreigners from more than thirty different nations or regions in response to more than
fifty distinct prompts. We eliminate any prompts with fewer than 500 student writings
from the HSK dataset to constitute the experimental data. The statistical results of the final
filtered dataset are provided in Table 1, which comprises 8878 essays across 10 prompts
taken from the actual HSK test. Each essay score ranges from 40 to 95 points. We divide
the entire dataset at random into the training set, validation set, and test set in the ratio
of 6:2:2. To alleviate the problem of insufficient data under a single prompt, we apply the
entire training set that consists of different prompts for fine-tuning. We test every prompt
individually as well as the entire test set during the testing phase and utilize the same
5-fold cross-validation procedure as [4,5]. Finally, we report the average performance.

http://hsk.blcu.edu.cn/
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Table 1. HSK dataset statistic.

Set #Essay Avg #len Chinese Prompt (English Translation)

1 522 336 一封求职信
(A cover letter)

2 703 395 记对我影响最大的一个人
(Remember the person who influenced me the most)

3 707 340 如何看待“安乐死”
(How to view “euthanasia”)

4 957 338 由“三个和尚没水喝”想到的
(Thought on “Three monks without water” )

5 829 356 如何解决“代沟”问题
(How to solve the “generation gap”)

6 694 387 一封写给父母的信
(A letter to parents)

7 1529 350 绿色食品与饥饿
(Green food and hunger)

8 1333 330 吸烟对个人健康和公众利益的影响
(Effects of smoking on personal health and public interest)

9 865 347 父母是孩子的第一任老师
(Parents are children’s first teachers)

10 739 337 我看流行歌曲
(My opinion on popular songs)

4.2. Evaluation Metrics

For the main task, we use the Quadratic Weighted Kappa (QWK)approach, which
is widely used in AES [32], to analyze the agreement between prediction scores and the
ground truth. QWK can be calculated by Equations (11) and (12)

Wi,j =
(i− j)2

(N − 1)2 , (11)

where i and j are the golden score of the human rater and the AES system score, and each
essay has N possible ratings. Second, calculate the QWK score using Equation (12).

QWK = 1−
∑i,j Wi,jOi,j

∑i,j Wi,jZi,j
, (12)

where Oi,j denotes the number of essays that receive a rating i by the human rater and
a rating j by the AES system. The expected rating matrix Z is histogram vectors of the
golden rating and AES system rating and normalized so that the sum of its elements equals
the sum of its elements in O. We also utilize Pearson’s Correlation Coefficient (PCC) to
measure the association as in previous studies [3,32,33], which quantifies the degree of
linear dependency between two variables and describes the level of covariation. In contrast
to the QWK metric, which evaluates the agreement between the model output and the gold
standard, we use PCC to assess whether the AES system ranks essays similarly to the gold
standard, indicating the capacity of the AES system to appropriately rank texts, i.e., high
scores ahead of low scores. For auxiliary tasks, we consider prompt prediction and prompt
matching as classification problems and use macro-F1 score (F1), and accuracy (Acc.) as
evaluation metrics.

4.3. Comparisons

Our model is compared to the baseline models listed below. The former three are
existing neural AES methods, and we experiment with both character and word input



Entropy 2022, 24, 1206 7 of 16

when training for comparison. The fourth method is to fine-tune the pre-trained model,
and the rest are variations of our proposed method.

CNN-LSTM [4]: This method builds a document using CNN for word-level repre-
sentation and LSTM for sentence-level representation, as well as the addition of a pooling
layer to obtain the text representation. Finally, the score is obtained by applying the linear
layer of the sigmoid function.

CNN-LSTM-att [5]: This method incorporates an attention mechanism into both the
word-level and sentence-level representations of CNN-LSTM.

EModel (Pro.): This method concatenates the prompt information in the input layer
of CNN-LSTM-att, which is a sub-module of [7].

BERT/NEZHA-FT: This method is used to fine-tune the pre-trained model. To obtain
the essay representation, we directly feed an essay into the pre-trained encoder as the input.
We choose the [CLS] embedding as essay representations and feed them into a linear layer
of the sigmoid function for scoring.

BERT/NEZHA-concat: The difference between this method and fine-tune is that the
input representation concatenates the prompt to the front of the essay in token embedding,
as in Figure 1.

BERT/NEZHA-PP: This model incorporates prompt prediction as an auxiliary task,
with the same input as the concat model and the output using [CLS] as the essay represen-
tation. A linear layer with the sigmoid function is used for essay scoring, and a linear layer
with the softmax function is used for prompt prediction.

BERT/NEZHA-PM: This model includes prompt matching as an auxiliary task. In the
input stage of constructing the training data, there is a 50% probability that the prompt and
the essay are mismatched. [CLS] embedding is used to represent the essay. A linear layer
with the sigmoid function is used for essay scoring, and a linear layer with the softmax
function is used for prompt matching.

BERT/NEZHA-PP&PM: This model utilizes two auxiliary tasks, prompt prediction,
and prompt matching, with the same inputs and outputs as the PM model. The output
layer of the auxiliary tasks is the same as above.

4.4. Parameter Settings

We use BERT (https://github.com/google-research/bert (accessed on 11 March 2022))
and NEZHA
(https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-
TensorFlow (accessed on 11 March 2022)) as pre-trained encoder. To obtain tokens and
token embeddings, we employ the tokenizer and vocabulary of the pre-trained encoder.
The parameters of the pre-trained encoder are learnable during both the fine-tuning and
training phases. The maximum length of the input is set to 512 and Table 2 includes ad-
ditional parameters. The baseline models, CNN-LSTM and CNN-LSTM-att, are trained
from scratch, and their parameters are shown in Table 2. Our experiments are carried out
on NVIDIA TESLA V100 32 G GPUs.

https://github.com/google-research/bert
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-TensorFlow
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-TensorFlow
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Table 2. Parameter settings.

Parameters Baselines Settings Our Methods Settings

Embedding size 100 768
Vocab size 500 21,128
Epoch 50 10
Batch size 64 16
Optimizer RMSprop Adam
Learning rate 1× 10−3 5× 10−6

LSTM hidden state 100 -
CNN filters (kernel size) 100 (5) -

Word embedding
Tencent (small) https://ai.tencent.

com/ailab/nlp/en/download.html
(accessed on 17 March 2022)

-

5. Results and Discussions
5.1. Main Results and Analysis

We report our experimental results in Tables 3 and A1 (Due to space limitations, this
table is included in Appendix A). Table A1 illustrates the average QWK and PCC for each
prompt. Table 3 shows QWK and PCC across the entire test set and the average results of
each prompt test set. As shown in Table 3, we can find that the proposed auxiliary tasks (PP,
PM, and PP&PM) (line 8–10 & 13–15) outperform other contrast models on both QWK and
PCC, PP&PM models with the pre-trained encoder, BERT, and NEZHA, outperform PP
and PM on QWK. In terms of the PCC metric, PM models exceeded the other two models
except for the average result with the NEZHA encoder. The findings above indicate that
our proposed two auxiliary tasks are both effective.

Table 3. QWK and PCC for the total test set and Average QWK and PCC for each prompt test set;
† denotes input as a character; ‡ denotes input as word. The best results are in bold.

Models
Total Average

QWK PCC QWK PCC

CNN-LSTM † 0.632 0.672 0.612 0.642
CNN-LSTM-att † 0.642 0.672 0.615 0.648
CNN-LSTM ‡ 0.617 0.653 0.596 0.633
CNN-LSTM-att ‡ 0.623 0.658 0.603 0.629
EModel (Pro.) ‡ 0.642 0.669 0.620 0.649

BERT-FT 0.683 0.722 0.667 0.713
BERT-concat 0.685 0.719 0.671 0.712
BERT-PP 0.688 0.714 0.668 0.709
BERT-PM 0.700 0.726 0.684 0.719
BERT-PP&PM 0.703 0.711 0.687 0.715

NEZHA-FT 0.676 0.714 0.662 0.708
NEZHA-concat 0.681 0.717 0.667 0.714
NEZHA-PP 0.695 0.727 0.680 0.728
NEZHA-PM 0.698 0.732 0.682 0.724
NEZHA-PP&PM 0.704 0.714 0.687 0.722

On Total test set, our best results, a pre-trained encoder with PM and PP, are higher
compared to fine-tuning method and EModel(Pro.), exceed the strong baseline concat model
by 1.8% with BERT and 2.3% with NEZHA on QWK, and get a generally consistent
correlation. It is shown from Table 3 that our proposed models also yield similar results to
the Average test set, 1.6% of BERT and 2% of NEZHA on QWK of PP&PM models compared
to concat model, 2% of BERT and 2.5% of NEZHA on QWK of PP&PM models compared to
fine-tuning model, and competitive results on PCC metric. Using the multi-task learning

https://ai.tencent.com/ailab/nlp/en/download.html
https://ai.tencent.com/ailab/nlp/en/download.html
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approach and fine-tuning comparison, our proposed approach outperforms the baseline
system on both QWK and PCC, indicating that better essay representation can be obtained
through multi-tasking learning. Furthermore, when compared to the concat model with
fused prompt representation, our proposed approach outperform the baseline in QWK
scores, but line 10 and line 15 in Table 3 Total track PCC values are lower within 1% of the
baseline. It demonstrates that our proposed auxiliary task is effective in representing the
essay prompt.

We train the hierarchical model (line 1–4) using character and word as input, respec-
tively, and the results show that using the character for training is generally better, with the
best results in Total and Average being more than 4% lower than those with the pre-training
method. The results indicate that using pre-trained encoders both BERT and NEZHA for
feature extraction works well on the HSK dataset. The pre-training model comparison
reveals that BERT and NEZHA are competitive, with NEZHA delivering the best results.

Results of each prompt with BERT and NEZHA are displayed in Figure 2. The results
of our proposed models (PP, PM, and PP&PM) have made positive progress on several
prompts. Among them, the results of PP&PM, in addition, to prompt 1 and prompt 5,
extend beyond the two baselines of fine-tuning and concat. The results indicate that our
proposed auxiliary tasks to incorporate prompt is generic and can be employed with a
range of genres and prompts. The primary cause of the results of individual prompts
being suboptimal is that the hyperparameters of loss function α,β, and γ are not adjusted
specifically for each prompt and we will further analyze the reasons for this in Section 5.3 .
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Figure 2. (a) Results of each prompt with BERT pre-trained encoder on QWK; (b) Results of each
prompt with NEZHA pre-trained encoder on QWK.

5.2. Result and Effect of Auxiliary Tasks

Table 4 depicts the results of the auxiliary tasks (PP and PM) on validation set, the
accuracy and F1 are both greater than 85% for BERT and 90% for NEZHA, and the model is
well trained in the auxiliary task, when compared to both pre-trained models BERT and
NEZHA, the latter produces better. The results of auxiliary tasks with NEZHA perform
better as feature extraction modules.

Table 4. Accuracy and F1 for PP and PM on validation set.

Models
Prompt Prediction Prompt Matching

Acc. (%) F1 (%) Acc. (%) F1 (%)

BERT-PP&PM 86.6 85.6 85.5 85.6
NEZHA-PP&PM 91.7 98.1 90.7 91.4

Comparing the contribution of PP and PM, as shown in Tables A1 and 3 and Figure 3,
the contribution of PM is higher and more effective. Figure 3a,b illustrate radar graphs
of various pre-trained encoders of PP and PM across 10 prompts utilizing QWK metrics.
Figure 3a shows that the QWK value of PM is higher than PP in all but prompt 9 with
BERT encoder, and Figure 3b demonstrates that the results of PM are 60% better compared
to those of PP, implying that PM is also superior to PP for a specific prompt. The PM
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and PP comparison results for the Total and Average datasets are provided in Figure 3c,d.
Except for the PM model with the NEZHA pre-trained encoder, which has a slightly lower
QWK than the PP model, all models that use PM as a single auxiliary task perform better,
further demonstrating the superiority of prompt matching in prompt representing and
incorporating.
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Figure 3. (a) Radar graph of BERT-PP&BERT-PM; (b) Radar graph of NEZHA-PP&NEZHA-PM;
(c) Results of PP and PM on QWK; (d) Results of PP and PM on PCC.

5.3. Effect of Loss Weight

We examine how the ratio of loss weight parameters β and γ affects the model.
Figure 4a shows that the model works best when the ratio is 1:1 on both QWK and PCC
metrics. Figure A1 depicts the QWK results for various β and γ ratios, as well as revealing
that the model produces the greatest results at around 1:1 for different prompts, except
for prompts 1, 5, and 6, and the same is true for the average results. Concerning the issue
of our model being suboptimal for individual prompts, Figure A1 illustrates that the best
results for prompts 1, 5, and 6 are not achieved at 1:1, suggesting that it is inappropriate
for such parameters in these prompts. Because we disorder the entire training set and fix
the β and γ ratio before testing it independently, the parameters of the different prompts
cannot be dynamically adjusted within a single training procedure. The reasons are to
address the lack of data and also to focus more on the average performance of the model,
which also prevents the model from overfitting for specific prompts. Compared to the
results in Table A1, NEZHA-PP and NEZHA-PM both outperform the baselines and the
PP&PM model for prompt 1, indicating that both PP and PM can enhance the results
when employed separately. For prompt 5, NEZHA-PP performs better than NEZHA-PM,
showing that PP plays a greater role. The PP&PM model is already the best result for
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prompt 6, even though the 1:1 parameter is not optimal in Figure A1, demonstrating
that there is still potential for improvement. The information above reveals that different
prompts have varying degrees of difficulty for joint training and parameter optimization of
the main and auxiliary tasks, along with different conditions of applicability for the two
auxiliary tasks we presented.
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Figure 4. (a) The effect of PP&PM in different β/γ ratios of QWK and PCC on Total dataset, we fix
the value of α in this section of the experiment.; (b) The smoothing results for training losses across
all tasks; (c) The results of different α : β (PP), α : γ (PM), and α : β : γ (PP&PM) ratios on QWK.

We also measure the effect of α on the model, where we fix the β/γ ratio constant
at 1:1. Figure 4c demonstrates that the PP, PM, and PP&PM models are all optimal at
α : β = α : γ = 100:1, with the best QWK values for PP&PM, indicating that our suggested
method of combining two auxiliary tasks for joint training is effective. The observation of
[1, 100] shows that when the ratio is small, the main task cannot be trained well, the two
auxiliary tasks have a negative impact on the main task, but the single auxiliary task has less
impact, indicating that multiple auxiliary tasks are more difficult to train concurrently than
a single auxiliary task. In addition, future research should consider how to dynamically
optimize the parameters of multiple tasks.

The training losses for ES, PP, and PM are included in Figure 4b, and it can be seen
that the loss of the main task decreases rapidly in the early stage, and the model converges
around 6000 steps. The reason for faster model convergence in PM is that the task is a
dichotomous classification compared to PP, which is a ten classification, and additionally,
among the ten prompts, prompt 6 “A letter to parent” and prompt 9 “Parents are children’s
first teachers” are more similar, making PP more difficult. As a result, further research
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into how to select the appropriate weight ratio and design more matching auxiliary tasks
is required.

6. Conclusions and Future Work

This paper presents a pre-training and then fine-tuning model for automated essay
scoring. The model incorporates the essay prompts to the model input and obtains better
features more applicable to essay scoring by multi-task learning with two auxiliary tasks,
prompt prediction, and prompt matching. Experiments demonstrate that the model outper-
forms baselines in results measured by the QWK and PCC on average across all results on
the HSK dataset, indicating that our model is substantially better in terms of agreement
and association. The experimental results also show that both auxiliary tasks can effectively
improve the model performance, and the combination of the two auxiliary tasks with the
NEZHA pre-trained encoder yields the best results, with QWK enhancing 2.5% and PCC
improving 2% compared to the strong baseline, the concatenate model, on average across
all results on the HSK dataset. When compared to existing neural essay scoring methods,
the experimental results show that QWK improves by 7.2% and PCC improves by 8% on
average across all results.

Although our work has enhanced the effectiveness of the AES system, there are still
limitations. Regarding the data dimension, this research primarily investigates fusing
prompt features in Chinese; other languages are not examined extensively. Nevertheless,
our method is more convenient for migration than the manual annotation approach, and
other languages can be directly migrated. Furthermore, other features in different languages
can use our method to create similar auxiliary tasks for information fusion. Moreover, as
the number of prompts grows, the difficulty of training for prompt prediction increases,
and we will consider combining prompts with genre and other information to design
auxiliary tasks suitable for more prompts, as well as attempting to find a balance between
the number of essays and the number of prompts to make prompt prediction more efficient.
The parameters of the loss function are now defined empirically at the methodological level,
which is not conducive to additional auxiliary activities. In future work, we will optimize
the parameter selection scheme and build dynamic parameter optimization techniques to
accommodate variable numbers of auxiliary tasks. In terms of application, our approaches
focus on fusing textual information in prompts, while they do not cover all prompt forms.
Our system now requires additional modules for the chart and picture prompt. In future
research, we will experiment with multimodal prompt data to improve the application
scenarios of the AES system.
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AES Automated Essay Scoring
NLP Natural Language Processing
QWK Quadratic Weighted Kappa
PCC Pearson’s Correlation Coefficient

Appendix A

Table A1. QWK and PCC for each prompt on HSK dataset, † denotes input as character; ‡ denotes
input as word. The best results are in bold.

Metrics QWK PCC QWK PCC QWK PCC QWK PCC QWK PCC

Method Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5

CNN-LSTM † 0.721 0.742 0.634 0.644 0.646 0.669 0.644 0.661 0.666 0.702
CNN-LSTM-att † 0.759 0.767 0.639 0.650 0.662 0.683 0.649 0.671 0.654 0.695
CNN-LSTM ‡ 0.730 0.749 0.638 0.657 0.613 0.663 0.673 0.696 0.671 0.709
CNN-LSTM-att ‡ 0.767 0.773 0.622 0.634 0.679 0.701 0.680 0.694 0.668 0.705
EModel (Pro.) ‡ 0.752 0.769 0.664 0.681 0.672 0.687 0.693 0.710 0.676 0.704

BERT-FT 0.725 0.765 0.701 0.748 0.678 0.720 0.726 0.763 0.667 0.699
BERT-concat 0.746 0.772 0.718 0.756 0.681 0.726 0.713 0.751 0.686 0.709
BERT-PP 0.735 0.773 0.718 0.758 0.680 0.724 0.715 0.743 0.658 0.681
BERT-PM 0.749 0.774 0.739 0.771 0.708 0.744 0.729 0.753 0.687 0.704
BERT-PP&PM 0.716 0.780 0.728 0.766 0.708 0.734 0.741 0.753 0.687 0.707

NEZHA-FT 0.719 0.769 0.706 0.763 0.671 0.715 0.706 0.744 0.661 0.689
NEZHA-concat 0.703 0.751 0.696 0.761 0.665 0.715 0.715 0.754 0.712 0.737
NEZHA-PP 0.750 0.791 0.700 0.764 0.692 0.747 0.731 0.763 0.692 0.728
NEZHA-PM 0.756 0.787 0.735 0.774 0.697 0.741 0.714 0.760 0.684 0.717
NEZHA-PP&PM 0.687 0.781 0.740 0.765 0.715 0.745 0.742 0.761 0.697 0.710

Method Prompt 6 Prompt 7 Prompt 8 Prompt 9 Prompt 10

CNN-LSTM † 0.539 0.564 0.553 0.580 0.456 0.496 0.612 0.669 0.646 0.688
CNN-LSTM-att † 0.552 0.581 0.552 0.604 0.454 0.507 0.598 0.660 0.630 0.661
CNN-LSTM ‡ 0.479 0.519 0.542 0.565 0.396 0.446 0.596 0.652 0.627 0.674
CNN-LSTM-att ‡ 0.486 0.516 0.553 0.590 0.356 0.399 0.575 0.616 0.649 0.665
EModel (Pro.) ‡ 0.503 0.528 0.560 0.602 0.413 0.457 0.597 0.661 0.667 0.693

BERT-FT 0.582 0.625 0.673 0.705 0.558 0.625 0.683 0.746 0.677 0.733
BERT-concat 0.580 0.630 0.651 0.698 0.571 0.619 0.672 0.720 0.690 0.738
BERT-PP 0.562 0.615 0.664 0.700 0.553 0.611 0.694 0.739 0.696 0.740
BERT-PM 0.579 0.620 0.682 0.711 0.578 0.619 0.688 0.736 0.700 0.752
BERT-PP&PM 0.617 0.627 0.696 0.705 0.568 0.601 0.718 0.739 0.695 0.741

NEZHA-FT 0.594 0.631 0.674 0.707 0.553 0.599 0.655 0.722 0.677 0.738
NEZHA-concat 0.595 0.642 0.689 0.718 0.554 0.610 0.658 0.716 0.684 0.738
NEZHA-PP 0.588 0.639 0.688 0.723 0.579 0.633 0.672 0.745 0.706 0.751
NEZHA-PM 0.576 0.630 0.672 0.719 0.583 0.624 0.692 0.740 0.715 0.752
NEZHA-PP&PM 0.620 0.647 0.693 0.715 0.589 0.618 0.701 0.729 0.684 0.750
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Figure A1. The effect of PP&PM in different β/γ ratios of QWK across all dataset, we fix the value of
α in this section of the experiment.

References
1. Page, E.B. The imminence of... grading essays by computer. Phi Delta Kappan 1966, 47, 238–243.
2. Higgins, D.; Burstein, J.; Marcu, D.; Gentile, C. Evaluating multiple aspects of coherence in student essays. In Proceedings of the

NAACL-HLT, Boston, MA, USA, 2–7 May 2004; pp. 185–192.
3. Persing, I.; Ng, V. Modeling prompt adherence in student essays. In Proceedings of the ACL, Baltimore, MD, USA, 22–27 June

2014; pp. 1534–1543.
4. Taghipour, K.; Ng, H.T. A neural approach to automated essay scoring. In Proceedings of the EMNLP, Austin, Texas, USA, 1–5

November 2016; pp. 1882–1891.
5. Dong, F.; Zhang, Y.; Yang, J. Attention-based recurrent convolutional neural network for automatic essay scoring. In Proceedings

of the CoNLL, Vancouver, BC, Canada, 3–4 August 2017; pp. 153–162.
6. Jin, C.; He, B.; Hui, K.; Sun, L. TDNN: A two-stage deep neural network for prompt-independent automated essay scoring. In

Proceedings of the ACL, Melbourne, Australia, 15–20 July 2018; pp. 1088–1097.
7. Li, X.; Chen, M.; Nie, J.Y. SEDNN: Shared and enhanced deep neural network model for cross-prompt automated essay scoring.

Knowl.-Based Syst. 2020, 210, 106491.
8. Park, Y.H.; Choi, Y.S.; Park, C.Y.; Lee, K.J. EssayGAN: Essay Data Augmentation Based on Generative Adversarial Networks for

Automated Essay Scoring. Appl. Sci. 2022, 12, 5803.
9. Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.;

et al. On the opportunities and risks of foundation models. arXiv 2021, arXiv:2108.07258.
10. Howard, J.; Ruder, S. Universal Language Model Fine-tuning for Text Classification. In Proceedings of the ACL, Melbourne,

Australia, 15–20 July 2018; pp. 328–339.
11. Rodriguez, P.U.; Jafari, A.; Ormerod, C.M. Language models and automated essay scoring. arXiv 2019, arXiv:1909.09482.
12. Song, W.; Zhang, K.; Fu, R.; Liu, L.; Liu, T.; Cheng, M. Multi-stage pre-training for automated Chinese essay scoring. In

Proceedings of the EMNLP, Online, 16–20 November 2020; pp. 6723–6733.
13. Louis, A.; Higgins, D. Off-topic essay detection using short prompt texts. In Proceedings of the NAACL-HLT, Los Angeles, CA,

USA, 1–6 June 2010; pp. 92–95.



Entropy 2022, 24, 1206 16 of 16

14. Persing, I.; Davis, A.; Ng, V. Modeling organization in student essays. In Proceedings of the EMNLP, Cambridge, MA, USA, 9–11
October 2010; pp. 229–239.

15. Mim, F.S.; Inoue, N.; Reisert, P.; Ouchi, H.; Inui, K. Unsupervised learning of discourse-aware text representation for essay
scoring. In Proceedings of the ACL, Florence, Italy, 28 July–2 August 2019; pp. 378–385.

16. Nadeem, F.; Nguyen, H.; Liu, Y.; Ostendorf, M. Automated essay scoring with discourse-aware neural models. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, Florence, Italy, 2 August 2019;
pp. 484–493.

17. Song, W.; Song, Z.; Fu, R.; Liu, L.; Cheng, M.; Liu, T. Discourse Self-Attention for Discourse Element Identification in Argumenta-
tive Student Essays. In Proceedings of the EMNLP, Online, 16–20 November 2020; pp. 2820–2830.

18. Klebanov, B.B.; Flor, M.; Gyawali, B. Topicality-based indices for essay scoring. In Proceedings of the BEA, San Diego, CA, USA,
16 June 2016; pp. 63–72.

19. Ruder, S. An overview of multi-task learning in deep neural networks. arXiv 2017, arXiv:1706.05098.
20. Liu, P.; Qiu, X.; Huang, X. Recurrent neural network for text classification with multi-task learning. In Proceedings of the IJCAI,

New York, NY, USA, 9–15 July 2016; pp. 2873–2879.
21. Liu, X.; He, P.; Chen, W.; Gao, J. Multi-Task Deep Neural Networks for Natural Language Understanding. In Proceedings of the

ACL, Florence, Italy, 28 July–2 August 2019; pp. 4487–4496.
22. Yu, J.; Jiang, J. Learning sentence embeddings with auxiliary tasks for cross-domain sentiment classification. In Proceedings of

the EMNLP, Austin, TX, USA, 1–5 November 2016; pp. 236–246.
23. Kenton, J.D.M.W.C.; Toutanova, L.K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the NAACL-HLT, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.
24. Cui, Y.; Che, W.; Liu, T.; Qin, B.; Yang, Z. Pre-training with whole word masking for chinese bert. IEEE/ACM Trans. Audio Speech

Lang. Process. 2021, 29, 3504–3514.
25. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
26. Wei, J.; Ren, X.; Li, X.; Huang, W.; Liao, Y.; Wang, Y.; Lin, J.; Jiang, X.; Chen, X.; Liu, Q. Nezha: Neural contextualized representation

for chinese language understanding. arXiv 2019, arXiv:1909.00204.
27. Schomacker, T.; Tropmann-Frick, M. Language Representation Models: An Overview. Entropy 2021, 23, 1422.
28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In

Proceedings of the NeurIPS, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008.
29. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. XLNet: Generalized Autoregressive Pretraining for

Language Understanding. In Proceedings of the NeurIPS, Vancouver, CA, USA, 8–14 December 2019; pp. 5754–5764.
30. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the EMNLP, Doha,

Qatar, 25–29 October 2014; pp. 1532–1543.
31. Wang, Y.; Hu, R. A Prompt-Independent and Interpretable Automated Essay Scoring Method for Chinese Second Language

Writing. In Proceedings of the CCL, Hohhot, China, 13–15 August 2021; pp. 450–470.
32. Ke, Z.; Ng, V. Automated Essay Scoring: A Survey of the State of the Art. In Proceedings of the IJCAI, Macao, China, 10–16

August 2019; pp. 6300–6308.
33. Yannakoudakis, H.; Cummins, R. Evaluating the performance of automated text scoring systems. In Proceedings of the the Tenth

Workshop on Innovative Use of NLP for Building Educational Applications, Denver, CO, USA, 4 June 2015; pp. 213–223.


	Introduction
	Related Work
	Methods
	Motivation
	Input and Feature Extraction Layer
	Essay Scoring Layer
	Subtask 1: Prompt Prediction
	Subtask 2: Prompt Matching
	Multi-Task Loss Function

	Experiment
	Dataset
	Evaluation Metrics
	Comparisons
	Parameter Settings

	Results and Discussions
	Main Results and Analysis
	Result and Effect of Auxiliary Tasks
	Effect of Loss Weight

	Conclusions and Future Work
	Appendix A
	References

