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Abstract: To ensure the implementation of the marine electric propulsion self-healing strategy after
faults, it is necessary to diagnose and accurately classify the faults. Considering the characteristics of
the residual network (ResNet) and bidirectional long short-term memory (BiLSTM), the Res-BiLSTM
deep learning algorithm is used to establish a fault diagnosis model to distinguish the types of
electric drive faults. First, the powerful fault feature extraction ability of the residual network is
used to deeply mine the fault features in the signals. Then, perform time-series learning through
a bidirectional long short-term memory network, and further excavate the transient time-series
features in the fault features so as to achieve the accurate classification of drive inverter faults. The
effectiveness of the method is verified using noise-free fault data, and the robustness of the method is
verified using data with varying degrees of noise. The results show that compared with conventional
deep learning algorithms, Res-BiLSTM has the fastest and most stable training process, the diagnostic
performance is improved, and the accuracy can be maintained over 95% under 25–19 dB. It has certain
robustness and can be applied to marine electric propulsion systems drive inverter fault diagnosis,
and its results can provide data support for the implementation of self-healing control strategies.

Keywords: marine electric propulsion system; six-phase motor drive inverter; intelligent fault
diagnosis; residual network (ResNet); bidirectional long short-term memory (BiLSTM)

1. Introduction

With the in-depth research of all-electric ship technology, the research on the safety
and reliability of its main power unit, the electric propulsion system, has become a hot
spot nowadays. The propulsion motor drive inverter has a much higher failure rate in
the electric propulsion system than the motor itself due to its large number of power
electronic devices, complex electronic control, and harsh offshore working environment [1].
Once the frequency converter fails, the entire propulsion system will lose its working
ability, bringing catastrophic accidents to the ship and endangering the safety of life and
property [2]. Therefore, it is of great practical significance to improve the reliability of the
propulsion system to study how to quickly find the fault of the drive unit and restrict it in
time to reduce the impact of the fault and realize the self-healing of the fault.

The propulsion motor drive, especially the inverter circuit part that realizes the PWM
control strategy, is a weak link in the marine electric propulsion system that is prone
to faults. In this regard, about 38% of the faults in power conversion circuits occur in
semiconductor devices, and IGBTs are the most widely used semiconductor switching
devices, and the IGBT’s faults of inverters mainly include open circuit faults and short
circuit faults [3]. For the fault diagnosis of the switching devices in the inverter circuits,
there are mainly methods based on signal analysis, model reference, and machine learning.

The signal analysis method directly analyzes the electrical signal of the system and is
the most widely used fault diagnosis method at present. H Yin et al. [4] design an adaptive
real-time fast voltage fault location method based on the voltage signal. The fault location
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is performed by the average phase voltage deviation of each switching cycle. The fault
can be detected and located within one switching cycle, but additional voltage acquisition
is required. Considering that the current signal has been collected in the control system,
based on the current signal, M. Trabelsi and E. Semail [5] use the current data in the α-β
reference frame to define the virtual current vector (VCVn) and use the projection of the
zero-sequence current on the vector as the fault feature, calculate the fault index, and
diagnose the open-circuit fault of the multi-phase PMSM inverter. By introducing VCVn,
misdiagnosis caused by changes in system operating conditions can be avoided, and it has
high sensitivity and robustness to faults. F Wu et al. [6] simplified the Fourier series of
each sampling instant by reconstructing the zero-crossing position data and multiplying
them with the reference signal based on the current signal spectrum and use it as a feature
for fault diagnosis to improve the diagnosis effect. B. Gmati et al. consider the PMSM
drive system under the model predictive control strategy, use the error between the model
predicted current and the actual current in the dq reference frame to calculate the diagnostic
variables, establish a fuzzy rule, and obtain device fault information through fuzzy logic
for fault diagnosis. Compared with the traditional current error diagnosis algorithm, the
fuzzy logic algorithm has a short calculation time and robustness against parameters and
operating point variation of the system in the literature [7]. However, this type of fault
diagnosis method based on electrical signals uses artificially set fault thresholds for alarm
and fault tolerance, which is easy to cause false alarms and delays.

The model reference method has the characteristics of fast running speed, good
real-time performance, and easy implementation in the control system and has been
widely studied. H. Yin et al. [8] designed a current observer to calculate the fault residual,
designed an adaptive threshold based on the current dynamic characteristics and the
system operating state, and used the current system residual and the average value of
the basic period as diagnostic variables for fault diagnosis. C. Chen et al. [9] analyzed
the voltage waveform under normal operating conditions, established a hybrid logic
dynamic model of the inverter, designed a voltage expansion observer, and determined the
faulty device according to the residual error between the observed voltage and the actual
voltage. Y. Cheng et al. [10] obtained the expected voltage through a mixed logic dynamic
model, estimated the voltage through the measured current, and used the average voltage
deviation of each switching cycle as a fault location variable for fault diagnosis. However,
such methods require system control signals as model input, and the diagnostic effect is
related to the accuracy of the model built. The difficulty in obtaining control signals and
the complexity of computation lead to limited practicability.

In recent years, with the rise of artificial intelligence research, knowledge- and data-
driven machine learning fault diagnosis methods have become a current research hotspot.
H. Sumin et al. [11] used genetic algorithm-rough set reduction (GR) to reduce the dimen-
sion of fault features; built a time performance evaluation algorithm (PTA) algorithm to
calculate the optimal model and optimized the Bayesian network (BN) diagnostic model.
GR-PTA-BN has higher diagnostic accuracy than traditional BP networks, but there are
disadvantages such as the long network training time. M. Ali et al. [12] used the proba-
bilistic principal component analysis method to process the output voltage of the inverter
and used SVM for fault classification, and the detection accuracy and time were improved.
The current spectrum generated by the three-phase current signal preprocessed by PCA is
input to the pooling layer of the hybrid convolutional neural network for feature extrac-
tion, and the features are combined in the fully connected layer to identify faults, which
has high accuracy and strong generalization. However, there are still problems, such as
insufficient feature extraction and too high of a dimension, which affect the diagnosis
speed [13]. K. Sarita et al. adopted the two-samples technique, used the load impedance
and voltage to estimate the current, and realized the fault alarm by the difference between
the estimated current and the actual current; used the EWP to extract the features of the
inverter output current, and used the SVM to classify the fault. Compared with traditional
PCA and WT algorithms, EPW-SVM has a faster diagnosis and more reliable results in
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the literature [14]. In addition, to solve the problem of data dependence, L. Kou et al. [15]
adopted the knowledge-driven method to extract the features of the inverter output current
to form a slope data set and then trained the classifier through the random forest algorithm.
Y. Xia and Y. Xu [16] used the current signal as the original input and generated the feature
set through manifold feature learning. After training the extreme learning machine to form
the initial diagnosis model, the model parameters were adjusted to minimize the difference
between the source system and the target data distribution to realize the diagnosis model.

In this paper, combining the characteristics of the deep network and recurrent network,
a Res-BiLSTM deep learning method was designed to diagnose the fault of the frequency
conversion unit driven by the six-phase propulsion system of the ship. According to the
current data of the output terminal of the six-phase inverter under different fault condi-
tions, the feature information in the fault data is mined through the residual connection
convolutional neural network, and the bidirectional long short-term memory (BiLSTM)
network is used to extract and identify the periodic fault characteristics. The method in
this paper was verified by the operation data of the ship’s electric propulsion system under
different working conditions, and the results show that the method is helpful for improving
the training effect and the diagnosis accuracy. In addition, data under different noises
were used to verify the diagnostic performance of the method. The results show that due
to the introduction of residual connections, the method has a certain resistance to noise
disturbance, which further improves the robustness of fault diagnosis.

2. Main Circuit Failure of Drive Inverter in Marine Electric Propulsion System

Modern ships are developing in the direction of large-scale, electrified, and intelligent.
Electric propulsion has gradually replaced traditional heat engine propulsion and has
become the preferred main power system for various ships today. The electrical structure
of the port side power unit of an electric propulsion ship is shown in Figure 1. The power
system of a large, intelligent ship generally adopts a regional power distribution scheme
to support the operation of the electric propulsion system of an all-electric ship [17]. The
scheme divides the ship’s load into multiple areas, such as propulsion area, living area,
and important load, according to function and the degree of importance. Power is supplied
by multiple gas turbines in the power generation area. The integrated power system
monitors and evaluates the operation status of each area through sensor data. On the
basis of ensuring the continuous and effective operation of the electric propulsion system,
unified management and control of the electrical equipment of the whole ship are carried
out according to the actual situation of navigation. As the main power unit of the ship, the
propulsion system directly affects the safety of the ship during the voyage and needs to be
given more attention.
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The entire port side propulsion area is composed of a propulsion power distribution
panel, an isolation transformer, a high-power drive inverter, a propulsion control system
composed of a propulsion motor, and a monitoring system composed of sensors, computers,
and servers. The propulsion system obtains stable electrical energy from the ship’s power
generation unit through the propulsion power distribution panel and the transformer and
drives the inverter to adjust the speed of the propulsion motor according to the command
of the bridge telegraph to control the torque output of the propulsion system so that the
ship can obtain forward power. Node sensor data, use computers to realize intelligent
evaluation of propulsion system operating status and upload the results through the server
so that the integrated power system can be managed in a unified manner.

For the long-term heavy-load operation of the system under harsh working conditions
during the voyage, the marine electric propulsion system has high requirements for stability
and reliability, and each device in the system needs to have a certain fault tolerance
capability to gain time for the implementation of self-healing and maintenance strategies.
Avoid system crashes. Therefore, an accurate fault diagnosis method is required to achieve
rapid fault classification and provide data support for fault tolerance and maintenance
strategy formulation. This paper takes the six-phase motor drive unit of the marine electric
propulsion system as the research object and conducts fault diagnosis research on the IGBT
open-circuit fault in the inverter circuit in the torque control mode.

2.1. Mathematical Model of Six-Phase Propulsion Motor

The ship’s six-phase propulsion unit is composed of a six-phase propulsion motor
and a six-phase drive inverter. Compared with the traditional three-phase motor, the
six-phase permanent magnet synchronous motor has obvious advantages in torque ripple,
magnetomotive force waveform, and motor efficiency, and the multi-phase structure has
the ability to realize high-power drive on the one hand, and the redundant structure on the
other hand. It enables fault-tolerant operation of the motor after phase failure and improves
the overall reliability of the propulsion system [18]. Therefore, six-phase PMSM is favored
in large ships, luxury cruise ships, and other occasions that require high performance and
reliability. Its stator winding structure is shown in Figure 2.
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The stator winding of the six-phase permanent magnet synchronous motor is com-
posed of two sets of three-phase symmetrical windings (ABC&XYZ) connected by a Y-
shaped connection.

To simplify the analysis, it is assumed that the six-phase PMSM is an ideal motor,
and the basic equations of voltage and flux linkage in the natural coordinate system were
obtained. {

us = Rsis +
d
dtψs

ψs = Lsis + ψfF (θ)
(1)
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where

Ls =



LAA LAB LAC LAX LAY LAZ
LBA LBB LBC LBX LBY LBZ
LCA LCB LCC LCX LCY LCZ
LXA LXB LXC LXX LXY LXZ
LYA LYB LYC LYX LYY LYZ
LZA LZB LZC LZX LZY LZZ

 (2)

us = [uA uB uC uX uY uZ]
T (3)

ψs = [ψA ψB ψC ψX ψY ψZ]
T (4)

is = [iA iB iC iX iY iZ]
T (5)

F(θ) = [cos (θ) cos (θ − 2π
3
) cos (θ +

2π
3
) cos (θ − π

6
) cos (θ − 5π

6
) cos (θ +

π

2
)]

T
(6)

For the convenience of control, the VSD coordinate transformation was used to obtain
Equation (7)  udq0 = Rsidq0 + Ldq0 · d

dt idq0 +

[
−ωeLqiq

ωe(Ldid + ψf)

]
uxy0 = Rsixy0 + Lxy0 · d

dt ixy0

(7)

and the motion equation can be expressed by Equation (8)

Te = 3pniq[id(Ld − Lq)− ψf] (8)

Modern electric propulsion ships use high-power inverters to control the propulsion
motor. On the one hand, the system control performance is improved. On the other hand,
the overcurrent protection of the inverter circuit can eliminate the motor insulation damage
caused by overvoltage or overcurrent. The broken bar fault of the motor rotor can be
eliminated by the soft start of the inverter, which greatly reduces the failure rate of the
motor body [19]. Therefore, this paper mainly analyzes the failure of the switching device
of the frequency conversion unit in the propulsion system and does not involve the failure
of the motor itself.

2.2. Main Circuit Topology Structure and Failure Mode Classification

The six-phase motor of the ship is generally powered by two sets of three-phase two-
level voltage source inverters (VSI). It can be seen from Equation (8) that the motor torque
control can be achieved by controlling the output current of the inverter, and its topology
is shown in Figure 3. The main control unit is based on the bridge. Given the speed and
torque command, the speed sensor, and the feedback data of each phase current sensor,
the motor control signal was calculated by the PI control algorithm, and the three-phase
decoupling SVPWM method was used to generate the switching signal of the IGBT device
of each bridge arm of the inverter to control the motor speed and rotation. The torque is
used to drive the propeller to propel the ship to sail.

A drive inverter is an important unit of the propulsion control system. During the
entire operation process, the switch is in a high-frequency switching state, and the power
device loss is extremely large. In addition, the environment of the ship’s engine room is
harsh, and it is easy to damage the main circuit devices and cause open-circuit or short-
circuit faults [20]. However, in the actual operation process, the overcurrent caused by the
short-circuit fault will trigger the protection mechanism and disconnect the device, which
will eventually appear as an open-circuit fault in the system; there are a few cases of three
open circuits [21]. In addition, due to the variety of faults, considering that the two sets
of windings of the six-phase motor are relatively independent and have similar control
structures, this paper only discusses the single and double faults of the ABC winding
inverter circuit. The failure phenomenon of the IGBT circuit breaker of the six-phase
propulsion motor drive inverter is shown in Figure 4.
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During the occurrence of a fault, the output six-phase current of the inverter will show
different degrees of fault symptoms. The six-phase current waveforms of the same fault
type are arranged in combination due to the fault phase sequence, while the six-phase
current waveforms of different fault types are arranged according to the number of IGBT
faults. It is different from the position of the faulty bridge arm and has a certain degree of
randomness and uncertainty, so the collected current signal needs to be processed [22].

In addition, according to the current traces before and after the fault in Figure 5, it can
also be seen that since the six-phase motor is controlled by two sets of three-phase inverters
and the neutral point is isolated, the fault mainly affects the three-phase current of the same
set of windings, and the current trace of the other set. Close to a circle, it will not cause the
system to crash, which shows from the side that the system has fairly high fault tolerance.
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According to these, 21 kinds of IGBT open-circuit faults are divided into six categories
in Table 1 for research.

Table 1. Fault classification of inverter unit in marine electric propulsion system.

Label Fault Type Faulty Power Electronics

1 Upper Bridge Arm Single Transistor Open (UBAST) VT1, VT3, VT5
2 Lower Bridge Arm Single Transistor Open (LBAST) VT4, VT6, VT2
3 Same Side Upper Bridge Arm Double Transistor Open (SSUBADT) VT1VT3, VT1VT5, VT3VT5
4 Same Side Lower Bridge Arm Double Transistor Open (SSLUBADT) VT2VT4, VT2VT6, VT4VT6

5 Cross Side Bridge Arm Double Transistor Open (CSBADT) VT1VT2, VT1VT6, VT3VT2,
VT3VT4, VT5VT4, VT5VT6

6 Same Side Bridge Arm Double Transistor Open (SSBADT) VT1VT4, VT3VT6, VT5VT2

3. Fault Diagnosis of Drive Inverter for Marine Electric Propulsion System Based on
Res-BiLTM Deep Learning Method

The time-varying nonlinearity, stochastic uncertainty and the local observability of
faults in marine electric propulsion systems make it difficult for traditional methods based
on mathematical model analysis to fully reflect the fault characteristics, and the diagnostic
effect is limited. Introducing artificial intelligence methods, such as deep learning, into
the field of intelligent fault diagnosis, on the one hand, can alleviate the problems of
mining massive current data and extracting fault features during electric propulsion system
faults. On the other hand, it can make up for the lack of training data of traditional
machine learning methods in practical applications, poor generalization ability, etc. The
traditional shallow neural network has a certain degree of self-adaptation and robustness
and has certain research results in the field of fault diagnosis. When dealing with fault
diagnosis problems, the single traditional shallow neural network has limited ability to
express nonlinear functions. When forecasting and other problems, underfitting is prone to
occur [23].

To improve learning efficiency and performance, the concept of deep learning was
introduced. Deep learning is based on a neural network. The network parameters were
adjusted through training to obtain the weight value of each layer. Each layer represents
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a representation of the input data so as to convert the original data into the simplest
representation. By constructing multiple hidden layers, the machine learning model and
massive training data can be used to learn more useful features so as to improve the accuracy
of classification and prediction. In fault diagnosis, the recognition-based deep learning
model is generally used for fault classification, which can be characterized by the posterior
distribution of the predicted class of the labeled data. The common convolutional neural
network (CNN) was used in this paper to improve the accuracy of fault classification. The
network analyzes the data time series to obtain the time-series correlation between the data,
uses the pattern classification and pattern discrimination capabilities of the recognition
model, and combines the two characteristics to form a deep learning network framework
to improve the accuracy of fault classification.

3.1. The Structure of Convolutional Neural Network and Residual Network

The convolutional neural network refers to a neural network that uses convolution
operation instead of ordinary matrix penalty operation in at least one layer of the network
and completes the extraction of local features of the original image through convolution
and pooling operations. It is widely used in image classification, object detection, and
other machine vision fields [24]. In fault diagnosis, CNN is usually regarded as a feature
extractor composed of convolutional layers and pooling layers. It has the characteristics of
local connection and weight sharing. It is a multi-layer supervised learning neural network
for processing time-series data, which has a strong ability to deal with nonlinear problems.
The typical CNN model mainly uses the convolution layer to perform the convolution
operation (Convolution) to extract internal features; the pooling layer (Pooling) removes
unnecessary information and improves the network generalization ability and calculation
speed. The fully connected layer further abstracts and combines global time-series features
and output, its structure is shown in Figure 6,
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The convolution kernel extracts signal feature information through the special linear
operation of convolution, which has the characteristics of sparse connection and weight
sharing. The convolution kernel and the input signal are slid in a locally connected manner,
and the eigenvalues of the signal were obtained by calculating the weight-sharing method
during sliding. The calculation process is as follows:

Fi
L = relu(∑

i
xL

i ∗ wL
ij + bL

j ) (9)

where ∗ is the convolution operation, Fi
L is the feature value extracted by the i-th channel

in the L-th layer, xL
i is the input of the i-th channel in the L-th layer, wL

ij and bL
j is the

weight of the j-th convolution kernel in the corresponding layer and bias; the activation
function relu = max(0, x) improves network sparsity by zeroing out some of the outputs.

The pooling layer is usually connected after the convolutional layer, and the downsam-
pling operation is used to reduce the size of the feature data and network parameter space.
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In order to suppress the over-fitting phenomenon, this paper adopts the global pooling
operation. The mathematical description is as follows:

Pi
L =

1
k

jk

∑
i=(j−1)k+1

aL
i (10)

where aL
i is the activation value of the i-th feature in the L-th layer, PL

i is its corresponding
value in the pooling layer, and k is the width of the pooling region. Alternating convolution
and pooling processes can make the features extracted by the CNN from the input signal
more discriminative and robust.

A deep network is a typical deep learning model, and its essence is a function chain;
that is, each function is a layer, each layer is composed of neurons, and the neurons are
connected by weights and biases. During DNN training, weights and biases are determined
by minimizing the loss function on the dataset to avoid DNN overfitting [25]. Therefore, in
principle, the network can learn more feature information and improve the training effect
by increasing the convolutional layer and pooling layer in the CNN. However, in practical
applications, it is found that too many convolutional layers will not only cause the gradient
disappearance problem during the model training process but also increase the amount of
calculation and increase the training time and hardware burden. Focusing on the problem
of gradient disappearance in the stacking of locked layers of the convolutional neural
network, this paper introduces the idea of residual error, adopts the residual network to
retain the powerful fault feature extraction ability of CNN, and alleviates the problem of
network degradation caused by the too deep network. Its structure is shown in Figure 7.
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Figure 7 is a residual network, which can be mathematically expressed as{
Yl = h(Xl) +F (Xl , Wl)
Xl+1 = f (Yl)

(11)

Assuming that h is a linear mapping, f is a direct mapping, and F (XL, WL) is the
output of the number of convolutional networks, the output of the lth layer can be written
as Equation (12).

Xl+1 = λlXl +F (Xl , Wl) (12)
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For a residual network of depth L, the Lth layer can be written as the sum of the
residual parts between any shallow layers,

XL = (
L−1

∑
i=l

λi)Xl +
L−1

∑
i=l
F (Xi, Wi) (13)

Then the gradient of its loss function εwith Xl respect to can be expressed as

∂ε

∂Xl
=

∂ε

∂XL
[
L−1

∏
i=l

λi +
∂

∂Xl

L−1

∑
i=l
F (Xi, Wi)] (14)

From the analysis of Equation (14), it can be seen that if λi > 1, it will lead to
L−1
∏
i=l

λi → ∞ , and λi < 1 will appear
L−1
∏
i=l

λi → 0 , to avoid the situation of gradient explosion

or gradient disappearance during the training process, we set λi = 1. So, the new gradient
can be expressed as Equation (15)

∂ε

∂Xl
=

∂ε

∂XL
[1 +

∂

∂Xl

L−1

∑
i=l
F (Xi, Wi)] (15)

Considering that ∂
∂Xl

L−1
∑
i=l
F (Xi, Wi) is not always equal to 0, there will be no gradient

disappearance problem in the residual. At the same time, due to the effect of the constant 1,
the gradient of the L-th layer can be directly transferred to any shallow layer, realizing the
information interaction between the high-level and low-level layers.

It can be seen from the analysis for Equations (11)–(15) that the residual structure of
direct mapping has two structural advantages: first, when the network propagates forward,
the shallow features can be reused in the deep layer; second, deep gradients can be directly
passed back to the shallow layers when the network is back-propagated. Therefore, with a
residual block, when there is a large reconstruction error between the input and output of
the network, the error information can be directly fed back to the previous network layer
through a shortcut connection. This structural design can also alleviate the model training
speed without improving the network degradation problem.

3.2. Bidirectional Long Short-Term Memory Network

In the marine electric propulsion system, the output current of the drive inverter is
affected by the integral link of the PI current controller, and its variation law is related to
time and has a time sequence attribute. RNN is proposed for time series data. There are
both internal feedback and feedforward connections between its neurons. The feedback
connection can preserve the state of the hidden layer nodes of the network and provide
a memory method. The network output is the result of the joint action of the current
input and all historical states. It has certain advantages for time series processing, but
the gradient dispersion effect on the time axis makes RNN unsuitable for processing long
sequence data [26]. The Long Short-Term Memory (LSTM) network is a special recurrent
neural network (RNN), which is a deep learning network optimized to solve the problem
of gradient disappearance and gradient explosion during production sequence training.
With the development of RNN, LSTM has excellent processing ability for sequence data
and can retain the time-series features in current signals to the greatest extent so that it can
be tried and applied in fault diagnosis in different fields. Different from the simple cell
structure of the conventional RNN, three special ‘gate’ structures are added to the LSTM
neurons so that the state information can be added or lost so that the state can flow with
the sequence and the ability to obtain memory. The cell structure of LSTM is shown in the
figure. “Gate” is a method to allow information to pass through. LSTM realizes memory by
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introducing forget gate, input gate, and output gate to control the state of cells. The LSTM
memory cell structure is shown in Figure 8.
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The forget gate selects the historical information to be retained according to the input
xt at the t moment and the memory state ht−1 of the previous moment; the input gate
determines the content of the new information contained in the long-term memory state ct;
and the output gate controls the information contained in the long-term state ct−1, which is
passed to the next as short-term memory. Time and update the hidden state ht. The internal
calculation formula of the neuron is as follows:

ft = σ(W f ht−1 + U f xt + b f )
it = σ(Wiht−1 + Uixt + bi)
at = tanh(Waht−1 + Uaxt + ba)
ot = σ(Woht−1 + Uoxt + bo)
ct = ct−1 ft + itat
ht = ottanh(ct)

(16)

where, σ(·) ∈ (0, 1) is the sigmoid function, tanh(·) ∈ (−1, 1) is the hyperbolic tangent
function, W and U is the weight between the gates, and b is the bias.

BiLSTM is a variant algorithm of LSTM. It consists of two layers of LSTM, one for
forward propagation and one for reverse propagation. The forward layer starts the input
iteration from the beginning of the sequence, the reverse layer starts the input iteration
from the end of the sequence, and the output results of the two layers are combined to
obtain the identification result. The state memory and transmission process are shown in
Figure 9.

Its output yt = tanh(Wbt hbt + W ft h ft), Wbt and W ft is the weight of the output layer
in the output mapping of the forward layer and the reverse layer. Bidirectional LSTM can
simultaneously learn the future and past sequence data at the current time point and can
effectively extract the time series features of the data sequence. Therefore, BiLSTM inherits
the memory ability of RNN for time series data. At the same time, based on LSTM, it not
only overcomes the problem that long-term historical signals cannot be transmitted to the
current moment but also can better extract the time series in fault current signals due to
the addition of the reverse layer information to improve the performance of the diagnostic
model
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3.3. Fault Diagnosis Model of Marine Electric Propulsion Drive Inverter Based on Res-BiLSTM

The marine electric propulsion system has been in a noisy and time-varying working
condition for a long time. The collected current signal is a non-stationary signal and
contains noise. If the original current signal is directly input into the deep learning network
for learning, it will affect the anti-interference ability of the diagnostic model. Therefore,
the engineering is usually preprocessed by wavelet packet transform [27,28]. Using the
compactness of the wavelet basis function, the original current signal is represented by
a small number of wavelet coefficients as signal features, and the multi-feature overall
evaluation is used to avoid one-sided blindness and reduce the randomness and uncertainty
of the fault signal. Wavelet packet transform has the characteristics of time-frequency
localization and high resolution. It can retain most of the original signal features and is
highly sensitive to faults [29]. To avoid diagnostic errors caused by the artificial selection
of features, the data after wavelet packet transformation are deeply excavated using the
Res-BiLSTM deep learning framework to improve the diagnostic effect.

Considering the powerful fault feature extraction ability of CNN, ResNet formed by
connecting CNN layers through residuals can extract deeper fault features and better cap-
ture the attribute information of fault occurrence; BiLSTM has long- and short-term memory
ability and can capture the time sequence of fault occurrence information. Therefore, in
order to obtain more attribute characteristics of fault signals and preserve the time-series
characteristics of current signals to the greatest extent, this paper integrates the advantages
of the two networks and designs a deep residual network integrating residual module
and BiLSTM as a fault diagnosis model for ship electric propulsion drive units, which
can not only extract the fault attribute information but also integrate the time sequence
information of the fault into the fault diagnosis model, so as to improve the accuracy of the
diagnosis results. The Res-BiLSTM network structure is shown in Figure 10, which includes
two initial convolutional layers, a pooling layer, a bidirectional long short-term memory
network layer, and two residual modules. BiLSTM layers are designed for temporal feature
extraction, multilayer residual blocks are designed for deep fault feature extraction, and
the global average pooling layers are designed to process the learned features, which treat
each feature map as a region to perform the pooling operation and output the features to
the classifier for fault classification, and finally output the fault label.
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Block (c) Structure of Bi-LSTM (d) Schematic diagram of full connect layer.

In the model, the first convolutional layer adopts a 3D convolutional neural network,
the filter size is 128, and the convolution kernel size is 3. In the second convolutional
layer, the filter size is 64, and the convolution kernel size is unchanged. In the global
average pooling operation, the pooling block size is 3. The dropout is the discarding
layer, and the discarding rate is 50%. The forward network and the reverse network in the
bidirectional long-term memory layer each contain 100 neurons. ReLU means Rectified
linear unit activation function and uses the Softmax classifier to classify multiple faults. The
residual network is composed of two residual blocks in series. Two CNNs are connected
by residuals to form a residual block. The convolutional layer of the CNN network extracts
the local features of the upper-layer input neuron data and uses the convolution kernel to
perform the feature map of the previous layer. The convolution calculation outputs a new
feature map, which is used for data dimensionality reduction through the pooling layer,
and input to the BiLSTM layer for time series feature learning to improve the performance
of the diagnostic model.

4. Results Verification and Analysis of the Res-BiLSTM Fault Diagnosis Method
4.1. Training Process

Aiming at the problems of the complex and changeable working conditions of the
marine electric propulsion system and the difficulty in extracting the special fault diagnosis
caused by the strong nonlinearity of the fault current signal, this paper proposes a fault
diagnosis method for marine electric propulsion drive based on the characteristics of the
residual network and BiLSTM network. Based on the deep learning framework, the six-
phase propulsion system model is established in the Matlab/Simulink environment, and
the 30–100% torque fault and normal operating state are simulated in the cruise mode.
Preprocess and divide the dataset and input it into the diagnostic model for learning and
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testing. The propulsion system parameters and Res-BiLSTM hyperparameters are shown
in Table 2, and the training and diagnosis process is shown in Figure 11.

Table 2. Parameters for Propulsion System and Hyper Parameters for Res-BiLSTM.

Propulsion System Parameter Value Hyper Parameter Value

Maximum speed nmax(r/min) 170 Learning rate 0.0001
Maximum torque Tmax(N) 205 Maximum iterations 10,000
Pole number p 8 Convolution Kernel Size 3
Inertia J(kg ·m2) 0.1 Hidden Units 200
Stator resistance Rs(Ω) 0.01 Batch Size 22
Stator inductance L(mH) 2.4 State Activation Function tanh
Flux ψs(Wb) 0.04 Gate Activation Function sigmoid
IGBT switching frequency fsw(kHz) 10 Dropout 0.5
Sampling frequency fs(kHz) 200 Solver for training network Adam
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Collect a total of 7040 groups of drive inverter output currents in the normal state and
under six faults and obtain the characteristics of each phase current in eight frequency bands
through three-layer wavelet packet transformation. A total of 48 groups of eigenvectors
constitute the original data set and then follow the 8:1:1 split training set, validation set,
and test set.

In the training phase, firstly, initialize the network parameters, input the training
set data into the network for training, and use the validation set to adjust the network
parameters by the Adam optimization method. After obtaining satisfactory results, end the
training and save the network parameters to obtain a fault diagnosis model. In the fault
diagnosis stage, input the test set data into the model obtained by training and output the
diagnosis result.

To evaluate the diagnostic performance, the accuracy, precision, recall, and F1 score
can be determined as
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Accuracy =
True Postives + True Negatives

True Postives + True Negatives + False Postives + False Negatives
(17)

Precision =
True Postives

True Postives + False Postives
(18)

Recall =
True Postives

True Postives + FalseNegatives
(19)

F1 Score =
2 × True Postives

2 × True Postives + False Postives + False Negatives
(20)

4.2. Analysis of Training Performance

In the experiment, the existing deep learning model-based fault diagnosis methods
LSTM, BiLSTM, CNN, and CNN-BiLSTM were used as the comparison models to compare
with the Res-BiLSTM with the residual structure proposed in this paper. The training
performance and comparison are shown in Figure 12.
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comparison; (b) Training Loss comparison.

The method proposed in this paper was superior to the other four deep learning
methods in terms of training speed, accuracy, and loss function value. Combining the
figures and figures, it can be seen that the learning speed was very fast in the first 500 times,
and the training accuracy rate rose rapidly to 80%, 500 times. After the learning speed
gradually slowed down, the training accuracy rate gradually stabilized above 95%, and in
order to avoid overfitting, some features were discarded through the Dropout layer in each
training so the accuracy rate would fluctuate slightly. The average training accuracy was
98.02%. The minimum loss function was 0.0554, the lowest loss function and the highest
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training effect, indicating that the Res-BiLSTM model obtained rich fault features through
the residual network in the early stage of training, and the two-way LSTM was used to
learn the time-series features of the fault features so that the training process was faster
and more stable. The test set data was used to test the five trained networks to verify their
fault diagnosis capabilities. The test results and confusion matrix are shown in Figure 13
and Table 2.
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Figure 13. Confusion matrix of fault classification results of different algorithms (a) BiLSTM; (b) CNN;
(c) CNN-BiLSTM; (d) Res-BiLSTM.

The multi-class confusion matrix contains both correct information and misclassified
information. The position of the main diagonal represents the number of correct classifica-
tions for each fault. Above the main diagonal is the number of false classified data, and
below the main diagonal is the misclassification. The number of data, 1–6 represents six
different fault states, and 0 represents the normal state. From the confusion matrix of the
four methods, BiLSTM can learn data time series features but cannot extract deeper fault
features, resulting in high accuracy, but there are prediction errors and misclassifications
in the results, and the CNN, with its powerful feature extraction ability of CNN-BiLSTM
can obtain more fault attributes, but the ability to retain time-series features in the data
is limited, so the prediction accuracy is improved, but there are still misclassifications,
and CNN-BiLSTM combines the advantages of the two. The situation has been alleviated,
and the Res-BiLSTM network strengthens its feature extraction ability through residual
connection CNN, combined with the long and short-term memory ability of BiLSTM, and
integrates its time-series information into the value model while extracting fault attribute
information, and the diagnosis effect is further strengthened.

Analysis of Table 3 shows that BiLSTM has a good effect on fault identification,
and the test accuracy rate can reach 92.19%, which is higher than that of the ordinary
LSTM algorithm; the CNN-BiLSTM network composed of CNN and BiLSTM in series
has an average training accuracy higher than that of the single network, reaching 93.38%
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Furthermore, it has an average test accuracy of 97.73%, which is higher than the effect
of an independent diagnosis of the two networks, which proves that extracting feature
vectors through CNN and then using the BiLSTM network for time series learning can
effectively improve the identification accuracy. The Res-BiLSTM network using the residual
connection proposed in this paper is the best in terms of training accuracy, loss function,
and test accuracy, which proves that the CNN with a residual connection can perform deep
learning on fault features and further improve the accuracy of fault diagnosis.

Table 3. Comparison of training performance of five learning frameworks.

LSTM BiLSTM CNN CNN-BiLSTM Res-BiLSTM

Average Training Accuracy 76.32% 80.49% 92.60% 93.38% 98.02
Average Training Loss 0.5153 0.4322 0.1931 0.1777 0.0554
Testing Accuracy 87.07% 92.19% 96.45% 97.73% 100%

4.3. Robustness Analysis of Fault Classification Models

To verify the robustness of the fault classification model, the different intensities of
noise were added to the test set and input into five diagnostic models. The performance
results are shown in Table 4.

Table 4. Accuracy comparison of different algorithms under different noises.

25 dB 22 dB 20 dB 19 dB

LSTM 86.65 85.37 84.66 84.38
BiLSTM 90.48 87.93 87.64 87.07
CNN 95.31 90.63. 87.78 87.50
CNN-BiLSTM 97.44 94.60 93.61 93.34
Res-BiLSTM 98.58 98.15 96.02 95.03

It can be seen that as the noise increases, the accuracy of the five diagnostic models
decreases to varying degrees. With its powerful feature extraction capability, CNN can
obtain enough fault feature attributes under noise interference, which can improve the
correct classification results. Compared with CNN-BiLSTM, which simply increases the
depth of the convolutional layer, Res-BiLSTM strengthens the fault characteristics of the
network by connecting the convolutional layer through residuals. The extraction ability still
has an accuracy of 95.03% under the condition of a 19 dB signal-to-noise ratio, indicating
that the algorithm can ensure a high fault recognition rate in a high-noise environment.

Analyzing the confusion matrix under noise interference in Figure 14, it can be found
that the powerful feature extraction ability of CNN makes the method proposed in this
paper still have a high diagnostic accuracy in the case of noise, but some fault features are
difficult to extract due to the influence of noise, and the test set. The data are unbalanced,
and the number of different fault data is inconsistent, so some fault data are mistakenly
identified as a normal state. Secondly, the double-pipe fault can be considered as the
arrangement and combination of single-pipe faults, and its characteristics are similar. In a
low-noise environment, the time series features can be extracted by BiLSTM to distinguish,
but under the influence of high noise, the time series characteristics of the data are affected,
and there is a situation in which a double-tube fault is mistakenly identified as a single-tube
fault.
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Observing the Res-BiLSTM in Table 5 we can comprehensively evaluate the classifi-
cation of various faults under different signal-to-noise ratios, and it can be found that the
method in this paper still has a high index under a 19 dB noise interference, indicating that
the proposed method is robust to noise. In addition, with the increase in noise content, the
fastest decline in the precision is the normal situation, which is due to the small amount
of normal data in the test set; that is, the data imbalance causes the classification results
to be biased. However, in the case of false detection, the system will warn of non-existing
faults, while missed detection will judge the fault condition as normal, which poses a
potential safety hazard. In the actual situation, it is most important to ensure the safety
of the ship’s navigation and prevent the occurrence of accidents. The missed detection
under normal conditions has a more serious impact on the propulsion system than the false
detection. From the recall rate of the normal operating conditions, it can be seen that the
fault leakage under different levels of noise, the missed detection rate is lower than the
false detection rate of less than 4%, so the proposed method can still have a good F1 score
and fault classification effect. From Table 5, for the evaluation indicators under various
noise conditions, the method in this paper can ensure a high fault recognition rate and a
high evaluation so it can be used in the fault diagnosis of the inverter unit of the marine
electric propulsion system.

Table 5. Comparison of Res-BiLSTM performance indexes under different noises.

Label
Fault
Type

25 dB 20 dB 19 dB

Precision Recall F1 Precision Recall F1 Precision Recall F1

0 Normal 100% 100% 100% 86.5% 100% 92.76% 72.1% 96.9% 82.68%
1 UBAST 98% 100% 98.99% 89.7% 100% 94.57% 88.1% 100% 93.67%
2 LBAST 93.2% 100% 96.48% 90.5% 99% 94.56% 92.2% 97.9% 94.96%
3 SSUBADT 100% 100% 100% 100% 94.8% 97.33% 100% 92.7% 96.21%
4 SSLBADT 100% 100% 100% 97.9% 99% 98.45% 97.9% 99% 98.45%
5 CSBADT 100% 100% 100% 100% 96.4% 98.17% 100% 94.8% 97.33%
6 SSBADT 100% 89.6% 94.51% 100% 85.4% 92.12% 100% 85.4% 92.12%

5. Conclusions

To realize the self-healing of marine electric propulsion system faults, it is necessary to
accurately classify the faults of the most fragile and complex motor drive units in the system.
In this paper, a deep learning framework based on a residual network and bidirectional
LSTM is proposed, which avoids manual filtering of fault features extracted by wavelet
packets, and fully mines the feature attributes and timing characteristics of the fault signal,
improving the learning efficiency and diagnosis effect. The simulation results show that
the Res-BiLSTM deep learning method has the following characteristics:

1. Realizing complex and high-dimensional function representation and providing an
effective means of expressing features for fault data with complex features that are
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difficult to extract manually. It is beneficial to improve the feature expression of the
intrinsic features of the state of the reaction system.

2. Transferring the gradient to a deeper layer through the residual connection method,
avoiding the disappearance of the gradient, thereby increasing the number of net-
work layers, improving the generalization ability of the model, and reducing the
computational complexity, the training effect is improved.

3. Organically unifying the feature extraction and classification functions improves
the performance of the algorithm and the robustness of the diagnostic model while
increasing the diagnostic accuracy.

Combined with the above advantages, the Res-BiLSTM deep learning framework
proposed in this paper can be used to establish a fault diagnosis model for the marine
electric propulsion system to provide data support for self-healing decision-making, but
the method still has the following shortcomings:

1. The choice of deep learning network structure lacks a theoretical basis, and it is
necessary to continue research on the deep learning algorithm itself.

2. In the field of fault diagnosis, there is an imbalance between the number of fault
samples and normal samples, which affects the training effect. Unsupervised learning
does not require sample labels and can avoid problems caused by unbalanced sample
proportions. Therefore, follow-up research will focus on how to combine the charac-
teristics of existing unsupervised generative deep models to improve fault diagnosis
models and realize discriminative unsupervised deep models.
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