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Abstract: The multiphase model based on free-energy theory has been experiencing long-term
prosperity for its solid foundation and succinct implementation. To identify the main hindrance
to developing a free-energy-based discrete unified gas-kinetic scheme (DUGKS), we introduced
the classical lattice Boltzmann free-energy model into the DUGKS implemented with different
flux reconstruction schemes. It is found that the force imbalance amplified by the reconstruction
errors prevents the direct application of the free-energy model to the DUGKS. By coupling the well-
balanced free-energy model with the DUGKS, the influences of the amplified force imbalance are
entirely removed. Comparative results demonstrated a consistent performance of the well-balanced
DUGKS despite the reconstruction schemes utilized. The capability of the DUGKS coupled with
the well-balanced free-energy model was quantitatively validated by the coexisting density curves
and Laplace’s law. In the quiescent droplet test, the magnitude of spurious currents is reduced to a
machine accuracy of 10−15. Aside from the excellent performance of the well-balanced DUGKS in
predicting steady-state multiphase flows, the spinodal decomposition test and the droplet coalescence
test revealed its stability problems in dealing with transient flows. Further improvements are required
on this point.

Keywords: free-energy model; discrete unified gas-kinetic scheme; multiphase flow; flux reconstruction

1. Introduction

Multiphase fluid flow characterized by the concurrent presence of multiple ther-
modynamic phases is frequently encountered in industrial processes and engineering
applications. Insightful understanding of the multiphase flow behavior could facilitate im-
provements in manufacturing technology and production efficiency. Due to the restriction
on measurement technology and the experimental platform, it is particularly challenging to
reveal the flow details by experimental methods. Benefiting from the substantial improve-
ments in computing power, numerical simulation technology has been developed into a
powerful tool for the study of complicated behaviors arising in multiphase fluid flow. By
numerically solving the set of interface capturing and hydrodynamic equations, a multitude
of research studies [1–4] vividly detail the interface dynamics and flow structures from a
macroscopic perspective. Essentially, the interfacial phenomenon represents the macro-
scopic manifestation of the microscopic interactions among fluid molecules [5]. Numerical
methods based on realistic microscopic physics could offer in-depth findings regarding
multiphase phenomena, but the heavy computational requirement of such methods for
industry-scale multiphase problems is far beyond affordable. In recent years, numerical
schemes constructed with the mesoscopic theory [6] have been emerging as a compelling
methodology for resolving multiphase flow patterns as this bridges the gap between
the macroscopic descriptions of multiphase dynamics and microscopic intermolecular
interactions and, thus, generates insightful understandings at an affordable cost.
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Among various previously proposed mesoscopic approaches [7–9], the lattice Boltz-
mann (LB) method [7] has received particular attention for its concise and intuitive way
of representing intermolecular interactions. Generally, the lattice Boltzmann multiphase
models developed in the past few decades can be categorized into four classifications: the
color-gradient model [10], the phase-field model [11,12], the pseudopotential model [13],
and the free-energy model [14]. The phase-field model employs independent sets of dis-
tribution functions to separately transfer mass and momentum, which could cause mass
non-conservation problems near the interface region [15]. The pseudopotential model and
the free-energy model employ a single set of distribution functions to ensure a coherent
transport of mass and momentum, which conforms to the physical reality that mass and
momentum are simultaneously transferred by the unique molecules. Compared to the
pseudopotential model, where interactions are built heuristically, the free-energy model
is constructed upon the stationary-action principle, which possesses a firm physical back-
ground. Over the last couple of decades, the free-energy lattice Boltzmann method has been
successfully applied to numerically tackle a variety of flow issues including the contact
line movement [16,17], multicomponent fluids’ flow [18,19], wetting boundaries [20,21],
and large-density-ratio fluid flow [22,23]. The primitive free-energy multiphase model
proposed by Swift et al. [14] reflects the interaction effects via a modified equilibrium dis-
tribution function, whose second-order moment incorporates a nonideal thermodynamic
pressure tensor. However, this primitive model suffers from a lack of Galilean invariance
due to the superfluous terms recovered in the momentum equation. Later, Swift et al. [24]
tried to remedy this defect by introducing additional terms to the pressure tensor, but an
analysis through the Chapman–Enskog expansion demonstrated that the lack of Galilean
invariance cannot be entirely eliminated. Based on Swift et al.’s work, Inamuro et al. [25]
proposed a Galilean-invariant free-energy model with the guidance of asymptotic theory.
Kalarakis et al. [26] restored the Galilean invariance of the free-energy model to second-
order accuracy by modifying the zero-order momentum flux tensor. Wagner and Li [27]
replaced the contribution of the nonideal pressure tensor with a corrected force term and
improved the Galilean invariance of the model in large velocity situations. Meanwhile, Lee
and Fischer [28] reformulated the pressure form of the interaction force into a potential
form and reduced the magnitude of the spurious velocity to a machine level, at the cost
of including the information in next-nearest-neighbor cells. Subsequently, Guo et al. [5]
spotted that the spurious velocity originates from the force imbalance at the discrete level.
Based on this finding, Lou and Guo [29] applied the Lax–Wendroff scheme to the lattice
Boltzmann free-energy model and successfully mitigated the effects of the force imbalance.
Very recently, Guo [30] proposed a well-balanced lattice Boltzmann scheme with which the
spurious velocity can be ultimately minimized to the machine accuracy. The previously
mentioned improvements were carried out within the framework of the lattice Boltzmann
method, which inherits its advantages such as great simplicity and high efficiency. How-
ever, the uniformity requirement on the grid types posed by the LB method prevents its
application in industrial cases.

Developed in the framework of the finite volume method, the discrete unified gas-
kinetic scheme (DUGKS) [31] suffers no restriction in terms of the grid types. With the
information of the Knudsen number incorporated in the construction of the interface flux,
the DUGKS exhibits the capability of properly modeling a wide range of fluid flows ranging
from the continuum regime to the free-molecule regime [32]. Over the past decade, the
DUGKS has proven its excellent performance in predicting microscale gas flows [33,34],
multicomponent gas flows [35,36], turbulent flows [37–39], compressible flows [40–42],
radiative heat transfer [43,44], and so forth [45]. A comparative study [46] has demon-
strated the stability superiority of the DUGKS over that of the LB method in terms of
nearly incompressible flows. However, the DUGKS studies centered on multiphase fluid
flows remain limited [47,48] and the multiphase DUGKS has been primarily confined to
the phase-field model [49]. Although Yang et al. [50] developed a pseudopotential-based
DUGKS for binary fluid flow, a free parameter is needed to guarantee the isotropic prop-
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erty of the fluid interface. Inspired by the well-balanced LB scheme [30], Zeng et al. [51]
proposed a well-balanced DUGKS for two-phase fluid flows using the free-energy model.
Comparative results demonstrated the superior performance of the DUGKS over that of
the LB method. Nevertheless, there is still a lack of an insightful comprehension as to
the isotropic property of free-energy-based DUGKS. In this research, we elucidate the
mechanism for the nonisotropic phenomena produced by the free-energy-based DUGKS
using different reconstruction approaches. Then, we couple the well-balanced free-energy
model with the DUGKS implemented with different reconstruction schemes to investigate
practical van der Waals (vdW) fluid flows. The rest of this paper is organized as follows. In
Section 2, the primitive and the well-balanced free-energy models are introduced, followed
by the detailed explanation of the Strang-splitting DUGKS. The comparative numerical
results, as well as brief discussions are presented in Section 3. Finally, a summary is given
in Section 4.

2. Numerical Methodology

In this section, the first part theoretically introduces the free-energy model based on
the vdW chemical potential and the second part exhaustively explains the Strang-splitting
DUGKS implemented with different reconstruction schemes.

2.1. Free-Energy Model

Considering a multiphase system, the free-energy functional in terms of the fluid
density ρ can be expressed as [14,24]

F =
∫

φ(ρ,∇ρ)dΩV =
∫ (

E f (ρ) +
κ

2
|∇ρ|2

)
dΩV , (1)

where ΩV is the spatial region occupied by the system, φ(ρ,∇ρ) denotes the total free-
energy density, in which E f (ρ) represents the bulk free-energy density, and κ

2 |∇ρ|2 signifies
the interface free-energy density. The parameter κ is a positive constant determined by
the interface thickness and the surface tension coefficient. Minimization of the free-energy
F that is subject to the constraint of a constant massM evolves the system towards the
equilibrium condition, where

M =
∫

ρdΩv. (2)

To impose the mass constraint, a transformed free-energy functional L is constructed using
the method of Lagrange multipliers:

L = F − λM, (3)

where λ is the Lagrange multiplier. Minimization of the constrained free-energy demands
the corresponding first variation to be zero:

δL = 0, (4)

which yields the following Euler–Lagrange equation:

∂ψ

∂ρ
−∇ ·

(
∂ψ

∂(∇ρ)

)
=

dE f

dρ
− κ∇2ρ− λ = 0, (5)

where
ψ(ρ,∇ρ) = φ(ρ,∇ρ)− λρ. (6)

The chemical potential µc is defined as the variation of the free-energy F with respect to
the density [52]:

µc =
δF
δρ

=
dE f

dρ
− κ∇2ρ. (7)
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As the integrand of transformed free-energy L does not explicitly contain any spatial
coordinates, it remains invariant regardless of the spatial translations [3]. Noether’s the-
orem [53] says that the invariance of the free-energy with respect to spatial translations
corresponds to a conserved tensorial current J satisfying [54]:

∇ · J = 0, (8)

where J is a second-rank tensor given by

J = −ψI +∇ρ⊗ ∂ψ(ρ,∇ρ)

∂(∇ρ)
, (9)

in which I is the identity matrix. Substituting Equations (5) and (6) into Equation (9) leads to

J =
(

ρµc − E f −
κ

2
|∇ρ|2

)
I + κ∇ρ∇ρ. (10)

The bulk pressure pb is connected to the bulk free-energy density E f via the Legendre
transform [54]:

pb(ρ) = ρ
dE f

dρ
− E f (ρ), (11)

with which the conserved current tenor J can be identified as the thermodynamic pressure
tensor P in such a way that

P ≡ J =
(

pb − κρ∇2ρ− κ

2
|∇ρ|2

)
I + κ∇ρ∇ρ. (12)

With some basic algebraic manipulations, the divergence of the pressure tensor can be
simplified as

∇ · P = ρ∇µc. (13)

In the traditional free-energy model [28], the total effects of excess pressure accounting for
the phase interactions can be represented by the following interaction force

F = ∇ · P0 −∇ · P = ∇p0 − ρ∇µc, (14)

where P0 = p0 I denotes the pressure tensor of an ideal gas. In the well-balanced free-energy
model [30], the interaction force is defined as

F = −ρ∇µc (15)

in order to eliminate the force imbalance at the discrete level.
The only remaining task is to determine the bulk free-energy density E f . In the work

of Zeng et al. [51], E f takes a double-well form, which relates to no specific equation of
state (EOS). In the current research, the bulk pressure is evaluated by the nonideal van der
Waals EOS [55] expressed as

pb =
ρRT

1− bρ
− aρ2, (16)

where parameter a denotes the intermolecular interaction strength, parameter b indicates
the volume correction, R stands for the gas constant, and T represents the temperature. The
corresponding bulk free-energy density can be obtained by solving Equation (11):

E f (ρ) = ρRTln
(

ρ

1− bρ

)
− aρ2. (17)
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The chemical potential can then be obtained according to Equation (7):

µc = RT
[

ln
(

ρ

1− bρ
+

1
1− bρ

)]
− 2aρ− κ∇2ρ, (18)

with which the interaction force F can be evaluated. In the current research, the parameters
in the vdW-EOS were set as [56] a = 9/392, b = 2/21, R = 1. κ was fixed at 0.02 if
not otherwise specified. The critical density and temperature are given as ρc = 3.5 and
Tc = 1/14.

2.2. Strang-Splitting DUGKS

In this subsection, the evolution process of the discrete unified gas-kinetic scheme
is exhaustively clarified. Then, the Strang-splitting scheme for the incorporation of the
interaction force is introduced.

2.2.1. Discrete Unified Gas-Kinetic Scheme

The investigation of multiphase flow problems in the current research was conducted
by numerically solving the Boltzmann-BGK equation:

∂ f
∂t

+ ξ · ∇x f = Ω ≡ − f − f E

τ
, (19)

where f = f (x, ξ, t) denotes the distribution function (DF), referring to a cluster of particles
residing at position x with a velocity of ξ at time t, τ indicates the relaxation time, and f E

represents the Maxwellian distribution function approached by f within each collision. The
nondimensionalization of Equation (19) is presented in the Appendix A. The moments of
distribution functions correspond to the conservative flow variables via

ρ =
∫

f dξ =
∫

f Edξ, ρu =
∫

ξ f dξ =
∫

ξ f Edξ, (20)

where u denotes the velocity of the flow field. To numerically solve Equation (19), dis-
cretization of the physical and velocity space is a prerequisite. To determine the discrete
velocity points along each single dimension, the three-point Gauss–Hermite quadrature is
employed. The two-dimensional discrete velocity points can be derived from the tensor
product of the single-dimensional velocities, which turns out to be the D2V9 velocity model
commonly used in the LB community:

ξ i =
√

3c2
s

[
0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]
,

where ξ i is the ith discrete velocity and cs = 1/
√

3 is the model speed of sound. The ideal
gas pressure p0 shown in Equation (14) relates to the density ρ through p0 = ρc2

s .
With the discretization of the velocity space, the Boltzmann-BGK equation turns into

∂ fi
∂t

+ ξ i · ∇x fi = Ωi ≡ −
fi − f E

i
τ

, (21)

where the subscript i indicates the distribution function for particles possessing a velocity
of ξ i. Subdividing the physical space into a set of grid cells and integrating Equation (21)
over a certain cell lead to

d
dt

∫
Vc

fi(x, t)dx +
∫

∂Vc
(ξ · n) fi(x, t)dS =

∫
Vc

Ωi(x, t)dx, (22)
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where Vc denotes the integral cell centered at position xc, ∂Vc denotes the surface boundary
of the cell, dS is the surface element, and n is the unit vector normal to the surface element.
Integrating Equation (22) over a time step of length ∆t = tn+1 − tn yields

f n+1
i − f n

i +
∆t
|Vc|

Fn+1/2
i =

∆t
2

[
Ωn+1

i + Ωn
i

]
, (23)

where |Vc|measures the volume of cell Vc and f n
i and Ωn

i approximate the cell averages of
Vc in such a way that

f n
i =

1
|Vc|

∫
Vc

fi(x, tn)dx, (24a)

Ωn
i =

1
|Vc|

∫
Vc

Ωi(x, tn)dx. (24b)

Fn+1/2
i measures the kinetic flux at the mid-time tn + ∆t/2 by

Fn+1/2
i =

∫
∂Vc

(ξ i · n) fi(x, tn + ∆t/2)dS. (25)

Note that the midpoint rule is applied to compute the time integral of the kinetic flux
and the trapezoidal rule is applied to evaluate the time integral of the collision term
in Equation (23). To remove the implicit treatment of the collision term, two auxiliary
distribution functions are introduced:

f̃i = fi −
∆t
2

Ωi, f̃+i = fi +
∆t
2

Ωi. (26)

Substituting Equation (26) into Equation (23), we obtain a fully explicit evolution equation:

f̃ n+1
i = f̃+,n

i +
∆t
2

Fn+1/2
i . (27)

To obtain the kinetic flux Fn+1/2
i , the primitive distribution function fi(x f , tn+1/2) on

the cell surface needs to be first evaluated. To this end, we integrate Equation (21) along
the characteristic line over a time step length of δt = ∆t/2:

fi(x f , tn+1/2)− fi(x f − ξ iδt, tn) =
δt
2

[
Ωi(x f , tn+1/2) + Ωi(x f − ξ iδt, tn)

]
. (28)

Note that the trapezoidal rule is once again applied for the time integral of the collision term.
Similar to the treatment of Equation (23), the implicitness of Equation (28) is eliminated
with the help of the following auxiliary distribution functions:

f̄ = f − δt
2

Ω, f̄+ = f +
δt
2

Ω. (29)

Equation (28) can then be rearranged as

f̄i(x f , tn+1/2) = f̄+i (x f − ξ iδt, tn). (30)

The auxiliary distribution function f̄+i (x f − ξ iδt, tn) on the right-hand side of
Equation (30) can be interpolated from the cell-centered f̄+i (xc, tn), which could be di-
rectly constructed via Equation (29). Based on the expansion point of the Taylor series [57],
the reconstruction schemes can be classified into the face-based reconstruction scheme
(FRS) or the cell-based reconstruction scheme (CRS). The FRS takes the form of

f̄+i (x f − ξ iδt, tn) = f̄+i (x f , tn)− ξ iδt · ∇ f̄+i (x f , tn), (31)
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in which the face-centered f+i (x f , tn) can be reconstructed from the cell-centered f+i (xc, tn)
via the central difference (CD) scheme [31] or the weighted essentially non-oscillatory
(WENO) scheme [58]. The upwind CRS takes the form of

f̄+i (x f − ξ iδt) =

{
f̄+i (xl) + (δxl − ξ iδt) · ∇ f̄+i (xl) + (δxl − ξ iδt)2:∇2 f̄+i (xl)/2, ξ i · n ≤ 0,

f̄+i (xr) + (δxr − ξ iδt) · ∇ f̄+i (xr) + (δxr − ξ iδt)2:∇2 f̄+i (xr)/2, ξ i · n > 0,
(32)

where δxl = x f − xl measures the distance from the face center x f to the adjacent cell
center xl on one side, while δxr = x f − xr measures the distance from the face center x f to
the adjacent cell center xr on the other side. An average value is used if ξ i · n = 0. After
finishing the reconstruction of f̄+i (x f − ξ iδt, tn), the face-centered auxiliary distribution
function f̄i(x f , tn+1/2) can be directly obtained via Equation (30). With a straightforward
transformation of Equation (29), the primitive distribution function fi(x f , tn+1/2) can be
calculated by

f =
2τ

2τ + δt
f̄ +

δt
2τ + δt

f E. (33)

The kinetic flux Fn+1/2
i can then be evaluated by its definition. After that, the auxiliary

distribution function f̃i(xc, tn+1)at the next time step can be updated by Equation (27).
Similarly, with a transformation of Equation (26), the primitive distribution function can be
calculated by

f =
2τ

2τ + ∆t
f̃ +

∆t
2τ + ∆t

f E. (34)

The equilibrium distribution function f E
i for the primitive free-energy model is expressed as

f E
i = ωiρ

[
1 +

ξ i · u
c2

s
+

uu : (ξ iξ i − c2
s I)

2c4
s

]
, (35)

where ωi = 4/9 for i = 0, ωi = 1/9 for i = {1, 2, 3, 4}, and ωi = 1/36 for i = {5, 6, 7, 8}.
The equilibrium distribution function f E

i for the well-balanced free-energy model is defined as

f E
i =

{
ρ + ω0ρs0(u), i = 0,
ωiρsi(u), i 6= 0,

(36)

where

si(u) =
[

ξ i · u
c2

s
+

uu : (ξ iξ i − c2
s I)

2c4
s

]
. (37)

Obviously, the information of macroscopic conservative variables should be first evaluated
for the updating of the equilibrium distribution function. Considering the relationship
between the auxiliary DF and the primitive DF presented in Equations (26) and (29), the
cell-centered conservative variables are updated by

ρ = ∑
i

fi = ∑
i

f̃i, ρu = ∑
i

ξ i fi = ∑
i

ξ i f̃i, (38)

and the face-centered conservative variables are updated by

ρ = ∑
i

fi = ∑
i

f̄i, ρu = ∑
i

ξ i fi = ∑
i

ξ i f̄i. (39)

The time step length ∆t is determined by the Courant–Friedrichs–Lewy (CFL) condition:

∆t = C
∆x√
3c2

s
, (40)

where C denotes the CFL number and ∆x measures the grid spacing.
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2.2.2. Strang-Splitting Scheme

To date, the evolution process of DUGKS without considering force terms has been
exhaustively clarified. To incorporate the interaction effects between different phases, a
source distribution function f S

i accounting for the force effects is introduced. To correctly
recover the macroscopic hydrodynamic equation, the expression of f S

i for the primitive
free-energy model is defined as

f S
i = ωi

[
ξ i · F

c2
s

+
uF :

(
ξ iξ i − c2

s I
)

c4
s

]
, (41)

where F is the interaction force defined in Equation (14). The expression of f S
i for the

well-balanced free-energy model is defined as

f S
i = ωi

[
ξ i · F

c2
s

+
u
(

F + c2
s∇ρ

)
:
(
ξ iξ i − c2

s I
)

c4
s

+
1
2

(
ξ2

i
c2

s
− D

)
(u · ∇ρ)

]
, (42)

where D = 2 is the spatial dimension. To circumvent the calculation of the interaction force
on the cell interface, the Strang-splitting scheme is employed [59]. With such a treatment,
the force effects are considered before and after the evolution process of the DUGKS:

∂ fi
∂t

=
1
2

f S
i , (43a)

∂ fi
∂t

+ ξ i · ∇x fi = Ωi ≡ −
fi − f E

i
τ

, (43b)

∂ fi
∂t

=
1
2

f S
i , (43c)

As Equation (43b) remains identical to Equation (21), it can be solved by the DUGKS
procedure addressed previously. Equations (43a) and (43c) can be numerically solved by
the forward Euler method:

f ∗i = f n
i +

∆t
2

f S,n
i . (44)

The conservative variables should be accordingly updated via

ρ∗ = ρn, u∗ = un +
∆t
2

Fn

ρn . (45)

The gradient operator and Laplacian operator appearing in Equations (7), (14) and (15) are
implemented via the isotropic difference scheme [60].

3. Numerical Results

In this section, several numerical tests are conducted by the Strang-splitting DUGKS to
compare the performance of the primitive free-energy model and that of the well-balanced
free-energy model. The nonisotropic property caused by the reconstruction procedure
in the DUGKS is especially discussed. For steady tests, the iteration terminates once the
L2-norm error satisfies

E(Q) =

√
∑x |Q(x, tn)−Q(x, tn−1000)|2

∑x |Q(x, tn)|2
< e, (46)

where Q is either the flow density ρ or the flow velocity u, tn−1000 denotes the moment
1, 000 time steps ahead of tn, and e is the error threshold.
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3.1. Flat Interface

As a benchmark test, the flat interface has been widely applied to validate the perfor-
mance of newly proposed models [30,55,56]. The computational domain is a L0 × 16L0
rectangular region with L0 = 16. A uniform Cartesian mesh with a grid spacing of unity
is employed to subdivide this domain. Initially, the region bounded by yL = 4L0 and
yH = 12L0 is filled up with the liquid fluid, while the rest is occupied by the gas fluid. The
periodic boundary condition is applied to all the sides. The relaxation time τ was fixed at
0.3. The CFL number was set as 0.5. The reduced temperature Tr = T/Tc ranged from 0.55
to 0.95. The density field is initialized by

ρ(x, y) = ρg +
ρl − ρg

2

[
tanh

2(y− yL)

W
− tanh

2(y− yH)

W

]
, (47)

where W measures the interface thickness and ρl and ρg represent the liquid density and
the gas density, respectively. Three reconstruction schemes were utilized to explore the
influences of varying reconstruction errors on the performance of the DUGKS coupled
with different free-energy models. Figure 1a illustrates the coexisting curves predicted
by the DUGKS coupled with the primitive free-energy model. It can be observed that
varying the reconstruction schemes offers different coexisting results. The central difference
face-based reconstruction scheme (CD-FRS) provides satisfactory results in conditions of
a high reduced temperature Tr. As Tr decreases, the results deviate apparently from the
theoretical results generated by the Maxwell equal-area law [61]. The WENO-Z face-based
reconstruction scheme (WENO-Z-FRS) and the upwind cell-based reconstruction scheme
(CRS) produce inconsistent results in conditions of high Tr. As Tr decreases, both of them
suffer from the stability problem. The fact that different reconstruction schemes generate
divergent outcomes results from the force imbalance in the primitive free-energy model [30].
As the standard LB method involves no reconstruction process, the influences of the force
imbalance on the numerical results remain limited. When it is coupled with numerical
methods containing a reconstruction process, the effect of the force imbalance becomes
amplified by the reconstruction errors. Figure 1b illustrates the results produced by the
DUGKS coupled with the well-balanced free-energy model, in which the force imbalance
was entirely eliminated. It can be identified that the coexisting densities predicted by
different reconstruction schemes coincide exactly with the theoretical results. Moreover,
the DUGKS implemented with different reconstruction schemes performs equally well
in conditions of a low reduced temperature Tr, which demonstrates the fundamental
accuracy and stability of this method. Figure 2 illustrates the comparative chemical potential
profiles produced by the DUGKS coupled with different free-energy models at Tr = 0.75,
τ = 0.3, C = 0.5. Regardless of the reconstruction schemes utilized, the well-balanced
free-energy-based DUGKS provides a nearly constant chemical potential profile, while
the primitive free-energy-based DUGKS offers a varied chemical potential profile across
the interfaces. Taking a closer look at the comparative profiles, we can identify that the
chemical potential value produced by the DUGKS coupled with the primitive model varies
along with the reconstruction schemes used, which should be attributed to the differences
in the reconstruction errors. The chemical potential produced by the DUGKS coupled with
the well-balanced model holds a nearly constant value of 0.006126, which demonstrates
the excellent performance of the well-balanced DUGKS in predicting steady two-phase
systems governed by free-energy theory.
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Figure 1. Coexisting curves produced by the DUGKS coupled with (a) primitive model and (b)
well−balanced model, τ = 0.3, C = 0.5.
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Figure 2. Profiles of chemical potential µc produced by the DUGKS with (a) CD−FRS, (b)
WENO−Z−FRS, and (c) CRS, Tr = 0.75, τ = 0.3, C = 0.5.

3.2. Quiescent Droplet

The quiescent droplet test serves as one of the fundamental benchmarks for validating
the basic capability of the newly proposed multiphase methods. A circular droplet is
initially placed at the center of an L0 × L0 square domain, with L0 = 256. A uniform
Cartesian mesh is used to discretize the physical domain, with the grid spacing ∆x fixed at
unity. The density field is initialized according to

ρ(x, y) =
ρl + ρg

2
−

ρl − ρg

2
tanh

2
(√
|x− xc|2 + |y− yc|2 − Rd

)
W

, (48)

where ρl and ρg correspond, respectively, to the coexisting liquid and gas densities, (xc, yc)
indicates the center location of the square domain, Rd denotes the droplet radius, and W
measures the interface thickness. The computing process terminates once the L2-norm
error of density evaluated by Equation (46) is below 10−10. Figures 3–5 illustrate the
density contours produced by the DUGKS coupled with different free-energy models
and implemented by various reconstruction schemes at Tr = 0.9, τ = 0.6, C = 0.5. The
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interfaces produced with the primitive free-energy model suffer from the nonisotropic
problem regardless of the reconstruction scheme utilized, which is caused by the force
imbalance addressed previously. The second-order central-difference face-based recon-
struction scheme (CD-FRS) evolves the initially circular interface into a roughly square
interface, which should be attributed to the relatively large reconstruction errors. With a
long time evolution, the fifth-order WENO-Z face-based reconstruction scheme (WENO-
Z-FRS) shifts the quiescent droplet away from the center position. The interface profile
deforms less than that produced by the CD-FRS, which might be attributed to the low level
of reconstruction errors of WENO-Z. The interface profile generated by the third-order
cell-based reconstruction scheme (CRS) is rather close to circular, which is due to the less
nonisotropic reconstruction errors. A similar phenomenon can be observed in the results
produced by the pseudopotential-based DUGKS. The interface profiles produced with the
well-balanced free-energy model preserve a universal isotropic property across all recon-
struction schemes, which demonstrates the elimination of the force imbalance. Figure 6
illustrates the contour of the velocity field produced by the DUGKS implemented with
the CRS at Tr = 0.9, τ = 0.6, C = 0.5. When the steady-state is reached, the velocity field
produced by the primitive model exhibits a typical patten of large spurious currents, while
the velocity field obtained with the well-balanced model provides spurious currents of
machine accuracy. The excellent performance of the well-balanced DUGKS is thus verified
by the comparative results.

(a) (b)

Figure 3. Density contours produced by DUGKS implemented with CD-FRS coupled with (a)
primitive model and (b) well-balanced model, Tr = 0.9, τ = 0.6, C = 0.5.

(a) (b)

Figure 4. Density contours produced by DUGKS implemented with WENO-Z-FRS coupled with (a)
primitive model and (b) well-balanced model, Tr = 0.9, τ = 0.6, C = 0.5.
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(a) (b)

Figure 5. Density contours produced by DUGKS implemented with CRS coupled with (a) primitive
model and (b) well-balanced model, Tr = 0.9, τ = 0.6, C = 0.5.

1 
 

 

Figure 6. Velocity contours produced by DUGKS implemented with CRS coupled with (a) primitive
model and (b) well-balanced model, Tr = 0.9, τ = 0.6, C = 0.5.

To quantitatively assess its capability, Laplace’s law is validated by the well-balanced
DUGKS implemented with the CRS. Figure 7 illustrates the relations between the pressure
jump ∆P and the reciprocal of radius Rd obtained at τ = 0.3, C = 0.8. The linear relation
can be clearly identified from the results, which conforms to Laplace’s law: ∆P = σ/Rd.
The chemical potential varies along with the reduced temperature Tr, which results in the
alteration of the surface tension coefficient σ. The CFL number was set as 0.8, at which the
FRS fails to operate properly. The stability superiority of the CRS over that of the FRS in the
condition of a large time step size makes it more appealing for multiphase flow simulations.

3.3. Spinodal Decomposition

Previous benchmark tests were limited to steady-state problems. Here, the spinodal
decomposition test was adopted to assess the capability of DUGKS in dealing with transient
problems. The computational domain is an L0 × L0 square region subdivided by the
uniform Cartesian mesh. The grid spacing ∆x = 1, and the characteristic length L0 = 512.
The periodic boundary condition was applied to all the sides. The density field is initialized
by

ρ(x, y) = (ρl + ρg)/3 + random(0, 1)/100, (49)

where ρl and ρg represent the liquid density and the gas density and random(0, 1) creates
density fluctuations that induce the spinodal decomposition process. Figures 8–12 illustrate
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the snapshots of the density distribution produced by the DUGKS coupled with the well-
balanced free-energy model at Tr = 0.9, τ = 0.6, C = 0.5. In the early stages, the tiny
fluctuations generate local inhomogeneities, which initialize the phase separation. As the
system evolves, the inhomogeneities drive the material of the heavy fluid into small droplets
and interfaces separating different phases begin to emerge. With the continual evolution
of the whole system, some of these droplets gradually coalesce into large ones. Eventually, a
complete quiescent droplet is formed. It can be identified that the results produced by the
central difference face-based reconstruction scheme (CD-FRS) are nearly identical to those
generated by the third-order cell-based reconstruction scheme (CRS), which demonstrates the
consistent behaviors of the well-balanced DUGKS. The WENO-Z face-based reconstruction
scheme (WENO-Z-FRS) fails to provide a converged solution in such a condition. Moreover,
the well-balanced DUGKS fails to predict the evolution process of the spinodal decomposition
when the reduced temperature is below 0.8. To investigate the multiphase flow dynamics by
the well-balanced DUGKS, further improvements are required.
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Figure 7. Validation of Laplace’s law, τ = 0.3, C = 0.8.

(a) (b)

Figure 8. Snapshots of the density distribution produced by the DUGKS implemented with (a)
CD−FRS and (b) CRS, Tr = 0.9, τ = 0.6, C = 0.5, t = 2, 500.
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(a) (b)

Figure 9. Snapshots of the density distribution produced by the DUGKS implemented with (a)
CD−FRS and (b) CRS, Tr = 0.9, τ = 0.6, C = 0.5, t = 6, 000.

(a) (b)

Figure 10. Snapshots of the density distribution produced by the DUGKS implemented with (a)
CD−FRS and (b) CRS, Tr = 0.9, τ = 0.6, C = 0.5, t = 7, 500.

(a) (b)

Figure 11. Snapshots of the density distribution produced by the DUGKS implemented with (a)
CD−FRS and (b) CRS, Tr = 0.9, τ = 0.6, C = 0.5, t = 25, 000.
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(a) (b)

Figure 12. Snapshots of the density distribution produced by the DUGKS implemented with (a)
CD−FRS and (b) CRS, Tr = 0.9, τ = 0.6, C = 0.5, t = 250,000.

3.4. Droplet Coalescence

Simulations of the droplet coalescence phenomenon were used to further investigate
the capacity of the well-balanced DUGKS for transient problems. The computational
domain is a rectangle 2L0 × L0 domain with L0 = 256. The domain was subdivided into
finite grid cells by a uniform Cartesian mesh with a grid spacing of unity. To avoid wall
boundary influence, a periodic boundary condition was used in all directions. Initially, two
circular droplets were arranged in accordance with [51]

ρ(x, y) =
ρl + ρg

2
+

ρl − ρg

2

[
1− tanh

(
2dA
W

)
− tanh

(
2dB
W

)]
, (50)

where ρl and ρg correspond separately to the liquid and gas densities, W measures the
interface thickness, and dA and dB are defined as

dA =
√
(x− xA)2 + (y− yA)2 − R0, dB =

√
(x− xB)2 + (y− yB)2 − R0, (51)

in which R0 denotes the droplet radius and (xA, yA) = (L0 − R0 −W/2, L0/2) and
(xB, yB) = (L0 + R0 + W/2, L0/2) represent the central position of droplets A and B,
respectively. Other parameters were set as κ = 0.02, R0 = 0.2L0, W = 5, and τ = 0.3. The
initial profile of two droplets is illustrated in Figure 13. The coalescence process starts when
the droplets come in contact with each other. As the process continues, a liquid bridge of
radius rb that connects the two droplets is formed [51]. Previous research [62] identified
the linear relation between the scaled radius r∗ and the dimensionless time t∗, with

r∗ = rb/R0, t∗ = t/
√

ρl R3
0σ, (52)

where σ is the surface tension coefficient. According to the validation of Laplace’s law
illustrated in Figure 7, the surface tension coefficient is 0.1203 for Tr = 0.8 and 0.0435 for
Tr = 0.9. Figure 14 presents the radius variation of the liquid bridge with regard to the
dimensionless time t∗. The linear coefficient for the fitting result provided by the DUGKS
using the primitive model is 1.4, while the linear coefficient for the fitting result produced
with the well-balanced model is 1.03, which is in good agreement with the result predicted
by Zeng et al. [51]. The evolution of the L2-norm of the velocity field produced by the
DUGKS using the well-balanced model at Tr = 0.8 and Tr = 0.9 is shown in Figure 15. It
can be identified that the L2-norm of the velocity field reaches a magnitude of 10−14, which
is consistent with the results predicted at the steady-state. Figure 16 illustrates the density
and velocity contours produced by the well-balanced DUGKS at t = 6 × 106, Tr = 0.8,
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τ = 0.3, C = 0.8. It can be observed that the interface maintains excellent isotropy and
the velocity field holds a maximum magnitude of 10−16, which demonstrates the excellent
ability of the well-balanced DUGKS. However, it is important to note that when the lowered
temperature Tr is less than 0.7, the DUGKS is unable to predict the coalescence process.
More efforts are required to increase the stability of the well-balanced DUGKS.

Figure 13. Initial distribution of the density field.
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Figure 14. Radius variation of the liquid bridge with regard to the dimensionless time produced by
DUGKS coupled with (a) primitive model and (b) well−balanced model, τ = 0.3, C = 0.8.
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Figure 15. L2−norm of the velocity field produced by the well-balanced DUGKS with the evolution
of time, τ = 0.3, C = 0.8.
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(a)

1 
 

 

(b)

Figure 16. Contours of (a) density field and (b) velocity field produced by the well-balanced DUGKS
at t = 6×106, Tr = 0.8, τ = 0.3, C = 0.8.

4. Conclusions

A free-energy-based discrete unified gas-kinetic scheme (DUGKS) was developed by
coupling the well-balanced free-energy model with the DUGKS to investigate the van der
Waals fluid. The performance of this well-balanced scheme was compared against the
counterpart of the DUGKS coupled with the primitive free-energy model. Comparative
results produced with different reconstruction schemes demonstrated the force imbalance
in the primitive free-energy model, which prevents its direct application to the DUGKS. By
coupling the well-balanced free-energy model with the DUGKS, the amplified effects of the
force imbalance are entirely eliminated and the influences of nonisotropic reconstruction
errors on the fluid interfaces are totally removed. Numerical tests of a flat interface, quies-
cent droplet, spinodal decomposition, and droplet coalescence were adopted to assess the
performance of the DUGKS coupled with the well-balanced free-energy model. Coexisting
density curves and Laplace’s law were utilized to evaluate its capability quantitatively. It
was proven that the well-balanced DUGKS could always produce consistent results despite
the reconstruction schemes utilized in steady cases. When dealing with transient problems,
the reconstruction scheme employing WENO-Z to evaluate face unknowns tends to be
more unstable. When the reduced temperature is below 0.7, the DUGKS coupled with the
well-balanced free-energy model suffers from stability problems. Further improvements
are required to apply this scheme to predict transient multiphase fluid flows.
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Appendix A. Nondimensionalization of the Boltzmann-BGK Equation

The nondimensionalization process of the Boltzmann-BGK equation is analyzed in
this part. The dimensional Boltzmann-BGK equation with a source term reads

∂ f
∂t

+ ξ · ∇x f = − 1
τ

(
f − f E

)
+ f S, (A1)

where f represents the distribution function, t is the time, x is the position, ξ is the particle
velocity, τ is the relaxation time, f E indicates the equilibrium distribution function, and f S

accounts for the source distribution function. Introducing the characteristic length lc, the
characteristic velocity uc, the characteristic density ρc, and multiplying Equation (A1) by
lc/(ρcuc) on both sides, we have

∂ f ∗

∂t∗
+ ξ∗ · ∇x∗ f ∗ = − lc

ucτ

(
f ∗ − f E,∗

)
+ f S,∗, (A2)

where

t∗ =
tuc

lc
, ξ∗ =

ξ

uc
, x∗ =

x
lc

, f ∗ =
f

ρc
, f E,∗ =

f E

ρc
, f S,∗ =

f Slc
ρcuc

. (A3)

As the relaxation time τ is evaluated by τ = µ/ρcc2
s , where µ is the dynamic viscosity, the

multiplier lc/(ucτ) becomes
lc

ucτ
=

lcρcc2
s

ucµ
=

Re
Ma

, (A4)

where
Ma =

uc

cs
, Re =

ρclccs

µ
. (A5)

Equation (A2) turns into

∂ f ∗

∂t∗
+ ξ∗ · ∇x∗ f ∗ = − Re

Ma

(
f ∗ − f E,∗

)
+ f S,∗, (A6)

which is the dimensionless Boltzmann-BGK equation. In multiphase simulation involving
droplet dynamics, the Reynolds number is generally defined as

Red =
ρcuclc

µ
. (A7)

With this definition, the dimensionless Boltzmann-BGK equation becomes

∂ f ∗

∂t∗
+ ξ∗ · ∇x∗ f ∗ = − Red

Ma2

(
f ∗ − f E,∗

)
+ f S,∗. (A8)
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