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Abstract: I review and extend the set of unifying principles that allow comparing all models of opinion
dynamics within one single frame. Within the Global Unifying Frame (GUF), any specific update rule
chosen to study opinion dynamics for discrete individual choices is recast into a probabilistic update
formula. The associated dynamics is deployed using a general probabilistic sequential process, which
is iterated via the repeated reshuffling of agents between successive rounds of local updates. The
related driving attractors and tipping points are obtained with non-conservative regimes featuring both
threshold and threshold-less dynamics. Most stationary states are symmetry broken, but fifty–fifty
coexistence may also occur. A practical procedure is exhibited for several versions of Galam and Sznajd
models when restricted to the use of three agents for the local updates. Comparing these various models,
some are found to be identical within the GUF. Possible discrepancies with numerical simulations are
discussed together with the difference between the GUF procedure and a mean field approach.
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1. Opinion Dynamics, Models and Reality

Opinion dynamics is a major topic of sociophysics with a series of different models
being used [1–6]. Each one of these models accounts for a peculiar social feature, which in
turn drives social exchanges among a group of people. The chosen mechanism gives rise to
a specific local update rule to monitor the related changes between the competing opinions.
Accordingly, the relevance of a given model is rooted in the social principle underlying the
dynamics. The related social principle legitimates the model and, therefore, the associated
results [7].

Often, numerical simulations are required to study the dynamics produced by iterating
the update rule. Analytical calculations are scarce. In addition, validation with real data is
mostly not directly applicable. The goal is to identify trends to make some predictions on
real events to come like elections.

On this basis, the focus of each model lies on the social mechanism enlightened to set
the update local rule. The associated results obtained are then argued quite naturally as
being the consequence of the chosen social mechanism. In turn, those mechanisms are put
forward to explain the social outcome.

Although the above approach is completely legitimate, it carries an underlying lim-
itation due to the lack of certainty about the outcomes obtained using simulations with
possible long relaxation times and trapping into local minima. Therefore, associated con-
clusions about the targeted social reality may turn misleading. In particular, wrong social
or political strategies could be selected to intervene on reality.

Accordingly, to avoid such possible social mistakes, I was able to identify unifying
principles, which allow building a Global Unifying Frame (GUF) to review and compare
all models of opinion dynamics using discrete individual choices [8]. Within the GUF, any
specific update rule can be recast into a probabilistic update formula.

A general probabilistic sequential process is then implemented through a series of succes-
sive local updates separated in between by repeated reshuffling of agents. The probabilistic
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update formula yields the attractors and tipping points that drive the related dynamics. Non
conservative regimes featuring both threshold and threshold-less dynamics are obtained
with mostly symmetry broken stationary states but fifty–fifty coexistence may also occur.

A practical procedure to implement the GUF is exhibited for several versions of Galam
and Sznajd models when the local updates are restricted to using three agents. Some of
the respective probabilistic update formulas are found to be identical, pointing out that
the social meaning of different principles of opinion updates are indeed irrelevant to the
outcomes. This founding puts at stake the claim that a given result would be directly linked
to the social feature put forward to legitimate the update rule.

Possible discrepancies between the GUF outcomes with numerical simulations from
the models are discussed together with the difference between the GUF procedure and a
mean field approach.

This work subscribes to a series of papers dealing with the same goal of building tools
to allow comparing the various models of opinion dynamics [9–11].

The rest of the paper is organized as follows: The first section introduces the issue of
updating rules validated by a claimed social mechanism. The general probabilistic frame is
developed in Section 2, while Section 3 accounts for iterating the dynamics to obtain the Global
Unifying Frame (GUF). Section 4 applies the GUF to a series of Galam and Sznajd opinion
models. A discrepancy between the GUF and other works is solved in Section 5. Section 6
discusses mean-field versus the GUF, and the last section contains concluding comments.

2. The General Probabilistic Frame

I consider a population of N agents {Sl,t} at time t with l = 1, 2, . . . , N. I assume that
each agent holds an individual discrete choice ± with Sl,t = + or Sl,t = −. The respective
proportions of agents sharing opinion + and − at time t are denoted pt and (1− pt).

The opinion dynamics are driven by first randomly distributing all agents {Sl,t} at
time t in groups of size r. Then, an update rule is applied simultaneously to each group
yielding at time t + 1 a new set {Sl,t+1}. Without loss of generality, N is chosen to be a
multiple of r. Focusing on the case r = 3 yields 23 = 8 possible configurations for each
group of three agents with:

• a1 = +++ with probability pt,1 ,
• a2 = ++− with probability pt,2 ,
• a3 = +−+ with probability pt,3 ,
• a4 = −++ with probability pt,4 ,
• a5 = −−+ with probability pt,5 ,
• a6 = −+− with probability pt,6 ,
• a7 = +−− with probability pt,7 ,
• a8 = −−− with probability pt,8 .

When all configurations of the agents are contributing to the update, the probabilities
for the eight configurations ai are, respectively:

• pt,1 = p3
t

• pt,2 = pt,3 = pt,4 = p2
t (1− pt)

• pt,5 = pt,6 = pt,7 = pt(1− pt)2

• pt,8 = (1− pt)3.

It is of importance to stress that the procedure can also account for peculiar distri-
butions of agents. For instance, correlations in the initial distribution of agents can be
included, such as with an antiferromagnetic-like arrangement +−+−+−+−+ . . . ..
In this case, some configurations are excluded from the update, which imposes to set
pt,1 = pt,2 = pt,4 = pt,5 = pt,7 = pt,8 = 0 and pt,3 = pt,6 = 1/2. Other specific con-
figurations can also be discarded, implying a renormalization of the probabilities of the
contributing ones to get their sum equal to one. Another illustration is given in Section 5.

Depending on the update rule and the local configurations, each agent at time t + 1
either preserves its opinion from time t or shifts to the opposite opinion. Each model of
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opinion dynamics sets a specific update rule, which associates a configuration bi to each
configuration ai with the series ai → bi for i = 1, 2, . . . , 2r where ai = S1,t, S2,t, . . . , Sr,t and
bi = S1,t+1, S2,t+1, . . . , Sr,t+1.

The content of the update rule must specify which agents among the r are being
updated and how when applying the local rule. For instance, one can consider that, for
each configuration, bi either the r agents that have been updated or only the one on the left
side, or on the right side, or a pair or any other choice. This indication matters for both
calculating pt+1 analytically and performing Monte Carlo steps in simulations.

What counts is the number of agents being updated in the model, not the number
of agents shifting opinions. For instance, in the seminal Galam model (Section 4.1.1), the
three agents are updated, which does not prevent some agents from keeping their opinion
as for the two + in the configuration +−+ that transforms to +++. In contrast, in the
original Sznajd model (Section 4.2.1), only one single agent is updated, as seen with both
configurations + + (+) and + + (−), which yield, respectively, + + (+) and + + (+).
There, only the last agent on the right side is updated.

For groups of size r with a given update rule, the number of agents ru being updated
in the various configurations may vary from 1 to r depending on the model specification.
Then, for each updated configuration bi, I denote ki the number of + among the ru agents
with ki = 0, 1, . . . , ru. Therefore, each configuration bi has a proportion ki/ru of + and
(ru − ki)/ru of −.

In addition, the update rule ai → bi may also be probabilistic with V possible outcomes
bi,v associated with respective probabilities αv satisfying ∑V

v=1 αv = 1. In that case, the
number ki of + has to be replaced by the average number of + over the V outcomes with

k̄i =
V

∑
v=1

αvki,v, (1)

giving an averaged proportion k̄i/r of + for configuration i.
Then, I calculate the probability pt+1 that an agent selected randomly holds opinion +

at time (t + 1) from an initial pt at time t by adding all contributions to the + opinion from
each configuration bi, which yields the general expression,

pt+1 =
1
ru

2r

∑
i=1

k̄i pt,i, (2)

where pt,i is the probability to have configuration i from the 2r possible configurations of +
and − for a group of r agents with ru being updated.

For r = 3 with no exclusion of configurations, Equation (2) writes

pt+1 =
1
ru

{
k1 p3

t

+ (k2 + k3 + k4)p2
t (1− pt)

+ (k5 + k6 + k7)pt(1− pt)
2

+ k8(1− pt)
3}, (3)

with ki → k̄i for a probabilistic case.

3. Iterating the Dynamics: The Global Unifying Frame

Equation (2) yields the new proportion of + at time t + 1 knowing the proportion pt
at time t. This change of the proportion of + results from one update of opinions obtained
applying a local update rule to all groups of r agents selected randomly. To launch the
dynamics, I iterate the process by first breaking down the groups, second, reshuffling all
agents, third, redistributing randomly agents in groups of size r, and fourth, applying the
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local update rule again. That generates a new proportion pt+2 from pt+1. After n successive
updates, I obtain the series pt → pt+1 → pt+2 → . . .→ pt+n.

The instrumental question is then to find out if the dynamics converge towards some
attractor after a given number na of updates with pt+na−1 → pt+na ≈ pt+na+1. The answer
is obtained solving the fixed point Equation,

pt =
1
ru

2r

∑
j=1

ki pt,j, (4)

which yields all attractors and thresholds driving the dynamics monitored except the used
update local rule. For a probabilistic case ki → k̄i. Equations (2) and (4) define the Global
Unifying Frame (GUF).

For r ≥ 5 a numerical solving is required while the cases r = 2, 3, 4 allow some
analytical solving. In the case r = 3 with all configurations contributing, Equation (4) writes

pt =
1
ru

{
ap3

t + bp2
t + cpt + d

}
, (5)

with

a = k1 − k2 − k3 − k4 + k5 + k6 + k7 − k8

b = k2 + k3 + k4 − 2k5 − 2k6 − 2k7 + 3k8

c = k5 + k6 + k7 − 3k8

d = k8. (6)

It is a cubic equation with

ap3
t + bp2

t + (c− ru)pt + d = 0, (7)

and the associated discriminant,

D = 18ab(c− ru)d− 4b3d + b2(c− ru)
2 − 4a(c− ru)

3 − 27a2d2, (8)

determines the number of real solutions. Three cases are possible.

1. D > 0: Equation (7) has are three real roots pc,1 < pc,2 < pc,3, which are distinct. Deal-
ing with proportions, these roots are acceptable only when satisfying the condition
0 ≤ pc,i ≤ 1 for i = 1, 2, 3. By symmetry that happens either for three of them with
one separator and two attractors or for only one of them, which is then an attractor.
For the first scenario, when pt < pc,2, the update iteration drives the opinion +
towards pc,1 leading to the victory of opinion −. At opposite, for pt > pc,2, the update
iteration drives the opinion + towards pc,3 leading to its victory. One case is shown in
the upper part of Figure 1) with pc,2 < 1/2. The opposite pc,2 > 1/2 may also occur.
Each attractor can be a pure phase or a mixed phase with, respectively, pc,1 = 0 or
pc,1 > 0 and pc,3 = 1 or pc,1 < 1.
In case pc,1 = 0 and pc,3 = 1, the fixed point pc,2 can also become an attractor with
both pure ones being unstable in its direction as shown in the lower part of Figure 1.
In that case, due to topological constraint, the transition from pc,2 being a separator to
pc,2 being an attractor occur via a conservative regime pt+1 = pt where each point is a
fixed point, thus recovering the voter model as shown in Figure 2. It is worth noting
that in case pc,1 > 0 and pc,3 < 1 such a transformation of a separator into an attractor
is still possible, but now there is no transition via the voter model. An illustration of
both cases is given in Section 4.
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Figure 1. Case D > 0 with three fixed points. The upper part of the Figure shows a threshold
dynamics with two attractors pc,1 and pc,3 separated by an unstable fixed point pc,2. A case with
pc,2 ≤ 1/2, 0 ≤ pc,1 < pc,2 and pc,2 < pc,3 ≤ 1 is exhibited. The lower part of the Figure shows the
threshold dynamics with two separators pc,1 and pc,3 with an attractor pc,2 in between. In such a case,
pc,1 = 0, 0 < pc,2 < 1 and pc,3 = 1.

2. D = 0: Equation (7) exhibits three real roots with at least a double one, which corre-
sponds to a transition regime from threshold dynamics to threshold-less dynamics.
Two subclasses can occur:

(i) One single attractor and a double fixed point, which is an attractor on one side
and separator on the other side, the side where the attractor is located. The upper
part of Figure 3 exhibits the case pc,1 = pc,2 with pc,3 being the attractor. The
symmetric case is also possible with pc,1 being the attractor and pc,2 = pc,3.

(ii) Or a triple attractor pc,1 = pc,2 = pc,3 making the dynamics threshold-less.
Whatever the initial conditions are, the repeated updates drive the collective
opinion towards the single attractor. Two cases are possible. The first one has
pc,1 = pc,2 = pc,3 = 1/2, which means the dynamics leads to a coexistence
phase with a perfect fifty/fifty equality. The second one is not balanced with
pc,1 = pc,2 = pc,3 6= 1/2, which means the dynamics leads to a a stable major-
ity/minority coexistence phase with a deterministic victory for one specific opin-
ion. If pc,1 = pc,2 = pc,3 < 1/2, opinion + is certain to lose, provided some num-
ber of updates are completed. Otherwise, when pc,1 = pc,2 = pc,3 > 1/2 opinion
+ wins the competition. One case with pc,1 = pc,2 = pc,3 > 1/2 is shown in the
lower part of Figure 3. The symmetric situation with pc,1 = pc,2 = pc,3 < 1/2 is
also possible, making opinion + lose the competition.

3. D < 0: Equation (7) has one real root and two imaginary roots. It is thus a single at-
tractor dynamic. The attractor can be located at any value between 0 and 1 depending
on the details of the update rule.
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Separator 

€ 

pc,1 = 0

Attractor             

€ 

pc,2 =1/2

€ 

pc,3 =1Separator 

Attractor 

€ 

pc,1 = 0

Separator             

€ 

pc,2 =1/2

€ 

pc,3 =1Attractor 

Voter model  

Figure 2. The transformation of a threshold dynamics with the two attractors pc,1 = 0 and pc,3 = 1
and the separator pc,2 = 1/2 (higher part) into a threshold-less like dynamics with the two separators
pc,1 = 0 and pc,3 = 1 and the attractor pc,2 = 1/2 (lower part). It must pass via a voter model
(middle part) where each point is conserved by the dynamics.

0 1 

Attractor        
1/2 

Attractor         

Separator                     

€ 

pc,2 > 0

€ 

pc,1 > 0

€ 

pc,3 > 0

0 1 
1/2 

Attractor 

€ 

0 ≤ pc,1,2,3 ≤1

Figure 3. Upper part of the Figure shows a case D = 0 with a double fixed points pc,1 = pc,2, which
is an attractor below it and separator above it. The attractor of the dynamics is pc,3. The Case D = 0
with a single triple fixed point pc,1 = pc,2 = pc,3, which is an attractor, is shown in the lower part
of the figure. Whatever the initial pt is, the dynamics lead towards pc,1 = pc,2 = pc,3 to reach it,
provided the required number of updates has been performed. Otherwise, it stops before. The
attractor can be located any place with 0 ≤ pc,1 = pc,2 = pc,3 ≤ 1.
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4. Applying the GUF to Existing Opinion Dynamics Models

The Global Unifying Frame can in principle be applied to any update rule used for a
two state opinion dynamics model. To demonstrate my claim, in the following, I apply the
GUF to a series of Galam and Sznajd models restricted to r = 3. I first compare what the
scheme yields with respect to the results obtained directly from the respective models. Then,
the scheme allows a comparison between the two series of models. For each model, I need
to evaluate bi and k̄i in order to calculate the update equation and the related discriminant
D from Equation (8) to determine the associated dynamics.

4.1. Application to Galam Models
4.1.1. The Local Majority Model (LMM) [12–14]

The basis set of Galam model considers a population of agents, who are randomly
randomly distributed in groups of size r. A local majority rule is then applied simultane-
ously to each group. In case of a tie at an even size group a tie breaking rule is applied.
Afterwards all agents are reshuffled and the previous scheme is iterated again, and so on
and so forth.

When all groups are of size r = 3, ru = 3. All 8 configurations are thus contributing to
the update with pt,1 = p3

t , pt,2 = pt,3 = pt,4 = p2
t (1− pt), pt,5 = pt,6 = pt,7 = pt(1− pt)2,

pt,8 = (1− pt)3. It yields respectively,

• b1 = b2 = b3 = b4 = +++,
• b5 = b6 = b7 = b8 = −−−,

with,

• k1 = k2 = k3 = k4 = 3,
• k5 = k6 = k7 = k8 = 0,

and a = −6, b = 9, c = 0, d = 0, making Equations (5) and (8) write

pt = −2p3
t + 3p2

t , (9)

and
D = 81 > 0, (10)

which implies three real roots pc,1 < pc,2 < pc,3, which are pc,1 = 0, pc,2 = 1/2, pc,3 = 1.
Their respective stabilities are determined by the sign of λc,i − 1 with

λc,i =
∂pt+1

∂pt

∣∣∣∣
pc,i

, (11)

which gives using Equation (9),

λc,i = 6pc,i(1− pc,i), (12)

with i = 1, 2, 3.
Instead of the sign of λc,i − 1, it is more convenient to check if λc,i > 1 or λc,i < 1. In

the first case, the fixed point is a separator, while in the second case it is an attractor. Having
λc,1 = λc,3 = 0 and λc,2 = 3/2 makes the three fixed points pc,1, pc,2, pc,3, respectively, an
attractor, separator, and attractor.

At this point, I underline the fact that solving the LMM directly is quasi identical to
applying the GUF, since the GUF is a generic extension of what I have been implementing
in my models of opinion dynamics, making no surprise with the findings.

4.1.2. The Contrarian Majority Model (CMM) [15]

The Contrarian Majority Model proceeds first precisely as the LMM. However, after
applying the local majority rules to each group of size rr, a fraction α of agents shifts their
individual opinion to the opposite opinion one. Accordingly, only the proportion (1− α) of
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agents keeps the opinion they got from the local majority choice and a proportion α holds
the opposite ones. Then, all agents are reshuffled, and the two-step previous scheme is
repeated, and so on and so forth.

In the case with r = 3, ru = 3 as for the LMM with all 8 configurations contributing to
the update. However, here I have to consider the two cases:

• Majority rule yielding,

– b1
1 = b1

2 = b1
3 = b1

4 = +++ ,
– b1

5 = b1
6 = b1

7 = b1
8 = −−− ,

and

– k1
1 = k1

2 = k1
3 = k1

4 = 3 ,
– k1

5 = k1
6 = k1

7 = k1
8 = 0 ,

with probability (1− α).
• Contrarian shifts yielding,

– b2
1 = b2

2 = b2
3 = b2

4 = −−− ,
– b2

5 = b2
6 = b2

7 = b2
8 = +++ ,

and

– k2
1 = k2

2 = k2
3 = k2

4 = 0 ,
– k2

5 = k2
6 = k2

7 = k2
8 = 3 .

with probability α.
Then, the two cases must be averages giving,

• Average

– k̄1 = k̄2 = k̄3 = k̄4 = 3(1− α) ,
– k̄5 = k̄6 = k̄7 = k̄8 = 3α ,

which yields to a = −6(1− 2α), b = 9(1− 2α), c = 0, d = 3α for Equation (5) with,

pt = −2(1− 2α)p3
t + 3(1− 2α)p2

t + α, (13)

and,
D = 81(−1 + 2α)(−1 + 6α)3, (14)

for Equation (8), which can be either negative, null or positive depending on α. The three
cases are:

• α < 1/6→ D > 0→ three real roots pc,1 < pc,2 < pc,3.
• 1/6 < α < 1/2→ D < 0→ a threshold-less dynamics with one single attractor.
• α > 1/2 → D > 0 → again three real roots with α > 1/2, implying an oscillat-

ing regime.

Equation (13) yields the three solutions,

pc,1 =
−1 + 2α +

√
1− 8α + 12α2

2(−1 + 2α)
, (15)

pc,2 =
1
2

, (16)

pc,3 =
−1 + 2α−

√
1− 8α + 12α2

2(−1 + 2α)
, (17)

which requires α ≤ 1/6 or α ≥ 1/2 to exist. Otherwise, pc,2 = 1
2 is the unique solution.

Determining the stability of pc,2 is sufficient to determine the respective dynamics of
the above three cases. From Equation (11) using Equation (13), I obtain

λc,i = 6(1− 2α)(1− pc,i)pc,i, (18)
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which yields 3/2− 3α at pc,2. Therefore, pc,2 is a separator when 3/2− 3α > 1, which is
satisfied when α < 1/6. Otherwise, when α > 1/6, pc,2 is an attractor since 3/2− 3α > 1.

When α < 1/6, pc,2 being a separator, both pc,1 and pc,3 are attractors. In contrast, for
α > 1/2, pc,2 is an attractor, and thus both pc,1 and pc,3 are separators and as such must be
located out of the “physical range", i.e., outside the range 0, 1. Indeed, α > 1/2 creates an
oscillatory regime towards pc,2.

4.1.3. The Extended Majority Model (EMM) [16]

Mobillia and Redner extended the Local Majority Model in the case of groups of
size three by allowing the possibility of one agent to influence two others [16]. While
the configurations + + + and − − − still yield + + + and − − − as in the LMM, the
configuration ++− becomes +++ with a probability (1− β) and−−−with a probability
β. Similarly, the configuration −−+ becomes −−− with probability (1− β) and +++
with a probability β.

Therefore, as for the LMM, ru = 3 and all 8 configurations contribute to the update
rule. Similarly to the CMM, two cases must be included in the calculation:

• Probability (1− β)

– b1
2 = b1

3 = b1
4 = +++ ,

– b1
5 = b1

6 = b1
7 = −−− ,

yielding

– k1
2 = k1

3 = k1
4 = 3 ,

– k1
5 = k1

6 = k1
7 = 0.

and with
• Probability β

– b2
2 = b2

3 = b2
4 = −−− ,

– b2
5 = b2

6 = b2
7 = +++ ,

yielding

– k2
2 = k2

3 = k2
4 = 0 ,

– k2
5 = k2

6 = k2
7 = 3 ,

Both cases lead to the
• Averages

– k̄1
2 = k̄1

3 = k̄1
4 = 3(1− β) ,

– k̄1
5 = k̄1

6 = k̄1
7 = 3β .

Adding b1 = +++, b8 = −−− with k1 = 3, k8 = 0 completes the update of the
eight configurations ai → bi of three agents, which allows obtaining a = −6(1 − 3β),
b = 9(1− 3β), c = 9β, d = 0 for Equation (5) with

pt = −2(1− 3β)p3
t + 3(1− 3β)p2

t + 3βpt, (19)

and,
D = 81(1− 3β)4, (20)

for Equation (8), which is always positive and null for β = 1/3.
For β 6= 1/3, Equation (19) yields the three fixed points pc,1 = 0, pc,2 = 1/2, pc,3 = 1

as for the LMM case. However, the main difference relates to the stability of pc,2 = 1/2
with,

λc,i = 6(1− 3β)p(1− p) + 3β, (21)

giving λc,2 = 3
2 (1− 3β) + 3β.

With λc,2 > 1 ⇐⇒ 1
2 (1− 3β) > 0 ⇐⇒ β < 1

3 =⇒ pc,2 is a separator, I conclude that
pc,1 = 0 and pc,3 = 1 are attractors, which means that in the range β < 1

3 , the dynamics stay
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qualitatively unchanged, being similar to the dynamics of the LMM with a slowing down
of the dynamics towards the attractors. However, as soon as β > 1

3 , qualitative change
occurs with pc,2 becoming an attractor and pc,1, pc,3 separators.

The flow of opinion has been reversed as with the CMM. However, here, pc,1 and pc,3
stay located at 0 and 1 contrary to the CMM. The difference lies in the changing direction of
the flow of the dynamics when β > 1

3 . It is thus interesting to note that giving a probability
for one agent to convince two others produces has no effect in the range β < 1

3 . The change
of pc,2 from being a separator to an attractor occurs via β = 1

3 , which turns the EMM to a
voter model as seen from Equation (19).

4.2. Application to Sznajd Models

I apply now the GUF to several versions of Sznajd model, each version having an
update rule built on a different social mechanism.

4.2.1. The Original Outflow Model (OOM) [17]

The original Sznajd model considers a one-dimensional chain of agents Sl,t = ±1,
whose opinions are updated according to an update rule inspired from the wisdom principle
“United we stand divided we fall” [17]. The dynamics are implemented by selecting groups
of four neighbors. In a given group, the state of the middle pair determines the choices of
the two external neighbors. The dynamics are thus outflow, and that direction is argued to
be socially more realistic than the usual inflow dynamics used, for instance, with Glauber
dynamics, where the surrounding spins influence the central one.

Choosing randomly four nearest neighbor agents S1,t, S2,t, S3,t, S4,t, the update rule
selects the middle pair S2,t, S3,t to update the states of the two external agents S1,t, S4,t. The
rule operates as follows:

1. S2,t = S3,t → S1,t+1 = S4,t+1 = S2,t+1 = S3,t+1 = S2,t = S3,t.
2. S2,t = −S3,t → S1,t+1 = −S2,t+1 = −S2,t and S4,t+1 = −S3,t+1 = −S3,t ,

making r = 4 and ru = 2.
A modified version reduces the above rules to three agents [18]. A pair is chosen to

influence one of its two neighbor, either the left or the right one, with equal probabilities
making r = 3 and ru = 1. Indeed, choosing always either the left or the right agent does
modify the results besides doubling the relaxation time to reach equilibrium. Applying the
GUF scheme selecting always the right-sided agent gives:

• a1 = ++ (+)→ b1 = ++ (+), with k1 = 1 ,
• a2 = ++ (−)→ b2 = ++ (+), with k2 = 1 ,
• a3 = +− (+)→ b3 = +− (+), with k3 = 1 ,
• a4 = −+ (+)→ b4 = −+ (−), with k4 = 0 ,
• a5 = −− (+)→ b5 = −− (−), with k5 = 0 ,
• a6 = −+ (−)→ b6 = −+ (−), with k6 = 0 ,
• a7 = +− (−)→ b7 = +− (+), with k7 = 1 ,
• a8 = −− (−)→ b8 = −− (−), with k8 = 0 ,

which gives a = 0, b = 0, c = 1, d = 0. Plugging those values in Equation (3) gives,

pt+1 = pt, (22)

which shows that within the GUF, the original Sznajd model is indeed identical to the Voter
Model [19]. The same finding was already found analytically and numerically by Behera
and Schweitzer [20].

4.2.2. The Modified Outflow Model (MOM) [18]

The original Sznajd model generates an antiferromagnetic-like ordering when the
central pair is “divided”. Now, when S1,t = −S2,t, agent S3,t stays unchanged with
S3,t+1 = S3,t. With r = 3 and ru = 1, the above eight configurations become:



Entropy 2022, 24, 1201 11 of 14

• a1 = ++ (+)→ b1 = ++ (+), with k1 = 1 ,
• a2 = ++ (−)→ b2 = ++ (+), with k2 = 1 ,
• a3 = +− (+)→ b3 = +− (+), with k3 = 1 ,
• a4 = −+ (+)→ b4 = −+ (+), with k4 = 1 ,
• a5 = −− (+)→ b5 = −− (−), with k5 = 0 ,
• a6 = −+ (−)→ b6 = −+ (−), with k6 = 0 ,
• a7 = +− (−)→ b7 = +− (−), with k7 = 0 ,
• a8 = −− (−)→ b8 = −− (−), with k8 = 0 ,

which yield a = −2, b = 3, c = 0, d = 0. Plugging those values in Equation (5) gives

pt+1 = −2p3
t + 3p2

t , (23)

which is identical to Equation (9), showing that this modified Sznajd model (MOM) is
identical to the Galam Majority Model with r = 3.

4.2.3. The Modified Inflow Model (MIM) [18,21]

In addition to the above modified Sznajd model (MOM), another modified version
(MIM) has been suggested to account for inflow dynamics (MIM) instead of outflow
dynamics [18,21]. In the MIM, the update operates on the central spin S2,t as a function of
the states of its two neighbors, S1,t and S3,t. If S1,t = S3,t, S2,t+1 = S1,t = S3,t. Otherwise,
S2,t+1 = S2,t. This new rule is motivated by the social principle “If you do not know what
to do, just do nothing” principle. This principle is reminiscent of the inertia principle
introduced by Galam at a tie in the Local Majority Model with even sizes [12]. There, the
“do nothing” is to elect the incumbent candidate in case of a tie vote.

The associated update rule is obtained again with r = 3 and ru = 1. The above eight
configurations become:

• a1 = +(+)+→ b1 = +(+)+, with k1 = 1 ,
• a2 = +(+)− → b2 = +(+)−, with k2 = 1 ,
• a3 = +(−)+→ b3 = +(+)+, with k3 = 1 ,
• a4 = −(+)+→ b4 = −(+)+, with k4 = 1 ,
• a5 = −(−)+→ b5 = −(−)+, with k5 = 0 ,
• a6 = −(+)− → b6 = −(−)−, with k6 = 0 ,
• a7 = +(−)− → b7 = +(−)−, with k7 = 0 ,
• a8 = −(−)− → b8 = −(−)−, with k8 = 0 ,

yielding a = −2, b = 3, c = 0, d = 0. Those values reproduce the Modified Outflow Model
with the same Equation (23).

Therefore, within the GUF, both the MOM and MIM are identical and reproduce the
LMM. It should be noted that, while the contributions of the various configurations are
different for each model, their addition results in the same expression. Indeed, the identity
between MOM and MIM was already shown in one dimension [22].

5. A Discrepancy

At this stage, it should be mentioned that the two rather similar works on the
MOM [18,21] derived an exit probability, i.e., the probability for a system with an initial
proportion p0 to end up with all agents at +, given by,

p+ =
p2

0
2p2

0 − 2p0 + 1
, (24)

and all agents at − with probability (1− p+).
Given that in the next Section I am claiming that the exit probability is identical

to my update rule pt+1 without iteration, Equation (24) exhibits a discrepancy with my
Equation (23) finding. This discrepancy was first discussed in [18,23], and here I am able to
solve the issue with the GUF.
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Going back to the implementation of the GUF for MOM, I could modify the counting,
arguing that the configurations that do not hold an update are discarded and thus should
not be taken into account. The actual process is to pick up a pair of adjacent agents, and
if they hold different opinions, the pair is discarded. When both agents share the same
opinion +, if the right sided agent holds the opinion +, it keeps it, and if it holds opinion
−, it shifts to +. The same applies for a pair of −.

Therefore, I discard configurations a3, a4, a6, a7, keeping only a1, a2, a5, a8 with the
respective probabilities,

• pt,3 = pt,4 = pt,6 = pt,7 = 0 ,

• pt,1 = p2

p2+(1−p)2 p ,

• pt,2 = p2

p2+(1−p)2 (1− p) ,

• pt,5 = (1−p)2

p2+(1−p)2 p ,

• pt,8 = (1−p)2

p2+(1−p)2 (1− p) ,

with, respectively, k1 = k2 = 1 and k5 = k8 = 0, and ru = 1. The related Equation (2) writes

pt+1 =
p2

t
p2

t + (1− pt)2
, (25)

which is identical to Equation (24).
It is interesting to note that the above treatment can also apply to the IM. The only

difference lies in the configurations contributing to Equation (2) with discarding a2, a4, a5, a7
and keeping a1, a3, a6, a8. The updated agents is now in the middle of the pair instead of
being on the right side. It yields the respective probabilities,

• pt,2 = pt,4 = pt,5 = pt,7 = 0 ,

• pt,1 = p2

p2+(1−p)2 p ,

• pt,3 = p2

p2+(1−p)2 (1− p) ,

• pt,6 = (1−p)2

p2+(1−p)2 p ,

• pt,8 = (1−p)2

p2+(1−p)2 (1− p) ,

with, respectively, k1 = k3 = 1 and k6 = k8 = 0, and ru = 1. The corresponding update is
identical to Equation (25).

I thus also recover the identity of MOM and MIM within the GUF in agreement
with [22]. However, MOM and MIM are now different from LMM.

6. Mean Field Versus the GUF

Another issue that needs to be tackled is the difference between final states obtained
from, respectively, the GUF and an exit probability as discussed in [18].

The GUF iteration brings the system to an attractor, provided enough updates are
completed. The result is deterministic. In case the dynamics are stopped before reaching
the attractor due to a limited number l of iterations, the system exhibits a coexistence of
a + and − choices in proportions given, respectively, by pt+l and (1− pt+l) if the process
started at time t. A majority and a minority coexist.

In contrast, the exit probability p+ gives the probability that the system ends up at
unanimity along +, otherwise unanimity is along − with probability (1− p+) [16,24]. No
intermediate coexisting phase is obtained. It is worth noting that exit probabilities have
been derived through elaborated and long calculations [18]. In addition, the probabilistic
outcomes have been confirmed with Monte Carlo simulations [18]. The possibility that the
system did not reach equilibrium has been evoked [23].

At this stage, I propose an explanation to reconcile the GUF with the exit probability,
relying on the nature of the GUF.
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It happens that most researchers perceive the GUF as a mean-field treatment due to the
random distribution of agents in the local groups combined with the repeated reshuffling
between updates. Indeed, the fact that every agent can interact in principle with any other
one evokes the mean-field hypothesis that every agent interacts with all the others.

In other words, a mean-field treatment is a one object approach within an averaged
environment. Only the choice of one single agent is investigated, including its degrees
of freedom, while all the other agents are assumed to have chosen the same choice, the
averaged choice of the chosen agent.

With the two choices, + and −, a mean-field treatment of the dynamics yields a
function, which gives the probability for the chosen agent to be + or −, with the entire
system choice being identical to its current choice.

Based on the above definition, I can assess that a one update GUF is precisely a mean-
field treatment. Accordingly, pt+l is the probability to have the entire system at the attractor
pc,3 and at pc,1 with probability (1− pt+l). In the case where one single the system reaches
it with certainty, that makes pt+l = p+.

Therefore, implementing reshuffling with additional updates goes beyond the single
site mean-field treatment. As soon as a second update is performed, pt+2 is no longer the
exit probability and becomes the proportion of + with 1− pt+2 being the proportion of
−. By so doing, for each update the GUF accounts for local fluctuations and the following
reshuffling erases the short range correlations that have resulted from the local update. The
procedure is in the spirit of real space renormalization group technics.

It is worth stressing that applying repeated reshuffling to the regular two dimensional
Ising ferromagnetic nearest neighbor interactions has exhibited a clearly different behavior
from the corresponding mean-field treatment [25,26]. It is also different from the exact
treatment without reshuffling.

7. Conclusions

Within the GUF, I have shown that inflow dynamics using the Sznajd model does
not impact the outflow dynamics, both the MOM and the MIM are indeed identical and
reproduce the LMM with iterations but not within mean-field. In addition I found that the
OOM is identical to a voter model as demonstrated in [20].

Those findings are in contradiction with Stauffer’s quotation: “However, the Sznajd
model takes into account the well-known psychological and political fact that “United
we stand, divided we fall”; only groups of people having the same opinion, not divided
groups, can influence their neighbours. In contrast to the other consensus models, the
Sznajd model as published thus far deals only with communication between neighbours,
not between everybody. It is a “word-of-mouth” model.”" [27].

According, putting forward the different social principles:

• United we stand, divided we fall (MOM);
• If you do not know what to do, just do nothing (MIM);
• Follow the opinion of anybody else (VM);
• Follow the majority (LMM).

To validate a specific local update can be misleading. Indeed, “United we stand
divided we fall” (MOM) and “Follow the opinion of anybody else” (VM) yield the same
dynamics as “If you do not know what to do, just do nothing” (MIM) and “Follow the
majority” (LMM).

To conclude, the Global Unifying Frame was shown to create a universal tool to
investigate any two-state local dynamics, which in turn allows a comparison between
models and their related social features. In particular, the GUF provides a key to avoid
wrong claims about the validity of specific psycho-sociological principles.

Last, but not least, I have developed the GUF for two-state opinion dynamics models,
but it could be generalized to 3-state opinions and more, although that will be a tedious
task to complete.
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