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Abstract: Uncertainties are normally unavoidable in engineering practice, which should be taken 

into account in the structural design and optimization so as to reduce the relevant risks. Yet, the 

probabilistic models of the uncertainties are often unavailable in the problems due to the lack of 

samples, and the precision of the conventional non-probabilistic models are not satisfactory when 

the samples are of multi-cluster distribution. In view of this, an improved method by using a non-

probabilistic multi-cluster ellipsoidal model (multi-CEM) for the critical structural reliability analy-

sis is proposed in this paper, which describes the samples in a more accurate and compact way and 

helps to acquire more satisfactory reliability analysis results. Firstly, a Gaussian mixture model 

(GMM) is built for the multi-cluster samples with performing expectation maximization (EM) algo-

rithm, based on which the multi-CEM can be constructed. In the structural reliability analysis, two 

cases, respectively, considering whether the components of the multi-CEM are intersected or not 

are researched in detail. The non-probabilistic reliability (NPR) indexes for each component of the 

multi-CEM are computed using the Hasofer–Lind–Rackwitz–Fiessler (HL-RF) algorithm, and then 

the multidimensional volume ratios of the safe domain to the whole uncertainty domain are com-

puted based on these indexes, indicating the structural NPR. In the end, two numerical examples 

and a practical application are conducted and analyzed to testify the effectiveness of the method. 

Keywords: non-probabilistic reliability analysis; multi-cluster ellipsoidal model; Gaussian cluster 

analysis; second order approximation method 

 

1. Introduction 

In engineering practice, uncertainties are widely and unavoidably existed in struc-

tural dimensions, environmental interference, material properties, etc., which is one of the 

main factors that cause instability and even failure of structural performance. With the 

increasing demands for lightweight and efficient structures in the industry, the structural 

reliability analysis considering the uncertainties turns to be more and more important. To 

deal with the structural uncertainties, probabilistic models based on mathematical statis-

tics have been frequently used, and a series of reliability analysis methods [1–5] using 

these kinds of models have been proposed. The probability methods use the accurate 

probability distribution function (PDF) to describe the uncertainty of the parameters, and 

evaluates the reliability and safety of the structure through the calculation of the proba-

bility statistics theory. However, the determination of the parameter PDF in the probabil-

ity model needs to be based on a large amount of experimental sample data, which is 

extremely expensive or even impossible to obtain for many practical engineering prob-

lems. For this reason, it is usually necessary to make some subjective assumptions about 

the distribution characteristics of parameters in the uncertainty analysis based on the 

probability method. Nevertheless, some studies have shown that the small deviation of 

parameter probability distribution can lead to large error of uncertainty analysis results 
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[6]. To this end, to investigate efficient structural reliability analysis methods using non-

probabilistic models is of great significance. 

Non-probabilistic model is acknowledged to be proposed by Ben Haim in 1990s [7]. 

Different from probabilistic models, non-probabilistic models usually treat the variables 

as uncertain and bounded, and utilize a convex set to encircle them. In the uncertainty 

modeling, the variation boundaries of variables can be obtained according to the engi-

neering experience or a small number of samples. Owing to this advantage in dealing with 

uncertainties, non-probabilistic models have been widely researched and subsequently 

applied in fields of uncertainty propagation [8,9], optimization design [10–12], dynamic 

load identification [13], and especially structural reliability analysis. By formulating reli-

ability in terms of a maximum uncertainty degree that structural parameters can tolerate, 

the concept of non-probabilistic reliability was then proposed [14]. Proceed in this con-

cept, a reliability measure was further developed [15], and similar concepts were intro-

duced into the non-probabilistic convex models according to the traditional probabilistic 

reliability methods. The core of this kind of model was to envelop the given sample infor-

mation with the minimum bounded convex set boundary to measure its uncertainty. The 

traditional non-probabilistic convex model is interval model, that is, the uncertainty of 

variables is represented by the upper and lower bounds of samples. For example, Wang 

and Fang [16] proposed an interval structural reliability analysis approach based on the 

traditional first order reliability method, in which the NPR index was formulated based 

on an infinite norm for the interval convex model, and the NPR index are calculated by 

adopting the HL-RF algorithm [17] or the adaptive chaos control method [18]. However, 

the interval model cannot consider the correlation of samples, resulting in the conserva-

tive results of uncertainty measurement. In order to effectively consider the direct corre-

lation of samples, Jiang et al. [19,20] proposed a correlation analysis technique construct-

ing a multidimensional ellipsoidal model, and introducing the first order approximation 

method (FOAM) and the second order approximation method (SOAM) into NPR analysis. 

Liu et al. [21] suggested a pseudo-probabilistic measure method which combined the mul-

tidimensional volume ratio with the first-order approximation of the system-state func-

tion. Furthermore, by formulating the constraints in terms of NPR index, a series of relia-

bility-based design and optimization methods have also been proposed [22–24]. Yet, alt-

hough structural reliability analysis methods using the ellipsoidal model have been de-

veloped and enriched by many researchers, the distribution property or clustering status 

of uncertainty samples was rarely considered. This may lead to failure of the non-proba-

bilistic convex models to describe the uncertain variables with multi-cluster property ef-

fectively. Meanwhile, the calculated results of reliability analysis may also be misleading, 

and then a risky or over conservative design would be obtained. To address this issue, it 

is quite necessary to construct more effective NPR models, and then develop feasible reli-

ability analysis approaches based on these models. 

In this paper, on the basis of the previous research work, the distribution property or 

clustering status of samples are taken into account and a multi-CEM model is built to 

encircle the samples in a more accurate and compact way. In addition, a quantitative 

model of reliability analysis is established, and the complex scenarios of ellipsoid inter-

section are discussed, which helps to obtain more satisfactory structural reliability analy-

sis results. In order to realize reasonable quantification of the distribution status of struc-

tural uncertainties, Gaussian cluster analysis is introduced to build the optimum GMM 

for the samples. The critical elliptical contour feature of the GMM is calculated by EM 

algorithm and utilized to construct the multi-CEM. Before conducting reliability analysis, 

an approximated single-ellipsoid model (AEM) is established to describe the overlapping 

region between the intersected components of the multi-CEM. The structural reliability 

indexes are computed by combining the multi-CEM with FOAM/SOAM. Finally, similar 

to the conventional ellipsoidal model, a ratio of the multidimensional volume between the 

safe domain and the whole uncertainty domain is introduced to measure the reliability of 

structures. The remainder of this paper is organized as follows. In Section 2, the problem 
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is stated and the multi-CEM is constructed. In Section 3, the non-probabilistic reliability 

analysis of structures based on the multi-CEM is detailed. Two numerical examples are 

given in Sections 4, and an engineering problem is analyzed in Section 5. In Section 6, 

some conclusion remarks are drawn. 

2. Problem Statement and Multi-Cluster Ellipsoidal Model Construction 

With the rapid development of science and technology, the designed structures are 

not only required to meet the functional requirements, but also expected to have high 

reliability. Yet, in engineering practice, due to the complexity of actual structures, the dis-

creteness of used materials, and the manufacturing and installation errors, the physical, 

geometric, and boundary characteristics of the structure inevitably suffer a certain level 

of uncertainty. If the relevant variables of the structure are still regarded as unique and 

deterministic, the designed structure may have a significant deviation from the expected 

one, resulting in weakening of its service effect, shortening of service life and even failure 

of basic functions. Therefore, to perform reliability analysis, with taking into account the 

uncertain variables, before structural design turns to be quite necessary and valuable. 

To describe the uncertainties, probabilistic methods are acknowledged to be the most 

accurate ones. However, these kinds of methods require a large number of samples to 

compute the probability density functions, which is often unfeasible in practical engineer-

ing. In order to make up for the shortcomings of traditional probability methods, non-

probabilistic methods including interval methods, polygon methods, and ellipsoid clus-

tering methods, have been extensively studied. Yet, it is not difficult to see that they gen-

erally failed to describe the uncertainty domain in a compact and accurate way when pro-

cessing variables with correlation and multi-cluster distribution characteristics. This leads 

to that though the designed structure can meet the basic functional requirements, it is 

probably not the most lightweight and efficient one. As shown in Figure 1, although the 

samples of the uncertain variables are of limited sizes, they still have complex distribu-

tions and multiple clustering characteristics. Apparently, to describe these uncertainty do-

mains using interval models or single-ellipsoid models is not that appropriate. 

O

(a)The situation of non-intersecting (b)The situation of intersecting 

Multi-ellipsoidal convex model

Single-ellipsoidal convex model

Single-ellipsoidal convex model

Multi-ellipsoidal convex model

1X

2X2X

1X

 

Figure 1. The description of the two-dimensional uncertain variables. 

In order to overcome the above problems, a multi-CEM is to be constructed, based 

on which structural reliability analysis will be performed and more accurate results can 

be obtained. In the cluster analysis, the PDFs of the variable with multi-cluster distributed 

samples can be obtained by using the GMM [25–27], which is approximated as the follow-

ing form with multiple Gaussian functions, 

   
1

,
K

k k k
k

f  


 X X μ Σ  (1)
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where  1 1 1= , , , , , , , ,K K Kμ μ       represent the characteristic parameters of the 

GMM,  f X   is the PDF of variable X  under the parameters  , K denotes the cluster 

number, k  marks the weighting coefficient of the k-th cluster, 0 1k  , 
1

1
K

k
k




 , 

and  ,k k X μ Σ  refers to its Gaussian PDF with mean vector kμ  and covariance ma-

trix kΣ . The optimal parameters   for the GMM can be computed by expectation max-

imization algorithm which mainly consists of E-step and M-step [28,29]. E-step calculates 

the probability of each point generated by different components in the mixed model and 

M-step adjusts the model parameters to maximize the possibility of the model generating 

these parameters. The determined parameters of Equation (2) are as follows, 

  

    

  

        
  

1

1

1

T

1

1

m
r

k
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m
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k
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k m
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k
r
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k k k
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


















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
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
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  
















X

X X

μ

X

X X μ X μ

Σ

X

 (2)

where  rX  represents the r-th set of n-dimensional points, and 1,2, ,r m  ; 
  r

k X  

is an introduced notation which is often called as the post probability and has the form of 

  
  

  
1

,
=

,

r

k k kr

k K
r

i i i
i











X μ Σ
X

X μ Σ

, 1,2, ,k K  . By substituting the parameters in Equation 

(2) into Equation (1), the GMM can be expressed as 

 
 

   
T 1

1 22
1

1
exp  

22

K
i

k k kn
k k

f








 
    

 
X X μ Σ X μ

Σ
 (3)

Observing Equation (3), it can be found that the exponential term of the GMM indeed has 

the same form with the characteristic matrix of ellipsoid model [19]. Therefore, it is intro-

duced to establish the corresponding ellipsoid models for the uncertain variables. It is 

worth mentioning here that although the accuracy of the PDF obtained by the GMM can-

not be guaranteed, especially when there exists a shortage of samples, kμ  and kΣ  

which reflects the center and correlation of the ellipsoid are the two required aspects for 

ellipsoid modeling of each cluster. In this way, the whole uncertainty domain can be ex-

pressed as the composition form of the K ellipsoidal models as follows 

   
T 1 2

1

K

X k k k k
k

R



 
     

 
X X μ Σ X μ   (4)

where kR  denotes the k-th critical contour ellipsoid, which can be determined according 

to the critical elliptical contour feature of the GMM to ensure that the samples of each 

cluster are entirely encircled by the ellipsoid. Finally, the multi-CEM of the uncertainties 

can be constructed as the following Equation (5). 
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   
T

1

1 
K

X k k k
k

 
     

 
X X μ Ω X μ  (5)

where 1 2=k k kRΩ Σ . 

Based on the constructed multi-CEM, the distribution and clustering feature of the 

uncertain samples can be revealed. Meanwhile, the correlation of the uncertain variables 

can also be properly calculated as by using a traditional ellipsoidal model [19,20]. As 

shown in Figure 1, the traditional approach utilizes a single-ellipsoidal model (in red 

color) to envelop these samples without considering the distribution of samples. Com-

pared to the multi-CEM, it makes the uncertain domain of variables enlarged, which may 

lead to the analysis results conservative and imprecise. Obviously, the multi-CEM can 

describe the samples of uncertain variables in a better way. 

3. Structural Reliability Analysis Scheme Based on the Multi-CEM 

According to the sample distribution of the uncertain variables, two typical situations 

can be considered for the constructed multi-CEM. One is that there is no intersection be-

tween the components of the multi-CEM, as shown in Figure 1a, and the other is that there 

is an intersection between the components, as shown in Figure 1b. In this section, the two 

situations will be investigated for structural reliability analysis, respectively. 

3.1. The Situation of Non-Intersecting 

As shown in Figure 2, the limit state surface divides the whole uncertainty domain 

into the failure domain and the safe domain. For the multi-CEM composed of multiple 

ellipsoidal models, there will be three cases, that is, (i) all the ellipsoidal model compo-

nents fall into the failure domain, (ii) the ellipsoid model components are divided by the 

limit state surface, and (iii) all the components are located in the safe domain. Similar to 

the structural reliability analysis with single ellipsoid model, when all the components of 

the multi-CEM fall into the failure domain, it indicates that the structure is absolutely un-

reliable. On the contrary, a completely reliable structure can be obtained when all the 

components are located in the safe domain. If any component of the multi-CEM is divided 

by the limit state surface, there will be reliability risk for the structure, and the multidi-

mensional volume ratio of the safe domain to the whole uncertainty domain can indicate 

the reliability degree of the structure. When the multidimensional volume ratio increases, 

the reliability degree will become greater. 

1X

2X

 

Figure 2. The distribution of components of the multi-CEM. 
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In the reliability analysis, a key and prior step is the computation of the NPR index 

  for each component of the multi-CEM. In order to calculate   for each component, 

the limit state function should be approximated at first. When the limit state function is 

linear or with weak nonlinearity, accurate results can be obtained by combining the multi-

CEM with the FOAM. While when the limit state function is strongly nonlinear, the SOAM 

[20] is suggested, so as to improve the calculation accuracy. Then by performing regular-

ization on the multidimensional ellipsoid and eigenvalue-decomposition on the charac-

teristic matrix kΩ , a unit sphere space δ  can be obtained for each ellipsoidal component 

[19]. In each δ  space, an optimization problem as below can be established. 

 

min

. . 0s t

 




δ

G δ

 

(6)

where   means the norm of a vector,  G δ  represents the limit state function. As 

shown in Figure 3, and 
T* * * *

1 2, ,..., n     δ  are the most probable points (MPP) of failure, 

which are located on the limit state surface and closest to the original point in δ  space. 

1

2

  *

1r    0G 

 

Figure 3. Non-probabilistic reliability index and MPP in the unit sphere space. 

To resolve the optimization problem of Equation (6), the HL-RF iterative algorithm 

[30,31] is adopted, and the results are obtained as Equation (7). 

 

       

  

T
i i i

i

i







G δ G δ δ

G δ
 (7)

where 

     

 

       
  

    

1

T

2

i i i

i i i

i i i

i

  

  

  




δ δ d

G δ δ G δ
d G δ δ

G δ

 (8)

The superscript (i) represents the i-th iteration step, and  G δ  marks the gradient vec-

tor of G  with respect to δ . 

With the calculated index  , the reliability of this component can then be obtained 

as below. For expression simplicity, the 2-dimensional uncertain variables are employed. 
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When the principal curvature * 0k  , the limit state function around 
T* * *

1 2, ,..., n      can 

be approximately expressed by its second-order Taylor expansion as the following Equa-

tion (9), which is shown in Figure 4. 

            
T T* * * * 2 * *1

2
       G δ G δ δ δ G δ δ δ G δ δ δ  (9)

where  *G δ  and  2 * G δ , respectively, denote the gradient vector and Hessian ma-

trix of G  with respect to *δ . 

Acap

Apan Tangent Plant

Parabola surfaceFailure domain

Safe domain

Acap

Apan

(a) Convex failure surface (b) Concave failure surface

Y2

Y1 Y1

Y2

Failure domain

Safe domain Parabola surface

Tangent Plant

Y *
n

Y *
n

 

Figure 4. Division of the uncertainty domain by convex and concave surfaces. 

According to Ref. [20], the position of the characteristic plane in Figure 4 can be cal-

culated as 

 
2* 2

*

*

1 1
n

k
Y

k

     
  (10)

For the cases shown in Figure 4, the volumes of failure domain with convex surface and 

concave surface are, respectively, 

1 cap pan=A A A  (11a)

1 cap pan=A A A  (11b)

Further, the reliability of the ellipsoidal convex model can be calculated as [20] 

 
 2*

* *
* *

1

0,                                                                                                                         1,

1 ( ) 1 1 1 1
( ) , 1

1 12 2 2 2 1
,

2 2

n

n
n n

Y

sign Y n k
re sign Y I Y

nn
B





 

  
        

 
 

1
2 2

,  1 1,

1,                                                                                                                        1.

n










        





 (12)

where ( )sign   and  ,B     denote the sign function and Beta function, respectively, 

 ,I     refers to the regularized incomplete Beta function. When the principal curvature 

= 0*k , the intersecting surface of the unit hypersphere and the limit state surface is in-

finitely close to the (n − 1)-dimensional hyperplane *
nY  . Thus, the reliability of each 

ellipsoidal model can be calculated as 
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 
  21

0,

1 1 1 1
, ,

2 2 2 2

1,

sign n
re sign I










   

   
 




 

1,

1 1,

1.







 

  



 (13)

Because the regularization of the multidimensional ellipsoids and the eigenvalue de-

composition of matrices kΩ  are both linear transformations, so, for the components of 

the multi-CEM, the volume ratios of the safe domain to the whole uncertainty domain in 

the δ space are similar to that in the X  space. Thus, by denoting the volume ratio of the 

h-th component as 
d
hre , the non-probabilistic reliability of structure based on the multi-

CEM in the X  space can be calculated as 

 
31

31 2

1 1

1 1 1

NN
s d d
j h h

safe j h

NN N
s f dtotal

i j h
i j h

V re V
V

RE
V

V V V

 

  

 

 

 

 

  
 (14)

where sV  and fV , respectively, denote the volumes of ellipsoidal models in the safe 

domain and the failure domain, and dV  represents the volume of ellipsoidal model 

which is intersected by the limit state surface. 1N , 2N , and 3N  are the numbers of each 

kind of ellipsoidal convex models as shown in Figure 2, respectively. The volume of the 

multi-dimensional hyper-ellipsoid can be computed by 

2
i

1

2

2

n n

j
j

n
V s



 
   

 
  (15)

where n denotes the dimension of the uncertain variables, and js  marks the semi-axis of 

the hyperellipsoid in X  space. 

3.2. The Situation of Intersecting 

For this situation, before conducting structural reliability analysis, a necessary step is 

to deal with the overlapping region of the intersected components of the multi-CEM. In 

this paper, the overlapping region is described by an approximated single-ellipsoid 

model. Taking any one of the ellipsoid model components in the multi-CEM for example, 

the construction of the AEM can be realized as follows. By transforming the original var-

iable space X  into the unit sphere space δ, the spherical coordinates 1 2 1,  ,  ,  ,  nr      

can be built, where  1 0,  1r I   and   1

2 0,  2
n

i I 


  , 1,2, , 1i n  . Through mak-

ing the spherical coordinates i  uniformly distribute in the (n − 1)-dimensional interval 

box 2I , and the r  coordinates follow the PDF of ( ) = nF r r  in the interval 1I , sam-

ples can be guaranteed to be uniformly scattered and distributed in the δ space. Plus, 

these samples with uniform distribution can be expressed as the following form of Equa-

tion (16) [32]. As the unit sphere space δ is obtained from the original variable space X  

by linear transformation, these samples are also uniformly distributed in space X . 

1

1 2

1 2 3

1 2 2 1

1 2 2 1

cos

sin cos

sin sin cos

sin sin ...sin cos

sin sin ...sin sin cos

n n

n n n

r

r

r

r

r



 

  

   

    
 

 

 
 
 
 

  
 
 
 
  

δ


 (16)
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Afterwards, the samples that meet the constraint of Equation (17) are extracted to con-

struct the AEM for the overlapping region. As shown in Figure 5a, based on these scat-

tered samples, its GMM can be obtained as Equation (18) by combining Gaussian cluster 

analysis with EM algorithm. Determining the optimal R to ensure that these samples are 

enveloped tightly, the AEM as shown in Figure 5b can be obtained, which can also be 

expressed as Equation (19) with  1 2= RΩ  . 

   
2

T

 
1

1i i i
i 

  X X u X u   (17)

 
 

   
T  1

1 22

1 1
exp

22
n

f


 
    

 
X X μ X μ


 (18)

    T
1XE    X X μ X μ  (19)

O

(a)

O

Approximate elipsoidal convex

Overlapping region

1X

2X
2X

1X

Samples  of component1
Samples  of component2

The additional samples

(b)
 

Figure 5. Sampling and construction of the approximate ellipsoid model ((a) The uniformly scat-

tered samples in the overlapping region; (b) the established approximated single-ellipsoid model). 

It is worth noting here that when there are multiple uncertain variables, the intersection 

of the multi-CEM components indeed can be complex, which, unavoidably, cannot be ob-

served intuitively and accurately. In view of this, the components with failure risk (

1 1i   ) will be selected and combined in pairs. Through spatial transformation and 

scattering points, the scattered samples belonging to the overlapping region can be deter-

mined by using Equation (17). Then an approximate single ellipsoid model is established 

based on these sample points, and the reliability of the structure is calculated by Equation 

(21). Obviously, if two ellipsoids with failure risk do not intersect, the sample set deter-

mined by Equation (17) is empty, and no further consideration is required.  

For the situation that the limit state surface divides the whole uncertainty domain 

into two parts, two cases can be, respectively, researched as shown in Figure 6. The first 

case is that the whole intersection is located in the safe domain as shown in Figure 6a, 

while the second is that the intersection is divided by the limit state surface as shown in 

Figure 6b. 
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O
(a) Case Ⅰ

Limit state surface

Safe domain

Failure domain

Limit state surface

Failure domain

Safe domain

(b) Case Ⅱ

 

Figure 6. Two different cases of intersection. 

Combining the FOAM/SOAM with the multi-CEM, and performing HL-RF iteration 

algorithm, the reliability index β  of each component in the multi-CEM can be calcu-

lated. Then according to the calculated reliability index, the ellipsoidal models with failure 

domain can be figured out. For the Case I, as shown in Figure 6a, assuming that 3N  el-

lipsoidal models are risking failure, the reliability indexes of these models satisfy 

1 1d
h   , 3= 1 2h , , ,N . Considering that the volumes of all the AEMs are double-

counted, the NPR of the multi-CEM in the X  space can be calculated as follows by sub-

tracting the volume of the recalculated AEMs from the total volume. 

31 4

31 2 4

1 1 1

1 1 1 1

NN N
s d d a

i h h t
i h t

NN N N
s f d a

i j h t
i j h t

V re V V

RE

V V V V

  

   

  



  

  

   
 

(20)

where aV  and 4N , respectively, represent the volume and the number of the AEMs. For 

the Case II, as shown in Figure 6b, the overlapping region is divided by the limit state 

surface, and a part of the region falls into the failure domain. Supposing that 3N  compo-

nents and 4N  AEMs have failure domain, it has 1 1d
h   , 3= 1 2h , , ,N  and 

1 1a
t   , 4= 1 2t , , ,N . Easy to see, the volume of the safe domain of the AEMs are 

double counted, hence the NPR of the multi-CEM can be calculated as 

31 4

31 2 4

1 1 1

1 1 1 1

NN N
f d d a a

i h h t t
i h t

NN N N
s f d a

i j h t
i j h t

V re V re V

RE

V V V V

  

   

   



  

  

   
 

(21)

where a
tre  denotes the reliability ratio of the t-th AEM. 

4. Numerical Examples and Discussion 

In order to show the details of the proposed method and prove its effectiveness, two 

numerical examples are conducted and discussed. In the two examples, the non-intersect-

ing multi-CEM and the intersecting multi-CEM are, respectively, constructed. The results 

of the structural non-probabilistic reliability analysis are compared with that by using cor-

relation approximate method (CAM) [20]. Moreover, Monte Carlo simulation (MCS) is 

performed, which provides the reference solutions. 

4.1. Numerical Example 1-The Situation of Intersection 

In this example, the following limit state function is considered, 



Entropy 2022, 24, 1209 11 of 20 
 

 1 2 1 2, 2 3XG x x x x a    (22)

where 1x  and 2x  are the two uncertain-but-bounded variables, and a  means the 

threshold value. The available samples of the uncertain variables are shown in Figure 7 

and listed in Table 1. It can be intuitively observed that the samples are distributed in two 

separate clusters. 

 

Figure 7. The multi-CEM and CAM of the variables in Example 4.1. 

Table 1. Samples of the two uncertain variables (Example 4.1). 

No. X1 X2 No. X1 X2 

1 2.219399 3.302164 31 4.561986 5.152379 

2 2.098374 3.07042 32 3.919348 4.447051 

3 1.848857 2.957823 33 4.585504 5.565339 

4 2.883305 2.177448 34 3.617155 5.242016 

5 2.265046 2.618665 35 4.923524 5.769563 

6 2.253232 2.392929 36 3.386686 4.515868 

7 2.58532 2.863861 37 4.630296 5.609843 

8 2.637891 2.359759 38 3.82427 5.039146 

9 1.203835 3.374412 39 3.555722 4.746409 

10 2.043340 3.182734 40 4.062128 5.506304 

11 1.730330 3.554200 41 4.427443 5.538891 

12 2.888488 2.218334 42 3.49437 4.654342 

13 2.164607 3.234345 43 3.559939 4.114994 

14 1.704952 2.891498 44 3.490927 4.4181 

15 2.265823 2.339422 45 3.697514 4.834546 

16 1.389795 3.634274 46 4.051388 4.479216 

17 2.515282 3.096378 47 3.754507 4.534968 

18 1.871032 3.282757 48 3.858271 4.916167 

19 1.558403 3.319817 49 3.903247 5.253065 

20 1.620956 3.037727 50 4.421196 5.359086 

21 2.778897 2.712910 51 3.951404 5.142982 

22 2.264103 3.279144 52 3.346107 4.601806 

23 1.436786 3.645572 53 3.20174 4.211189 

24 1.673714 2.712341 54 3.816983 4.859839 

25 1.090868 3.489921 55 4.497481 5.236862 

26 1.205242 3.793937 56 3.398991 4.844100 

27 2.287038 2.364876 57 3.942939 5.496589 
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28 2.461811 2.226604 58 3.111521 4.035186 

29 1.836134 3.321929 59 3.575249 4.888462 

30 2.250109 2.997610 60 4.754638 5.481510 

By performing Gaussian clustering analysis, the GMM of these samples is achieved. 

The parameters of the GMM are computed by using the EM algorithm and are given in 

Table 2. In order to entirely encircle these samples, the critical elliptical contour feature 
2

1R  and 
2
2R  are, respectively, determined as 3.884 and 4.448. The multi-CEM is then con-

structed as shown in Figure 7 by the red and blue ellipses. For comparison, the correlation 

analysis is also conducted for these samples and the CAM is established as Equation (23), 

which is shown in Figure 7 as well by the yellow ellipse. Obviously, to quantify this un-

certainty, the CAM uses a larger ellipse to envelop these samples and appears to be very 

rough, which may lead to conservative results in NPR analysis. On the contrary, the multi-

CEM describes the whole uncertain domain using two small non-intersecting ellipses, 

which is much more reasonable. 

Table 2. The optimal parameters of the GMM (Example 4.1). 

Parameter Optimal Value 

Weighted averages  
T

0.4998,0.5002  

Covariance matrixes 1 2

0.2444 0.1744 0.2324 0.1843

0.1744 0.2178 0.1843 0.2254

   
       

Σ Σ,  

Mean values    
T T

1 22.03,2.98 , 3.91,4.95    

Critical elliptical contour feature 
2

1 3.884R  , 
2
2 4.448R   

 

T

1 1

2 2

2.97 2.970.3568      0.2044
1

3.97 0.2044     0.3322 3.97

x x

x x

     
          

 (23)

In this example, the limit state function of system is linear, therefore the FOAM and 

the HL-RF iteration are adopted to compute the NPR indexes. When the value of the limit 

state function is bigger than zero, it means that the design is reliable. Based on this, the 

reliability analysis results formulated by the multidimensional volume ratios of the safe 

domain to the whole uncertainty domain are computed under different thresholds, and 

are shown in Figure 8. It can be seen that as the threshold increases, the reliability of the 

structure becomes higher and higher. When the threshold a  is set around 9, the struc-

ture generally turns to be completely reliable. For comparison, the structural reliability is 

also computed by using the CAM and MCS. In MCS, the two variables obey the uniform 

distribution, the median values are 3.16 and 4.02, and 105 samples are used. As shown in 

Figure 8, the results obtained by using the multi-CEM are much closer to the results by 

MCS than that by using CAM, which demonstrates that the multi-CEM based structural 

reliability analysis is more effective for processing the uncertain variables of multi-clus-

tering characteristics. 



Entropy 2022, 24, 1209 13 of 20 
 

 

Figure 8. Non-probabilistic reliability under different threshold values (Example 4.1). 

4.2. Numerical Example 2-The Situation of Non-Intersection 

In this example, the three-dimensional bounded uncertain variables 1x , 2x , and 3x  

are considered, which are all assumed to follow the normal distribution in theory with the 

median values 3.358, 3.064, and 3.800, respectively. However, the samples of the uncertain 

variables are limited, which are listed in Table 3. The limit state function is of the following 

nonlinear form. 

  2 2
1 2 3 1 2 2 3, ,XG x x x x x x x a     (24)

Table 3. Samples of the three uncertain variables (Example 4.2). 

No. X1 X2 X3 No. X1 X2 X3 

1 2.5320 3.4462 3.5019 32 3.6189 4.1630 4.9250 

2 2.3088 3.1294 3.9969 33 1.9811 2.5370 3.5750 

3 3.2268 3.4569 3.9605 34 4.2653 2.4967 3.4031 

4 2.3596 3.2615 4.0070 35 3.5516 2.7558 3.3604 

5 2.5159 3.0672 4.2894 36 3.8177 2.8293 3.6608 

6 2.9055 3.2930 4.5919 37 4.0395 2.9958 3.7589 

7 2.2948 3.5102 3.5427 38 4.0746 2.8847 3.1606 

8 2.3597 2.9946 3.9629 39 3.5858 2.8088 3.3748 

9 2.7068 4.0459 4.9582 40 4.0676 2.5463 3.1449 

10 2.9293 3.2253 3.5551 41 3.4528 3.2367 4.0881 

11 2.4361 2.4980 4.0164 42 3.6492 2.8374 3.2405 

12 2.2589 3.2330 3.8037 43 4.3014 2.5685 2.8392 

13 2.3912 3.2835 4.3816 44 3.8116 2.7805 3.9572 

14 2.5001 3.5827 4.6131 45 3.7107 2.5622 3.6018 

15 2.6889 3.4933 4.3689 46 4.2908 2.7291 3.2746 

16 3.0838 3.7081 5.2839 47 3.5738 2.9391 3.4551 

17 3.3203 3.2658 4.3593 48 3.3867 3.0881 3.7546 

18 2.2970 2.6622 3.0253 49 3.8931 3.0230 3.5358 

19 3.0681 3.7557 4.8871 50 4.3254 2.4228 2.9424 

20 2.6141 3.6685 4.0826 51 3.7535 3.0447 4.0164 

21 2.9403 3.2250 3.8578 52 3.9226 2.9139 3.3404 

22 2.6573 2.4284 3.2880 53 4.3303 2.5758 3.2029 
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23 2.4819 3.4070 4.3218 54 4.3371 2.7318 3.4623 

24 3.4196 3.5990 4.3369 55 3.4090 2.7318 3.4623 

25 3.2754 3.2505 3.9900 56 3.6011 3.1717 3.4623 

26 3.4605 3.3500 4.2500 57 4.1449 2.2918 3.4623 

27 2.1395 3.3500 4.2500 58 3.4250 3.1398 4.2623 

28 2.9006 4.1481 4.2500 59 4.3210 2.3238 2.6623 

29 2.6994 2.5519 4.2500 60 3.8412 3.1557 3.8623 

30 3.4030 4.1780 5.6000 61 3.9048 2.3078 3.0623 

31 2.1970 2.5220 2.9000     

The GMM is obtained by implementing Gaussian clustering analysis for these sam-

ples. The optimal parameters of the GMM calculated by using EM algorithm are listed in 

Table 4. By normalizing the scale, the intersecting multi-CEM with two components are 

constructed, and the multi-CEMs on the three two-dimensional planes are, respectively, 

shown in Figure 9. It can be seen that on the X1-X2 and X1-X3 planes, the two components 

of the multi-CEM are partly intersected, while on the X2-X3 plane, the component 2 is en-

tirely contained by the component 1, which implies that the samples are of complex dis-

tribution. For comparison convenience, the CAM is also constructed within these samples 

by using the correlation ellipsoid modeling technology, which is shown in Figure 10. The 

uncertainty domain of the CAM is of the form of Equation (25). Based on the covariance 

matrices of the ellipsoid models, the minimum volumes of the multi-CEM and the CAM 

can be calculated, which are 1.8326 and 3.4702, respectively. Obviously, the CAM uses a 

single ellipsoid with a larger volume than multi-CEM to encircle these samples, while the 

multi-CEM can provide a more compact model for the uncertain variables with multi-

cluster distribution. 

Table 4. The optimal parameters of the GMM (Example 4.2). 

Parameter Optimal Value 

Weighted averages  
T

0.4579,0.5421  

Covariance matrixes 1 2

0.1477    0.1204    0.1550   0.1339   -0.0906   -0.1130

0.1204    0.2588    0.2283  -0.0906    0.1113    0.1181

0.1550    0.2283    0.3942  -0.1130    0.1181    0.1904

   
       
      

Σ Σ,

Mean values    
T T

1 22.62,3.30,4.15 , 3.79,2.87,3.57    

Critical elliptical contour feature 
2

1 8.1549 R  , 
2
2 6.9380R   

 

  

(a) (b) 

X
2
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(c) 

Figure 9. The multi-CEM on the three 2-dimensional planes (Example 4.2). (a) X1-X2 plane, (b) X1-

X3 plane, (c) X2-X3 plane. 

 

Figure 10. The correlation approximate model of the variables (Example 4.2). 

To compute the structural reliability, considering that the two clusters are inter-

sected, a single AEM is constructed in advance for the overlapping region. In this example, 

375 samples are generated and uniformly scattered in the overlapping region by using the 

method illustrated in Section 3.2. The number of scattered points can be determined 

through an iterative process, that is, a certain number of points are scattered, an ellipsoidal 

model is established, and then the number of points is increased. When the ellipsoidal 

model tends to be stable, the number of scattered points can be determined. Through 

Gaussian clustering analysis and EM algorithm, the optimal Gaussian function for these 

additional samples is constructed, whose parameters are listed in Table 5. Via determining 

the critical contour ellipsoid, the AEM is then constructed. 

T

1 1

2 2

3 3

3.16 3.16  0.3060    0.2386   -0.0060

3.23   0.2386    1.0651   -0.4476 3.23 1

 -0.0060   -0.4476    0.53204.13 4.13

x x

x x
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     
          
         

 (25)
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Table 5. The optimal parameters for the AEM. 

Parameter Optimal Value 

Weighted average 1  

Covariance matrixes 

 0.0167   -0.0013   -0.0009

-0.0013    0.0274    0.0180

-0.0009    0.0180    0.0327

 
   
  

Σ  

Mean value  
T

3.0771 3.3925  4.2394 , ,  

Compact ratio 2 10.082R   

Viewing that the considered limit state function is nonlinear, the SOAM is adopted 

to approximate it. The structural reliability indexes are calculated by using HL-RF algo-

rithm. Via adjusting the threshold, the reliability analysis results under different limit state 

functions are obtained. The reference solution is calculated by MCS using 105 samples. As 

shown in Figure 11, the results obtained by using the multi-CEM are very close to the 

results by MCS, which is more accurate than that by using the CAM. This phenomenon 

once again proves the rationality and advancement the proposed method. 

 

Figure 11. Non-probabilistic reliability under different threshold values (Example 4.2). 

5. Application: Reliability Analysis of an Augmented Reality Glasses 

The augmented reality glasses (AR glasses) are developing rapidly in recent years 

[33,34], and widely applied in the fields of medical treatment, education, industry, cultural 

tourism, security, etc., owing to its versatility in computing, communication, photography 

and positioning. As shown in Figure 12, the AR glasses is mainly composed of the con-

troller, the spectacle frame, the battery, and the micro camera and projector. In the design 

of AR glasses, many requirements such as comfort and safety should be satisfied, how-

ever, many uncertain factors are also existed. For example, due to the uncertainty of work-

ing conditions such as the ambient temperature and the power consumption, the actual 

temperature response of the controller is highly uncertain. In order to ensure the operation 

safety and wearing comfort, reliability analysis appears to be quite necessary by taking 

into account the four main relevant uncertain variables, i.e., the power consumption P1 of 

chip A and P2 of chip B, the air velocity V and the environmental temperature T. 
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(a) (b) 

Figure 12. The structure of an augmented reality glasses [34]. (a) Components of the augmented 

reality glasses, (b) Exploded diagram of the controller. 

According to the measured samples, the uncertainty domain of the mentioned four 

variables is modeled as the multi-CEM with two clusters as follows. 

T

1

2

8.25  0.0213        -1.7311    -0.4767       0.0513

0.19 -1.7311          171.38     34.187      -27.241

0.19 -0.4767         34.187     46.025      -47.313

0.06  0.0513        -27.241
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 
  
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 
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 (26a)
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32.50  0.0373        -2.4812    -0.0253      -0.9501
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0.133 -0.9501         59.
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 
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1
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546    -29.021       275.07 0.133
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P

  
      
   
  

   

 (26b)

In order to ensure the wearing comfort and operation safety, the temperatures of the con-

troller at regions A and B should be controlled below a certain threshold. For this purpose, 

the following two limit-state functions can be established, 

 0
1 2 3 1 2, , , , , ,A A AG T T d d d T V P P   (27a)

 0
1 2 3 1 2, , , , , ,B B BG T T d d d T V P P   (27b)

where 0
AT  and 0

BT  denote the thresholds, AT  and BT  are the corresponding actual 

temperature responses, 1d , 2d , and 3d  represent the deterministic structural sizes of 

the controller housing. 

The simulation model of the controller is created and shown in Figure 13, in which 4 

components and 22,928 thermal couplings eight-node hexahedrons are included. By call-

ing the simulation model once, the function values of the two constraints AT  and BT  

can be obtained once. In order to achieve parameterization and improve efficiency, the 

simulation model was called 100 times. According to the simulated 100 values, the second-

order polynomial response surfaces of AT  and BT  are constructed as the following 

Equations (28a) and (28b). The accuracy of the constructed response surfaces is verified 

by comparing several randomly selected points on the response surfaces with the simu-

lated values. 
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1 2 3A

2 2 2
1 2 1 3 2 3 1 2 3

2 2
1 2 1 2 1 2

2

100.47 124.32 14.39 10.74

1.50 10.10 0.29 38.32 4.28 8.9

13.65 42.59 17.51 4.85 145.24

0.90 34.41 0.18 28.41

d d d

d d d d d d d d d
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T V TV
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   

     

    

   

 (28a) 

1 2 3

2 2 2
1 2 1 3 2 3 1 2 3

2 2
1 2 1 2 1 2

2

B 73.27 88.5 11.92 10.13

0.54 6.67 1.15 27.81 3.45 7.51

6.60 28.69 26.31 3.63 81.92

0.92 34.73 0.09 32.49

d d d

d d d d d d d d d

P P PP P P
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  

     

   

  







 (28b) 

  

(a) (b) 

Figure 13. Numerical simulation model of the controller of the AR glasses. (a) Surface temperature 

of the shell, (b) Temperature of the circuit board. 

Combing the multi-CEM with the SOAM, and performing the HL-RF iteration algo-

rithm, the NPR analysis is conducted under a series of thresholds to assess the reliability 

of the AR glasses. As shown in Figure 14, as the thresholds of AT  and BT  increase from 

−10 °C to 50 °C, the corresponding thermal performance becomes more and more reliable. 

Though the four parameters are uncertain, when the thresholds of 0
AT  and 0

BT , respec-

tively, reach 39 °C and 42 °C, the thermal performance becomes completely reliable. 

Meanwhile, the results obtained through the proposed method is very close to that by 

using MCS, indicating that the proposed method based on the multi-CEM is suitable for 

analyzing the NPR of AR glasses. 

 

(a) (b) 

Figure 14. Non-probabilistic reliability under different threshold values. (a) Reliability for the tem-

perature at region A, (b) Reliability for the temperature at region B. 
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6. Conclusions 

An effective non-probabilistic reliability analysis method based on the multi-cluster 

ellipsoidal model is presented. A multi-CEM is constructed for the samples according to 

the ellipsoid critical contour feature of the GMM, which can deal with the multi-cluster 

distribution characteristics of the uncertain variables. The FOAM/SOAM is utilized to ap-

proximate the limit state functions, with which the NPR index of each multi-CEM compo-

nent can be computed through HL-RF algorithm. The reliability of the studied structure 

is quantified by the multi-dimensional volume ratio of the safe domain to the whole con-

vex domain. Two numerical examples and an engineering application are conducted in 

the end validating the effectiveness of the proposed method. Compared to the traditional 

convex model, the constructed multi-CEM has a rigorous but understandable form, and 

is more effective for handling the uncertainty with complex distribution. 
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