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Abstract: Currently, most Graph Structure Learning (GSL) methods, as a means of learning graph
structure, improve the robustness of GNN merely from a local view by considering the local infor-
mation related to each edge and indiscriminately applying the mechanism across edges, which may
suffer from the local structure heterogeneity of the graph (i.e., the uneven distribution of inter-class
connections over nodes). To overcome the drawbacks, we extract the graph structure as a learnable
parameter and jointly learn the structure and common parameters of GNN from the global view.
Excitingly, the common parameters contain the global information for nodes features mapping, which
is also crucial for structure optimization (i.e., optimizing the structure relies on global mapping
information). Mathematically, we apply a generic structure extractor to abstract the graph structure
and transform GNNs in the form of learning structure and common parameters. Then, we model
the learning process as a novel bi-level optimization,i.e., Generic Structure Extraction with Bi-level
Optimization for Graph Structure Learning (GSEBO), which optimizes GNN parameters in the upper
level to obtain the global mapping information and graph structure is optimized in the lower level
with the global information learned from the upper level. We instantiate the proposed GSEBO on
classical GNNs and compare it with the state-of-the-art GSL methods. Extensive experiments validate
the effectiveness of the proposed GSEBO on four real-world datasets.

Keywords: graph neural network; graph structure learning; noise learning; bi-level optimization

1. Introduction

Based on the homophily assumption of “like to associate with like” [1,2], the Graph Neu-
ral Network (GNN) [3] has become the promising solution for node classification. However,
a large portion of edges are inter-class connections [4], and representation propagation
over such connections can largely hinder the GNN from obtaining class-separated node
representations, hurting the performance.

Existing GSL methods are roughly categorized into the attentive mechanism, noise
detection, and probabilistic mechanism. Attentive mechanism calculates weights for edges
to adjust the contribution of different neighbors during representation propagation [5–9].
These methods can hardly work well in practice for two reasons: (1) the mechanism may
not generalize well to all nodes with different local structures (cf. Figure 1a); and (2) the
attention cannot be easily trained well due to the limited labeled data [10]. Noise detection
incorporates an edge classifier to estimate the probability of inter-class connection for each
edge [11–16]. Although it can be better trained owing to the supervision of edge labels,
the edge classifier also suffers from local structure heterogeneity and lacks consideration
of global information. Probabilistic mechanism models connection from a global view,
which assumes a prior distribution of edge and estimates GNN parameters with Bayesian
optimization to overcome the impact of inter-class edges [17–20]. Although the edge
specific parameterization largely enhances the model representation ability, it is hard to
accurately access the prior distribution.
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(a) Local structure heterogeneity (b) Global view of messaging 
 

: Inter-class edge : Intra-class edge : Edge weight : Deleted edge 

: Prevent messaging between same/different class : Unlabeled node of different class 

: Labeled node 

Figure 1. Examples for (a) the impact of local structure heterogeneity (node 1 and 9, the weights
between nodes do not provide enough information for classes differentiation) and (b) the global
view of messaging (the edge between node 3 and node 5, the deleted edge prevents the intra-class
information transfer).

Despite the achievements of the existing methods, there still exists some common
drawbacks: (1) Edge modeling method, the existing methods model edges with the param-
eter sharing mechanism, which may suffer from the local structure heterogeneity problem;
(2) Local optimization, the local optimization problem focuses on optimizing the param-
eters with the information of neighbor nodes, which ignores the impact from the global
view. Therefore, we come up with the key considerations for GSL: (1) modeling graph
connection in an edge-specific manner instead of a shared mechanism; and (2) optimizing
the corresponding parameters with a global objective of accurately classifying all nodes.
The edge-specific modeling can overcome the local structure heterogeneity, i.e., handling
nodes with different properties (e.g., node 1 and node 9 in Figure 1a) via different strategies.
Besides, blindly removing the inter-class edges will increase the risk of misclassifying the
target nodes (in dash circle) due to cutting off their connections to the labeled neighbors in
the same class (e.g., edge between node 5 and node 9 in Figure 1b). Thus, it is necessary to
optimize the graph structure from the global view instead of the local ones.

However, it is non-trivial to achieve the targets mentioned above due to the following
challenges: (1) the graph structure is embedded into the GNN model, which affects the
procedure of model parameter optimization once updated, requiring a careful design of
the model training algorithm; (2) the calculation of the ideal global objective is intractable
due to the limited labelled nodes, especially the hard semi-supervised setting.

In this work, we propose a new Generic Structure Extraction with Bi-level Optimization for
Graph Structure Learning (GSEBO), which optimized the graph structure and learsn the node
embeddings from the global view. In particular, we first devise a new generic structure
extractor, which accounts for the graph structure with both the connectedness between
nodes and the strength of connections. In addition to the adjacency matrix, the extractor
adopts a learnable matrix to represent the graph structure and adjusts the representation
propagation. Moreover, we design a bi-level optimization algorithm where the outer and
inner optimizations update the structure and the parameters of the base graph convolution
(vs feature mapping parameters). In this way, we decompose the hard optimization issue
of GSEBO into two easy ones. In addition, we separate the training set into two parts
(e.g., train_1, train_2), and set the objective of outer optimization as the train_2 loss to
better approximate the ideal global objective. The proposed generic structure extractor
can be extended to most existing graph convolution operators. We instantiate it on four
representative GNN models (i.e., GCN [21], GAT [5], GraphSAGE [22], and JK-Net [23]) and
compare GSEBO with state-of-the-art GSL methods, which are evaluated on four real-world
node classification datasets. Extensive experiments justify the rationality, effectiveness and
robustness of the proposed method. In summary, our main contributions are as follows:
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• We propose a novel GSEBO with bi-level optimization for edge-specific graph structure
learning, which learns the graph structure from a global view by optimizing a global
objective of node classification.

• We devise a generic structure extractor, which parameterizes the strength of each edge
during representation propagation. Besides, we summarize how the classical GNN
methods are transferred in the form of a learnable graph structure with a generic
structure extractor.

• We evaluate the proposed GSEBO with classical GNNs as backbones and compare
it with the state-of-the-art GSL methods. Extensive experiments on four real-world
datasets show the superior learning ability of the proposed method compared to the
existing methods.

2. Related Work
2.1. Attentive Mechanism

The attentive mechanism methods adaptively learn the weights of edges and adjust the
contributions of neighbor nodes. MAGNA [6] incorporates multi-hop context information
into every layer of attention computation. IDGL [8] uses the multi-head self-attention
mechanism to reconstruct the graph, which has the ability to add new nodes without
retraining. HGSL [9] extends the graph structure learning to heterogeneous graphs, which
constructs different feature propagation graphs and fuses these graphs together in an
attentive manner. However, those methods suffer from different local structures and are
difficult to train.

2.2. Noise Detection

The noise detection methods leverage the off-shelf pre-trained model to induce node
embeddings or labels and incorporate an edge classifier to estimate the probability of each
edge. NeuralSparse [11] considers the graph sparsification task by removing irrelevant
edges. GAUG [12] utilizes a GNN to parameterize the categorical distribution instead
of MLP in NerualSparse. PTDNet [13] prunes task-irrelevant edges by penalizing the
number of edges in the sparsified graph with parameterized networks. Even though the
noise detection methods can be well trained with the supervision of edge labels, the edge
classifier also suffers from local structure heterogeneity and lacks consideration of global
information.

2.3. Probabilistic Mechanism

This type of method assumes the prior distribution of graph or noise and estimates
the parameters through observed values, then resamples the edges or noise to obtain a
new graph. BGCN [17] estimates the parameter distribution of edges and communities
by sampling edges from graph, and resamples new graphs with the estimated parameters
for prediction. VGCN [18] trains a graph distribution parameter similar to the original
structure through ELBO, and resamples graphs for prediction. However, both the BGCN
and VGCN models are sampled from a noisy graph, and the estimated parameters also
contain noise. DenNE [19] assumes the observed graph is composed of real values and
noise and the prior distribution of features and that the noise is known. With a generative
model, the likelihood is used to estimate the representation of nodes. However, this method
highly relies on the priors of feature and noise, which is difficult to obtain accurately.

2.4. Bi-Level Optimization on GNN

LDS [15] jointly learns the graph structure and GNN parameters by solving a bi-level
optimization issue that learns a discrete probability distribution for each edges. According
to the learned distributions, LDS generates a new graph structure by sampling. Towards this
end, LDS sets the objective of outer optimization as generating the observed edges, which
clearly has a gap to the overall classification objective. Moreover, LDS needs to estimate N2

distribution parameters at least, which is hard due to insufficient labels (|E | � N2|. On the
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contrary, our method only activates a small portion of entries in Z, where Aij = 1, i.e., the
number of estimated parameters is same as the number of edges in graph G (i.e., |E |).

3. Methodology

We first introduce the essential preliminaries for GNN, and then elaborate the graph
convolution operator and bi-level optimization algorithm of the proposed GSEBO.

3.1. Preliminary

Let G = (V , E , X) represents a graph with N nodes and M edges, where V =
{v1, v2, · · · , vN} and E = {e1, e2, · · · , eM} denote the set of nodes and edges, respectively.
X = [x1, x2, · · · , xN ]

> ∈ RN×C are nodes features, where xi ∈ RC is the i-th row of
X, corresponds to node vi in the form of a C-dimensional vector. The adjacency matrix
A ∈ {0, 1}N×N indicates the connectedness of node pairs.

This task aims to learn a classifier f (A, X; θ) from a set of labeled nodes to forecast the
remaining nodes labels, where θ denotes model parameters. Assuming there are N labels,
we index them from 1 to N without loss of generality. Formally, Y = [y1, y2, · · · , yN ]

> ∈ RN

are the labels of the nodes, where yi ∈ R is the label of node i. The target is achieved by
optimizing the model parameter θ with respect to the labeled nodes, which is formulated as:

min
θ

∑
i≤M

l( f (A, X)i, yi; θ) + λ‖θ‖, (1)

where l(·) is a classification loss and λ is a hyperparameter to adjust the strength of
parameter regularization.

3.2. Generic Structure Extraction

To optimize the graph structure, the key consideration lies in (1) decoupling the graph
structure from the GNNs to account for the edge-specific modeling and (2) learning the
graph structure from the global information in θ.

Towards the first purpose, the core idea is to decompose the graph structure informa-
tion into connectedness (the edges in the adjacency matrix) and the strength of connection
(the latent variable). In general, there are two ways to model the connection strength
regarding whether relying on the inductive bias of translation invariant or not. On the
one hand, attentive mechanisms or noise detection models are translation invariant, which
decode the connection strength of each edge from its local features. However, with the
consideration of the local structure heterogeneity issue in most real-world graphs [23], it is
risky to rely on the translation invariant bias. On the other hand, probabilistic mechanisms
separately model the connection strength for each edge, where each edge corresponds to a
specific distribution. However, it is non-trivial to set a proper prior in practice. According
to these advantages and disadvantages, we summarize two considerations for extending
the graph convolution: (1) edge-specific modeling; and (2) optimization without prior.

Towards this end, we first propose the generic structure extractor (GSE) to decouple the
graph structure into the connectedness between nodes and the strength of the connections.
To model the edges in an edge-specific way, we apply the bi-level optimization method
with the inner optimization to update the common parameters and the outer optimization
to optimize the weight of each edge. By introducing the bi-level optimization, we can learn
the structure information from the global parameters, thus avoiding the prior assumptions.

Specifically, we model the connection strength as a parameter matrix Z with the same
size as A. Formally, the generic structure extractor (GSE) is abstracted as:

GSE(Z) : = σ(Z)� Ã,

H(k) = COM(H(k−1), AGG(H(k−1), GSE(Z)),



Entropy 2022, 24, 1228 5 of 16

where σ(·) is a non-negative activation function, since the value of strength is always
positive (in this work, we use the min[max[0,x],1] function to restrict the value within [0, 1]).
COM and AGG are the combination and aggregation functions, respectively.

Noteworthy, different from GNNs, GSE decouples the graph structure from GNNs
and treats it as a learnable objective. Besides, GSE is a generic extractor, which can be
instantiated over most existing graph convolutions. In this way, as long as learning the
connection strength is set properly, GSEBO can downweight the neighbors with inter-class
connection during representation propagation, reducing the impact of inter-class with
bi-level optimization.

3.3. Update Parameters with Bi-Level Optimization

To achieve the second purpose of learning graph structure from global information,
it is essential to carefully design a proper training algorithm to optimize the connection
strength matrix Z. Assume that we construct GSEBO with K layers, which is denoted as
f (A, X; θ) with parameters θ = {Z; W (k)|k ∈ [1, K]}. We have three main considerations
for designing the training algorithm:

• Connection strength is a relative value, which changes across different views. As
shown in Figure 1b, the connection between node 3 and node 5 is weak from the local
view, i.e., the edge is inter-class and should be assigned a low weight. However, this
edge is essential for the classification of node 9, 10, 11, which deserves a high weight.
Therefore, the optimization objective of Z should be the overall performance of node
classification.

• Z and W = {W (k)|k ∈ [1, K]} play different roles, but are closely related. The role of
Z is close to A, which restricts the model space for the mapping from node feature to
label, and the role of W includes the global mapping information for classification,
which would relieve the cons of local optimization. That is, an update on Z will adjust
W and its optimization procedure. Therefore, the optimization of Z and W are at
two different but dependent levels.

• Directly minimizing the objective function of Equation (1) to obtain the parameters
Z and W is not able to achieve the desired purpose of learning the structure for the
reason of over-fitting, which is shown in Figure 2.
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Figure 2. Optimize inner and outer steps on the training set of Cora.
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Towards this end, we propose a bi-level optimization [24–26] with inner and outer
optimizations to learn W and Z, respectively. Figure 3 shows the overall procedure of the
algorithm, where the inner and outer optimization steps are iteratively executed until the
stop condition.

min
Z

F(W∗(Z))=∑
v

louter( f (A, X)v, yv;W∗(Z)), (2)

s.t. W∗(Z)=arg min
W

L(W , Z)

=∑
u

linner( f (A, X)u, yu;W , Z). (3)

o 

Update 𝑍 with global information 𝓦𝝉 
 

Inner objective 

min
𝓦

) 𝑙(𝑓𝓦,𝒁(𝑨,𝑿)> , 𝑦>)
>∈𝒱./012
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Figure 3. The framework of GSEBO. The generic structure extractor (GSE) decouples the graph
structure from GNNs to account for the edge-specific modeling; the inner and outer optimization
steps are adopted for common parameters and graph structure optimization.

3.3.1. Inner Optimization for Common Parameters

This step is similar to the normal training of GNN for W optimization. In partic-
ular, we update W with a gradient descent based optimizer (e.g., Adam [27]) over the
train_1 nodes by minimizing Equation (3) (i.e., set linner = l( f (A, X), y; θ) + λ‖θ‖). When
calculating the gradient of W , we treat the connection strength matrix Z as constant.

3.3.2. Outer Optimization for Graph Structure

Similarly, we treat the sequence of W as constant to optimize the graph structure Z.
Ideally, the objective should be the overall classification loss of all nodes in graph. Formally:

min
Z

∑
i≤N

l( f (A, X)i, yi; θ).

Apparently, the calculation of the ideal objective is intractable. Similar to the global
parameters optimization, we can approximate the ideal objective as the empirical risk over
train_1 nodes. However, it can easily suffer from the over-fitting issue, which is shown
in Figure 2. We believe the empirical risk over train_2 nodes is a better approximation of
the ideal objective since it reflects to what extent the parameter generalizes well. In this
light, we set louter as the classification loss and optimize Z over the train_2 set Vtrain2 by
minimizing Equation (6).

Assuming:
F(WZ, Z) = ∑

v∈Vtrain2

l( fWZ ,Z(X, A)v, yv), (4)

We optimize the outer parameters Z by fixing the inner parameters W1, · · · ,Wτ .
Formally, the derivative of the outer objective to the hyperparameter Z (hypergradient) is
formulated as:

∇Z F(W∗(Z)) = ∂W F(W∗(Z))∇ZW∗(Z) + ∂Z F(W∗(Z)).

Z = Z− ηo∇Z F(WZ,τ , Z). (5)
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For t = τ down to 1, we define the matrices:

αt =

{
∇F(Wn) i f n = τ

∇F(Wn)Mτ · · ·Mn+1 i f n = 1, · · · , τ − 1

with:
Mn =

∂Wn

∂Wn−1
, Nn =

∂Wn

∂Z
,

and the update of Z can be formulated as:

∇Z F(W∗(Z)) = ∇Z F(Wτ)
τ

∑
r=1

(
τ

∏
s=r+1

Ms)Nr,

Z = Z− ηo∇Z F(W∗(Z)).

(6)

3.3.3. Training Process

The bi-level optimization cannot guarantee the convergence of the model; thus, we
set the early stop condition as the additional requirement for training, which is shown in
the second line of Algorithm 1. We set the early stop condition as: within 20 epochs, if the
accuracy of the verification set is not improved, the model will stop training.

Algorithm 1 Training of GSEBO.

Require: A: adjacency matrix; X: nodes features; ηo, ηi: outer and inner learning rates; τ:
number of inner steps;

1: Initialize W and Z (We initialize Z with the normalized Ã.);
2: while not early stopping do
3: for t = 1 to τ do # inner optimization;
4: Update W on train_1 dataset w.r.t. Equation (1);
5: end for
6: ατ = ∇Z ∑v∈Vtrain2

l( f (A, X)v, yv;Wτ);
7: P = 0; # initial outer gradient;
8: fort = τ − 1downto 1 do # calculate outer gradient;
9: Mt+1 = ∂W t+1

∂W t
, Nt+1 = ∂W t+1

∂Z ;
10: P = P + αt+1Nt+1;
11: αt = αt+1Mt+1;
12: end for
13: Update Z = Z− ηoP; # outer optimization;
14: end while

Assuming that τ times of gradient descent, an approximate solution W1, · · · ,Wτ of
the inner optimization problem are obtained. For t = 1 to τ, the updated W is calculated
as W t = W t−1 − ηi∇L(W t−1, Z), where ηi is the inner learning rate, and the process of
updating W is shown on line 3–5 in Algorithm 1.

The process of updating Z is shown on line 8–11 in Algorithm 1. With the parameter
Z updated by the graph structure optimization, we reoptimize the W with Z by global
parameters optimization, and repeat this process until the early stopping is met. To
summarize, Algorithm 1 shows the training procedure of GSEBO.

3.3.4. Complexity Analysis

The overall framework of GSEBO is illustrated in Algorithm 1. The computing com-
plexity of our GSEBO mainly depends on two steps. Given a graph G, ||A||0 is the number
of nonzeros in the adjacency matrix, d is the feature dimension, L is the layer number of
GCN, and |V| is the number of nodes. In the inner optimization step, the graph convolu-
tional network takes O(τL||A||0d) computational time. In the outer optimization step, the
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computational time is O(τ||A||20). As a result, the total computational is O(τ||A||20) if Ld is
smaller than ||A||0.

3.4. Unifying Various GNN and Beyond

To extend the graph convolution operator to the most existing graph convolutions, we
reformulate the classical GNN model into a unified form.

3.4.1. Gcn

The forward propagation of GCN is formulated as follows:

H(l) = σ(D̃−
1
2 ÃD̃−

1
2 H(l−1)W),

where H(0) = X, Ã = A + I, D̃nn = ∑i Ãni, and W ∈ RD×C are the trainable parameters, I
denotes the identity matrix, and σ is a nonlinear function. For better understanding of the
propagation of GCN, we rewrite the embedding update in the following form:

h(l)
v = ∑

u∈N (v)+v

1√
dv
√

du
W (l−1)h(l−1)

v ,

H(l) = σ1(σ2(Z)� (Ã))(l−1)H(l−1)W (l−1)),

Zij =
1

√
di

√
dj

where Ãij = 1, and j ∈ N (i),

where W (l) reflects the trainable parameters on the l-th layer, σ1 is the activate function,
such as ReLU, and σ2 = min[max[0,x],1] is the a non-negative activation function.

3.4.2. Gat

GAT assigns different weights to each neighbor node, and updates the node embed-
dings with weighted average of neighbors:

H(l) = σ1(
1
K

K

∑
k=1

((σ2(Zk)� Ã)H(l−1)W (l−1)
k )),

Zk,ij =So f tmax(atten(W (l−1)
k h(l−1)

i , W (l−1)
k h(l−1)

j ))

where Ãij = 1, and j ∈ N (i),

where W (l−1)
k is the parameter of kth multi-head attention on (l − 1)th layer, So f tmax is

the Softmax operation, and atten is the self-attention operation.

3.4.3. GraphSAGE

GraphSAGE is one representative of the spatial approaches, which learns how to
aggregate feature information from a node’s local neighborhood, and the reformulation is
as follows:

H(l) = σ1(Concat(H(l−1), (σ2(Z)� A)H(l−1))W (l−1)),

Z(l−1)
ij =

1
di

where Aij = 1, and j ∈ N (i).

3.4.4. JK-Net

JK-Net learns the node representation from deep layers by using a jumping network.
There exist different ways to aggregate features from different layers; we take the concate-
nation as an example in our work (other aggregation methods are also applicable). The
formulation of JK-Net is as follows:
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H(L) = FC(Concat(H(0), H(1), · · · , H(L−1)))

with H(l) = σ1((σ2(Z)� Ã)H(l−1)W (l),

Zij =
1√
didj

where Ãij = 1, and j ∈ N (i),

where FC is a fully connected layer and Concat is the concatenation operation.

4. Experiments

In this section, we conduct experiments on four datasets to answer the following
research questions:

• RQ1: How does the performance of the proposed GSEBO compared with the state-of-
the-art methods?

• RQ2: How robust is the proposed GSEBO under different noisy levels?
• RQ3: To what extent does the proposed GSEBO decrease the impact of inter-class

connections?
• RQ4: What are the factors that influence the effectiveness of the proposed GSEBO?

4.1. Experimental Setup
4.1.1. Dataset

We select four widely used real-world node classification benchmark datasets with
graphs of citation networks (Cora and Citeseer [21]), social networks (Terrorist) [28], and
air traffic (Air-USA) [29]. The statistics of the datasets are shown in Table 1.

Table 1. Summary statistics for the datasets.

Cora Citeseer Terrorist Air-USA

Nodes 2708 3327 1293 1190
Edges 5278 4552 3172 13,599
Inter ratio 0.151 0.194 0.362 0.289
Features 1433 3703 106 238
Class 7 6 6 4
Training set 140 120 129 119
Validation set 500 500 258 238
Testing set 1000 1000 906 833

• Citation networks. Cora and Citeseer are citation networks, where the nodes are
papers published in computer science, the features of each publication are described
by a 0/1-valued word vector indicating the absence/presence of the corresponding
word from the dictionary, the adjacency matrix is binary and undirected, which
denotes the citation relation between papers, and the labels are the category of each
paper.

• Terrorist Attacks. Terrorist attacks describe the information related to terrorism attack
entities: the attributes of the entities and the links that connect various entities together
to form a graph structure. This dataset consists of 1293 terrorist attacks each assigned
one of six labels indicating the type of the attack. Each attack is described as a
106-dimensional vector, with a 0 and 1 value indicating the absence and presence,
respectively, of an entity. The edges are binary and undirected.

• Air traffic network. Air-USA is the airport traffic network in the USA, where the
nodes represent airports and the binary undirected edges indicate the existence of
commercial flights between the airports. The features of nodes are one-hot degree
vectors and the labels are generated based on the activity measured by people and
flights passed the airports.



Entropy 2022, 24, 1228 10 of 16

All the baselines and our proposed method can be applied to all types of networks.
We adopt the same data split of Cora and Citeseer as [21], and a split of training, validation,
and testing with a ratio of 10:20:70 on other datasets [12].

4.1.2. Compared Methods

We apply GSEBO on four representative GNN architectures: GCN [21], GAT [5],
GraphSAGE [22], and JK-Net [23]. For each GNN, we compare GSEBO with the vanilla
version, and three variants with state-of-the-art connection modeling methods: AdaEdge
[30], DropEdge [31], and GAUG [12]. In addition, we compared the GSEBO with GSL
methods: BGCN [17], VGCN [18], PTDNet [13], and advanced attention mechanism:
MAGNA [6]. Note that the base model of GSEBO, BGCN, and PTDNet is GCN.

4.1.3. Implementation Details

In the experiments, the separate ratio of training data is set to 0.8 for the train_1
and train_2 datasets, and we optimize the outer and inner parameters on the train_1 and
train_2 datasets, respectively. The latent dimension of all the methods is set to 16. The
parameters for all baseline methods are initialized as the corresponding papers, and are
carefully tuned to achieve optimal performances. The learning rate of inner and outer
optimization is set to 0.01. The hyperparameter λ is set to 5× 10−4, and we search for
the inner learning depth τ over the range [5,10,15,20,25]. As bi-level optimization cannot
guarantee the convergence, we set the patience of early stopping to 20 to terminate the
optimization of GSEBO. To prevent overfitting, the dropout ratio is set to 0.5 for all the
methods. The network architectures of all the methods are configured to be the same as
described in the original papers. Our experiments are conducted with Tensorflow running
on GPU machines (NVIDIA 2080Ti). For all the compared methods, we report the average
accuracy on the test set over 10 runs.

4.2. Performance Comparison

Table 2 shows the performance of GSEBO instantiate with classical GNNs, and Ta-
ble 3 presents the results comparison of GSEBO and state-of-the-art GSL methods. From
Tables 2 and 3, we have the following observations:

Table 2. Performance comparison across GNN architectures.

Method Cora Citeseer Terrorist Air-USA
GCN

Vanilla 81.6 ± 0.7 71.6 ± 0.4 70.0 ± 1.1 56.0 ± 0.8
AdaEdge 81.9 ± 0.7 72.8 ± 0.7 71.0 ± 1.9 57.2 ± 0.8
DropEdge 82.0 ± 0.8 71.8 ± 0.2 70.3 ± 0.9 56.9 ± 0.6
GAUG 83.2 ± 0.7 73.0 ± 0.8 71.4 ± 2.0 57.9 ± 0.4
GSEBO 84.1 ± 0.5 74.3 ± 0.4 72.3 ± 0.8 59.6 ± 0.5

GAT
Vanilla 81.3 ± 1.1 70.5 ± 0.7 67.3 ± 0.7 52.0 ± 1.3
AdaEdge 82.0 ± 0.6 71.1 ± 0.8 72.2 ± 1.4 54.5 ± 1.9
DropEdge 81.9 ± 0.6 71.0 ± 0.5 69.9 ± 1.1 52.8 ± 1.7
GAUG 81.6 ± 0.8 69.9 ± 1.4 68.8 ± 1.1 53.0 ± 2.0
GSEBO 82.8 ± 0.3 72.2 ± 0.9 69.4 ± 1.2 57.3 ± 0.8

GraphSAGE
Vanilla 81.3 ± 0.5 70.6 ± 0.5 69.3 ± 1.0 57.0 ± 0.7
AdaEdge 81.5 ± 0.6 71.3 ± 0.8 72.0 ± 1.8 57.1 ± 0.5
DropEdge 81.6 ± 0.5 70.8 ± 0.5 70.1 ± 0.8 57.1 ± 0.5
GAUG 81.7 ± 0.3 71.4 ± 1.0 70.4 ± 0.5 55.0 ± 1.1
GSEBO 80.7 ± 0.8 73.1 ± 0.4 76.4 ± 0.9 59.2 ± 1.1
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Table 2. Cont.

Method Cora Citeseer Terrorist Air-USA
JK-Net

Vanilla 78.8 ± 1.5 67.6 ± 1.8 70.7 ± 0.7 53.1 ± 0.8
AdaEdge 80.4 ± 1.4 68.9 ± 1.2 71.2 ± 0.7 59.4 ± 1.0
DropEdge 80.4 ± 0.7 69.4 ± 1.1 70.2 ± 1.3 58.9 ± 1.4
GAUG 79.4 ± 1.3 68.9 ± 1.3 70.2 ± 0.5 52.3 ± 1.8
GSEBO 81.6 ± 1.1 69.5 ± 1.4 73.4 ± 1.4 59.8 ± 1.1

Table 3. Performancecomparison of GSEBO with GSL methods.

Method Cora Citeseer Terrorist Air-USA
BGCN 81.2 ± 0.8 72.4 ± 0.5 70.3 ± 0.8 56.5 ± 0.9
VGCN 64.4 ± 0.2 67.8 ± 0.8 73.8 ± 0.9 53.3 ± 0.3
PTDNet 82.8 ± 2.6 72.7 ± 1.8 68.3 ± 1.6 53.4 ± 1.4
MAGNA 81.7 ± 0.4 66.4 ± 0.1 67.2 ± 0.1 55.1 ± 1.2
GSEBO 84.1 ± 0.5 74.3 ± 0.4 72.3 ± 0.8 59.6 ± 0.5

4.2.1. Improvement over Baselines

GSEBO outperforms the baselines in most cases. Considering the average performance
over four datasets, the improvement of GSEBO over the baselines is in the range of 3.0%–
12.5%, which validates the effectiveness of the proposed method. In particular:

• Probabilistic mechanisms. The performance gain of BGCN and VGCN over the
vanilla GCN are limited, which might because of the unsatisfied assumption of the
prior distribution. This result shows the rationality of relaxing the prior assumption
and modeling the connection strength with parameters directly.

• Connection modeling. DropEdge, AdaEdge, GAUG, and PTDNet achieve better
performance than vanilla GNN, which modifies the structure of the graph from
different perspectives, such as the smoothness [30] and robustness [31]. These results
reflect the benefit of connection modeling. However, there is still a clear gap between
these methods and GSEBO, which is attributed to the global objective for learning the
edge strength.

• Attention mechanism. The performance of MAGNA is inferior, which is consistent
with the analysis in [10].

4.2.2. Effects Across GNN Architectures

On the four GNN architectures, GSEBO achieves better performance than the vanilla
version in all cases. In particular, GSEBO achieves an average improvement across
datasets of 4.2%, 4.4%, 4.0%, and 5.74% over the vanilla GCN, GAT, GraphSAGE, and
JK-Net, respectively. These results justify the effectiveness of structure learning of the
proposed GSEBO. Across the four architectures, GSEBO achieves the largest improve-
ment over JK-Net. We postulate the reason is that the jump connection in JK-Net makes
it aggregate more hops of neighbors than the other GNNs. As the hops increase, the
homophily ratio of the neighbors will decrease, i.e., more neighbors are in classes differ-
ent from the target node. Therefore, optimizing the connection strength (i.e., Z) is more
beneficial on JK-Net.

4.2.3. Effects Across Datasets

From the perspective of the dataset, GSEBO consistently performs better than the
vanilla version on the four datasets. Specifically, the average improvement over the four
across classic GNN architectures achieved by GSEBO are 1.9%, 3.1%, 5.3%, and 8.0% on
the four datasets, respectively. Considering that the four datasets come from different
scenarios, these results are evidence for the potential of GSEBO to be widely applied in
practice. Note that the trend of performance improvement is similar to the density of graph,
where Air-USA is the most dense graph with the largest performance improvement. As the
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number of neighbors increases, the percentage of neighbors essential for the classification
of the target node will decrease. This result can reflect the rationality of optimizing the
connection strength according to the overall classification objective.

Moreover, the training loss and test accuracy of GNN methods and the proposed
GSEBO are shown in Figure 4. We observe that the loss of GSEBO tend to be stable
after 30 epochs and is smaller than GCN, GAT, and GraphSAGE, showing the empirical
convergence of GSEBO. This is because simultaneously optimizing the parameters of W
and Z would make the loss function more easily approach to the labels. However, the loss
of JK-Net is smaller than GSEBO, which we attribute to that JK-Net is easier to trap in
over-fitting.

 
GNN has achieved promising achievements with the assumption of homophily, while the noise of graphs breaks the 
assumption and hinders the node representation of GNN. 
 
 

Figure 4. The training loss and test accuracy of classical GNN and GSEBO on Cora.

4.3. Robustness Analysis

We investigate the robustness of GSEBO under the different inter-class levels. In
particular, we follow [13] and construct graphs based on Cora by randomly adding 1000,
3000, 5000, 10,000, and 20,000 inter-class edges, respectively. On the synthetic datasets,
we compare GSEBO with Vanilla, GAUG, DropEdge, and AdaEdge. Figure 5 shows the
performance on the five GNN architectures. From the figures, we have the following
observations:

• The margins between GSEBO and vanilla GNN on the synthetic datasets are larger
than the original Cora. For example, when adding 20,000 inter-class edges, GSEBO
improves the accuracy by 17.6%, 3.1%, 40.6%, and 4.4% compared to GCN, GAT,
GraphSAGE, and JKNet. This result indicates the robustness of GSEBO’s structure
learning ability.

• In most cases, GSEBO outperforms the baselines at different noisy levels, which further
justifies its robustness.

• GAUG and AdaEdge utilizes different strategies to update the structure of the
graph, which also consistently perform better than vanilla GNN. However, their
gaps to GSEBO on the synthetic data are larger than the original Cora. We postulate
that the reason for this is that their objectives are affected by the intentionally added
noise.

• DropEdge shows worse performances than the vanilla GNN on the synthetic datasets.
The comparison shows that randomly dropping edges fails to enhance GNN robust-
ness when the noisy level is high.
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Figure 5. Node classification performance of GSEBO on Cora poisoned at different inter-class levels.

4.4. Visualization of Denoising (RQ3)

To investigate the effect of the connection strength matrix Z, we further visually
compare the initialization of Z (i.e., initial weight) and its value after optimization (i.e.,
denoised weight). As both of them are large and sparse matrix, we visualize part of
the denoised weight with a region of 100× 100, which is shown on Figure 6. We show
the results on Core and Air-USA, where the improvement of GSEBO is the smallest and
largest, respectively. In the figures, we use red pixels and blue pixels to represent intra-
class and inter-class edges, respectively, where a deeper color represents larger values.
From Figure 6a,b, we find that the denoised weight matrix mainly decreases the value
corresponding to inter-class connections, which, thus, can downweight the corresponds
neighbor during representation propagation. In some cases, the denoised weight increases
the weight of intra-class connections, which also facilitates denoising. Apparently, most
edges in Air-USA are intra-class, and GSEBO still downweights a portion of inter-class
edges and increases the intra-class weights, as shown in Figure 6c,d. This is because the
denoised weight is learned in order to reach the overall classification objective.

4.5. Hyperparametric Analysis (RQ4)

We then investigate how the hyperparameters of GSEBO affect its effectiveness. As
introduced in Section 3, the most critical hyperparameter of GSEBO is the training depth of
inner optimization step (i.e., τ), which also is the number of gradient update in each inner
optimization step. For the consideration of computing cost, we cap the value of τ at 25 and
changes its value with step of 5, i.e., setting τ ∈ {5, 10, 15, 20, 25}.

Figure 7 shows the performance of GSEBO applied to the four classical GNN archi-
tectures on the four datasets as changing the value of τ. From the figures, we have the
following observations: (1) in most cases, the overall performance of the proposed GSEBO
on each dataset is relatively stable as increasing the value of τ. This result indicates the
insensitivity of GSEBO to the hyperparameter. (2) While increasing the value of τ can
slightly improve the performance of GSEBO, we still suggest setting it as a relatively small
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value. This is because enlarging τ will increase the memory and computation cost of
GSEBO.
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(c) Intra edge weight increase on Air-USA (d) Inter edge weight decrease on Air-USA 

Figure 6. Comparison of the initial weight and denoised weight to visualize the effect of denoising.
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Figure 7. The performance of GSEBO on the four datasets as changing the value of τ from 5 to 25.

5. Conclusions

In this work, we propose a novel GSEBO, which utilizes the generic structure extractor
to extract the graph structure as learnable parameters and learns the structure from the
global view. To better optimize the structure and common parameters, we decompose it
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into two mutually constrained optimization objectives, i.e., a bi-level optimization, with
inner and outer optimization for common parameters and graph structure optimization,
respectively. Extensive experiments demonstrate the effectiveness and robustness of GSEBO
on both benchmark and synthetic datasets.

Even though GSEBO achieved impressive results, there are still some limitations:
GSEBO cannot be effectively applied to large graphs, which requires implementation of
mini-batches. Besides, we evaluate GSEBO in the transductive setting; when new nodes
are added to the graph after training, GSEBO has to retrain the entire model. For future
research, we would like to explore solutions to the above limitations.
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5. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. In Proceedings of the ICLR,

Vancouver, BC, Canada, 30April–3 May 2018.
6. Wang, G.; Ying, Z.; Huang, J.; Leskovec, J. Multi-hop attention graph neural network. In Proceedings of the IJCAI, Virtual, 19–26

August 2021.
7. Jiang, B.; Zhang, Z.; Lin, D.; Tang, J.; Luo, B. Semi-supervised learning with graph learning-convolutional networks. In

Proceedings of the CVPR, Long Beach, CA, USA, 15–20 June 2019.
8. Chen, Y.; Wu, L.; Zaki, M.J. Iterative deep graph learning for graph neural networks: Better and robust node embeddings. In

Proceedings of the NeurIPS, Virtual, 6–12 December 2020.
9. Zhao, J.; Wang, X.; Shi, C.; Hu, B.; Song, G.; Ye, Y. Heterogeneous graph structure learning for graph neural networks. In

Proceedings of the AAAI, Vancouver, BC, Canada, 2–9 February 2021.
10. Knyazev, B.; Taylor, G.W.; Amer, M. Understanding attention and generalization in graph neural networks. In Proceedings of the

NeurIPS, Vancouver, BC, Canada, 8–14 November 2019.
11. Zheng, C.; Zong, B.; Cheng, W.; Song, D.; Ni, J.; Yu, W.; Chen, H.; Wang, W. Robust graph representation learning via neural

sparsification. In Proceedings of the ICML, Virtual, 13–18 July 2020.
12. Zhao, T.; Liu, Y.; Neves, L.; Woodford, O.; Jiang, M.; Shah, N. Data augmentation for graph neural networks. In Proceedings of

the AAAI, Vancouver, BC, Canada, 2–9 February 2021.
13. Luo, D.; Cheng, W.; Yu, W.; Zong, B.; Ni, J.; Chen, H.; Zhang, X. Learning to drop: Robust graph neural network via topological

denoising. In Proceedings of the WSDM, Virtual, 8–12 March 2021.
14. Kazi, A.; Cosmo, L.; Navab, N.; Bronstein, M. Differentiable Graph Module (DGM) for Graph Convolutional Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2022. https://doi.org/10.1109/TPAMI.2022.3170249.
15. Franceschi, L.; Niepert, M.; Pontil, M.; He, X. Learning discrete structures for graph neural networks. In Proceedings of the ICML,

Long Beach, CA, USA, 9–15 June 2019.
16. Li, R.; Wang, S.; Zhu, F.; Huang, J. Adaptive graph convolutional neural networks. In Proceedings of the AAAI, New Orleans,

LA, USA, 2–7 February 2018.
17. Zhang, Y.; Pal, S.; Coates, M.; Ustebay, D. Bayesian graph convolutional neural networks for semi-supervised classification. In

Proceedings of the AAAI, Honolulu, HI, USA, 27 January–1 February 2019.



Entropy 2022, 24, 1228 16 of 16

18. Elinas, P.; Bonilla, E.V.; Tiao, L. Variational inference for graph convolutional networks in the absence of graph data and
adversarial settings. In Proceedings of the NeurIPS, Virtual, 6–12 December 2020.

19. Wang, J.; Li, Z.; Long, Q.; Zhang, W.; Song, G.; Shi, C. Learning Node Representations from Noisy Graph Structures. In
Proceedings of the ICDM, Sorrento, Italy, 17–20 November 2020.

20. Wu, T.; Ren, H.; Li, P.; Leskovec, J. Graph information bottleneck. In Proceedings of the, NeurIPS, Virtual, 6–12 December 2020.
21. Kipf, T.N.; Welling, M. Semi-Supervised classification with graph convolutional networks. In Proceedings of the ICLR, Toulon,

France, 24–26 April 2017.
22. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation learning on large graphs. In Proceedings of the NeurIPS,

Long Beach, CA, USA, 4–9 December 2017.
23. Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.i.; Jegelka, S. Representation learning on graphs with jumping knowledge

networks. In Proceedings of the ICML, Stockholm, Sweden, 10–15 July 2018.
24. Domke, J. Generic methods for optimization-based modeling. In Proceedings of the AISTATS, La Palma, Spain, 21–23 April 2012.
25. Maclaurin, D.; Duvenaud, D.; Adams, R. Gradient-based hyperparameter optimization through reversible learning. In

Proceedings of the ICML, Lille, France, 6–11 July 2015.
26. Franceschi, L.; Donini, M.; Frasconi, P.; Pontil, M. Forward and reverse gradient-based hyperparameter optimization. In

Proceedings of the ICML, Sydney, Australia, 6–11 August 2017.
27. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980.
28. Zhao, B.; Sen, P.; Getoor, L. Entity and relationship labeling in affiliation networks. In Proceedings of the ICML Workshop,

Pittsburgh, PA, USA, 25–29 June 2006.
29. Wu, J.; He, J.; Xu, J. DEMO-Net: Degree-specific graph neural networks for node and graph classification. In Proceedings of the

KDD, Anchorage, AK, USA, 4–8 August 2019.
30. Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; Sun, X. Measuring and relieving the over-smoothing problem for graph neural networks

from the topological view. In Proceedings of the AAAI, New York, NY, USA, 7–12 February 2020.
31. Rong, Y.; Huang, W.; Xu, T.; Huang, J. DropEdge: Towards deep graph convolutional networks on node classification. In

Proceedings of the ICLR, Virtual, 26–30April 2020.


	Introduction
	Related Work
	Attentive Mechanism
	Noise Detection
	Probabilistic Mechanism
	Bi-Level Optimization on GNN

	Methodology
	Preliminary
	Generic Structure Extraction
	Update Parameters with Bi-Level Optimization
	Inner Optimization for Common Parameters
	Outer Optimization for Graph Structure
	Training Process
	Complexity Analysis

	Unifying Various GNN and Beyond
	Gcn
	Gat
	GraphSAGE
	JK-Net


	Experiments
	Experimental Setup
	Dataset
	Compared Methods
	Implementation Details

	Performance Comparison
	Improvement over Baselines
	Effects Across GNN Architectures
	Effects Across Datasets

	Robustness Analysis
	Visualization of Denoising (RQ3)
	Hyperparametric Analysis (RQ4)

	Conclusions
	References

