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Abstract: To scientifically and effectively evaluate the service capacity of expressway service areas 
(ESAs) and improve the management level of ESAs, we propose a method for the recognition of 
vehicles entering ESAs (VeESAs) and estimation of vehicle dwell times using electronic toll collec-
tion (ETC) data. First, the ETC data and their advantages are described in detail, and then the clean-
ing rules are designed according to the characteristics of the ETC data. Second, we established fea-
ture engineering according to the characteristics of VeESA and proposed the XGBoost-based VeESA 
recognition (VR-XGBoost) model. Studied the driving rules in depth, we constructed a kinematics-
based vehicle dwell time estimation (K-VDTE) model. The field validation in Part A/B of Yangli ESA 
using real ETC transaction data demonstrates that the effectiveness of our proposal outperforms the 
current state-of-the-art. Specifically, in Part A and Part B, the recognition accuracies of VR-XGBoost 
are 95.9% and 97.4%, respectively, the mean absolute errors (MAEs) of dwell time are 52 and 14 s, 
respectively, and the root mean square errors (RMSEs) are 69 and 22 s, respectively. In addition, the 
confidence level of controlling the MAE of dwell time within 2 min is more than 97%. This work can 
effectively recognize the VeESA and accurately estimate the dwell time, which can provide a refer-
ence idea and theoretical basis for the service capacity evaluation and layout optimization of the 
ESA. 
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1. Introduction 
By the end of 2021, the total mileage of expressways in China was approximately 

169,100 km, ranking first in the world [1]. As an essential and critical core node of express-
ways, ESA is of great significance in regulating road traffic flow and relieve traffic pres-
sure. However, the infrastructure of most ESAs built in the early years has been unable to 
meet the demand of the rising traffic volume, resulting in frequent queues and congestion 
[2,3]. Therefore, a scientific and reasonable evaluation of the service capacity of ESA and 
further quantitative suggestions for the reconstruction and extension of ESA have become 
urgent issues at present [4,5]. The pause rate and dwell time of vehicles are essential pa-
rameters in the operation and management of ESA. It is not only an important metric for 
operation evaluation but also a premise for layout optimization. Therefore, it is of great 
practical significance and application value to accurately estimate the pause rate and 
dwell time for the quantification of the reconstruction and extension of ESA. 
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Currently, the main methods for pause rate estimation are the elastic coefficient 
method [6,7] and feature engineering method [8–18]. The elasticity coefficient method, 
proposed by the Japanese expressway design standards, mainly uses ESA pause rate sur-
vey data and national economic data to establish the pause rate trend model to estimate 
the future pause rate. Although this method is simple in principle and convenient in cal-
culation, it has certain limitations and one-sidedness. On the other hand, the feature engi-
neering method mainly considers multidimensional features such as major road traffic 
flow, average speed and human physiological demand and feeds the model for training 
and learning to estimate the pause rate. However, few studies have investigated the esti-
mation of dwell time in ESA. The limited survey data obtained at a specific ESA are mainly 
used in existing studies to statistically analyze the vehicle dwell time according to catego-
ries such as vehicle type, diurnal differences, seasonal differences, etc. [19–24]. Therefore, 
the following challenges remain for pause rate and dwell time estimation. (1) Fewer and 
more difficult to obtain ESA data, resulting in model training effects that could be further 
improved. (2) Existing studies tend to consider only the overall estimation of the pause 
rate, ignoring the differences between individual vehicles. (3) The dwell time estimation 
fails to fully consider the ESA regionality, timeliness and kinematic principle in the vehicle 
travel law. 

To address the aforementioned challenges, we propose a method for the recognition 
of vehicles entering ESAs (VeESAs) and the estimation of dwell times using ETC data. 
First, with the rapid development of Internet of Vehicles (IoV) technology in recent years 
[25,26], China built the world’s largest IoV system—the ETC system—at the end of 2019, 
with a penetration rate of more than 80% of its users. Therefore, this study will utilize ETC 
data as experimental data to solve the problem of insufficient data. Then, ETC data pre-
processing rules are designed by deeply mining the characteristics of ETC data. Second, 
we proposed an XGBoost-based VeESA recognition (VR-XGBoost) model based on a de-
tailed analysis of the main factors affecting VeESA. On this basis, taking into full consid-
eration the driving pattern of vehicles entering/exiting the ESA, we proposed a kinemat-
ics-based vehicle dwell time estimation (K-VDTE) method, which is expected to provide 
reference ideas for the scientific and reasonable evaluation of the service capacity of the 
ESA. This work can provide decision support for the layout optimization of ESA recon-
struction and extension and improve the management level and high-quality develop-
ment of ESA. 

The main contributions of this study are as follows: 
1. We proposed a VR-XGBoost model for recognizing vehicles entering expressway ser-

vice areas based on ETC data, which not only achieves an effective estimation of the 
pause rate but also accurately recognizes individual vehicles driving into ESA. 

2. Taking into full consideration the driving pattern of vehicles entering/exiting the 
ESA, we proposed a K-VDTE model for vehicle dwell time estimation. 

3. The validity of the proposed method is verified by using real ETC data, which can 
provide a more scientific and reasonable reference basis for ESA reconstruction and 
extension. 
The remainder of this work is organized as follows: Section 2 reviews related work 

regarding ESA pause rate and vehicle dwell time estimation. The proposed method, in-
cluding the framework, data preprocessing, feature engineering, the VR-XGBoost model, 
and the K-VDTE model, is described in Section 3. Section 4 shows the experimental results 
and analysis. Finally, the conclusion is presented in Section 5. 

2. Related Work 
2.1. Pause Rate Estimation 

In this section, an overview of pause rate estimation methods is presented. The elastic 
coefficient method (ECM) was proposed in early Japanese expressway design standards 
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for calculating the pause rate of various types of VeESAs [6]. Drawing on relevant experi-
ence in Japan, Sun et al. [7] concluded that ECM was also applicable to the development 
pattern of the ESA pause rate in Guangdong Province, China, and used the ECM to esti-
mate the average growth rate of the pause rate to achieve prediction. 

Considering the close relationship between the pause rate and ESA spacing, Cui et 
al. [8] proposed a new method for determining the pause rate based on the continuous 
vehicle travel time. Through an in-depth analysis of the relationship between the pause 
rate and traffic flow parameters [9,10], Chen et al. [11] proposed a pause rate estimation 
method based on a traditional linear regression model, which provided an important ref-
erence basis for the layout optimization and function design of ESA. In response to the 
low accuracy of pause rate prediction, a BP neural network-based ESA pause rate predic-
tion model was constructed [12]. On the basis of previous work, Shen et al. [13] extracted 
multidimensional feature vectors from the data and constructed a tree-level BP neural 
network for pause rate prediction, which further improved the prediction accuracy. To 
further optimize the essential parameters of the wavelet neural network (WNN), some 
scholars introduced evolutionary algorithms, such as particle swarm optimization (PSO) 
[14] and genetic algorithm (GA) [15], to optimize the initial parameters of the WNN. The 
improved WNN-based pause rate prediction models were established, and the validity 
and reliability were verified on a real dataset. Under the premise of fully investigating the 
global optimal search capability of particles, Sun et al. [16] improved the topology of tra-
ditional PSO and fused it with the XGBoost algorithm to form a combined model for ESA 
traffic flow prediction. Experiments have demonstrated that the combined model has 
higher prediction accuracy and stronger generalization ability than a single model. 

In the past few decades, deep learning methods [27,28], such as long short-term 
memory (LSTM) and convolutional neural networks (CNN), have achieved good perfor-
mance in the field of transportation and are widely used in traffic flow prediction. Wang 
et al. [17] built a model based on LSTM for ESA instantaneous population analysis and 
prediction. The experimental results showed that it was able to accurately predict popu-
lation mobility despite the relatively large population fluctuations. Zhao et al. [18] ex-
tracted spatiotemporal features using CNN, LSTM, and attention mechanism models and 
proposed a short-term traffic flow prediction model based on STL-OMS to achieve an ac-
curate prediction of ESA traffic flow. 

2.2. Vehicle Dwell Time Estimation 
In this section, an overview of dwell time estimation methods is presented. King et 

al. [19] conducted an early field survey at nine locations in the United States. The results 
showed that the average vehicle dwell time in rest areas was 11.4 min, with a standard 
deviation of 12.87 min, a minimum dwell time of 1 min and a maximum dwell time of 3 h 
and 31 min. Recently, the Japanese Institute of Expressway General Technology noted 
through actual statistics that the average dwell time of small vehicles in most ESAs ex-
ceeded 25 min [20], while the dwell time for families with elderly and children was ex-
tended by an average of 10~20 min in ESAs [21]. Furthermore, analysis of dwell time by 
vehicle type showed that heavy vehicles had the longest average dwell time, significantly 
longer than other vehicle types [22]. Analysis of dwell time by seasonal differences 
showed that all categories of vehicles had longer dwell times in summer than in any other 
season [23]. Analysis of dwell time by diurnal differences showed that the average dwell 
time was significantly longer at night than during the day [24]. 

In addition, Hirai et al. [29] estimated the total dwell time in the service area for the 
whole trip by mining the ETC trip data using the average travel speed method. The cor-
relation analysis of the dwell time distribution characteristics and rest behavior [30] was 
expected to construct the next rest behavior model. At the same time, the driver’s rest 
behavior was used to characterize the distribution of vehicle travel time [31] to further 
construct driving behavior characteristics [32]. A method for calculating the number of 
stranded vehicles across time was proposed through statistical analysis of vehicle dwell 
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time and rest behavior characteristics [33], and then a mathematical model for ESA scale 
design was proposed [34], which was used to optimize the ESA layout [35,36]. 

3. Methodology 
3.1. Framework 

In this section, we present the framework of this study, as shown in Figure 1. First, 
we perform data preprocessing, including extraction of required data, ETC trajectory con-
struction, data cleaning, data fusion and forming of structured data. Second, we consider 
features such as speed features, spatiotemporal features and external features to construct 
feature engineering, thus building an XGBoost-based VeESA recognition model. On this 
basis, a kinematics-based vehicle dwell time estimation model is proposed. This study not 
only enables the effective recognition of VeESA but also further estimates their dwell time 
in the service area. 

Extract
Required Data

Construct
ETC Trajectory

Data Cleaning Data Fusion Structured Data 

Data Preprocessing

Feature Construction

Speed Features Spatio-temporal Features External Features

VR-XGBoost Model

Feature Selection

Weak Learner-1 Weak Learner-2 Weak Learner-n

Strong Learner

Classification 
Results

K-VDTE Model

VeESA Trajectory Data

Actual Travel Time

 Stage1: smooth driving;

 Stage2: decelerating into;

 Stage4: accelerating out; 

 Stage5: smooth driving

Vehicle Dwell Time

...

 

Figure 1. Overall framework. 

3.2. Data Overview and Preprocessing 
3.2.1. Data Overview 

The experimental datasets in this work contain the ETC dataset and ESA dataset. The 
ETC data were collected by more than 1000 ETC gantries deployed in the whole road net-
work of the Fujian Provincial Expressway. Specifically, as the world’s largest IoV system, 
the ETC system uses radio frequency identification (RFID) technology to enable mobile 
vehicles equipped with an onboard unit (OBU) to communicate with roadside units (RSU) 
for data collection [37]. The collection period was from September 3 to 10, 2020. We ob-
tained a total of 42,964,489 ETC data, including vehicle ID (after desensitization), transac-
tion time, gantry ID, vehicle type, etc., as shown in Table 1. According to the classification 
of vehicle types and tolls of China’s expressway, vehicles can be divided into 4 categories 
of buses, 6 categories of trucks and 6 categories of special operating vehicles. The total 
number of vehicles is approximately 1.72 million in the dataset. Specifically, each transac-
tion data contains all field information. 
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Table 1. Description of partial fields in ETC data. 

 Field Name Description Example 
1 VehID vehicle ID A000001 
2 VehClass vehicle type 1 

3 EnWeight 
entrance gross axle 

weight 
1500 

4 EnStation entrance ID 1002 
5 EnTime entrance time 2020/9/5 00:00:00 
6 GantryID gantry ID G000335001000120020 
7 TradeTime transaction time 2020/9/5 01:00:00 
8 Workday workday 0 

The ESA data were collected by the cameras at the entrance and exit of Yangli ESA 
Part A/B. Specifically, the camera uses the technology of license plate recognition to obtain 
information about the vehicles entering the service area [38]. The collection period is con-
sistent with the ETC data. We obtained more than 30,000 data points, including vehicle ID 
(after desensitization), capture time, service area ID and entrance/exit information, as 
shown in Table 2. The total number of vehicles is approximately 18,000 in the dataset. It is 
worth noting that this dataset is only used for experimental validation to evaluate the 
recognition effect and the estimation accuracy of vehicle dwell time. 

Table 2. Description of fields in ESA data. 

 Field Name Description Example 
1 SAID service area ID Yangli Part A 
2 EnEx entrance/exit 0/1 
3 VehID vehicle ID A000001 
4 CapTime capture time 2020/9/5 00:00:00 

In this work, only the data of Yangli ESA and two ETC gantries before and after it 
are used, whose deployment locations are shown in Figure 2. To facilitate the following 
explanation, we have made relevant definitions as follows. 
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Figure 2. Visualization of ETC gantries and ESA locations. 
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Expressway Section QD [39]: Each ETC gantry and the entrance/exit of an express-
way toll station is collectively called a node 𝑮, and two adjacent nodes constitute an ex-
pressway section, referred to as QD: 

𝑸𝑫 =< 𝐺ଵ,  𝐺ଶ >  (1)

where 𝐺ଵ and 𝐺ଶ are the start and end points of QD.  
Taking road upline as an example, it can be seen from Figure 2 that 𝐺ଵ and 𝐺ଶ con-

stitute Section 1 (𝑸𝑫ଵ), 𝐺ଶ and 𝐺ଷ constitute Section 2 (𝑸𝑫ଶ), where the ESA is located, 
and 𝐺ଷ and 𝐺ସ constitute Section 3 (𝑸𝑫ଷ). It can be found from the partial enlarged de-
tail that the gantries always appear in pairs, which are distributed along the upline and 
downline of the road, such as 𝐺ଶ and 𝐺ଶ

ᇱ . Therefore, the discrete ETC data need to be 
processed into vehicle trajectories and fused with the ESA data, as detailed in Section 3.2.2. 

3.2.2. Data Preprocessing 
The prerequisite for effective data mining is to ensure data quality. However, there 

is a large amount of “dirty” data in ETC data, which is caused by various objective factors 
such as equipment failure, wireless signal crosstalk and bad weather in the process of ETC 
data collection, transmission and storage, which seriously affects the potential value of 
ETC data mining. There are 3 main problems in the “dirty” data as follows: 
(1) Data Redundancy  

Generally, it is generated by repeated uploading of data in the transmission process 
or repeated copying in the storage process. This tends to cause an increase in the data scale 
and serious interference with data mining. In addition, the continuous communication 
between vehicle OBUs and ETC antennas due to traffic congestion and anchor failure 
within the antenna coverage area is also a cause of data redundancy. In general, it is suf-
ficient to keep only one of the instances of data and delete the rest directly. 
(2) Data Missing  

Due to equipment failure, bad weather and other reasons, the vehicle OBU does not 
communicate or communicates unsuccessfully with the ETC antenna, which results in 
missing data. At the same time, there is also the possibility of missing data due to network 
packet loss during data transmission. 
(3) Data Abnormality  

With the influence of wireless signal crosstalk and other factors, the vehicle OBU of 
the vehicle traveling on the road upline communicates successfully with the ETC antenna 
deployed on the road downline, and the dataset generates records that do not comply 
with expressway driving rules. 

However, due to the highly discrete characteristic of ETC data, it is difficult to 
achieve effective judgment of data abnormalities due to isolated data points. Therefore, it 
is necessary to rely on the trajectory semantic context formed by the topology of the ex-
pressway ETC gantry network to accurately detect and repair the above situation. For this 
purpose, we further define it as follows: ETC Trajectory eTr: The sequence of ETC gantry 
nodes formed by a vehicle passing through a continuous expressway Section <

𝑸𝑫𝟏, 𝑸𝑫𝟐, . . . , 𝑸𝑫𝒏ି𝟏 > is called an ETC trajectory eTr: 

𝒆𝑻𝒓 =< 𝒕𝒓𝟏, 𝒕𝒓𝟐, . . . , 𝒕𝒓𝒏 > (2)

where 𝒕𝒓𝟏 and 𝒕𝒓𝒏 are the start and end points of the trajectory, respectively. 𝒕𝒓𝒊 is the 
transaction data when the vehicle travels through the ETC gantry, which contains infor-
mation such as gantry ID 𝒕𝒓𝒊.𝑵, transaction timestamp 𝒕𝒓𝒊.𝑻, vehicle ID 𝒕𝒓𝒊.𝑷, vehicle type 
𝒕𝒓𝒊.𝑪, entrance gross axle weight 𝒕𝒓𝒊.𝑬𝑾, entrance ID 𝒕𝒓𝒊.𝑬𝑰𝑫 , entrance timestamp 𝒕𝒓𝒊.𝑬𝑻 
and workday 𝒕𝒓𝒊.𝑯 (consistent with Table 1). n indicates the total number of nodes that 
the vehicle passes through. 
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The ETC data cleaning algorithm (Algorithm 1) includes the construction of the ve-
hicle trajectory, data cleaning and data repair. First, the ETC data are grouped by vehicle 
ID  𝒕𝒓𝒊.𝑷, entrance ID 𝒕𝒓𝒊.𝑬𝑰𝑫, and entrance timestamp 𝒕𝒓𝒊.𝑬𝑻. Second, we eliminate dupli-
cate data after sorting by transaction timestamp 𝒕𝒓𝒊.𝑻 for each set of data. Third, we obtain 
two adjacent data in each set of data and judge the correctness by its topological infor-
mation, which mainly includes the removal of redundant data generated by the opposite 
gantries and the repair of missing data. It is worth noting that the topology dataset in-
cludes two subsets: 𝑻𝑷 and 𝑻𝑷ᇱ, which is a collection of topologies (e.g., < 𝐺ଵ, 𝐺ଶ >). 
Specifically, 𝑻𝑷 = {< 𝐺ଵ, 𝐺ଶ >, < 𝐺ଶ, 𝐺ଷ >, < 𝐺ଷ, 𝐺ସ >, … }  denotes normal topology data 
and 𝑻𝑷ᇱ = {< 𝐺ଵ, 𝐺ଶ

ᇱ >, < 𝐺ଶ, 𝐺ଷ
ᇱ >, < 𝐺ଷ, 𝐺ସ

ᇱ >, … } denotes opposite topology data. The to-
pologies in 𝑻𝑷 and 𝑻𝑷ᇱ always appear in pairs, such as < 𝐺ଵ, 𝐺ଶ > and < 𝐺ଵ, 𝐺ଶ

ᇱ >. Fi-
nally, the vehicle trajectories that meet the requirements are added to the trajectory dataset 
𝒆𝑻𝑹𝑨𝑱. The specific algorithm is shown as follows: 

Algorithm 1: ETC data cleaning algorithm 
Input: ETC data eData, Topology data TP, Opposite topology data TP′ 
Output: ETC trajectory dataset 𝒆𝑻𝑹𝑨𝑱 
1: G_eData = eData.Groupby([ Ptr , EIDtr , ETtr ]) ; # Grouping 

2: For jeTr ∈ G_eData do: # Traversal operation for each set of data 
3:  eTr௝ ← eTr௝ . 𝑠𝑜𝑟𝑡𝑒𝑑(𝑏𝑦 = tr்) # Sorted by transaction time 
4: . _ ()j j drop duplicateseTr eTr # Data deduplication 

5: While (i=1, i < len( jeTr )): 
6:   . 1.,i N i N tp  <tr tr  
7:   IF tp TP : 
8:   𝑖+= 1; 
9:    continue; 
10:   Else IF 'tp TP : 
11:   . 2

'
.,i N i N tp   <tr tr  

12:   𝑰𝑭 ' tp TP : 
13:     delete 1itr # Delete opposite gantry transaction data 
14:    i+= 2; 
15:   𝐸𝑙𝑠𝑒: 
16:    '.

''

1.
,i N i N

tp   <tr tr , ' 2.1.

''' , i Ni N 
tp   <tr tr  

17:    IF '' tp TP && ''' tp TP : 
18:     '1. 1.i N i N 

tr tr # Replacement of opposite gantry ID 
19:     i+= 2; 
20:    Else: 
21:     break; 
22:    End IF 
23:   End IF 
24:  Else: 
25:   break; 
26:  End IF 
27:  IF i = len( jeTr )-1: 
28:   ( )jappendeTRAJ. eTr ; 
29:   End IF 
30: End While 
31: End For 
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The ETC driving trajectory through data cleaning also needs to be fused and matched 
with the service area traffic data as the label data for subsequent experiments. Therefore, 
we designed algorithm for fusion of ETC trajectory and ESA data (Algorithm 2). As seen 
from Section 3.2.1, the ESA is located in 𝑸𝑫𝟐. Therefore, only the ETC driving trajectory 
data and service area data vehicle data must be obtained, and at the same time, the service 
area entrance and exit capture time in the 2nd and 3rd gantry transaction time periods can 
match the VeESA to the corresponding ETC driving trajectory. The remaining unmatched 
driving trajectories are not driven into the service area trajectories. 

Notably, the gantry system and the service area entrance/exit camera system appear 
to be clocked out of sync. Therefore, the time difference delta is set. We make the transac-
tion time of 𝐺𝟐  ∆𝑡  hours ahead and the transaction time of 𝐺𝟑  ∆𝑡  hours behind, i.e., 
𝑡𝑟ଶ.்

௝
− ∆𝑡  and  𝑡𝑟ଷ.்

௝
+ ∆𝑡 . By expanding the time range, we ensure that VeESA is fully 

matched. After the experiments, the time difference in this work is set to 1 h, i.e., ∆𝑡 = 1ℎ. 
The specific algorithm is shown as follows: 

Algorithm 2: Fusion of ETC trajectory and ESA data 
Input: ETC trajectory dataset eTRAJ, ESA dataset sData, time difference ∆t 
Output: final trajectory data 𝒆𝑻𝒓 
1: VIDSet = unique(𝒔𝑫𝒂𝒕𝒂. VehID) 
2: For 𝒆𝑻𝒓𝒋 ∈ 𝒆𝑻𝑹𝑨𝑱 do: 
3: 𝒆𝑻𝒓௝ =< 𝑡𝑟௉

௝
, 𝑡𝑟ଵ,்

௝
, 𝑡𝑟ଶ,்

௝
, 𝑡𝑟ଷ,்

௝
, 𝑡𝑟ସ,்

௝
, 𝑡𝑟஼

௝
, 𝑡𝑟ாூ஽

௝
, 𝑡𝑟ா்

௝
, 𝑡𝑟ௐ

௝
, 𝑡𝑟ு

௝
>; 

4: 𝑡𝑟௟
௝

← 0; 𝑡𝑟௉஼்
௝

← 𝑛𝑢𝑙𝑙;  𝑡𝑟ே஼்
௝

← 𝑛𝑢𝑙𝑙; 
5:  If 𝑡𝑟௉

௝  in 𝑉𝐼𝐷𝑆𝑒𝑡: 
6:   sdTmp = 𝒔𝑫𝒂𝒕𝒂[𝒔𝑫𝒂𝒕𝒂. VehID == 𝑡𝑟௉

௝
] 

7:   For row in sdTmp.iterrows(): 
8:   IF 𝑡𝑟ଶ.்

௝
− ∆𝑡< row.CapTime < 𝑡𝑟ଷ.்

௝
+ ∆𝑡: 

9:     𝑡𝑟௟
௝

← 1; 
10:    IF row.ExEn = 0: 
11:     𝑡𝑟௉஼்

௝
← row. CapTime; 

12:     Else: 
13:     𝑡𝑟ே஼்

௝
← row. CapTime; 

14:     End IF 
15:    Else: 
16:     continue; 
17:    End IF 
18:   End For 
19:  Else: 
20:   continue; 
21:  End IF  
22: 𝒆𝑻𝒓௝. 𝑎𝑝𝑝𝑒𝑛𝑑(< 𝑡𝑟௉஼்

௝
, 𝑡𝑟ே஼்

௝
, 𝑡𝑟௟

௝
>) 

23: End For 

Through data cleaning and data fusion, a total of approximately 44,000 and 39,000 
trajectories were obtained in Yangli Part A and Part B, respectively. The final data samples 
are shown in Table 3. In these trajectories, the total ETC trajectories of entering Part A and 
Part B are approximately 7800 and 6700, respectively, and the pause rates of both Parts A 
and B are approximately 17%. It is worth noting that due to equipment failure and other 
reasons, there is a missing situation of service area entrance/exit capture data in the ex-
perimental dataset. However, this problem does not affect the experiments on the recog-
nition of VeESA in this work. In other words, only one valid capture of data needs to exist 
in the ESA entrance/exit data to complete the tagging work. Subsequent vehicle dwell 
time estimation experiments will be conducted by selecting the trajectories where both 
entrance and exit capture data exist. 
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Table 3. Examples of experimental data. 

 𝒕𝒓𝒑 𝒕𝒓𝟏.𝑻 𝒕𝒓𝟐.𝑻 𝒕𝒓𝟑.𝑻 𝒕𝒓𝟒.𝑻 𝒕𝒓𝑪 𝒕𝒓𝑬𝑰𝑫 𝒕𝒓𝑬𝑻 𝒕𝒓𝑾 𝒕𝒓𝑯 𝒕𝒓𝑷𝑪𝑻 𝒕𝒓𝑵𝑪𝑻 𝒕𝒓𝒍 

Part A 

A0000001
2020-09-05 

08:06:03 
2020-09-05 

08:08:20 
2020-09-05 

08:14:12 
2020-09-05 

08:23:02 23 6101 
2020-09-05 

06:29:55 18.8 1 
2020-09-05 

08:01:59 
2020-09-05 

08:04:08 1 

A0000002
2020-09-03 

06:28:34 
2020-09-03 

06:30:46 
2020-09-03 

06:43:52 
2020-09-03 

06:52:07 22 6103 
2020-09-03 

04:24:28 11.4 0 
2020-09-03 

06:24:42 
2020-09-03 

06:33:32 1 

A0000003
2020-09-10 

23:38:27 
2020-09-10 

23:40:24 
2020-09-10 

23:43:03 
2020-09-10 

23:50:57 
1 2202 

2020-09-10 
23:19:23 

0 0   0 

A00000042020-09-07 
03:51:13 

2020-09-07 
03:54:27 

2020-09-07 
03:59:52 

2020-09-07 
04:11:46 

11 6101 2020-09-06 
22:46:11 

14.3 0   0 

A0000005
2020-09-03 

21:14:13 
2020-09-03 

21:17:24 
2020-09-04 

04:56:05 
2020-09-04 

05:06:41 16 6307 
2020-09-03 

19:33:43 45.1 0 
2020-09-03 

21:12:24  1 

Part B 

A0000006
2020-09-04 

17:17:52 
2020-09-04 

17:32:36 
2020-09-04 

17:48:00 
2020-09-04 

17:50:17 16 6707 
2020-09-04 

16:48:35 50.1 0  
2020-09-04 

17:36:41 1 

A0000007
2020-09-08 

13:42:53 
2020-09-08 

13:54:00 
2020-09-08 

14:05:48 
2020-09-08 

14:07:57 
2 6707 

2020-09-08 
13:23:20 

0 0   0 

A00000082020-09-06 
10:47:19 

2020-09-06 
10:55:17 

2020-09-06 
11:19:16 

2020-09-06 
11:21:21 

3 2903 2020-09-06 
09:52:21 

0 1 2020-09-06 
10:47:21 

2020-09-06 
11:08:32 

1 

A0000009
2020-09-06 

16:58:22 
2020-09-06 

17:07:12 
2020-09-06 

17:09:52 
2020-09-06 

17:12:13 
12 6707 

2020-09-06 
16:37:20 

7.6 1   0 

A0000010
2020-09-10 

21:51:28 
2020-09-10 

22:01:59 
2020-09-10 

22:21:59 
2020-09-10 

22:24:20 14 6707 
2020-09-10 

21:25:11 17.9 0 
2020-09-10 

21:53:26 
2020-09-10 

22:09:52 1 

3.3. XGBoost-Based VeESA Recognition 
3.3.1. Feature Vector Modeling 

There are numerous factors that affect the pause rate and dwell time of ESA, which 
have highly nonlinear characteristics. Therefore, we summarize the previous research re-
sults [15,18] and construct feature vectors from 3 dimensions, such as speed features, spa-
tiotemporal features, and external factors. The details are as follows: 
(1) Speed Features 

The speed features are the key features for the recognition of VeESA. When a vehicle 
enters the ESA, the average speed of ESA section (𝑸𝑫ଶ) will be significantly lower than 
𝑸𝑫ଵ and 𝑸𝑫ଶ. Meanwhile, it will also be lower than the overall average speed of other 
vehicles of the same type in this section. Therefore, we construct the speed feature vector 
as follows: 

𝒗 = (𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ)் (3)

where 𝑣ଵ~𝑣ଷ represent the driving state of the individual vehicle during the whole trip. 
Among them, 𝑣ଵ = 𝑑ଵ (𝑡𝑟ଶ.் − 𝑡𝑟ଵ.்)⁄  indicates the average speed of the vehicle in 𝑸𝑫ଵ, 
𝑣ଶ = 𝑑ଶ (𝑡𝑟ଷ.் − 𝑡𝑟ଶ.்)⁄  represents the average speed of the vehicle in 𝑸𝑫ଶ , 𝑣ଷ =

𝑑ଷ (𝑡𝑟ସ.் − 𝑡𝑟ଷ.்)⁄  represents the average speed of the vehicle in 𝑸𝑫ଷ, 𝑑ଵ~𝑑ଷ represent the 
total mileage of 𝑸𝑫ଵ, 𝑸𝑫ଶ and 𝑸𝑫ଷ , respectively, and 𝑣ସ =

ଵ

௡
∑ 𝑣ଶ

௝௡
௝ୀଵ  represents the 

overall average speed of vehicles of the same type, except for the vehicle in 𝑸𝑫ଷ . 𝑣ସ 
mainly avoids the disturbance caused by the reduction in 𝑣ଶ in certain time periods due 
to special conditions or traffic congestion. 
(2) Spatiotemporal Features 

In general, the longer a vehicle spends on the expressway, the more demands on the 
ESA for drivers and passengers. Therefore, we construct the actual cumulative travel time 
of the vehicle from the entrance of the toll station to the ESA as one of the spatiotemporal 
features. At the same time, people’s needs for ESA are also different during different times 
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of the day and on non-workdays. For example, the pause rate of ESA is generally higher 
at meal times, after midnight and on non-workdays. Therefore, we construct the spatio-
temporal features vector as shown below. 

𝜸 = (𝛾ଵ, 𝛾ଶ, 𝛾ଷ)் (4)

where 𝛾ଵ represents the actual cumulative travel time of the vehicle from the entrance of 
the toll station to the ESA, 𝛾ଶ represents the time period feature, which divides the whole 
day into 24 time periods by hour, whose value range is 0~23, and 𝛾ଷ is a variable for the 
workday, and its value is 0 (workday) or 1 (non-workday). 
(3) External Features 

Vehicle type is also an important feature in road traffic. Different types of vehicles 
have different demands on the ESA. At the same time, the difference in passenger/freight 
volume will also have some influence on the pause rate of ESA. For example, the more 
passengers a bus carries, the more stops it needs for rest, dining, etc. Fully loaded large 
trucks often require services such as breaks and water refills. Therefore, the feature vector 
is constructed as follows: 

𝜽 = (𝜃ଵ, 𝜃ଶ, 𝜃ଷ)் (5)

where 𝜃ଵ represents vehicle type. From the data source of Section 3.2.1, the vehicle types 
are divided into 16 categories, 𝜃ଶ  represents passenger/freight volume, and 𝜃ଷ  repre-
sents the traffic flow of the same time slice. 

Feature vector modeling is completed by constructing all feature values into vector 
form. 

3.3.2. Modeling of Recognition of VeESA 
XGBoost is an integrated learning method based on the boosting algorithm, whose 

learner usually chooses the decision tree model [40], as shown in Figure 3. The model 
learns the residuals of the true values and the predicted values of the decision tree by 
iteratively generating new decision trees. Eventually, the results of all trees are accumu-
lated as the final result to obtain better classification accuracy, i.e., the weak classifiers are 
combined into a stronger classifier. Therefore, we introduce XGBoost to build a VeESA 
recognition model. 
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Figure 3. XGBoost Schematic. 

We abstracted a 10-dimensional feature vector from the raw ETC data with known 
label information to form the sample dataset. We set the dataset as 𝑆 =

{(𝑥ଵ, 𝑦ଵ), (𝑥ଶ, 𝑦ଶ), … , (𝑥௡, 𝑦௡)}, where 𝑥௜ = (𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ, 𝛾ଵ, 𝛾ଶ, 𝛾ଷ, 𝜃ଵ, 𝜃ଶ, 𝜃ଷ)்(𝑖 =

1,2, … , 𝑁) represents the feature vector of the i-th sample. 𝑦௜ = 0/1(𝑖 = 1,2, … , 𝑁) repre-
sents the classification label value corresponding to 𝑥௜ . We assume that VR-XGBoost inte-
grates K decision trees, and the prediction result is shown in Equation (6): 

𝑦ො௜ = ෍ 𝑓௞(𝑥௜)

௄

௞ୀଵ

 , 𝑓௞ ∈ 𝐹 (6)

where K represents the number of trees, 𝑓௞(𝑥௜) represents the predicted value of the k-th 
decision tree on sample 𝑥௜, and F represents the integrated classifier composed of all de-
cision trees. 

The objective function of XGBoost consists of the loss function and the regularization 
item, as shown in Equation (7): 

𝑂𝑏𝑗 = ෍ 𝑙𝑜𝑠𝑠(𝑦௜ , 𝑦ො௜)

௡

௜ୀଵ

+ ෍ 𝛺(𝑓௞)

௄

௞ୀଵ

 (7)

where 𝑙𝑜𝑠𝑠 represents the logistic regression loss function used for classification. 

𝑙𝑜𝑠𝑠(𝑦௜ , 𝑦ො௜) =  𝑦௜ 𝑙𝑛(1 + 𝑒ି௬ො೔) + (1 − 𝑦௜) 𝑙𝑛(1 + 𝑒௬ො೔)  (8)

Ω(𝑓௞) represents the L1 regularizer, which is used to prevent the model from overfitting. 
The formula for the regularizer is Equation (9): 

𝛺(𝑓௞) = 𝛼𝑇௞ +
1

2
𝛼 ∥ 𝑤௞ ∥ଵ (9)

where 𝛼 represents the regularization penalty coefficient, which takes values in the range 
of [0, 1]. 𝑇௞  presents the number of leaves of the k-th tree and 𝑤௞  represents the leaf 
weight of the k-th tree. 
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The XGBoost algorithm adopts an additive stepwise integration strategy in the train-
ing process. Tree-1 is optimized first, followed by Tree-2 until Tree-K has been optimized. 

𝑦ො௜
(଴)

= 0 (10)

𝑦ො௜
(ଵ) = 𝑓ଵ(𝑥௜) = 𝑦ො௜

(଴) + 𝑓ଵ(𝑥௜)  (11)

𝑦ො௜
(ଶ)

= 𝑓ଵ(𝑥௜) + 𝑓ଶ(𝑥௜) = 𝑦ො௜
(ଵ)

+ 𝑓ଶ(𝑥௜) (12)

… 

𝑦ො௜
(௞)

= 𝑦ො௜
(௞ିଵ)

+ 𝑓௞(𝑥௜) (13)

We improve the prediction accuracy by adding an incremental function 𝑓௞ to opti-
mize the objective function during the iterative process, which is calculated as in Equation 
(14): 

𝑂𝑏𝑗(௞) = ෍ 𝑙𝑜𝑠𝑠(𝑦௜ , 𝑦ො௜
(௞ିଵ)

+ 𝑓௞(𝑥௜))

௡

௜ୀଵ

+ 𝛺(𝑓௞) + 𝑐 (14)

where 𝑐 represents the constant term and 𝑦ො௜
(௞ିଵ) denotes the predicted value in the 𝑘 −

1st iteration on sample 𝑥௜. 
Next, we expand the second-order Taylor formula and discard the constant term to 

speed up the solution and reduce the running time, which is calculated as Equation (15): 

 𝑂𝑏𝑗(௞) = ∑ [𝑙൫𝑦௜ , 𝑦ො௜
(௞ିଵ)

൯ + 𝑔௜𝑓௞(𝑥௜) +
ଵ

ଶ
ℎ௜𝑓௞

ଶ(𝑥௜)]௡
௜ୀଵ + 𝛺(𝑓௞) =

= ෍[(෍ 𝑔௜

௜∈ூೕ

)𝑤௝ +
1

2
(෍ ℎ௜

௜∈ூೕ

+ 𝛼𝑤௝
ଶ)]

௄

௝ୀଵ

+ 𝛼𝑇 
(15)

where 𝐼௝ = {𝑖|𝑞(𝑥௜) = 𝑗} denotes the sample set of leaf 𝑗, and 𝑔௜ and ℎ௜  are the first de-
rivative and the second derivative of the loss function, respectively. 

The objective function is transformed into a quadratic 𝑂𝑏𝑗(௞) minimization problem 
on 𝑤௝ . Then, we obtain the optimal prediction of each leaf node and the minimum value 
of the objective function, that is, the optimal value: 

𝑤௝
∗ = −

𝐺௝

𝐻௝ + 𝛼
 (16)

(𝑂𝑏𝑗(௞))∗ = −
1

2
෍

𝐺௝
ଶ

𝐻௝ + 𝛼

்

௝ୀଵ

+ 𝛼𝑇 (17)

where 𝐺௝ = ∑ 𝑔௜௜∈ூೕ
, 𝐻௝ = ∑ ℎ௜.௜∈ூೕ

 

3.4. Kinematics-Based Dwell Time Estimation 
The vehicle dwell time is also an essential parameter in the operation and manage-

ment of ESA. Therefore, after the recognition of VeESA, we need to further estimate the 
dwell time in the ESA. From the location of the service area between Gantry 2 and Gantry 
3, we know that the total travel time of the section consists of the actual travel time of the 
vehicle in the section and the dwell time. Therefore, the dwell time ∆𝑡௦ can be obtained 
as follows: 

∆𝑡௦ = ∆𝑡ொ஽ଶ − ∆𝑡௥ (18)

where ∆𝑡ொ஽ =  𝑡𝑟ଷ.் − 𝑡𝑟ଶ.், ∆𝑡௥ represents the actual travel time, which is an unknown 
parameter. 
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Therefore, the vehicle dwell time estimation is converted into the actual vehicle travel 
time estimation. Since the traffic conditions of the expressway are relatively smooth, the 
expressway can approximate the free-flow state in noncongested and nonemergency con-
ditions. Vehicles usually travel smoothly on the highway, so the average speed of 
𝑸𝑫ଵ and 𝑸𝑫ଷ can be used as the speed of 𝑸𝑫ଶ, and thus the actual travel time of 𝑸𝑫ଶ can 
be estimated: 

∆𝑡௥ =
𝑑ଶ

𝑣ଵ + 𝑣ଶ

2

=
2𝑑ଶ

𝑣ଵ + 𝑣ଶ

 (19)

By substituting Equation (19) into Equation (20), we can obtain the following: 

∆𝑡௦ = 𝑡𝑟ଷ.் − 𝑡𝑟ଶ.் −
2𝑑ଶ

𝑣ଵ + 𝑣ଶ

 (20)

Although the average speed method is simple and straightforward, it does not take 
into account the kinematics of the VeESA during the entrance/exit ramp. In general, 
VeESA goes through a total of five kinematic stages, including smooth driving upstream, 
decelerating into the ESA, dwelling in the service area, accelerating out of the ESA and 
smooth driving downstream, as shown in Figure 4. 

③ dwelling ④ accelerating out 

Gantry 2

①
smooth 
driving ② decelerating into

Gantry 3

△t2△t1 △t3 △t4 △t5

Expressway 
Service Area

Entrance Exit

⑤
smooth 
driving

 
Figure 4. Kinematic process of vehicles driving in and out of the service area. 

Therefore, we construct a kinematics-based model for estimating the dwell time, 
where the actual travel time ∆𝑡௥ is redefined as follows: 

∆𝑡௥ = ∆𝑡ଵ + ∆𝑡ଶ + ∆𝑡ସ + ∆𝑡ହ (21)

where ∆𝑡ଵ~∆𝑡ହ correspond to the time spent in each of the above five stages. 
Stage 1: smooth driving upstream 

According to the principle of inertia, the driving state of this stage can be considered 
as the continuation of the previous section (𝑸𝑫ଵ). Therefore, we approximate Stage 1 as 
uniform motion. We take the average travel speed of 𝑸𝑫ଵ as the travel speed of Stage 1, 
and we can obtain the time spent in Stage 1: 

∆𝑡ଵ =  
∆𝑠ଵ

𝑣ଵ

 (22)

where ∆𝑠ଵ is the distance from Gantry 2 to the diversion point of the entrance ramp and 
𝑣ଵ is the average travel speed of 𝑸𝑫ଵ. 
Stage 2: decelerating into the ESA 

To a certain extent, the ramps in ESA are similar to the ramps at the entrance and exit 
of the expressway toll station. However, the ramps at the entrances and exits of toll sta-
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tions are usually designed with large curvature, while the ramps at service areas are gen-
erally of small curvature or even similar to straight lines. This makes the vehicle smoother 
when driving in/out of the service area. Therefore, we approximate Stage 2, i.e., the decel-
eration driving process into the service area entrance ramp, as uniform deceleration linear 
motion. From stage 1, the initial velocity of uniformly decelerating linear motion is 𝑣ଵ. Let 
the velocity at the moment ∆𝑡ଶ be 𝑣∆௧మ

, the displacement be ∆𝑠ଶ and the acceleration be 
𝑎ି, which gives the following. 

𝑣∆௧మ
=  𝑣ଵ + 𝑎ି∆𝑡ଶ (23)

𝑣∆௧మ

ଶ − 𝑣ଵ
ଶ = 2𝑎ି∆𝑠ଶ (24)

We combine Equations (23) and (24) to obtain the following. 

∆𝑡ଶ =
2∆𝑠ଶ

𝑣ଵ + 𝑣∆௧మ

 (25)

where ∆𝑠ଶ is the distance from the diversion point of the entrance ramp to the service 
area. 
Stage 4: accelerating out of the ESA  

Similarly, we approximate Stage 4, i.e., the service area exit ramp acceleration pro-
cess, as uniformly accelerated rectilinear motion until the driving speed reaches a steady 
state. From stage 4, it can be seen that the vehicle reaches a smooth state after moment 
∆𝑡ସ, whose driving speed is 𝑣ଷ. Meanwhile, we assume the initial velocity 𝑣ଷ଴ and accel-
eration 𝑎ା of uniformly accelerated linear motion. From Equation (23), we can obtain the 
time spent in Stage 4: 

∆𝑡ସ =  
𝑣ଷ − 𝑣ଷ଴

𝑎ା
 (26)

In general [41], 𝑎ା = 0.8~1.2𝑚 ∙ 𝑠ିଶ. 
Stage 5: smooth driving downstream 

This stage is similar to the smooth driving upstream. Therefore, we approximate 
Stage 5 as uniform motion. The driving state of the next section (𝑸𝑫ଷ) can be considered 
a continuation of Stage 5. We take the average travel speed of 𝑸𝑫ଷ as the travel speed of 
Stage 5, and we can obtain the time spent in Stage 5 as follows: 

∆𝑡ହ =  
∆𝑠ହ

𝑣ଷ

 (27)

where 𝑣ଷ is the average travel speed in the back section of the service area, and ∆𝑠ହ is 
the distance from the smooth point in stage 4 to Gantry 3, which is expressed as follows: 

∆𝑠ହ = 𝑣ଷ଴∆𝑡ସ +
1

2
𝑎ା∆𝑡ସ

ଶ (28)

We substitute Equations (22), (25), (26) and (27) into Equation (21) to obtain the fol-
lowing. 

∆𝑡௥ =
∆𝑠ଵ

𝑣ଵ

+
2∆𝑠ଶ

𝑣ଵ + 𝑣∆௧మ

+
𝑣ଷ − 𝑣ଷ଴

𝑎ା
+  

∆𝑠ହ

𝑣ଷ

 (29)

After finishing, we obtain the mathematical model for the estimation of vehicle dwell 
time based on kinematics. 

∆𝑡௦ = ∆𝑡ொ஽ଶ − (
∆𝑠ଵ

𝑣ଵ

+
2∆𝑠ଶ

𝑣ଵ + 𝑣∆௧మ

+
𝑣ଷ − 𝑣ଷ଴

𝑎ା
+  

∆𝑠ହ

𝑣ଷ

) (30)

It can be generally considered that the velocity 𝑣∆௧మ
 in uniformly decelerating linear 

motion and the initial velocity 𝑣ଷ଴ in uniformly accelerating linear motion are both zero, 
which can be simplified as follows: 
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∆𝑡௦ = ∆𝑡ொ஽ଶ −
∆𝑠ଵ + 2∆𝑠ଶ

𝑣ଵ

−
𝑣ଷ(𝑣ଷ − 2)

2𝑎ା
 (31)

4. Experiments 
The experimental platform is a Centos Linux release 7.9.2009 (Core) operating system 

based on an Intel(R) Core (TM) i9-10900K CPU @ 3.70 GHz and 64 GB RAM, and all ex-
periments were implemented on the open-source web application Jupyter Notebook us-
ing Python version 3.8.8. 

4.1. VR-XGBoost Evaluation 
4.1.1. Construction of Feature Vector 

We constructed the feature vector dataset for the training of VR-XGBoost by using 10 
statistical features, as shown in Table 4. In the feature vector dataset, each vector contains 
10 dimensions of attributes and its classification label l, where l = 0 represents non-VeESA 
and l = 1 represents VeESA. It is worth noting that the cumulative travel time 𝛾ଵ is not 
directly available in the ETC data. We replaced it with the cumulative travel time from 
the entrance of the toll station to the front gantry of ESA, i.e., 𝛾ଵ is the cumulative travel 
time from the entrance of the entrance to 𝐺ଶ. 

Table 4. Sample of ESA feature vectors. 

 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝜸𝟏 𝜸𝟐 𝜸𝟑 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝒍 

Part A 

114.6 21.4 109.2 85.7 0.88 14 0 2 0 4 1 
92.0 93.4 84.9 92.1 1.01 10 0 2 0 3 0 
68.0 7.2 66.6 54.1 12.18 21 1 13 13.54 10 1 
75.4 69.6 69.3 48.6 1.86 21 0 14 15.9 11 0 
77.4 60.5 64.8 44.9 18.55 22 1 15 30.28 8 0 
70.0 64.4 77.8 68.4 2.72 15 0 21 0 4 0 

Part B 

67.6 21.2 79.6 84.1 0.81 17 0 12 9.3 6 1 
80.4 88.3 81.3 83.8 0.73 18 1 12 7.5 8 0 
77.0 20.1 86.1 74.4 0.56 20 0 11 4.6 16 1 
67.1 76.2 72.2 66.3 0.81 21 0 11 0 22 0 
90.1 9.7 104.7 94.9 0.42 22 1 1 0 69 1 
91.6 102.5 99.3 96.7 2.35 23 0 1 0 20 0 

Notes: 𝑣ଵ~𝑣ସ: km/h; 𝛾ଵ:h; 𝛾ଶ: o’clock; 𝜃ଶ: t; 𝜃ଷ: veh; 𝛾ଷ, 𝜃ଵ , 𝑙: dimensionless. 

The correlation heatmap is further inscribed for correlation analysis of the feature 
vectors, as shown in Figure 5. In the figure, blue indicates a positive correlation between 
vectors, and red indicates a negative correlation between feature vectors. At the same 
time, when the color is more prominent, the correlation between vectors is stronger. The 
speed features were positively correlated with the traffic flow and negatively correlated 
with the cumulative travel time 𝛾ଵ, vehicle type 𝜃ଵ and entrance gross axle weight 𝜃ଶ. 
Specifically, there is a strong positive correlation among 𝑣ଵ, 𝑣ଷ and 𝑣ସ, which are both 
weakly positively correlated with 𝑣ଶ. The two features of 𝛾ଶ and 𝛾ଷ have a very low cor-
relation with other features. Through heatmap analysis, we can clearly understand the 
correlation between feature vectors. 
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Figure 5. Correlation analysis of feature vectors. (a) Part A; (b) Part B. 

4.1.2. Parameters Selection 
The XGBoost classification algorithm has numerous parameters, including the fol-

lowing three aspects. 
(1) General Parameters: booster, silent, nthread, etc. 
(2) Booster Parameters: the number of decision trees (n_estimators), learning rate 

(learn_rate), maximum depth of the tree (max_depth), minimum weight in leaf nodes 
(min_child_weight), parameter that controls the number of leaves (gamma), propor-
tion of sample sampling (subsample), scale of feature sampling (colsample_bytree), 
etc. 

(3) Learning Task Parameters: objective and evaluative (eval_metric). 
The general parameters and learning task parameters are set directly according to the 

model needs, while the booster parameters should be parameter-seeking by the tuning 
method. At present, the tuning method is mainly the grid search method, which is com-
bined with the K-fold cross-validation method to achieve the optimal parameters [42]. In 
this work, we also used this method for tuning the parameters and set the cross-validation 
parameter K = 5. The search range, step size and optimal values of parameters for each 
parameter are shown in Table 5. 

4.1.3. Comparative Analysis of Classification Models 
To comprehensively evaluate the effectiveness of the VR-XGBoost model, this work 

introduced evaluation metrics such as accuracy, precision, recall, and F1-score, as shown 
below. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (32)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (33)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (34)

F1 − score =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (35)

We compared and analyzed this experimental model with commonly used machine 
learning models (e.g., RF, GBDT, KNN), and the experimental results are shown in Table 
6. The experimental results showed that VR-XGBoost, RF and GBDT all obtained good 
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recognition results with accuracy above 95%, while DT performed the worst due to its 
tendency to overfit. In particular, VR-XGBoost achieved the best results in evaluation met-
rics. Specifically, in Part B, the accuracy of VR-XGBoost was as high as 97.4%. This result 
showed the significant superiority of the VR-XGBoost model for the recognition of VeESA. 

Table 5. Optimal combination of parameters. 

 Parameter Search Range Step Size Optimal Value 

General  
Parameters 

booster gbtree/gblinear  gbtree 
silent 0/1  0 

nthread   4 

Booster  
Parameters 

n_estimators [100, 1000] 100 300 
learn_rate [0, 0.5] 0.01 0.1 

max_depth [1, 10] 1 5 
min_child_weight [1, 10] 1 1 

gamma [0, 0.5] 0.1 0 
subsample [0.6, 1] 0.05 0.8 

colsample_bytree [0.6, 1] 0.05 0.8 

Learning Task 
Parameters 

objective 
reg:linear/reg:logistic/ 

binary:logistic/… 
 binary:logistic 

eval_metric error/auc/rmse/…  auc 

Table 6. Performance comparison of classification models. 

Model 
Part A Part B 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score 
GaussianNB 0.937 0.94 0.937 0.937 0.962 0.962 0.962 0.962 

SVM 0.954 0.954 0.954 0.954 0.973 0.974 0.973 0.973 
KNN 0.955 0.956 0.955 0.955 0.973 0.974 0.973 0.973 
DT 0.913 0.914 0.914 0.914 0.947 0.947 0.947 0.947 

AdaBoost 0.941 0.942 0.941 0.941 0.969 0.97 0.969 0.969 
LR 0.947 0.947 0.947 0.947 0.966 0.966 0.966 0.966 
RF 0.958 0.96 0.958 0.958 0.973 0.974 0.973 0.973 

GBDT 0.958 0.959 0.958 0.958 0.973 0.974 0.973 0.973 
VR-XGBoost 0.959 0.96 0.959 0.959 0.974 0.974 0.974 0.974 

Next, the feature contributions are further analyzed, as shown in Figure 6. As a 
whole, the feature contribution ranking from largest to smallest is speed features, external 
features, and spatiotemporal features. In particular, the contribution of the speed feature 
in Part A and Part B, both of which exceed 65%, is much higher than that of the spatio-
temporal feature and external features. Specifically, the feature contribution of 𝑣ଶ  in 
speed features is more than 50%, indicating that the feature is the most important. In con-
trast, the contribution rates of features, such as the actual cumulative travel time 𝛾ଵ, the 
time period feature 𝛾ଶ, the passenger/freight volume 𝜃ଶ, and the traffic flow 𝜃ଷ, etc., are 
all less than 5%. These features seem less important. Through quantitative analysis of con-
tribution rate, we can clearly know the importance of each feature. 
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Figure 6. Contribution rate of features. (a) Part A; (b) Part B. 

4.2. K-VDTE Evaluation 
We sliced in 5-min increments to count the dwell time, and the distribution is shown 

in Figure 7. It can be seen that the dwell times in Part A and Part B both exhibit a long-
tailed distribution, which indicates that most vehicles stay in the ESA only temporarily 
and briefly. Specifically, the number of vehicles with a dwell time of 5~10 min is the great-
est, and more than 90% of the vehicles have a dwell time of less than 1 h in the ESA. 
Furthermore, the average dwell time in Part A and Part B was approximately 30 min, with 
a standard deviation of approximately 70 min, a minimum dwell time of less than 30 s 
and a maximum dwell time of more than 12 h. Through the statistical analysis, we can 
clearly understand the general situation of the vehicle dwell time in each ESA. 
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Figure 7. Dwell time distribution. (a) Part A; (b) Part B. 
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To evaluate the effectiveness of the K-VDTE model, the estimation errors are quan-
tified using the evaluation metrics of root mean square error (RMSE), mean absolute error 
(MAE), and R coefficient, as shown below: 

𝑅𝑀𝑆𝐸 = ඨ
1

𝑛
෍ (𝑦௜ − 𝑦ො௜)ଶ

௡

௜ୀଵ
  (36)

𝑀𝐴𝐸 =
1

𝑛
෍ |𝑦௜ − 𝑦ො௜|

௡

௜ୀଵ
 (37)

𝑅ଶ = 1 −
∑ (𝑦௜ − 𝑦ො௜)

ଶ௡
௜ୀଵ

∑ (𝑦௜ − 𝑦ത௜)
ଶ௡

௜ୀଵ

  (38)

where 𝑦ො௜ denotes the estimated dwell time obtained using the model, 𝑦௜  denotes the true 
dwell time, 𝑦ത௜ is the average dwell time, and n denotes the amount of data. 

We compared the proposed K-VDTE model with the traditional averaging speed 
method and commonly used machine learning models, as shown in Table 7. The experi-
mental results show that the proposed K-VDTE method performs the best, while the ma-
chine learning model performs the worst. Specifically, taking Part B as an example, the 
MAE of the K-VDTE model was only 14 s, which was not only more than one times better 
than the average speed method but also at least four times better than the machine learn-
ing models. This demonstrated the higher accuracy of our method. Moreover, comparing 
the RMSE of each model, the proposed K-VDTE model improved at least one order of 
magnitude over the machine learning models, which indicated that the proposed method 
was more robust. 

Moreover, the integrated learning models, such as XGBoost, RF and GBDT, among 
machine learning models, perform better on evaluation metrics, while the single models, 
such as Lasso and KNN, obtain very poor results on all evaluation metrics. This result 
indicates that single models may not be suitable for vehicle dwell time estimation.  

Table 7. Performance comparison of estimation models (unit: s). 

Model 
Part A Part B 

RMSE MAE 𝑹𝟐 RMSE MAE 𝑹𝟐 
Lasso 4046 2095 0.275 3831 1823 0.2 
KNN 3443 1148 0.475 3506 1073 0.33 

AdaBoost 536 431 0.987 486 400 0.987 
DT 318 90 0.995 263 65 0.996 

ExtraTree 365 92 0.994 1248 146 0.915 
RF 276 71 0.997 263 55 0.996 

GBDT 272 72 0.997 315 61 0.994 
XGBoost 242 70 0.997 263 62 0.996 

AvgSpeed 85 71 1.000 36 30 1.000 
K-VDTE 69 52 1.000 22 14 1.000 

To investigate the estimated errors in depth, we performed a statistical analysis of 
the MAE of the dwell times and carved out the distribution of the cumulative probabili-
ties, as shown in Figure 8. It can be seen that the distribution curves of the cumulative 
probabilities in Part A and Part B all exhibited a rapid increase with the increase in the 
dwell time estimation error until they stabilized after 2 min. Specifically, 𝑃{𝑀𝐴𝐸 ≤

120𝑠} > 95% indicates that the probability of keeping the MAE within 2 min is more than 
95%. Specifically, taking Part B as an example, the probability of controlling the MAE 
within 1 min and 2 min are 𝑃஻{𝑀𝐴𝐸 ≤ 60𝑠} > 97% and 𝑃஻{𝑀𝐴𝐸 ≤ 120𝑠} > 99.8% , re-
spectively. The results further validate that the K-VDTE model has strong robustness. 
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Figure 8. Cumulative probability distribution of MAE. 

5. Conclusions 
In this work, we proposed a method for the recognition of vehicles entering express-

way service areas and the estimation of dwell time based on ETC data. This method pro-
vides reference ideas for scientific and reasonable evaluation of the service capacity of the 
ESA, which can also provide decision support for the optimization of the layout when 
reconstructing and extending the ESA. The specific conclusions are as follows: 
(1) Experiments were conducted using real ETC data with a user penetration rate of over 

80%. It not only solves the issue of insufficient data volume but also solves the geo-
graphical differences existing in different service areas in vehicle dwell time estima-
tion. It can provide a more scientific and reasonable reference basis for the evaluation 
of the service capacity of ESA. 

(2) Considering multidimensional information such as speed features, spatiotemporal 
features and external features, we constructed a VR-XGBoost model. This model can 
achieve not only the estimation of the overall pause rate of ESA but also the accurate 
recognition of vehicles entering the service area. 

(3) After an in-depth study of the driving pattern of vehicles in the process of driving 
in/out of the ESA, we proposed a K-VDTE to realize vehicle dwell time estimation. 
The estimation accuracy of vehicle dwell time can be further improved by consider-
ing vehicle kinematics. 
However, the present method also has certain limitations, whose expressway traffic 

state must approximate free-flow conditions. In the future, we will further explore the 
vehicle driving characteristics and laws under nonfree flow conditions to form a more 
scientific and reliable evaluation system. 
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