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 Background and Objectives: Adaptive algorithm adjusts the system 
coefficients based on the measured data. This paper presents a dichotomous 
coordinate descent method to reduce the computational complexity and to 
improve the tracking ability based on the variable forgetting factor. 
Methods: Vedic mathematics is used to implement the multiplier and the 
divider operations in the VFF equations. The linear exponentially weighted 
recursive least squares as the main algorithm is implemented in many 
applications such as the adaptive controller, the system identification, active 
noise cancellation techniques, and etc. The DCD method calculates the 
inverse matrix in the ERLS algorithm and decreases the resources used in the 
field-programmable gate array, also the designer can use the cheaper FPGA 
board to implement the adaptive algorithm because the method doesn't 
need lots of resources. 
Results: The proposed method is implemented with ISE software on the 
Spartan 6 Xilinx board. The proposed algorithm calculates the multiplication 
result with less than 15ns time and reduces the used FPGA resources to 
lower than 20% as compared with the classic RLS. 
Conclusion: The proposed method decreases the area and increases the 
computation speed. Also, it leads to implementing complex algorithms with 
simple structures and high technology. 
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Introduction 
A linear least-squares (LS) is one of the popular methods 

in digital signal processing (DSP) applications. The LS 

applications include adaptive antenna arrays [1], active 

noise cancelation [2], multiuser detection [3], system 

identification [4]-[5], micro-phonics effect, particle 

accelerator [6] and the controllers of power 

converter [7]. The system parameters and ambient 

conditions will be change during signal processing, and 

the adaptive algorithm adapts the system coefficients 

based on the changes which means a compensation on 

the system output. Adaptive algorithms have a wide 

range of applications at industries such as control, 

communications [8], radar and sonar signal 

processing [9], interference cancellation [10], and 

biomedical engineering [11]. The main specification of 

application is a filtering process that leads to creating a 

matching between the input signal and the desired 

response. The filter coefficients are updated based on 

the measured data in the system and they are applied as 

an input signal to the adaptive algorithm. By this way, 

the difference between the filter output and the desired 

response will be minimized in an either statistical or 

deterministic sense. Least mean squares (LMS) and 

recursive least squares (RLS) algorithms are common 

algorithms which adjust and measure the system 

parameters according to the changes which can happen 

in the system. Important feathers of the LMS algorithm 
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are simplicity and robustness in digital signal processing. 

The RLS filter as a powerful algorithm can be 

implemented in applications such as the adaptive filters, 

prediction algorithm, controller, and system 

identification. Despite the convergence rate of the RLS 

algorithm is faster than the LMS algorithm, the 

computational complexity of the RLS algorithm is higher 

than the LMS algorithm because the RLS algorithm must 

calculate an inverse matrix [12]-[13].  

The new methods provide an optimal performance in 

solving the system equations. But some methods include 

complicated operations, so designers try to suggest 

different sub-optimal algorithms. There are methods 

such as the direct and iteration method which calculate 

the inverse matrix. These methods include complex 

operations such as multiplication, division, and square-

rooting, which lead to high computational complexity 

and hence, the designer needs expensive hardware 

resources [14]. Using the direct methods, such as 

Gaussian elimination, Cholesky decomposition and QRD, 

one can obtain a high accuracy in the solutions. The main 

idea of the direct method is to reduce the system 

equations to an upper triangular or a lower triangular 

form. But these methods have complex operations such 

as multiplication, division, and square-rooting. These 

operations lead to high computational complexity and 

therefore, the system may need expensive hardware 

resources [15]. The iterative methods are suitable for a 

large or sparse system. These methods provide higher 

convergence rate and optimal performance and have 

some advantages compared with the direct methods. As 

they need less memory, they are faster and provide 

simpler solutions for complex structures [16].  

There are two types of iterative methods: non-

stationary iterative methods, such as the steepest 

descent and the CG and the stationary iterative 

methods, such as the Jacobi, Gauss-Seidel and 

coordinated descent (CD) algorithms. The stationary 

iterative methods have less computational complexity 

than non-stationary iterative methods [17]. 

The iterative methods provide higher convergence 

rate than the direct methods, also, they need less 

memory and simpler design than direct methods [18]. 

The dichotomous coordinate descent (DCD) algorithm 

is designed according to the CD iterative method. It 

requires no multiplication, division or square rooting 

operations, just uses additions and subtractions. 

Therefore, the hardware implementation of the DCD 

algorithm is optimal in real-time applications [16]. 

Hardware Description of the ERLS Algorithm 

The RLS classic algorithm requires about 4N
2
 

multiplications and 3N
2
 additions/subtractions. An ERLS 

algorithm can identify the system parameters in dynamic 

systems [1]. The ERLS algorithm is shown in Table 1, the 

numbers of the system coefficients are shown with the 

symbol N. Pm is the number of multipliers, and Pa is the 

number of adders in the DCD algorithm which are 

employed to calculate the inverse matrix. The algorithm 

consists of an N×N symmetric positive matrix (R), and 

N×1 two vectors (ĥ and β0). The R matrix is defined as 

the correlation matrix of the reference signal X, and the 

β0 vector is the cross-correlation vector between the 

reference signal and the desired response [19]-[22]. 

An adaptive algorithm should estimate and identify 

an optimal vector (ĥ(i)) that leads to the error signal goes 

to zero and the zero value is the optimal value in the 

error signal [8] a regularization matrix is defined with Π 

symbol and a forgetting factor can be selected between 

zero and unity 0 <λ< 1. 

 
Table 1: ERLS Algorithm [19] 
 

Step Equation × + 

 
Initialization: 

ĥ(0)=0, r(0)=0, R(0)=Π 
  

 For i=1, 2…   

1 
 ( )

   (   )   ( )  ( ) 
N(N+1)/2 N(N+1) 

2  ( )    ( ) (   ) N N-1 

3  0 1 

4 
  ( )

   (   )   ( ) ( )   
N 2N 

5 R(i)∆h(i)=β0(i)→∆ĥ(i), r(i) Pm Pa 

6  0 N 

Total 
Multiplies = (N

2
+5N)/2+Pm ; 

Adds ≤N
2
+4N+Pa 

 
The regularization matrix is a diagonal matrix Π= ƞI, a 

small positive number is assigned as the regularization 

parameter ƞ> 0 and I is the N×N identity matrix [1], [8]. 

 ( ) ̂( )   ( ) (1) 

The R matrix is an auto-correlation matrix with size 

N×N, and the β vector is the cross-correlation vector 

with length N. The coefficient vector h(i) can be 

calculated according to the normal (1), and the algorithm 

identifies and estimates the upper triangle part in R(i) 

and this method leads to reducing the computational 

complexity. The forgetting factor has effects on 

calculating the R and β elements. The proposed method 

has been implemented to calculate the linear equations 

in the system based on leading DCD of serial FPGA, on a 

Xilinx Spartan 6. The λ value is a positive constant factor 

known as the forgetting factor.  

The X(i) vector is the input signal with adaptive filer 

and the d(i) vector is the desired value in the adaptive 

algorithm [23]-[25]. 

e(i) d(i) y(i) 

^ ^ ^

h(i) h(i 1) h(i)  
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 ( )    (   )   ( )  ( ) (2) 

 ( )    (   )   ( ) ( ) (3) 

From (2-3), we obtain: 

∆R(i) = R(i) –R(i-1)   (4) 

∆β(i) = β(i) –β(i-1)                              (5) 

  ( )  (   ) (   )   ( )  ( )   (6) 

  ( )  (   ) (   )   ( ) ( )   (7) 

By using (4) and (5), we obtain: 

  ( ) ̂(   )  (   )[ (   )   (   )]  
  ( ) ( ) (8) 

The adaptive filter output is defined with y(i),  

 ( )    ( ) (   )    (9) 

  ( )    (   )   ( ) ( )   (10) 

The error signal (e(i)) is calculated according to below 

equation: 

 
(11) 

 The X(i) data is an input signal to the FPGA board and 

the d(i) is the desired data. R RAM saves the values of R 

matrix, β RAM and the x register save the values of the β 

and x vectors respectively. The ĥ RAM stores the values 

of the coefficients. According to the steps 1 to 4 in Table 

1, The R(i) matrix is updated and the β0(i) vector is 

calculated in the ERLS block. Step 2 computes the output 

of the filter (y(i)) [16]-[20]. 

The ERLS algorithm is shown in Fig. 1. Firstly, the new 

values of the x vector will be read from the x register. 

The X(i) elements are read from the transpose block 

which generate X
T
(i), the multiplier block identifies 

upper triangular elements of the vector X(i)X
T
(i). The R 

block reads the R(i−1) elements from the R RAM 

memory and the new value will be shifted based on the 

λ value which is a positive integer number, also, the 

multiplier block is replaced with the shifter block and 

Vedic operations. The R calculator block computes the 

R(i) elements and the new value will be written into the 

R RAM memory [13]-[5]. 

The proposed method reduces the computational 

complexity because it needs no multiplier and divider 

operations. The elements’ addresses of the r(i−1) vector 

are written into the β RAM, those addresses are 

calculated based on the RAM reader block. The x RAM 

reads the X(i) elements and the calculated value is 

multiplied by the error signal.  

The β block computes the new β value and the new 

value is then written into the β RAM based on the 

addresses which are determined with the RAM reader 

block [16]-[21]. 

Hardware Description of Leading DCD Algorithm 

on FPGA 

In many applications, a hardware implementation is 

one of the significant requirements in real-time. But the 

computational complexity increases the execution time 

in microprocessors [22]. For solving the mentioned 

problems, a method is presented with less 

computational complexity, based on a leading DCD-

exponentially weighted recursive least squares 

algorithm. 

The DCD algorithm is an effective and optimal 

method [21]-[23] and has no division nor multiplication 

operations [18]. The proposed method estimates the 

parameters faster and more accurate than other existing 

methods. It offers an efficient hardware 

implementation [24]. 
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Fig. 1: The main diagram of the ERLS algorithm. 
 

The DCD block estimates the Equation (1) and 

calculates the r(i) residual vector based on the equations 

in step 5 (Table 1). Elements of the R(i) matrix and r(i), 

β0(i), and ĥ(i) vectors have been determined by 32-bit 

fixed-point accuracy. 

The leading DCD serial algorithm requires the smallest 

FPGA resources. This method is suitable for applications 

which has many parallel steps. It provides the fastest 

convergence rate in the design with parallel structures. 

The DCD hardware structure is shown in Fig. 2. The 

ĥ(i) elements are updated in the h updater block 

according to step 5 (Table 2). The β Updater updates the 

r(i) residual vector. The “leading” component will be 

computed with the Max finder block according to step 1 

in Table 2. 

The C block computes the C value according to the 

third and fourth steps in Table 2. The Finite State 

e(i) d(i) y(i) 
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Machine (FSM DCD) leads to pipeline-based running all 

of the blocks. The Max finder block and the r block will 

execute all steps synchronously [21].  The C block read 

the rn(i) values from the β RAM memory and the Rn,n(i) 

value from the R RAM memory.  The structure of the r 

Updater and the ĥ updater blocks are shown in Figs. 3 

and 4 [24]-[25]. 

Fig. 4 calculates the new value of the r vector based 

on step 5 in Table 2. This figure needs two addresses to 

read the R:,n value and the previous value of the r 

vector. Those addresses will be read through RAM 

reader block. After reading the vectors, the previous 

value of r vector should be as an input signal to the 

shifter block. This vector is multiplied in 2
∆m

, and the 

shifter block will generate the result without the 

multiplier operation. The next block will add or subtract 

new vectors according to the sign of (rn) value.  

Calculator block C gets the index of arg maxp=1… N 

{|rp|} from max finder block and computes the C value. 

The ĥn value is read from ĥ RAM memory based on the ĥ 

update block which computes the new value and writes 

it in the ĥ RAM. The residual vector r read from β RAM, 

is shifted, added and subtracted each element of R 

parameters. These steps are pipelined to achieve an 

effective time in updating. 

 
Table 2: Real-Valued Leading DCD Algorithm for Serial FPGA 
Implementation [20] 
 

State Operation 

0 Initialization: ĥ = 0, r = β, m = Mb, k = 0, ∆m = 0 

1 n = arg maxp=1,…,N {| rp |} 

2 
If m = 0, algorithm stops  

Else, m = m-1 , α = 2m , ∆m = ∆m+1 

3 c = Rn,n - | rn |2
∆m+1

 

4 
If c < 0, go to state 5  

Else, go to state 2 

5 

ĥn = ĥn +sign( rn )α 

r = r × 2
∆m

 – sign ( rn ) R:,n 

n = arg max p=1,…,N {| rp |} 

∆m = 0, k = k+1 

If k = Nu , algorithm stops; else, go to state 3 

 

Improved Variable Forgetting Factor Using the 

Vedic Mathematics 

The proposed method is based on an improved 

Variable forgetting factor and DCD-Exponentially 

Weighted RLS algorithm (IVFF-Leading DCD-ERLS) and it 

is an optimal method in system identification and the 

controllers. The forgetting factor λ has an important role 

in the features of the LS algorithms such as convergence 

rate, tracking ability, and stability. If the λ value is near 

to one, the algorithm has proper stability and fast 

convergence rate while has low tracking ability. The 

improved IVFF-DCD ERLS algorithms have been 

developed to find the desired performance and a good 

tradeoff between parameters. 
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Fig. 2: The DCD algorithm architecture. 
 

The variable forgetting factor is calculated according 

to the below equation: 

 

(12) 

The λn value will be replaced by the λ value in Table 1, 

the ERLS algorithm will be executed based on the 

variable forgetting factor. The new structure will lead to 

speeding the tracking ability. Where E{e
2

n}=σ
2

en is the 

power of the prior error, the power of the system noise 

is defined with σ
2

vn, which is the PRBS signal that is the 

system noise in this application: 

 

  

The ɛ > 0 value is a very small constant to prevent the 

denominator to become zero and λmax number is smaller 

than one. E{qn
2
} denotes the statistical expectation 

operator [26]. The multiplier and divider are main 

operations in digital signal processing. Their parameters 

such as area and delay have important role in the design. 

Equation (12) needs the multiplier and the divider 

operations to calculate the optimal forgetting factor. For 

this reason, the Vedic multiplier (32-bits) is designed 

using the 16 bits Vedic multiplier and high-speed carry-

save adder. The carry-save adder is used to improve the 

delay and operation frequency [27]. 

The Vedic multiplier leads to fast performance in the 

current processors. The proposed multiplier will start to 

calculate the result with small size from the input 

number (multiplicand size of (2 x 2)). Large bits (N x N) 

break into smaller bits (N/2 = n). In this method, the 

input bits will be divided to n/2 and this method will be 

repeated until the number bits reach to 2 x 2. The 24 bit 

qn vn

n max

en vn

min ,
| |

  
   

   

 H 1 2 2

n n n 1 n n eqnq X R X andE q
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or 30 bit Vedic multiplier using Urdhva-Tiryakabhyam 

method is implemented to multiply the mantissa part in 

the float point using the IEEE754 standard. 

 

 
 

Fig. 3: The ĥ updater block. 
 

The Vedic multiplier improves some parameters such 

as memory and area in comparing with conventional 

multiplier [28]-[29]. When designers need more 

accuracy, they can increase the bits in mantissa or 

fractional numbers. Fig.5 shows the 32 bit Vedic 

multiplier. 

 

 
 

Fig. 4: The r updater block. 
 

The structure below shows how the Vedic multiplier 

operates:  

 

 

 

 

 

 

 

This method needs logical gates and Vedic 

mathematics to calculate the M0-M5 intermediate 

signals. A2A1A0 and B2B1B0 are inputs and M0-M5 is 

the multiplication results. The Vedic multiplier with 3-

bits is explained to design 16 bits Vedic multiplier in the 

figure below [25]. The proposed algorithm will identify 

and calculate the system coefficients and forgetting 

factor based on 1 and 4 steps in Table 1 and the variable 

forgetting factor traces the system changes better with 

the Vedic structure [30]-[32]. 

Results 

Here, the results are presented using the computer 

simulation in the ISE software. FSM DCD block generates 

the control signals and applies them to other blocks. This 

block has some input signals such as Done-C and stop-

xXT. When Done-C is equal to 1, it means that the new 

value of C signal is calculated and the algorithm will be 

transferred to a new step. The En-Write signals will 

enable the RAM memories to write the new value 

according to the addresses which RAM-reader block 

generates them. When the algorithm calculates the xXT 

result, the stop-xXT signal goes to unity. The output 

signals are defined to enable the write-signal in RAMs 

and some blocks such as C calculator and MAX 

finder [33]. Fig. 6 shows the obtained result in the FSM 

DCD block. Fig. 7 shows the Max Finder result. Four 

numbers are defined in the residual vector and this block 

will execute step 1 in Table 2. Table 3 shows the used 

FPGA resources for MAX finder block. The Max finder 

will find the maximum value and its index between the 

values in the residual vector r. 
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Fig. 5: The 32 bits Vedic multiplier. 
 

Table 3: FPGA Resources for MAX Finder Block 
 

Resource Utilization 

Number of Slice Registers 1% 

Number of Slice LUTs 1% 

Number of BUFG/BUFGMUXs 6% 

Number of 
OLOGIC2/OSERDES2s 

5% 

A2 A1 A0

B2 B1 B0

M0 A0B0

K0M1 A1B0 A0B1

K2K3M2 A2B0 A1B1 A0B2 K0

K4K5M3 A1B2 A2B1 K2 K3

M5M4 A2B2
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Fig. 6: The FSM DCD result. 
 

 

 

 

 

 

 

 

 
 
 

 

The index of the maximum value is used in the next 

step to calculate the coefficient and the residual vectors. 

The Max finder should find the maximum value without 

any attention to sign bit. In Fig. 7, the index is the 

location of the biggest value and the signrn is the sign of 

the biggest value. 

Fig. 8 shows the result of the Vedic multiplier. A and b 

input values are two signed numbers, z number is the 

result of multiplier and end1 signal shows the time when 

the output is valid and stable. 

Clr signal is a clear signal and low active. When Clr 

signal goes to zero, the algorithm deletes the previous 

value. The multiplier ensures the output value at a high 

speed. The used resources in FPGA are shown in Table 4. 

The proposed algorithm has fast tracing ability and 

reduces the used resources in FPGA.  
 

Table 4: Used FPGA Resources at Spartan 6 
 

Algorithm IVFF-Leading 

DCD-ERLS 

Classic RLS 

Resource Utilization 

Slice Register 15% 38% 

Slice LUTs 54% 62% 

Fully used LUT-FF 

pairs 

18% 20% 

BUFG/BUFGCT RLS 18% 38% 

DSP48A1S 37% 52% 

 

 
 

Fig. 7: The result of Max finder block. 

 

 

 

 

Fully used LUT-FF (Look up table-Flip Flop) pairs mean 

that how well your design uses the slice components. 

We have also used the adjacent flip-flop within that 

slice for every LUT in the design. Normally the designs 

have some logics that only use the LUT pair. The 

proposed method (Improved IVFF leading -DCD-ERLS) 

includes more operations because it has faster 

convergence rate and good tracing ability [34]. 

The LUTs are organized in Slices which mean that 

those elements share connections in order to utilize fast 

carry chain. LUT is the truth table and this truth table 

effectively defines how your combinatorial logic 

behaves. DSP48A1S is the digital signal processing unit in 

FPGA and includes the adder, multiplier, register, logic, 

and ALU. The proposed method needs FPGA with less 

resources, such as DSP48A1S, slice LUT and etc. 

Conclusion 

The leading DCD-ERLS algorithm is improved based on 

variable forgetting factor with Vedic mathematics to 

calculate the multiplier and divider operations in the 

relevant equations.  

This structure leads to good tracking ability, less delay 

and area, and faster convergence rate. The IVFF-Leading 

DCD ERLS algorithm calculates the inverse matrix 

according to the leading DCD algorithm and it does not 

need multiplier and divider operations. This structure 

Fig. 8: The result of Vedic multiplier. 
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just uses simple operations and reduces the used FPGA 

resources such as register less than 15% and the 

DSP48A1S more than 37%. The Vedic multiplier is done 

with a lower time about 15 ns. The proposed method 

reduces the cost of the final product because the 

producer can implement the proposed method with 

cheaper FPGA. 
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Abbreviations 

Rn;n Elements of the matrix 

rn Elements of the vector 

R:;n A n-th column of R matrix 

R(i)  

 

The matrix R at time 

instant i 

i   Time index 

k  Iteration index 
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