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Abstract: In this paper, the adaptive finite-time control problem for fractional-order systems with 
uncertainties and unknown dead-zone fault was studied by combining a fractional-order 
command filter, radial basis function neural network, and Nussbaum gain function technique. 
First, the fractional-order command filter-based backstepping control method is applied to avoid 
the computational complexity problem existing in the conventional recursive procedure, where the 
fractional-order command filter is introduced to obtain the filter signals and their fractional-order 
derivatives. Second, the radial basis function neural network is used to handle the uncertain 
nonlinear functions in the recursive design step. Third, the Nussbaum gain function technique is 
considered to handle the unknown control gain caused by the unknown dead-zone fault. 
Moreover, by introducing the compensating signal into the control law design, the virtual control 
law, adaptive laws, and the adaptive neural network finite-time control law are constructed to 
ensure that all signals associated with the closed-loop system are bounded in finite time and that 
the tracking error can converge to a small neighborhood of origin in finite time. Finally, the validity 
of the proposed control law is confirmed by providing simulation cases. 

Keywords: uncertain fractional-order systems; finite-time control; unknown dead-zone fault;  
neural network; command filter 
 

1. Introduction 
Over the past several decades, control problems of uncertain nonlinear systems [1], 

nonsmooth nonlinear systems [2], strict-/nonstrict-feedback systems [3,4], and 
pure-feedback systems [5] have been widely studied, and to achieve the specified control 
objectives, various control laws have been constructed by scholars. It should be pointed 
out that the order of the above-mentioned systems is integer order, namely, the so-called 
integer-order systems. In fact, some systems, such as hyper-chaotic economic systems 
and heat conduction and viscoelastic structures [6,7], cannot be modeled by integer-order 
systems. Therefore, as the extension of integer-order systems, the control problems of 
fractional-order systems have been developed by many scholars. Currently, whether it is 
the solution problem of fractional calculus or the control problem, the research results of 
fractional calculus can be found in many literatures [8–12]. 

Because fractional-order systems break through the limitation of integer-order 
systems, they can better describe the historical information of control objects [13,14], 
which have attracted more and more attention in recent years [15–17]. An adaptive 
control law based on neural network was presented in [15], which guarantees that the 
tracking error of the switched fractional-order nonlinear systems can converge to a small 

Citation: Deng, X.; Wei, L. Adaptive 

Neural Network Finite-Time Control 

of Uncertain Fractional-Order  

Systems with Unknown Dead-Zone 

Fault Via Command Filter. Fractal 

Fract. 2022, 6, 494. 

https://doi.org/10.3390/fractalfract60

90494 

Academic Editors: Ravi P. Agarwal 

and Maria Alessandra Ragusa 

Received: 3 August 2022 

Accepted: 2 September 2022  

Published: 4 September 2022 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Fractal Fract. 2022, 6, 494 2 of 23 
 

 

neighborhood of the origin under arbitrary switching. In [16], an 1  adaptive control 
law for the control problem of fractional-order systems with matched uncertainties and 
external disturbances was solved. The authors of [17] addressed an adaptive sliding 
mode observer for a class of Takagi–Sugeno fuzzy descriptor fractional-order systems, in 
which the assumption that the local input matrices are identical was eliminated by 
applying a fuzzy sliding surface. In addition, some excellent control strategies, such as 
the adaptive backstepping control law [18,19], the adaptive event-triggered control law 
[20], the observer-based adaptive fuzzy control law [21], the active disturbance rejection 
control-based backstepping control law [22], and their references have also been studied 
and applied. 

It should be emphasized that the occurrence of actuator faults can sometimes not be 
predicted in advance. How to solve the control problems of fractional-order systems with 
unknown actuator faults is a problem worth studying. Moreover, for the actual control 
needs, it is usually hoped that the given systems can achieve the desired control in finite 
time. However, these problems have not been deeply studied in the above-mentioned 
literature. 

Actuator faults are inevitable in most engineering problems. If these faults are not 
handled in time, these cases may lead to the weakening of the system’s performance or 
even the complete failure of the control system. Therefore, it is important and necessary 
to study the control problems of fault systems (see [3,5,23–25], for example). The same is 
true for fractional-order systems. Recently, many interesting results have been gained for 
control schemes for fractional-order systems. In [26,27], adaptive fault-tolerant control 
laws with fuzzy logic systems were designed to solve the control problems of 
fractional-order systems, where the actuator faults involve partial failures, the loss of 
control effectiveness, and stuck faults. Considering the existence of saturation fault, the 
adaptive neural network constraint control law for fractional-order nonstrict-feedback 
systems was addressed in [28]. In [29], a stabilization criterion with linear matrix 
inequalities was proposed. This guarantees the robust stability of a class of variable-order 
fractional interval systems. Based on the designed neural network decentralized state 
observer and decentralized control law, the authors of [30] investigated the 
output–feedback control problem for fractional-order nonstrict-feedback large-scale 
systems with unknown dead-zone faults. Also, it should be pointed out that the problem 
of unknown control direction may be triggered when the system appears as an unknown 
failure. Since the sign of the control direction is unknown, this will bring great difficulties 
to the design of control laws of the systems. To solve the control problem of unknown 
control direction, the Nussbaum gain function control technique was proposed [31], and 
many related results have been proposed by scholars to solve the control problems of the 
systems with unknown control directions [32–35]. 

It should be noted that the solution to the above control problems is achieved in 
infinite time. However, some practical engineering applications, such as the chemical 
reaction process and spacecraft attitude control, need to achieve stability within finite 
time. Compared with the infinite time control strategy, the finite-time control strategy 
has a faster convergence rate and better robustness against uncertainty [36–38]. 
Correspondingly, some interesting results on the finite-time control of fractional-order 
systems were developed in [39–41]. Based on the backstepping control technique, a 
fractional finite-time adaptive fuzzy sliding control scheme for uncertain fractional order 
systems with uncertainties and external disturbances was designed in [39]. This ensures 
that the closed-loop system reaches the desired sliding mode surface in finite time. 
Different from [39], an adaptive finite-time control law with a fractional-order command 
filter was presented in [40], which can eliminate the computational complexity problem 
in the traditional backstepping design and the tracking error can be guaranteed to 
converge in a finite time. In [41], the finite-time event-triggered control problem for 
fractional-order systems was studied, and a finite-time control law combined with the 
event-triggered mechanism and the neural network was proposed. 
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Moreover, the control problems of fractional-order systems with unknown actuator 
fault can be found in some papers without further discussion of the finite time control 
problems [26,27,30]. Although a few studies have investigated the finite-time control 
problems of fractional-order systems [39–41], they did not consider the existence of 
unknown dead-zone fault. Inspired by the above discussion, the objective of this paper is 
to address the finite-time control for fractional-order systems with unknown dead-zone 
fault and uncertain dynamics. Based on the application of the fractional-order command 
filter, the radial basis function neural network, and the Nussbaum gain function 
technique, an adaptive neural network finite-time control law was developed. The main 
contributions of this paper are as follows: 

(1) A class of uncertain fractional-order systems with unknown dead-zone fault is 
investigated. Compared with [30,39,40], the model considered in this paper is more general. 

(2) A fractional-order command filter is introduced to obtain the filter signals and 
their fractional-order derivatives, which avoids the computational complexity problem 
existing in the conventional backstepping recursive procedure. 

(3) To deal with uncertain nonlinear functions in the step of recursive design and 
unknown control gain caused by the unknown dead-zone fault, the radial basis function 
(RBF) neural network and Nussbaum gain function technique are applied in this paper. 
Then, the virtual control laws, adaptive laws and finial adaptive neural network 
finite-time control law are designed. 

(4) By using the designed adaptive neural network finite-time control law, it can be 
guaranteed that all signals associated with the closed-loop system are bounded in finite 
time, and the tracking error converges to a small neighborhood of origin in finite time. 

The rest of this paper consists of the following sections. The problem formulation 
and preliminaries are given in Section 2. In Section 3, the main design processes of the 
control law are provided, and the stability analysis is also shown in this section. In what 
follows, we give the simulation results and brief conclusions in Sections 4 and 5, 
respectively. 

Notations: Throughout this paper, R ,  , and   represent, respectively, the sets 
of real numbers, complex numbers, and integers; nR  represents the set of -n
dimensional real vectors; ⋅  stands for the absolute value of a constant; ⋅  is the 
induction norm of a matrix or the Euclidean norm of a vector; TC  stands for the 
transpose of matrix C  or vector C ; and min( )X  or max( )X  represent the minimum 
value or maximum value of X . 

2. Problem Formulation and Preliminaries 
This section will introduce the problem formulation for uncertain fractional-order 

systems, and some preliminaries, such as the fractional calculation, Nussbaum gain 
function technique, and some lemmas are given for the subsequent analysis. 

2.1. Problem Formulation 
Consider the uncertain fractional-order systems with unknown dead-zone fault, 

which is described as 

1 1 2 1 1 1

2 2 3 2 2 2

-1 1 1 1 1

1

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

C T
t

C T
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t n n n n n n

C F T
t n n n n n

x g x f
x g x f

x g x f
x g u t f

y x

α

α

α

α
− − − −

= + +

= + +

= + +

= + +
=











x x x
x x x

x x x
x x x

γ ϕ
γ ϕ

γ ϕ
γ ϕ
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where α  is the fractional order; [ ]1, , T n
nx x R= ∈x , ( )Fu t R∈ , and y R∈  are the 

state vector, the control input, and the output of system, respectively; ( )ig x  and ( )if x , 
1, ,i n=  , represent the known nonzero smooth functions and uncertain nonlinear 

functions, respectively; iγ  and ( )iϕ x , for 1, ,i n=  , stand for the unknown constant 
vectors and known nonlinear function vectors, respectively. For convenience, the 
functions ( )ig x , ( )if x  and ( )iϕ x  are denoted by ig , if , and iϕ , respectively. 

In this paper, the control input ( )Fu t  is subjected to the dead-zone fault, where “ F
” is the first letter of “Fault”. Based on [42], ( )Fu t  is given as 

( )

( )

( ) , ( )
( ) 0, ( )

( ) , ( )

d r r
F

l r

d l l

k u t b u t b
u t b u t b

k u t b u t b

− ≥


= − < <
 + ≤ −

  (2)

where 0dk >  represents an unknown bounded constant and is defined as the slope of 
the dead zone; 0lb >  is the left breakpoint of dead-zone, and 0rb >  is the right 
breakpoint of the dead zone. 

By applying the mean value theorem, the control input (2) can be rewritten as 

( ) ( ) ( )F
du t k u t tφ= +   (3)

and there exists ( ) ( )Fu t u t U≤ ≤ , where U  represents the maximum value allowed by 

the system; ( )tφ  is a bounded function that satisfies ( )tφ φ≤ , and ( )tφ  is shown as 

, ( )
( ) ( ), ( )

, ( )

d r r

d l r

d l l

k b u t b
t k u t b u t b

k b u t b
φ

− ≥
= − − < <
 ≤ −

  (4)

For the system (1), the control goal of this paper is to construct an adaptive neural 
network finite-time control law ( )u t  such that all signals of the closed-loop system are 
bounded in finite time, and the system output 1y x=  can track the reference signal dy  
in finite time. 

To achieve the desired control objective, some assumptions are provided as follows. 

Assumption 1. The reference signal dy  and its fractional-order derivative C t dy
α  are smooth 

and bounded. 

Assumption 2. The smooth functions ig , 1, ,i n=   are bounded and the signs are identical; 
namely, there exist positive constants ,minig  and ,maxig  such that ,min ,maxi i ig g g≤ ≤ . 

Remark 1. Assumptions 1 and 2 are common in the control law design of fractional-order systems 
and can be found in most existing results [18,20,28]. Assumption 2 implies that the time-varying 
control gains ig  are either strictly positive or strictly negative with the same sign. Moreover, the 
purpose of introducing positive constants ,minig  and ,maxig  is to analyze the boundlessness of all 
signals and the stability of the system. 

2.2. Fractional Calculation 

Definition 1 ([43]). The thα  Caputo derivative of a smooth function ( )f t  is described as 

1 ( )

0

1( ) ( ) ( )
( )

tC q qf t t s f s ds
q

α α

α
− −= −

Γ −    (5)
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where C α  denotes the Caputo fractional operator with 1q qα− < <  for q∈ ; ( )Γ ⋅  is the 

Gamma function, which is given as 1

0
( ) q sq s e ds

+∞ − −Γ =  . 

For the Caputo fractional operator, the following properties hold. 

1 0C
t
αλ =   (6)

( )1 1 2 2 1 1 2 2( ) ( ) ( ) ( )C C C
t t tx t x t x t x tα α αλ λ λ λ+ = +     (7)

where 1λ  and 2λ  are constants; 1( )x t  and 2 ( )x t  are smooth nonlinear functions. 

Remark 2. In the following analysis, only the case of 0 1α< <  is considered. In addition, the 
notation C α  for the Caputo operator is replaced by α . 

Definition 2 ([43]). The two-parameter Mittag–Leffler function is 

1 2,
0 1 2

( )
( )

k

a a
k

E
a k a
χχ

∞

=

=
Γ +   (8)

where 1 0a > , 2 0a > , and χ ∈ . In particular, 1,1( )E eχχ = . The Laplace transform of (8) is 

( )
1 2

2 1

1 2 1

1
, ( ) ,

a a
a a

a a a

st E bt b R
s b

−
− − = ∈

+
   (9)

Lemma 1 ([43]). There exist 1 (0, 2)a ∈  and 2a R∈  such that if 1 3 12 min{ , }a a aπ π π< ≤  is 
satisfied, then 

1 2, ( )
1a a
dE χ
χ

≤
+

  (10)

where 0d > , 3 arg( )a χ π≤ ≤ , and 0χ ≥ . 

Lemma 2 ([44]). Let ( )h t  be a smooth function, then 

( )1 ( ) ( ) ( ) ( )
2

T T
t th t h t h t h tα α≤    (11)

Lemma 3 ([45]). If the thα  fractional derivative of a smooth function ( ) : [0, )V t R∞ →  satisfies 

4 0( ) ( )t V t a V t aα ≤ − +   (12)

where 0 1α< < , 0 0a >  and 4 0a > , then one can obtain 

0

4

( ) a
V t

a
ς

≤   (13)

where max{1, }dς = , and d  is defined as shown in Lemma 1. 

Lemma 4 ([46]). Consider the fractional-order system ( )( ) ( )t t f tα = x x , 0 1α< <  and 
( ) nt R∈x . If there exist continuous and positive-definite function ( )( )V tx , -K functions 1c  

and 2c , and constants 1 0b > , 2 0b > , 0 1β< <  with β  being a constant to be designed, 
satisfying 

( ) ( ) ( )
( ) ( )

1 2

1 2

( ) ( ) ( )

( ) ( )t

c t V t c t

V t bV t bβα

≤ ≤

≤ − +

x x x

x x
  (14)

and *( )t X≤x  holds with *X  being a sufficient small positive constant, and there exists 
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( )
1

2

1

( ) ,
(1 ) f
bV t t T

b

β

μ
 

≤ ≥ − 
x   (15)

where ( )0,1μ∈ , fT  is the finite setting time, which satisfies 
1

1
1

1 2
0

1
1

1(2 ) 1 (1 )
1

(1 ) 11
1

f
bT V

b b

α
β α
β

β

β α
β

μ α μ
β

−

−

  Γ − Γ + Γ +      −    ≤ −     −    Γ + −      −  

  (16)

where ( )0 (0)V V= x . 

2.3. Nussbaum-Type Gain Function 

Definition 3 ([47]). A function ( )s  is defined as a Nussbaum-type gain function if the 
following properties satisfy 

0

0

1limsup ( )

1liminf ( )

s

s

s

s

s ds
s

s ds
s

→∞

→∞

= +∞

= −∞








  (17)

Lemma 5 ([9,48]). Let ( )V t  and ( )i tκ , for 1, ,i n=  , be smooth functions defined on 0[0, )t  
with ( ) 0V t ≥  for 0[0, )t t∀ ∈ . ( )iκ  is a special Nussbaum-type gain function, if the following 
inequality holds: 

( ) 1
1

( ) ( ) ( ) 1
n

t i i i
i

V t V t Cα ϖ ξ κ κ
=

≤ − + + +     (18)

where 0ϖ >  and 1 0C >  are constants, and ( )i tξ  stands for a bounded smooth function that 
has ,min ,max( )i i itξ ξ ξ≤ ≤  with ,min 0iξ >  and ,max 0iξ > . Then ( )i tκ , ( )V t , and 

( )1
( ) ( ) 1n
i i ii
tξ κ κ

=
+   will be bounded on 0[0, )t  for 1, ,i n=  . Particularly, for 1i = , the 

boundedness of ( )( ) ( ) 1 ( )t tξ κ κ+   can be maintained. 

To facilitate the analysis of finite time problems, the following lemmas are provided. 

Lemma 6 ([30]). For any continuous function ( )F x  over a compact set nRΩ∈ , there exists an 
RBF neural network *( ) ( )TW xΦ  such that 

*( ) ( ) ( ) ( ),TF ε= + ∀ ∈Ωx W x x xΦ   (19)

where * lR∈W  is the optimal weight vector, 1l >  is the neural network node number, ( )ε x  is 

the approximation error and there exists *( )ε ε≤x , and [ ]1( ) ( ), , ( ) T l
l Rϕ ϕ= ∈x x xΦ  

represents a Gaussian-like basis function vector with 

2

( ) ( )( ) exp
T

i i
iϕ

 − −
= − 

 
x xx ι ι   (20)

where [ ]1, , T
i i inι ι= ι  and   are the center of the basis function and the width of the Gaussian 

function, respectively. 

Lemma 7 ([48]). A fractional-order second-order command filter with ,1(0) (0)i iψ υ=  and 

,2 (0) 0iψ =  as its initial conditions is given as 
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,1 ,2

,2 ,2 ,1 12 ( )
t i i

t i i i i

α

α

ψ ωψ

ψ τωψ ω ψ υ −

=

= − − −




  (21)

where 2, ,i n=  , 1iυ − , and ,1iψ  are the input and output of the fractional-order command filter, 

respectively. Then for any 0i > , there exist 0ω >  and 0 1τ< ≤  such that ,1 1i i iψ υ −− ≤   in 
finite time. 

Lemma 8 ([40]). For any real variables x  and y , and any positive constants 1o , 2o , and 3o , 
the following inequality holds: 

1
1 2 1 2 1 221 2

3 3
1 2 1 2

o
o o o o o ooo ox y o x o y

o o o o

−+ +≤ +
+ +

  (22)

Lemma 9 ([38]). For k Rα ∈ , 1, ,k n=   and 0 1p< < , the following relationship holds: 

1

1 1 1

p pn n n
p p

k k k
k k k

nα α α−

= = =

   ≤ ≤   
   
     (23)

Lemma 10 ([19]). Let b R∈  and 0ϑ > ; for the hyperbolic tangent function tanh , there exists 
0 tanh( ) 0.2785b b b ϑ ϑ< − ≤ . 

3. Control Law Design Process and Stability Analysis 
For this section, the adaptive neural network finite-time control law for uncertain 

fractional-order systems with unknown dead-zone fault (1) is proposed. This can not 
only ensure that all signals of the closed-loop system are bounded in finite time, but it 
also makes the output of the system track the reference signal in finite time. 

3.1. Adaptive Neural Network Finite-Time Control Law Design 
We define the following coordinate transformation: 

, , 1, ,i i i de x y i n= − =    (24)

Where 1,d dy y= , ,i dy  for 2, ,i n=  , and , ,1i d iy ψ=  is the output of the fractional-order 
second-order command filter (see Lemma 7) with the virtual control law 1iυ −  as the 
input. 

The compensated tracking error iz  is defined as 

, 1, ,i i iz e s i n= − =    (25)

where is  is the compensating signal to be designed. 
Step 1 ( 1i = ): Considering (1), (24), and (25), the thα  fractional-order derivative of 

1z  is 

( )

1 1 1

1 1

1 2 1 2, 1 1 1 1 1 1 1

t t t

t t d t

T
d t d t

z e s
x y s

g e g y g f y s

α α α

α α α

α αυ υ

= −

= − −

= + − + + + − −γ ϕ

  

  

 

  (26)

According to Lemma 6, an RBF neural network is introduced to approximate the 
unknown nonlinear function 1f . Then we have 

* *
1 1 1 1 1 1( ) ,Tf ε ε ε= + ≤W Φ   (27)

Design the compensating signal 1s  as 

( )1 1 1 1 2 1 2, 1 1 1( )t ds s g s g y sign sα λ υ= − + + − −    (28)
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where 1 0λ >  and 1 0>  are design constants. 
Substituting (27) and (28) into (26) yields 

*
1 1 1 1 2 1 1 1 1 1 1 1 1 1( ) ( )T T

t t dz s g z g y sign sα αλ υ ε= + + + + + − + W γ ϕ Φ   (29)

Design the Lyapunov function candidate as 

2
1 1 1 1 1 1

1 1

1 1 1
2 2 2

T TV z= + +
Α Β

   W W γ γ   (30)

where 1Α  and 1Β  are the designed positive constants; *
1 1 1

ˆ= −W W W  and 1 1 1̂= −γ γ γ ， 
where 1Ŵ  and 1̂γ  are the estimations of *

1W  and 1γ , respectively. Considering (6), (7), 
and Lemma 2, the fractional derivative of 1V  is given as 

( ) ( ) ( )
( )

( ) ( )

1 1 1 1 1 1 1
1 1

*
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
1 1

1 1

( ) ( )

1 1ˆ ˆ

T T
t t t t

T T
t d

T T
t t

V z z

z s g z z z g y z sign s

α α α α

α

α α

λ υ ε

≤ + +
Α Β

= + + + + + − +

− −
Α Β

   



 

W W

W

W W

γ γ

γ ϕ

γ γ

   



 

Φ   (31)

Design the virtual control law 1υ  as 
*

2 1 * 1 1
1 1 1 1 1 1 1 1 1 1

1

1 ˆ ˆ tanh( )T T
t d

ze c z y
g

β αευ λ ε
ϑ

− 
= − − − − − + 

 
W γ ϕ Φ   (32)

where 1 0c >  and (0,1)β ∈ . 
Substituting (32) into (31) has 

( )

( )

2 2
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

1
*

* 1 1
1 1 1 1 1 1 1 1 1

1

1 ˆ( )

1 ˆ tanh( )

T
t t

T
t

V z c z g z z z sign s z

zz z z

α β α

α

λ

εε ε
ϑ

≤ − − + + + Α −
Α

+ Β − + −
Β





 



W W

γ ϕ γ

Φ
  (33)

Design the adaptive laws 1Ŵ  and 1̂γ  as 

1 1 1 1 1 1
ˆ ˆ

t zα η= Α −W W Φ   (34)

1 1 1 1 1 1ˆ ˆt zα δ= Β −γ ϕ γ   (35)

where 1 0η >  and 1 0δ >  are design constants. 
Substituting (34) and (35) into (33), and considering Lemma 10, gives 

2 2 1 1
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

1 1

ˆ ˆ ( ) 0.2785T T
t V z c z g z z z sign sα β η δλ ϑ≤ − − + + + + +

Α Β
   W W γ γ   (36)

Step i  ( 2, , 1i n= − ): Considering (1), (24), and (25), the fractional derivative of iz  
is 

( )1 1, ,
T

t i i i i i d i i i i i i t i d t iz g e g y g f y sα α αυ υ+ += + − + + + − −γ ϕ     (37)

Similarly, an RBF neural network is introduced to approximate the unknown 
nonlinear function if . Then we obtain 

* *( ) ,T
i i i i i if ε ε ε= + ≤W Φ   (38)

Design the compensating signal is  as 

( )1 1 1 1, ( )t i i i i i i i i i d i i is s g s g s g y sign sα λ υ+ − − += − + − + − −    (39)

where 0iλ >  and 0i >  are design constants. 
Substituting (38) and (39) into (37) yields 
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*
1 1 1 ,( ) ( )T T

t i i i i i i i i i i i i i i t i d i iz s g z g s g y sign sα αλ υ ε+ − −= + + + + + + − + W γ ϕ Φ   (40)

Design the Lyapunov function candidate as 

21 1 1
2 2 2

T T
i i i i i i

i i

V z= + +
Α Β

   W W γ γ   (41)

where iΑ  and iΒ  are the designed positive constants; * ˆ
i i i= −W W W  and ˆi i i= −γ γ γ , 

where ˆ
iW  and ˆiγ  are the estimations of *

iW  and iγ , respectively. Then, the fractional 
derivative of iV  is 

( ) ( ) ( )
( )

( ) ( )

*
1 1 1 ,

1 1

( )

1 1ˆ ˆ ( )

T T
t i i t i i t i i t i

i i

T T
i i i i i i i i i i i i i i i i i t i d

T T
i t i i t i i i i

i i

V z z

z s g z z g s z z g y

z sign s

α α α α

α

α α

λ υ ε+ − −

≤ + +
Α Β

= + + + + + + −

− − +
Α Β

   

  

   



 

W W

W

W W

γ γ

γ ϕ

γ γ

Φ   (42)

Design the virtual control law iυ  as 

 
*

2 1 *
1 1 ,

1 ˆ ˆ tanh( )T T i i
i i i i i i i i i i i i t i d

i

ze g e c z y
g

β αευ λ ε
ϑ

−
− −

 
= − − − − − − + 

 
W γ ϕ Φ  (43)

where 0ic >  and (0,1)β ∈ . 
Substituting (43) into (42) has 

( ) ( )

*
2 2 *

1 1 1 tanh( ) ( )

1 1ˆ ˆ

i i
t i i i i i i i i i i i i i i i i i i

T T
i i i i t i i i i i t i

i i

z
V z c z g z z g z z z z z sign s

z z

α β

α α

ελ ε ε
ϑ+ − −≤ − − + − + − +

+ Α − + Β −
Α Β



 



 W W γ ϕ γΦ
  (44)

Design the adaptive laws ˆ
iW  and ˆiγ  as 

ˆ ˆ
t i i i i i izα η= Α − W WΦ   (45)

ˆ ˆt i i i i i izα δ= Β − γ ϕ γ   (46)

where 0iη >  and 0iδ >  are design constants. 
Substituting (45) and (46) into (44), and considering Lemma 10, one has 

2 2
1 1 1

ˆ ˆ ( ) 0.2785T Ti i
t i i i i i i i i i i i i i i i i i i

i i

V z c z g z z g z z z sign sα β η δλ ϑ+ − −≤ − − + − + + + +
Α Β

   W W γ γ  (47)

Step n  ( i n= ): In this step, the adaptive neural network finite-time control law is 
derived. Considering (1), (3), (24), and (25), the fractional derivative of nz  is given as 

,( ) ( ) T
t n d n n n n n t n d t nz k g u t t g f y sα α αφ= + + + − −γ ϕ     (48)

The unknown nonlinear function nf  in (48) is approximated by using the RBF 
neural network, that is 

* *( ) ,T
n n n n n nf ε ε ε= + ≤W Φ   (49)

Design the compensating signal ns  as 

1 1 ( )t n n n n n n ns s g s sign sα λ − −= − − −    (50)

where 0nλ >  and 0n >  are the design constants. 
Substituting (49) and (50) into (48) yields 

*
, 1 1( ) ( ) ( )T T

t n n n n n n n t n d n n n n n nz G u t y s g s sign sα αε λ − −= + + + − + + + W γ ϕ Φ   (51)
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where n d nG k g=  and *( )n n ng tε φ ε= + . Considering the boundlessness of ng , dk , and 
( )tφ , there exist *

nG G≤  and *
n nε ε≤  with unknown constants * 0G >  and * 0nε > . 

Design the Lyapunov function candidate as 

21 1 1
2 2 2

T T
n n n n n n

n n

V z= + +
Α Β

   W W γ γ   (52)

where nΑ  and nΒ  are the designed positive constants; * ˆ
n n n= −W W W  and ˆn n n= −γ γ γ , 

where ˆ
nW , and ˆnγ  are the estimations of *

nW  and nγ , respectively. The fractional 
derivative of nV  is given as 

( )
( ) ( )

*
1 1 ,( ) ( )

1 1ˆ ˆ ( )

T T
t n n n n n n n n n n n n n n n t n d

T T
n t n i t n n n n

n n

V z s g s z G z u t z y

z sign s

α α

α α

λ ε− −≤ + + + + + −

− − +
Α Β

  

 

 

W

W W

γ ϕ

γ γ

Φ
  (53)

Design the adaptive neural network finite-time control law ( )u t  as 

( ) ( ) ( )u t tκ θ=    (54)

*
2 1 *

1 1 ,
ˆ ˆ( ) tanh( )T T n n

n n n n n n n n n n n t n d
z

t e g e c z yβ αεθ λ ε
ϑ

−
− −= + + + + + −W γ ϕ Φ   (55)

( ) ( )nt z tκ θ=   (56)

Substituting (54)–(56) into (53), one gets 

( )

( ) ( )

*
2 2 *

1 1 ( ) 1 ( ) tanh( )

1 1ˆ ˆ ( )

n n
t n n n n n n n n n n n n n

T T
n n n n t n i n n n t n n n n

n n

z
V z g z z c z G t z z

z z z sign s

α β

α α

ελ κ κ ε ε
ϑ− −≤ − − − + + + −

+ Α − + Β − +
Α Β



  

 

 W W γ ϕ γΦ
  (57)

Design the adaptive laws ˆ
nW  and ˆnγ  as 

ˆ ˆ
t n n n n n nzα η= Α − W WΦ   (58)

ˆ ˆt n n n n n nzα δ= Β − γ ϕ γ   (59)

where 0nη >  and 0nδ >  are the design constants. 
Substituting (58) and (59) into (57), and considering Lemma 10, one obtains 

( )2 2
1 1

ˆ ˆ( ) 1 ( )

( ) 0.2785

T Tn n
t n n n n n n n n n n n n

n n

n n n

V z c z g z z G t

z sign s

α β η δλ κ κ

ϑ

− −≤ − − − + + + +
Α Β

+ +

 



  W W γ γ
  (60)

3.2. Stability Analysis 
Based on the virtual control laws, adaptive laws, and adaptive neural network 

finite-time control law designed above, the main results can be summarized as follows. 

Theorem 1. Consider an uncertain fractional-order system (1) that is subject to unknown 
dead-zone fault (2). Under Assumptions 1 and 2, if the compensating signals are selected as (28), 
(39), and (50), the virtual control laws are designed as shown in (32) with adaptive laws (34) and 
(35), and (43) with adaptive laws (45) and (46), and the adaptive neural network finite-time 
control law is designed as shown in (54) with adaptive laws (58) and (59). Then, all signals of the 
closed-loop system are bounded in finite time and the tracking error 1e  can converge to a small 
neighborhood of origin in finite time. 

Proof. Design the following Lyapunov function as 
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1

n

i
i

V V
=

=   (61)

Invoking (36), (47), and (60), the thα  fractional-order derivative of V  is 

( )

1

2 2

1 1 1 1 1

ˆ ˆ ( )

( ) 1 ( ) 0.2785

n

t t i
i
n n n n n

T Ti i
i i i i i i i i i i i

i i i i ii i

n

V V

z c z z sign s

G t n

α α

β η δλ

κ κ ϑ

=

= = = = =

=

≤ − − + + +
Α Β

+ + +



      



 



W W γ γ   (62)

By applying Lemma 8, the following results can be obtained: 

( )* * *1 1ˆ ( )
2 2

T T T T
i i i i i i i i i= − ≤ −    W W W W W W W W W   (63)

( ) 1 1ˆ
2 2

T T T T T
i i i i i i i i i= − ≤ −    γ γ γ γ γ γ γ γ γ   (64)

2 1( )
4i i i i i iz sign s z≤ +     (65)

Substituting (63)–(65) into (62) yields 

( ) ( )2 2

1 1 1 1

1 1 2
1 1 1

* *
2

1

( ) 1 ( )
2 2

1 1 1
2 2 2

1 ( )
2 2

n n n n
T Ti i

t i i i i i i i i i n
i i i ii i

n n n
T T T
i i i i i i

i i ii i i

n
T Ti
i i i i

i i i

V z c z G tα β

β β β

β

η δλ κ κ

ν ν ν

ην

= = = =

= = =

=

≤ − − − − − + +
Α Β

     
+ − +     Α Α Β     

 
− + Β Α 

   

  



    

     

 

 W W

W W W W

W W

γ γ

γ γ

γ γ
1 1

1

2

0.2785
4

n n
T Ti
i i

i i i

n
i

i
n

δ

ϑ

= =

=

+
Β

+ +

 

 

γ γ

 (66)

where 1ν  and 2ν  are positive constants. □ 

Considering Lemma 8 again, let 1x = , ( )1
2n T

i i ii
y

=
= Α  W W  or 

( )1
2n T

i i ii
y

=
= Β  γ γ , 1 1o β= − , 2o β=  and (1 )

3o
β ββ −= , respectively. Thus, the 

following inequalities hold 

( ) 1
1 1 1

1 1

1 1 1
2 2

n n
T T
i i i i

i ii i

β β
βν ν ν β β −

= =

 
≤ + − Α Α 

    W W W W   (67)

( ) 1
2 2 2

1 1

1 1 1
2 2

n n
T T
i i i i

i ii i

β β
βν ν ν β β −

= =

 
≤ + − Β Β 

    γ γ γ γ   (68)

By substituting (67) and (68) into (66), and applying Lemma 9, the following result is 
satisfied by choosing appropriate parameters satisfying i iλ >  , 1iη ν> , and 2iδ ν> , that 
is 
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( )

( )

( ) ( )

2 21 2
1

1 1 1 1 1

* * 1
2 1

1 1 1

1
2

1
2 2 2

1 ( ) 1
2 2 2

1 ( ) 1 ( )

n n n n n
T T Ti i

t i i i i i i i i i i i
i i i i ii i i

n n n
T T T Ti i
i i i i i i

i i ii i i

n

V z c z

G t

β
α β

β β
β

β
β

η ν δ νλ ν

η δν ν β β

ν β β κ κ

= = = = =

−

= = =

−

 − −
≤ − − − − − −  Α Β Α 

 
− + + + − Β Α Β 

+ − + + +

    

  

    

 







W W W W

W W

γ γ

γ γ γ γ

( )
1

1

0.2785
4

( ) 1 ( )

n
i

i

n

n

aV bV G t Dβ

ϑ

κ κ
=

+

= − − + + +




  (69)

where a , b  and 1D  are respectively given as 

{ }1 2min 2( ), ( ), ( )i i i ia λ η ν δ ν= − − −   

{ }1 2min 2 , ,ib cβ ν ν=   

( )* * 1
1 1 2

1 1 1
( ) ( ) 1 0.2785

2 2 4

n n n
T T Ti i i

i i i i
i i ii i

D n
β
βη δ ν ν β β ϑ−

= = =

= + + + − + +
Α Β   W W γ γ   

Next, we verify our results in three steps. 
Step 1. Considering (69) and the definition of V , it can be easily obtained that 

0bV β ≥ . Then, we have 

( ) 1( ) 1 ( )t nV aV G t Dα κ κ≤ − + + +    (70)

By applying Lemma 5, there exist a positive constant *G  such that 
( ) *max ( ) 1 ( )nG t Gκ κ+ =  for 0[0, )t t∈ . Therefore, (69) can be written as 

*
1t V aV bV Dα β≤ − − +   (71)

where * *
1 1D G D= + . 

Step 2. Based on the results of Step 1, from (71), we have 
*
1t V aV Dα ≤ − +   (72)

Applying Lemma 1 and Lemma 3, then there is a positive constant ς  such that 
*
1DV
a
ς

≤   (73)

which means that V  is bounded, and it further implies that the signals iz , i
W , and iγ  

are also bounded. Noting * ˆ
i i i= −W W W  and ˆi i i= −γ γ γ , then the boundlessness of ˆ

iW  
and ˆiγ  can be also obtained. 

Step 3. From the definition of 1 1 1z e s= − , if 1z  and 1s  are finite-time stable, then 
the tracking error 1e  is also finite-time stable. Considering (71) and the fact that 0aV ≥ , 
then we have 

*
1t V bV Dα β≤ − +   (74)

By applying Lemma 4, it can be held that 
1

*
1

1

( )
(1 )
DV t

b

β

μ
 

≤  − 
  (75)

and the setting time 1fT  is 
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1
1

1
*

1 1
1 0

1
1

1(2 ) 1 (1 )
1

(1 ) 11
1

f
DT V

b b

α
β α
β

β

β α
β

μ α μ
β

−

−

  Γ − Γ + Γ +      −    ≤ −     −    Γ + −      −  

  (76)

where ( )1 0,1μ ∈  and 0 (0)V V= . 
According to the definition of V , one gives 

1
* 2
1

1
1

2
(1 )
Dz

b

β

μ
 

≤  − 
  (77)

Now, we show that the compensated signal 1s  is finite-time stable. 
Choose the following Lyapunov function candidate: 

2

1

1
2

n

i
n

Y s
=

=   (78)

Invoking (28), (39), and (50), the thα  fractional-order derivative of Y  is 

( )
( )

( )
( )

1

2 2
1 1 1 1 2 1 1 2, 1 1 1 1 2 2 2 2 3 1 1 2

2
2 2 3, 2 2 2 2 1 1

1
2

1,
1 1 1

( )

( ) ( )

n

t i t i
n

d

d n n n n n n n n

n n n

i i i i i d i i i
n n n

Y s s

s g s s s g y s sign s s g s s g s s

s g y s sign s s g s s s sign s

s s g y s

α α

λ υ λ

υ λ

λ υ

=

− −

−

+
= = =

=

≤ − + + − − − + −

+ − − + − − −

= − + − −



  



  



 

  (79)

Considering Lemma 7, it can be obtained that 1,i d i iy υ+ − ≤   in finite time 2fT . In 
view of Assumption 2 and Lemma 8, from (79), we have 

( ) ( )

( )

( ) ( )

1
2

,max ,max
1 1 1

2
,max

1 1

22
,max

1 1

1
4

n n n

t i i i i i i i n n n
n n n
n n

i i i i i i
n n
n n

i i i i i i
n n i

Y s g s s g s

s g s

s g

α λ

λ

λ

−

= = =

= =

= =

≤ − + − +

= − + −

≤ − −Λ + −
Λ

  

 

 

  

 

 



  (80)

where ( ) ( )2 2
,max ,max 4i i i i i i i i i ig s g s− ≤ − Λ +Λ     is applied. 

Let { }min 2( ) 0i ic λ= −Λ > , and considering Lemma 8 again, we get 

2 2 1

1 1

1 1 (1 )
2 2

n n

i i
i i

s s
β β

ββ β −

= =

  ≤ + − 
 
    (81)

Substituting (81) into (80) and applying Lemma 9, one has 

( )22 1
,max

1 1

*
2

1 1 (1 )
2 4

n n

t i i i i
n n i

Y c s g c

cY D

β β
α β

β

β β −

= =

 ≤ − + − + −  Λ 

= − +

   
  (82)

where ( )2* (1 )
2 ,max1
= 4 (1 )n

i i i ii
D g c β ββ β −

=
− Λ + −   . 

Noting Lemma 4, and similar to the proof of 1z , it can be obtained that the 
compensating signal 1s  is finite time stable and satisfies 

1
* 2
2

1
2

2
(1 )
Ds

c

β

μ
 

≤  − 
  (83)
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and the setting time 3fT  is 
1

1
1

*
1 2

3 0
2

2

1(2 ) 1 (1 )
1

(1 ) 11
1

f
DT Y

c c

α
β α
β

β

β α
β

μ α μ
β

−

−

  Γ − Γ + Γ +      −    ≤ −     −    Γ + −      −  

  (84)

where ( )2 0,1μ ∈  and 0 (0)Y Y= . 
Considering (25), (77), and (83), the tracking error 1e  satisfies 

1 1
* *2 2
1 2

1 1 1
21

2 2
(1 )(1 )

D De z s
cb

β β

μμ
   

≤ + ≤ +   −−   
  (85)

Observing (85), it can be seen that the tracking error 1e  is the sum of the 
compensating signal 1s  and the compensated tracking error 1z . Accordingly, the 
convergence time T  also satisfies this relationship. Moreover, it can be found that the 
tracking error 1e  depends on parameters iλ , i , ic , iη , iδ , iΑ  and iΒ , 1, ,i n=  . It 
also implies that the tracking error 1e  converge to the specified small neighborhood of 
origin in finite time within the setting time 1 2 3f f fT T T T= + +  by selecting the appropriate 
parameters. This completes the proof. 

Remark 3. Noting (85), the tracking error 1e  can be made arbitrarily small by adjusting 
parameters iλ , i , ic , iη , iδ , iΑ  and iΒ , 1, ,i n=  . We can decrease *

1D  by decreasing the 
values of parameters iη  and iδ  or increasing iΑ  and iΒ , and we can decrease *

2D  by 
increasing i . We can also increase b  by increasing the value of parameter ic , and we can 
increase c  by increasing iλ . Based on the adjustment of *

1D , *
2D , b , and c , it can be 

guaranteed that the tracking error 1e  can converge to the specified small neighborhood of origin in 
finite time within the setting time. However, it should be emphasized that the change of i  
simultaneously affects *

1D  and *
2D , and the change of iλ  simultaneously affects *

2D  and c . 
Moreover, the adjustment of these parameters may be bringing about an increase in the amplitude 
of the control signal. Therefore, when selecting suitable parameters, a trade-off should be made 
between the control performance of the tracking and the amplitude of the control signal. 

4. Simulation Analysis 
In this section, the simulation cases are given to verify the validity of the control law 

designed in this paper. 
Case 1: Consider a class of uncertain fractional-order systems as follows: 

1 1 2 1 1 1

2 2 3 2 2 2

3 3 3 3 3

1

( )

T
t

T
t

F T
t

x g x f
x g x f
x g u t f

y x

α

α

α

= + + +

= + +

= + +
=







γ ϕ
γ ϕ
γ ϕ

  (86)

where 1 0.9g = , 2 0.5g = , 3 1 0.7sing t= + , 1 2 1sin( )f x x= − , 
2
2 15

2
xf e−= , 

3 2 3 1 32 2 sin( )f x x x x= − − , [ ]1 2 3 0.5,1 T= =γ γ = γ , [ ]1 1 2cos( ), Tx x=ϕ , 

[ ]2 1 2 2 3sin( ), cos( ) Tx x x x= − −ϕ , and 2
3 2 1,

T
x x =  ϕ . The dead-zone fault model is shown in 

(2), and 1.5dk = , 0.15lb =  and 0.3rb = . The reference signal is ( )1.5 sin sin 2dy t t= + ; 
the initial states are 1(0) 1.2x = , 2 (0) 0.5x =  and 3 (0) 0.25x = ; and the simulation time is 

20st = . 
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The RBFNN is used to approximate the unknown nonlinear functions 1f , 2f  and 

3f . The node number for each RBF neural network is considered to be 9  with the width 
of basis function being 4= . The centers of the basis function iι  ( 1, ,9i =  ) for the 
function 1f  are evenly spaced in [ 8,8] [ 8,8]− × − ; for the function 2f , they are evenly 
spaced in [ 8,8]− ; and for the function 3f , they are evenly spaced in 
[ 8,8] [ 8,8] [ 8,8]− × − × − . 

The other design parameters are 0.01ϑ = , 0.95β = , 1 1.5λ = , 2 3.0λ = , 3 4.5λ = , 

1 1.5= , 2 2.0= , 3 0.5= , 1 20c = , 2 12c = , 3 2.0c = , 1 1.5Α = , 2 2.5Α = , 3 0.5Α = , 

1 0.4η = , 2 1.5η = , 3 1.6η = , 1 4.5Β = , 2 2.9Β = , 3 1.5Β = , 1 0.5δ = , 2 3.0δ = , 3 5.5δ = , 
* *
1 2 0.5ε ε= = , *

3 1.0ε = . The parameters for the second-order command filter are set as 
3.0ω =  and 0.7τ = . The initial conditions for adaptive laws are set as 

1 2 3(0) (0) (0) 0.01s s s= = = , [ ]1 2 3 2 1
ˆ ˆ ˆ(0) (0) (0) 0.01

×
= = =γ γ γ , [ ]1 2 3 9 1

ˆ ˆ ˆ(0) (0) (0) 0.01
×

= = =W W W  
and (0) 0κ = . 

The simulation results for this case are shown in Figures 1–6. Figures 1 and 2 give 
the curves of the tracking performance and the tracking error 1e . It can be seen from 
Figure 1 that the system (86) can obtain a good tracking performance in finite time, 
although the system suffers from the unknown dead-zone fault. From Figure 2, we can 
see that the tracking error can converge to a small neighborhood of zero in finite time 
under the proposed control law. The results of these two figures also further verify the 
validity of the designed control law. Furthermore, the trajectories of the state variables 

1x , 2x  and 3x  are displayed in Figure 3, the curves of the control law ( )u t  and 

adaptive laws ˆ
iW  and ˆiγ  ( 1, 2,3i = ) are shown in Figures 4–6. Noting Figures 2–6, 

the signals of the closed-loop system are bounded in finite time, which shows the validity 
of the theoretical analysis. 

 
Figure 1. Curves of tracking performance. 
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Figure 2. Tracking error 1e . 

 
Figure 3. System states 1x , 2x  and 3x . 

 
Figure 4. Control law ( )u t . 
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Figure 5. Norms of adaptive laws ˆ
iW . 

 

Figure 6. Norms of adaptive laws ˆiγ . 

Case 2: Consider the uncertain fractional-order Arneodo system as [49] 

1 1 2 1 1 1

2 2 3 2 2 2
3

3 1 1 2 2 3 3 4 1 3 3 3 3

1

( )

T
t

T
t

F T
t

x g x f
x g x f
x q x q x q x q x g u t f

y x

α

α

α

= + + +

= + +

= − − − − + + +
=







γ ϕ
γ ϕ

γ ϕ
  (87)

If 1 2 3 0f f f= = = , 1 1 2 2 3 3 0T T T= = =γ ϕ γ ϕ γ ϕ , ( ) 0Fu t =  and 0.98α = , 1 2 1g g= = , 

1 5.5q = − , 2 3.5q = , 3 0.8q = , 4 1.0q = − , the initial conditions are considered to be 

1(0) 0.2x = − , 2 (0) 0.5x = , and 3 (0) 0.2x = . The system (87) will appear to have a chaotic 
phenomenon, as shown in Figure 7. 

In system (87), let 3 11.2sin 2g x= + , 210
1 1

xf x e−= − , 2 2 32.5 cosf x x= − , 3 1 3sin( )f x x= − , 

[ ]1 2 3 0.5,1 T= =γ γ = γ , [ ]1 1sin ,0 Tx= −ϕ , [ ]2 1 20, sin( ) Tx x= −ϕ , and [ ]3 2 33 , 2 Tx x= −ϕ ; the 
initial states are 1(0) 0.5x = , 2 (0) 0.25x =  and 3 (0) 0.1x = . The parameters of the 
dead-zone fault model, the reference signal, and the simulation time are consistent with 
Case 1. 
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Figure 7. Phrase plots of 1x , 2x , and 3x . 

The RBF neural network is applied to approximate the unknown nonlinear 
functions 1f , 2f  and 3f . Since there are only two variables in functions 1f , 2f , and 

3f , the node number for each RBF neural network is chosen to be 9  with the centers of 
the basis function iι  ( 1, ,9i =  ) evenly spaced in [ 8,8] [ 8,8]− × −  and the width being 

4= . 
The other design parameters are 0.01ϑ = , 0.95β = , 1 10λ = , 2 5.5λ = , 3 7.5λ = , 

1 2.5= , 2 1.5= , 3 2.0= , 1 25c = , 2 18c = , 3 1.5c = , 1 0.9Α = , 2 1.2Α = , 3 0.2Α = , 

1 0.5η = , 2 2.5η = , 3 3.0η = , 1 2.2Β = , 2 1.6Β = , 3 0.5Β = , 1 0.7δ = , 2 1.5δ = , 3 2.1δ = , 
*
1 0.5ε = , *

2 0.7ε = , and *
3 1.0ε = . The parameters selection of the second-order command 

filter and the initial conditions of the adaptive laws are the same as those described for 
Case 1. 

The simulation results of this case are displayed in Figures 8–13. Figure 8 shows the 
curves of the system output 1x  and the reference signal dy . It is not difficult to see from 
Figure 8 that the system (87) can obtain a good tracking performance by applying the 
proposed control law. The tracking error curve is given in Figure 9. One observes that the 
tracking error 1e  can converge to a small neighborhood of zero in finite time. From 
Figures 8 and 9, although the system (87) is affected by unknown dead zone fault, the 
tracking performance of the system can be guaranteed under the designed control law. 
This also proves the effectiveness of the proposed control law from another perspective. 
Furthermore, the curves of state variables 1x , 2x  and 3x  are given in Figure 10, and the 

curves of the control law ( )u t  and adaptive laws ˆ
iW  and ˆiγ  ( 1, 2,3i = ) are depicted 

in Figures 11–13. It can be found that the signals of the closed-loop system shown in these 
figures are bounded, which verifies the validity of the theoretical analysis. However, it is 
not difficult to observe in Figures 9–11 that there are oscillations in these simulation 
results. In fact, considering the existence of unknown dead-zone faults and uncertain 
dynamics in the system, this makes it necessary to make a reasonable trade-off between 
system tracking performance and control output. 
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Figure 8. Curves of the tracking performance. 

 
Figure 9. Tracking error 1e . 

 
Figure 10. System states 1x , 2x , and 3x . 
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Figure 11. Control law ( )u t . 

 

Figure 12. Norms of adaptive laws ˆ
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Figure 13. Norms of adaptive laws ˆiγ . 

5. Conclusions 
The adaptive finite-time tracking control for uncertain fractional-order systems with 

unknown dead-zone fault was considered in this paper. The fractional-order command 
filter was applied to avoid the computational complexity problem existing in 
conventional recursive procedures, and the neural network approximator was used to 
approximate the unknown uncertain nonlinear functions. Through the application of the 
Nussbaum gain function technique, the adaptive neural network finite-time control law 
was developed to solve the finite-time control problem of the given fractional-order 
systems. It has been proven that the desinged control law can not only ensure that all 
signals of the closed-loop system are bounded in finite time but can also ensure that the 
tracking error converges to a small neighborhood of the origin in finite time. However, it 
should be pointed out that the control law presented in this paper is only suitable for the 
systems with known state gains and measurable states. When the nonlinear system 
under consideration has unknown state gains and unmeasurable states, the proposed 
control law will not work effectively. Therefore, one of our future research directions is to 
design feasible control laws to realize the adaptive finite-time control of uncertain 
fractional-order systems with unknown control gain and partially unmeasurable states. 
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