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Abstract: With the successful development in computer vision, building a deep convolutional
neural network (CNNs) has been mainstream, considering the character of shared parameters in a
convolutional layer. Stacking convolutional layers into a deep structure improves performance, but
over-stacking also ramps up the needed resources for GPUs. Seeing another surge of Transformers in
computer vision, the issue has aroused severely. A resource-hungry model is hardly implemented for
limited hardware or single-customers-based GPU. Therefore, this work focuses on these concerns
and proposes an efficient but robust backbone, which equips with channel and spatial direction
attentions, so the attentions help to expand receptive fields in shallow convolutional layers and
pass the information to every layer. An attention-boosted network based on already efficient CNNs,
Universal Pixel Attention Networks (UPANets), is proposed. Through a series of experiments,
UPANets fulfil the purposes of learning global information with less needed resources and outshine
many existing SOTAs in CIFAR-{10, 100}.

Keywords: computer vision; image classification; CNN; attention

1. Introduction

The development of computer vision has experienced a range of trends in this decade.
Several introducing models [1–6] in open datasets competition significantly improved the
accuracy of the image classification, which includes deep convolutional neural networks
(CNNs) with residual calculation [7–14]. With the deep CNNs from stacking convolutional
layers, models could capture local characteristics and global profiles with the increasing
receptive fields [15]. However, this deep policy will raise the needed parameters and then
makes one customer-based GPU unable to hold it. Besides CNNs, vision in Transformer
(ViT) [16] has opened a path of applying the pure Multi-Head Attentions, which is from
the natural language processing, to classify images by learning global information. While
ViT arouses even influential works [17,18], we are facing a more severe issue of draining
GPUs than deep CNNs because most Transformer-based networks require more powerful
GPUs with large exclusive CUDA memory to calculate. Although sparse Attention in
Informer [19] is trying to ameliorate the burden on GPUs, training Transformer-based
models in a customer-based GPU to gain a decent performance remains impractical. It thus
motivates this work to find a balance between computational costs and capturing image
information globally.

To unleash the calculating pressure in a GPU and have a decent performance simulta-
neously, making a layer in shallow depth equipped with a broad receptive field is critical.
Namely, if we can make layers mature quickly (in early depth), it is not necessary to have
a deep structure to increase receptive fields. Instead of choosing already power-hungry
Transformer-based structures, endowing learning global information ability to CNNs is
rational because of the sharing filters mechanism in convolutional layers. Then, the issue
that needs to be addressed is how to endow learning global information ability to CNNs
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rather than stacking convolutional layers to increase the receptive field. This work proposes
Channel Pixel Attention (CPA) for helping convolutional layers to obtain global information
directly, as shown in Figure 1. By CPA, models can combine information across the channel
to generate more complex feature maps and further make shallow depth layers process
similarly to deep depth layers.
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Figure 1. Channel Pixel Attention (CPA) Process and Samples. The image on the top is an originally
sampled image from CIFAR-10. The feature maps in the middle line are the outputs generated from
the CNNs before processing CPA. On the bottom line are the samples generated from CPA. The red
square is the sum of weighted pixels from each orange square pixel in the same position.

In line with the same notion and the observations in [20], another direction to boost
model learning and help information transport well among convolutional layers is building
connections among a block, which is usually a unit with stacking of multiple convolutional
layers and stacking as a layer module. To amplify the CPA effect, a hybrid connection with
CPA is proposed. UPA blocks process lossless information from concatenating multiple
UPA blocks in a stack and filter out vital information through residual connection. By this
operation, the received information is not only from the last block but also the accumulating
information until this block, so the CPA in each block can further absorb features from
other blocks to amplify the receptive fields.

To transmit lossless learned information and feedback among layers, connecting each
layer module is common in many object-detection tasks (e.g., saliency, semantic, and
instance objects detection) within an auto-encoder-based structure in which the input and
output share the exact image size with a bottleneck in a network. Nevertheless, the same
picture is not seen in image classification. In contrast, the effect of merely applying residual
and concatenating connections to prevent information loss will eventually saturate [21]. For
this reason, the Extreme Connection (ExC) is proposed to connect each UPA layer module
with learnable Spatial Pixel Attention (SPA) along with the existing Global Average Pooling
in UPANets. As a result, instead of simply extending the connection to classification, a
learnable global pooling in spatial direction, SPA, involves making sure that essential pixels
occupy a significant portion in the sending of information to the output layer. A smooth
updating landscape is expected to be generated to ensure robustness.
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Thus, by forming the proposed components into balanced but powerful networks, we
furtherly propose Universal Pixel Attention Networks (UPANets). Through the evaluations
of this work, the contributions can be summarized as follows:

• Propose UPANets with UPA Block equipped with Channel Pixel Attention (CPA)
and a combination of Spatial Pixel Attention (SPA) and Extreme Connection (ExC)
connecting each UPA Layer Module to find the balance between performance and cost.

• CPA considers pixel information across channels and helps CNNs form complex
features even in shallow depth with fewer parameters. In addition, by applying
concatenating feature maps in a network, the capturing ability of CPA can be amplified
to cross blocks detection.

• SPA and ExC help to generate a smooth learning landscape and contribute to learning
spatial information to pass important pixel information, respectively.

• A competitive image classification model surpasses well-known SOTAs in CIFAR-
{10, 100} and Tiny ImageNet.

This paper firstly discusses the essential background and motivations in Section 1,
and then the well-known observations and relevant works toward image classification
are introduced in Section 2. Next, the core of this work, the proposed method UPANets
and its structures are introduced in Section 3. Then, to examine the proposed method,
the comparisons between the proposed methods, UPANets, and other novel methods in
well-known datasets can be observed in Section 4. Finally, the conclusion is in Section 5, and
the extra findings and simulations of UPANets are summarized in the Appendices A–D.
We share our implemented code at the link: https://github.com/hanktseng131415go/
UPANets (accessed on 17 July 2022).

2. Related Works
2.1. Attentions

Attention exists in many forms. Motivated by Transformer [22], Multi-Head Attention
served the purpose of considering global information, so the model becomes robust and
powerful, but the draining computational resource breaks the balance between performance
and used parameters. Although ViT [16] used the image patches to reduce the needed
parameters, the problem remains. Later, the variants [17,18] with multiple Transformer-
based units in a network make the draining problem severer. Apart from learning a mega
dataset to make Transformer’s Attentions useful, DeiT-B [23] used the proposed attention
to transfer the pre-trained parameters into a Transformer on image classification. However,
it only relocates the draining issue from end-to-end training to knowledge distillation.
Despite this dilemma, big companies, such as Google, Microsoft, and Facebook, do not
stop exploring more because of the path of considering global information in Transformers.
Nonetheless, having a stack of GPUs is not common for most users, which drives the need
to learn global information with fewer resources.

On the ground of applying Attentions in CNNs, the draining issue caused by At-
tentions is minor, but the existing Attentions mainly focus on local information or are
limited toward paying attention in the current block. One of the most well-known Atten-
tion in CNNs is Convolutional Block Attention Module (CBAM) [24], which arbitrarily
applies max and average pooling to care pixels. Although the Attentions in CBAM are
parameter-less, the potential of losing information by max and average pooling remains.
Similarly, SENets [25] uses global average pooling to squeeze the spatial information into
one representative value. Then, it uses multi-layers perceptron (MLP) with a ReLU and
Softmax to make channel attention. By embedding SE-Block after each block afterword,
it showed improvements in VGGs [2], InceptionNets [3,4], and ResNeXts [26], but the
same issue of losing information from arbitrarily average pooling is hovering. In object
detection, operation toward a convolutional output to serve the purpose of pixel attention
is also a trend. For example, DANet [27] is embedded behind a backbone network as a
feature extractor (e.g., ResNets [5]) and applies two dot-products on the outputted feature
maps with Softmax among the two Attentions in the Channel Attention Module, and the

https://github.com/hanktseng131415go/UPANets
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same operation on the width and height of feature maps in the Position Attention Module.
However, these modules only care about the feature maps from the final layer module.
Additionally, GCNet [28] uses a similar module as DANet’s in each block and replaces
the dot-product operations with a 1× 1 convolutional kernel, namely paying attention
to the current block. The applying operation in GCNet with a 1× 1 convolutional kernel
did not outshine using a one-layer perceptron as a cross-channel attentional operation
in our comparison in Appendix B. Another attention to learning cross channels in the
current block is the shuffle operation from ShuffleNets v1 [29] and v2 [30]. Shuffling the
order of CNNs kernel weight in groups breaches the independent learning process when
detecting images in group CNNs, so the next layer of group CNNs can detect the other
group CNNs feature maps. Nonetheless, the shuffle operation is taken back, and thus
performance is limited; and please see Section 4.2.2. Unit Subtraction Convolution (USC) in
RK-Net [31], similar to the parameter-free operation in ShuffleNets, replaces conventional
dot-product with subtraction to extract the key points from the feature map. Another
replacing traditional convolutional operation work is Local Pattern Network (LPN) [32],
which proposes a feature partition strategy to take advantage of contextual features with
the parameter-free operation. By viewing ShuffleNets, USC, and LPN, colouring CNNs
operation with different mechanisms help the network to consider more information to
perform better. In sum, inheriting a similar notion, our CPA brings a new direction to pay
attention to across the channel. The mature feature maps are furtherly proved with better
performance compared with the 1× 1 convolutional layer, shuffle operation, and SENet in
Section 4.

2.2. Structure Design

A good structure design could affect the performance and the parameters convert
ratio because of being able to help information to transmit to different layers properly.
ResNets have introduced residual connection that offers a great path to let deep learning
fulfil the true meaning of deep, namely letting original information pass to deep layers
intact. Additionally, the residual connection prevents the potential of facing overfitting.
To explain the underlying reasons, the visualization of the loss landscape [20] has proven
that. Another underlying reason in [20] is the dense connection in DenseNets [33]. Densely
connection connects original and outputting information by reusing feature maps in deep
layers. By observing landscapes from DenseNets in [20], the loss landscapes are smoother
than ResNets. However, according to the statement from EfficientNet [21], the effect will
be saturation despite using skip-connection or densely-connection. Most importantly, in
our simulation of Section 4.3, the efficiency between parameters and accuracy degrades
severely when layers in both ResNets and DenseNets grow. In our comparison in Section 4.3,
UPANets has a better conversion ratio than the formers.

3. UPANets

This section details the proposed method, UPANets, and the relevant components.
Firstly, the Attention approach designed channel-wise is revealed. Consequently, a hybrid
block with residual and concatenation learning in UPA Block shows how they work together
in UPANets. After the proposed SPA in ExC, the structure of UPANets is shown.

3.1. Channel Pixel Attention

A convolutional kernel is good at capturing local information, but each kernel can only
detect a specific pattern, which limits the ability. Conventionally, stacking convolutional
layers to expand the pattern library is intuitive but deadly, as discussed in Section 1. To ex-
pand the library without overstacking layers, having the ability to learn global information
is vital. Therefore, the Channel Pixel Attention (CPA) is proposed. CPA applies a one-layer
perceptron to pay attention to the pixel in the same position across channels. By fusing
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patterns across channels, the library can be expanded, and the detected patterns can also be
more complex; please see Figure 1. The operation can be represented as (1):

X =
n

∑
c=1

xR
c WT

c + b, (1)

where c indicates the cth channel, X ∈ RN×C×W×H , xR
c ∈ RN×W×H×C, which is reshaped

to perform a dot product with WT
c , WT

c ∈ RN×C×C.
After the pixel attention is processed by a one-layer perceptron, Batch Normalization

and Layer Normalization with residual connection are applied afterwards. The workflow
of CPA can be demonstrated in Figure 2, and the sample feature maps toward the inputs in
an actual image with demonstration are shown in Figure 1, in which the outputted feature
maps from the CPA process combine their original features and supportive information
from others. These combined features show that CPA can promote feature maps to fuse
more complex ones without losing original features. Compared with the deep structure,
CPA can help a shallow network form more complex patterns, expanding receptive fields.
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Figure 2. Channel Pixel Attention Structure. The green and blue lines represent the original and pro-
cessed information, respectively. In the stage of stride one, one CPA is involved with a concatenation.
In the stage of stride two, a parallel CPA are processed with residual learning to decide essential to
pass, and then a down-sampling is applied by avgpool2d.

3.2. UPA Blocks

As the discussion in Section 2 toward ResNets and DenseNets, it is crucial that a block
not only processes image information well but can also pass lossless features not to waste
the processed information from previous blocks. To achieve that, a hybrid combination is
proposed for collecting the feature maps from the previous blocks by concatenating and
filtering out essential feature maps to the next layer by residual learning. By concatenating,
it can preserve original information and further help to amplify the CPA effect by learning
not only the cross channels information in the current block among UPA layer modules,
see Section 3.3. Furtherly, please, see the UPA Blocks structure in Figure 3.

Observing Figures 2 and 3, the difference between stride one and stride two is whether
to use the concatenate operation or not. On the other hand, the residual connection is
applied in CPA, which determines whether it should output the current learned information
or the ones from the last block.
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3.3. UPA Blocks

Continuing the discussion in Section 3.2, a model can preserve processed information
from previous blocks by applying concatenation in UPA Block. After that, combining
multiple UPA Blocks to form a layer module makes CPA pay attention to the vital pixel
across channels from multiple blocks. Namely, through CPA, CNNs can access every
processed feature in the layer module. If it comes to down-sampling, a parallel residual
CPA involves deciding the important pixel from the accumulating feature maps to pass.
See Figure 4; UPA Layer Module helps CPA pay attention across channels throughout
accumulating blocks.
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In Figure 4, except for the stride two version operation in block 0, each block follows
the stride one version operation. Further, the width of every stride one version block is
smaller than its input shape, and that can be referred to in the following Equation:

wb = Wl/b, (2)

where b = 1 · · · n, Wl indicates the summation of adding width of this layer, the width
is the filter number or channel number, wb means the outputted width of this block, and
w0 equals to double width of the last layer because the original input remains, and the
processed information is appended after that. For example, if the width of layer module
1 is set to 16, the outputted width of layer module 1 will be 32 because of concatenation.
Therefore, the width of block 0 in layer module 2 is 32, w0 = 32. Then, as the number of
blocks in layer 2 is 4, b = 4, the width of each block is 8, wb = 8 because W0 = 32 and
32
4 = 8. In this case, the outputted width from this UPA Block of the current UPA Layer

Module will be 32 + 8 = 40.

3.4. Spatial Pixel Attention

Although Global Average Pooling (GAP) does not require extra computational cost, it
is suffering the potential of losing information because of arbitrarily averaging out overall
spatial information. To ameliorate this concern, this work proposes Spatial Pixel Attention
(SPA) with learnable parameters by applying a one-layer perceptron to learn essential
pixels in the same spatial direction. With the involved learnable process, SPA helps to
determine which pixel to be amplified or ignore. SPA mechanism can be defined as the
following formula:

X =
n

∑
c=1

xR
c WT

c + b, (3)

where c indicates the cth channel, X ∈ RN×C×1, xR
c ∈ RN×C×L, L = W×H, and WT

c ∈ RN×L×1.
In Figure 5, the process from (b) to (c) is implemented by a one-layer perceptron.

Through the layer, SPA can determine to pay the appropriate attention to the essential
pixels and then squeeze the entire pixels into one-pixel information by a dot-product
instead of arbitrary pooling with average.
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c = 8 as an example. Then, the process from (a) to (b) reshapes the convolutional image. From (b) to
(c) is the SPA process, and its function is similar to the global average pooling.

3.5. Extreme Connection

Connecting the output layer with each inner layer in a network often generates a
smooth landscape [20]. With a smooth landscape, the probability of having a robust result
with many merits, such as quickly converging, arises. To do that, building such a connection
would help. Here, an Extreme Connection (ExC) is proposed, which considers both the
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information from SPA and GAP. Figure 6 reveals the applied extreme connection, and this
operation can be represented as the following:

X = F[SPA1

(
xR

1

)
+ GAP1

(
xR

1

)
, · · · , SPAb

(
xR

b

)
+ GAPb

(
xR

b

)
], (4)

where X ∈ RN×C, which is the output from the flatten-concatenate F. N is the data
number, and C represents the number of channels. Additionally, b means the blockth in
a network.
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As shown in Figure 6, ExC builds the relationship from the final hidden layer to the
output of each block. In addition, SPA evaluates which pixel should be paid more attention
toward the class to support GAP. Integrating both operations with layer normalization
allows both sides’ information to be scaled to the same level to learn.

3.6. UPANets Structure

In Figure 6, the cooperation between each proposed module is illustrated. The pro-
posed CPA is applied among each UPA Block. Additionally, ExC is applied to connect every
UPA Layer Module with the proposed SPA to cooperate with GAP. The detail transferring
of size, width, and the proposing Attention in UPANets toward CIFAR-10 is presented
in Table A1.

4. Experiment
4.1. Experiment Environment Settings

This simulation implemented UPANets and is compared with CNNs-based SOTA
models. The experimental environment comprises a customer-based GPU (RTX Titan with
24 GB) and an eight-core CPU (intel i9-9900KF) with 32 GB RAM. Despite the limitation of
available hardware, although we cannot implement ImageNet to evaluate, this simulation
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experiment compared UPANets and others in CIFAR-{10, 100} and tiny ImageNet datasets.
Every training process was implemented in a cosine annealing learning schedule with a half
cycle. Additionally, the training optimizer was stochastic gradient descent with an initial
learning rate = 0.1, momentum = 0.9, and weight decay = 0.0005. A simple combination
of data argumentation was applied with random crop in padding = 4, random horizontal
flip, normalization in CIFARs and tiny ImageNet. As this simulation conducted a series of
experiments with different epochs, the specific number of used epochs is revealed before
each sub-section experiment description.

On the other hand, apart from mainly recording performance in accuracy (Top—
1 Error), because we argue that finding a balance between performance and used resources
is essential, efficiency is applied to examine the turnover rate throughout the experiments.
This consideration shows that blindly chasing higher performance by adding parameters is
irrational. The efficiency can be represented as the following Equation:

E = Acc/P, (5)

where E represents the efficiency, P means the size of used parameters, and Acc is the
abbreviation of the accuracy. Through Equation (5) above, it can learn whether this structure
or setting can convert the parameters into performance efficiently, and it can also be
recognized as the ratio of accuracy and parameters. For example, if two parameters
contribute a 100% accuracy, the efficiency could be presented as E = 0.5. Additionally,
if four parameters contribute another 100% accuracy, the efficiency could be presented
as E = 0.25. Following the above examples, E = 0.5 is greater than E = 0.25, meaning
higher efficiency.

4.2. Ablation Study

In this sub-section, we implemented a series of ablation comparisons toward different
components among UPANets. The performance of UPANets with F = 16 in CIFAR-{10, 100}
are revealed in the following comparisons, as “F” shows in Table A1, and each performance
was recorded in the testing stage with the highest accuracy. The total number of epochs in
this sub-section was set to 100, and the experiment setting followed the previous description
in Section 4.1.

4.2.1. Global Fusion from Channel Pixel Attention

By Section 3.1, it is expected that CPA can promote CNNs to consider the global
information of images as ViT [22], but CPA achieve that by only conducting a one-layer
perceptron. By this one-layer perceptron, CPA only requires one-third of parameters
compared with the Attentions in ViT with processing a Query, Key, and Value from three
one-layer perceptrons every time.

In order to illustrate learned global information from CPA, Figure 7 is sampled from
the first 32 feature maps from the CNNs in UPA Block 0 before the CPA in UPA Layer 2.
Figure 7 contains three rectangles in green, orange, and red. It is evident that the green
region from CNNs only detected a specific pattern of the kernel, and some kernels only
detected background information. However, a feature map remains dim if the kernel cannot
detect a feature. Most importantly, based on the concatenation in UPA Block and operation
in the UPA layer module, although residual and concatenation are involved, CNNs still
only detected specific patterns. A typical way to prevent dull outputs is adding more width
to increase the pattern variety in CNNs, but it is a curse to ramp up more parameters. The
above discussion explains the saturation of ResNets and DenseNets, despite residual and
concatenation learning.
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Conversely, with the help of CPA, the orange area is immune to the issue in CNNs.
Additionally, with UPA Blocks and UPA Layer Modules, the green region of the first 16th
feature maps is from the root CNNs (CNNs in UPA Layer Module 0), 17th to 20th feature
maps are from the root and UPA Block 0, etc. By CPA seeing feature maps from root CNNs
to UPA Block 4, the outputs from CPA are gradually complex. That shows the capability of
learning cross channels global information block to block and helps to expand the receptive
field directly. Therefore, every feature map from CPA covers the learned information from
itself to the others, so each pixel considers pixels located at the same position as others by
learnable weights. Namely, the CPA can determine which pixel is helpful for consideration.
Lastly, the samples of Conv + CPA possess the detected local patterns from the CNNs and
conclude the global features from others. A sample of learned patterns in CNN and CPA
by inputting noise can be seen in Appendix C.

4.2.2. Comparing with ShuffleNet

When we look at learning global information, it can be understood as sharing learned
information with others. Under this notion, as the discussion toward ShuffleNets in 0, the
shuffle operation is close to this idea. By shuffling the order of independently learned
feature maps, the afterwards grouped CNNs have the chance to map to the pattern from
the different groups. The groups in CNNs are dividing the channels (filters) into several
independent groups to detect (e.g., channels = 16, groups = 2, which means they will be
separated into two groups with 8 channels where each group will not share the learned
parameters). Therefore, in Table 1, a comparison between CPA and the shuffle operation in
ShuffleNets is evaluated under CNNs groups in two and four, respectively. The bold font
indicate the best performance in the indicator.
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Table 1. Comparison of Cross Channels Learning in UPANet16.

UPANet16 CIFAR-10
Acc % (Top 1 Error)

CIFAR-100
Acc % (Top 1 Error)

Size
(Million)

(CIFAR-10, CIFAR-100)

Efficiency
(Acc % / Million)

(CIFAR-10, CIFAR-100)

w/o CPA
w/o Shuffle

CNNs in groups = 1
93.54 (0.0646) 72.98 (0.2702) (1.43, 1.48) (65.32, 49.42)

w/o CPA
w/o Shuffle

CNNs in groups = 2
92.64 (0.0736) 71.0 (0.29) (0.72,0.77) (129.67, 92.21)

CPA
CNNs in groups = 2 94.2 (0.058) 74.52 (0.2548) (1.02, 1.06) (92.53, 70.12)

Shuffle
CNNs in groups = 2 93.33 (0.0667) 71.98 (0.2802) (0.96, 1.01) (96.75, 71.31)

w/o CPA
w/o Shuffle

CNNs in groups = 4
90.69 (0.0931) 68.75 (0.3125) (0.37, 0.41) (245.11, 167.68)

CPA
CNNs in groups = 4 93.79 (0.0621) 73.55 (0.2645) (0.78, 0.83) (119.58, 88.73)

Shuffle
CNNs in groups = 4 92.93 (0.0707) 71.33 (0.2837) (0.73, 0.78) (127.14, 91.97)

CPA
CNNs in groups = 1
(Ours UPANet16)

94.90 (0.0510) 75.15 (0.2485) (1.51, 1.56) (62.85, 48.17)

4.2.3. Building Connection with Learnable Pooling

In Section 3.5 toward ExC, one of the reasons for introducing the connection is creating
a smooth loss landscape to raise the potential for having a robust result. To verify this idea,
the best approach is plotting the landscapes from loss and Top–1 Error (accuracy). Therefore,
a series of landscape visualizations toward models with and without ExC in CIFAR-10 is
conducted followingly. Additionally, we argued that arbitrarily GAP spatial information
would suffer with the potential of losing important information. As a result, along with
the visualizations, the proposed SPA participated in this simulation with performance
evaluations in CIFAR-{10, 100} afterwards.

On the ground of visualizing landscapes, to make the loss of each competitor the same,
we applied a min-max scaler to scale each loss into [0:1], and then we could compare the
landform under the same standpoint. For Top—1 Error, as the scale is already in [0:1] in
percentage, the scaling is skipped toward accuracy. Please see the landscapes toward scaled
loss and Top—1 Error from Figure 8 to Figures 9 and 10 to Figure 11, separately.

Regarding the benefits of SPA, we have seen that it helps smooth the landscape.
Another observable benefit, in Table 2, is performance boosting. Although, compared Final
SPA with Final GAP, the performance increased in both CIFAR-{10, 100}, the winnings are
reversed when cooperating with ExC. Whereas the non-absolute improvement of working
with ExC, the improvement happened while ExC and GAP worked together. A more
significant improvement is also seen in having ExC, SPA, and GAP together, in the bold
fonts. Given the most significant improvements in performance and landscapes, we opt for
ExC + SPA + GAP with proposed methods to form UPANets.
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Table 2. Comparison of UPANets16 Variants in CIFAR-{10, 100}.

UPANet16 CIFAR-10
Acc % (Top 1 Error)

CIFAR-100
Acc % (Top 1 Error)

Size
(Million)

(CIFAR-10, CIFAR-100)

Efficiency
(Acc %/Million)

(CIFAR-10, CIFAR-100)

Final GAP 94.66 (0.0534) 74.63 (0.2537) (1.507162, 1.530292) (63.11, 48.78)
Final SPA 94.70 (0.0530) 74.72 (0.2491) (1.506427, 1.530306) (63.13, 48.84)

ExC + GAP 94.75 (0.0525) 74.60 (0.2540) (1.510042, 1.554772) (62.75, 48.13)
ExC + SPA 94.60 (0.0542) 75.09 (0.2491) (1.512431, 1.557161) (62.64, 48.45)

ExC + SPA + GAP 94.90 (0.051) 75.15 (0.2485) (1.512431, 1.557161) (62.85, 48.71)



Entropy 2022, 24, 1243 14 of 23

4.3. Comparison with SOTAs

After evaluating a range of proposed components, these vital parts form UPANets, and
it is vital to compare them with existing SOTAs. In UPANets, setting F = 16, 32, and 64 as the
channel number base represents different widths of UPANets. Using these variant width
UPANets with existing CNNs-based models in CIFAR-{10, 100} as former simulations,
we can see a much clearer place among SOTAs. Additionally, because of the hardship of
being unable to evaluate on ImageNet, a Tiny ImageNet is chosen as an alternative. In
the following comparison, the models are reimplemented based on the work in the link
(https://github.com/kuangliu/pytorch-cifar accessed on 23 October 2020) following the
experiment setting in Section 4.1, except for setting epochs in 200.

4.3.1. Comparison in CIFARs

In this comparison, the performance of each model was recorded in accuracy toward
testing data, parameters size in million, and efficiency in Equation (5) with the best per-
formance in the bold fonts in tables. As there are three performance indexes in Table 3,
it presents the information in a scatter plot as Figure 12, which contains accuracy on the
y-axis and efficiency on the x-axis. The size of the circle toward each model represents the
parameter size in a million. The same policies apply to Table 4 and Figure 13.

Entropy 2022, 24, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 12. UPANets Performance Position with SOTAs in CIFAR-10. 

Table 3. UPANets Performance with SOTAs in CIFAR-10. 

Model Test Avg Accuracy Size (M) Efficiency 
ShuffleNet_V2 91.26 1.26 72.21 
EfficientNet_B0 91.35 3.60 25.38 
MobileNet_V2 91.71 2.30 39.93 

SeNet18 93.71 1.34 69.69 
VGG16 93.83 14.73 6.37 

PreActResNet18 94.36 11.17 8.45 
DenseNets121_16GR 94.81 1.76 53.78 

SimpleDLA 94.99 15.14 6.27 
DenseNet201 95.13 18.10 5.25 

UPANet16 (Ours) 95.32 1.51 63.13 
ResNet18 95.35 11.17 8.53 
ResNet50 95.45 23.52 4.06 

RegNetY_400MF 95.46 5.71 16.71 
DLA 95.49 16.29 5.86 

ResNet101 95.62 42.51 2.25 
UPANet32 (Ours) 95.88 5.93 15.93 
ResNeXt29_2x64d 95.76 9.13 10.49 
ResNeXt29_32x4d 95.78 4.77 20.06 
UPANet64 (Ours) 96.47 23.60 4.09 

Figure 12. UPANets Performance Position with SOTAs in CIFAR-10.

https://github.com/kuangliu/pytorch-cifar


Entropy 2022, 24, 1243 15 of 23

Table 3. UPANets Performance with SOTAs in CIFAR-10.

Model Test Avg Accuracy Size (M) Efficiency

ShuffleNet_V2 91.26 1.26 72.21
EfficientNet_B0 91.35 3.60 25.38
MobileNet_V2 91.71 2.30 39.93

SeNet18 93.71 1.34 69.69
VGG16 93.83 14.73 6.37

PreActResNet18 94.36 11.17 8.45
DenseNets121_16GR 94.81 1.76 53.78

SimpleDLA 94.99 15.14 6.27
DenseNet201 95.13 18.10 5.25

UPANet16 (Ours) 95.32 1.51 63.13
ResNet18 95.35 11.17 8.53
ResNet50 95.45 23.52 4.06

RegNetY_400MF 95.46 5.71 16.71
DLA 95.49 16.29 5.86

ResNet101 95.62 42.51 2.25
UPANet32 (Ours) 95.88 5.93 15.93
ResNeXt29_2x64d 95.76 9.13 10.49
ResNeXt29_32x4d 95.78 4.77 20.06
UPANet64 (Ours) 96.47 23.60 4.09
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Table 4. UPANets performance with SOTAs in CIFAR-100.

Model Test Avg Accuracy Size (M) Efficiency

EfficientNet_B0 69.74 3.63 19.22
ShuffleNet_V2 71.15 1.36 52.47
MobileNet_V2 71.96 2.41 29.83

SeNet18 72.55 1.36 53.49
VGG16 74.96 14.77 5.07

SimpleDLA 76.72 15.19 5.05
UPANet16 (Ours) 76.73 1.56 49.05

preactresnet18 77.31 11.22 6.89
DenseNets121_16GR 77.35 1.81 42.76

RegNetY_400MF 78.44 5.75 13.64
DLA 78.68 16.34 4.82

UPANet32 (Ours) 78.78 6.02 12.90
ResNet18 78.81 11.22 7.02

ResNeXt29_32x4d 79.16 4.87 16.27
DenseNet201 79.25 18.23 4.35

ResNeXt29_2x64d 79.38 9.22 8.61
ResNet101 79.54 42.70 1.86
ResNet50 79.59 23.71 3.36

UPANet64 (Ours) 80.29 23.84 3.37

In this implemented CIFAR-10 comparison, UPANet64 has the best accuracy. By
plotting each model in Figure 12, UPANets have outstanding performance-balancing
efficiency and accuracy in the scatter plot. In addition, the models claimed in the lite
structure are located in the bottom right area, but they lost certain accuracy. On the
other side, UPANet16 and DenseNet are located in the upper right corner, indicating
that the proposed model and DenseNets have high efficiency. As for the accuracy in
Table 3, UPANet64 is the only model reaching over 96% accuracy without many parameters,
especially compared with ResNet101 and DenseNet201. A similar overall distribution
toward the three indexes is witnessed in implemented CIFAR-100 comparison. Although
UPANet16 and UPANet32 are falling behind in terms of efficiency, UPANet64 is the one
which passes the 80% accuracy in CIFAR-100. As a result, UPANets performed well in both
open datasets from the evaluated points.

4.3.2. Comparison in Tiny ImageNet

Although we compared a series of SOTAs with UPANets in CIFAR-{10, 100}, the
difficulty of datasets is smaller than Tiny ImageNet, as it needs to classify more labels,
which is about double that of CIFAR-100. Moreover, the image size is two times larger
than CIFARs, so we only examined UPANets64 in 100 epochs with the same experimental
setting as the above comparisons. Further, some SOTAs, which were also examined on Tiny
ImageNet, are shown together in Table 5.

Table 5. UPANets Performance with SOTAs in Tiny ImageNet.

Model Test Avg Accuracy Size (M) Efficiency

DenseNets + Residual
Networks [34] 60.00 N/A N/A

PreActResNets18 [35] 63.48 N/A N/A
UPANets64 (Ours) 67.67 24.40 2.77

As a whole, UPANets has not only performed excellently in widely-used datasets
but also in a complex dataset, in this Tiny ImageNet. Moreover, based on classification
performance, the proposed UPANets can be one of the state-of-the-art models in the Tiny
ImageNet benchmark (Checked on April 2021).
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5. Conclusions

This work proposed a novel backbone, UPANets, for image classification. Each
proposed component in the framework fulfils specific objectives and helps the model
outshine existing SOTAs in terms of performance and efficiency. The positive findings and
potential contributions can be concluded as follows.

5.1. CPA in Processing Global Information with Benefits

First, CPA captures global information across channels to form more complex feature
maps, expanding the receptive fields of shallow layers. That is, the shallow layers will
quickly mature to boost performance. On the other hand, the more mature layers indicate
fewer needs for stacking deep. With further application of concatenation in UPA blocks with
accumulating UPA layer modules, the effect is amplified more to ramp up the advantages.

5.2. SPA with ExC Brings Better Environments for Learning

Connecting each layer, transporting essential spatial information by learnable attention
brings smoother landscapes. As the concern of losing information by arbitrarily averaging
out spatial pixels, SPA ameliorates it with performance improvements. Moreover, ExC
learned that passing feedback from SPA to each layer forms a smooth landform.

5.3. SPA with ExC Brings Better Environments for Learning

Finally, comparing with a series of SOTAs in CIFAR-{10, 100} and Tiny ImageNet, the
results of UPANets are better than most existing SOTAs. As a result, it is convinced that
UPANets can perform competitively in image classification. Further, this practical evidence
shows that learning universal pixels channel-wise and spatial-wise with the proposed
modules can effectively utilize parameters.

In sum, these attempts create a way to develop an efficient backbone for effectively
processing universal information with decent performance.
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Appendix A. Dimension Illustration in UPANets Structure

In the Table A1 for UPANets structure in CIFAR-10, N represents the data number, F
indicates the filters number, Bi are blocks, d means the depth multiplier, b is the number of
the block, and w is the convolutional width. UPA Block 0 and the other blocks follow the
stride 2 version and stride 1 version UPA block, respectively.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/c/tiny-imagenet
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Table A1. The UPANets Structure for CIFAR-10.

Layers Blocks Input size Output size Structure

UPA Layer
Module 0 UPA Block 0 N × 32× 32× 3 N × 32× 32× F

{[
3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA

}
UPA Layer Module 1

B1 = 4d
UPA Block 0 N × 32× 32× F N × 32× 32× (

(
F

B1

)
+ F)

F0

{[
3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA

}
UPA Block

1~4d N × 32× 32× Fb−1 N × 32× 32× (
(

F
B1

)
+ Fb−1)

Fb

{[
3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA

}
× 4d

UPA Layer Module 2
B2 = 4d

UPA Block 0 N × 32× 32× 2F N × 16× 16× (
(

2F
B2

)
+ 2F)

F0


[

3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA,

Avgpool2d(stride 2)


UPA Block

1~4d N × 16× 16× Fb−1 N × 16× 16× (
(

2F
B2

)
+ Fb−1)

Fb

{[
3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA

}
× 4d

UPA Layer Module 3
B3 = 4d

UPA Block 0 N × 16× 16× 4F N × 8× 8× (
(

4F
B3

)
+ 4F)

F0


[

3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA,

Avgpool2d(stride 2)


UPA Block

1~8d N × 8× 8× Fb−1 N × 8× 8× (
(

4F
B3

)
+ Fb−1)

Fb

{[
3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA

}
× 4d

Ex-Connected Layer


N × 32× 32× F(Layer Module 0 output),

N × 32× 32× 2F(Layer Module 1 output),
N × 16× 16× 4F(Layer Module 2 output),
N × 8× 8× 8F(Layer Module 3 output),
N × 4× 4× 16F(Layer Module 4 output),


N × 1× 1×

(F + F + 4F + 8F + 16F) SPA+ GAP

Output Layer N × 1× 31F N × 10 Linear

Appendix B. Comparison of Perceptron and CNNs in Attention

In Section 3.1, we bring a cross Channels Pixel Attention (CPA) mechanism. A one-
layer perceptron is applied to offer the service in CPA. Additionally, 1 × 1 CNNs is a
standard option to map the information across channels. However, as the simulation in
Table A2 shows, the performances of CNNs have fallen behind using one-layer perceptron,
one-layer perceptron in bold fonts. The underlying reason could be that although CNNs
can share patterns, the single parameter in each sharing pattern is limited to carrying on
vital information. Additionally, as the one-layer perceptron is operating in dot-product, the
information is shared and combined with each one, indicating our point of CPA detecting
cross channels in the same pixel position.

Table A2. The Comparison of Perceptron and CNNs as an Attention.

UPANet16
CIFAR-10

Acc %
(Top 1 Error)

CIFAR-100
Acc %

(Top 1 Error)

Size
(M)

(10, 100)

Efficiency
(Acc %/M)

(10, 100)

CNNs 94.76 (0.0442) 74.85 (0.2515) (1.51, 1.56) (62.75, 47.98)
FC 94.90 (0.051) 75.15 (0.2485) (1.51, 1.56) (62.85, 48.17)

Appendix C. Sample Pattern of the CNN and CPA in UPA Block

CPA paying attention under the operation of UPA blocks among UPA layer modules,
CPA can learn cross-channels-blocks pixel to form universal attention. That is contributed
by concatenation in UPA blocks and accumulating of UPA layer module. To observe the
learned patterns from the global range, inputting a random noise to extract pattern profiles
was conducted in Figure A1, with the same extracting policy as Figure 7.
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landscape, https://github.com/JoelNiklaus/loss_landscape accessed on 20 April 2021), the 
primary usage is setting a random sampling range in [−1:1] with a specific sampling num-
ber (default: 50). However, as this sampling method is similar to the sensitivity analysis 
in determining feature importance, only a good sampling range can produce a calculata-
ble loss. This dilemma impeded us when we were trying to visualize a sensitive model, 
such as DenseNets, because a little adding noise might cause the loss to Nan. Therefore, 
how to define a good sampling range is a challenge. On the other hand, although filter 
normalization has been introduced [20] to compare loss landscapes from different models, 
we found that different loss ranges still make comparing hard. An enormous total loss 
range will make most landscapes smother because an outlier will break the harmony of 
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to-end trained DenseNets and our models in CIFAR-10 based on the code in this project 
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A2, the largest loss broke the harmony of the original loss landscape. The normal loss 
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Appendix D. Landscape toward UPANets and Others

The introduction of the visualizing loss landscape method in [20] helps researchers
understand the possible training landscape among the parameters of a model. By the de-
scription of the actual implementing source code (https://github.com/tomgoldstein/loss-
landscape, https://github.com/JoelNiklaus/loss_landscape accessed on 20 April 2021), the
primary usage is setting a random sampling range in [−1:1] with a specific sampling num-
ber (default: 50). However, as this sampling method is similar to the sensitivity analysis in
determining feature importance, only a good sampling range can produce a calculatable
loss. This dilemma impeded us when we were trying to visualize a sensitive model, such
as DenseNets, because a little adding noise might cause the loss to Nan. Therefore, how to
define a good sampling range is a challenge. On the other hand, although filter normaliza-
tion has been introduced [20] to compare loss landscapes from different models, we found
that different loss ranges still make comparing hard. An enormous total loss range will
make most landscapes smother because an outlier will break the harmony of the loss map.

Toward the dilemmas, we ushered an automatic search and min-max scaled into our
visualization. First, a doable visualization range with binary search is applied in advance
based on the original method from [−1:1]. Later, we used min-max scaling for every loss
landscape to make the two landscapes comparable. Finally, for demonstrating, we end-
to-end trained DenseNets and our models in CIFAR-10 based on the code in this project
(https://github.com/kuangliu/pytorch-cifar accessed on 23 October 2020) and applied the
ushered methods in the following pre- and post-scaled landscapes.

Appendix D.1. Comparison with DenseNet

The visualizable sampling range was [−0.0375 : 0.0375] with 50 samples. In Figure A2,
the largest loss broke the harmony of the original loss landscape. The normal loss owns the
majority number, but it is hard to see the fluctuation of the landscape from the relative more
minor loss. As a result, a flattened space created an illusion. Min-max scaled loss landscape
shows a much different view. Although the centre of the map is still flat, the surrounding
loss stands erect on edge. Not only can the scaled landscape reveal a much more reasonable

https://github.com/tomgoldstein/loss-landscape
https://github.com/tomgoldstein/loss-landscape
https://github.com/JoelNiklaus/loss_landscape
https://github.com/kuangliu/pytorch-cifar
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profile, but scaling can also make different landscapes comparable. Therefore, the exact
search and scaled policies were applied to UPANet16 in [−0.0375 : 0.0375] to compare with
DenseNet in Figure A3 and the Top—1 Error ones in Figure A4.

Entropy 2022, 24, x FOR PEER REVIEW 21 of 24 
 

 

the surrounding loss stands erect on edge. Not only can the scaled landscape reveal a 
much more reasonable profile, but scaling can also make different landscapes comparable. 
Therefore, the exact search and scaled policies were applied to UPANet16 in 0.0375: 0.0375  to compare with DenseNet in Figure A3 and the Top—1 Error ones in 
Figure A4. 

 
Figure A2. The Pre and Post Scaled Loss Landscape of DenseNets. 

 
Figure A3. The Pre- and Post-Scaled Loss Landscape of UPANets16. 

 
Figure A4. The Top—1 Error Landscapes of UPANets16 and DenseNet. 

Comparing Figure A2 to Figure A4 in the range 0.0375: 0.0375 , UPANet can dis-
tribute a similar view as DenseNet, but there are fewer enormous losses at the edge of the 

Figure A2. The Pre and Post Scaled Loss Landscape of DenseNets.

Entropy 2022, 24, x FOR PEER REVIEW 21 of 24 
 

 

the surrounding loss stands erect on edge. Not only can the scaled landscape reveal a 
much more reasonable profile, but scaling can also make different landscapes comparable. 
Therefore, the exact search and scaled policies were applied to UPANet16 in 0.0375: 0.0375  to compare with DenseNet in Figure A3 and the Top—1 Error ones in 
Figure A4. 

 
Figure A2. The Pre and Post Scaled Loss Landscape of DenseNets. 

 
Figure A3. The Pre- and Post-Scaled Loss Landscape of UPANets16. 

 
Figure A4. The Top—1 Error Landscapes of UPANets16 and DenseNet. 

Comparing Figure A2 to Figure A4 in the range 0.0375: 0.0375 , UPANet can dis-
tribute a similar view as DenseNet, but there are fewer enormous losses at the edge of the 

Figure A3. The Pre- and Post-Scaled Loss Landscape of UPANets16.

Entropy 2022, 24, x FOR PEER REVIEW 21 of 24 
 

 

the surrounding loss stands erect on edge. Not only can the scaled landscape reveal a 
much more reasonable profile, but scaling can also make different landscapes comparable. 
Therefore, the exact search and scaled policies were applied to UPANet16 in 0.0375: 0.0375  to compare with DenseNet in Figure A3 and the Top—1 Error ones in 
Figure A4. 

 
Figure A2. The Pre and Post Scaled Loss Landscape of DenseNets. 

 
Figure A3. The Pre- and Post-Scaled Loss Landscape of UPANets16. 

 
Figure A4. The Top—1 Error Landscapes of UPANets16 and DenseNet. 

Comparing Figure A2 to Figure A4 in the range 0.0375: 0.0375 , UPANet can dis-
tribute a similar view as DenseNet, but there are fewer enormous losses at the edge of the 

Figure A4. The Top—1 Error Landscapes of UPANets16 and DenseNet.

Comparing Figure A2 to Figure A4 in the range [−0.0375 : 0.0375], UPANet can dis-
tribute a similar view as DenseNet, but there are fewer enormous losses at the edge of
the landscape. Especially, it seems models can quickly reach a minimum in UPANet16
Top—1 Error map with a lower gap in the margin.

Appendix D.2. UPANet16 Variants Original Landscapes

In our visualizations in UPANet16 and its variants, using the default range of [−1:1]
can already offer the visualization, which indicates UPANets are not as sensitive as
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DenseNets. This also implies the robustness of UPNets toward the noise, as the method
of [20] is sampling parameters from a different angle, like adding noise to see the loss
changing. So, the sensitive changes formed the landforms we obtained. The scaled ones
have been shown in Section 4.2.3. Figures from Figure A5 to Figure A6 show the pre-scaled
landscapes for each variant of UPANet16.
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