
Citation: Tseng, C.-H.; Lee, S.-J.;

Feng, J.; Mao, S.; Wu, Y.-P.;

Shang, J.-Y.; Zeng, X.-J. UPANets:

Learning from the Universal Pixel

Attention Neworks. Entropy 2022, 24,

1243. https://doi.org/10.3390/

e24091243

Academic Editor: Friedhelm

Schwenker

Received: 18 July 2022

Accepted: 24 August 2022

Published: 4 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

UPANets: Learning from the Universal Pixel Attention Neworks
Ching-Hsun Tseng 1, Shin-Jye Lee 2,*, Jianan Feng 3 , Shengzhong Mao 1, Yu-Ping Wu 1 , Jia-Yu Shang 1

and Xiao-Jun Zeng 1

1 Department of Computer Science, The University of Manchester, Manchester M13 9PL, UK
2 Institute of Management of Technology, National Chiao Tung University, Hsinchu 300, Taiwan
3 School of Software, Yunnan University, Kunming 650504, China
* Correspondence: camhero@gmail.com

Abstract: With the successful development in computer vision, building a deep convolutional
neural network (CNNs) has been mainstream, considering the character of shared parameters in a
convolutional layer. Stacking convolutional layers into a deep structure improves performance, but
over-stacking also ramps up the needed resources for GPUs. Seeing another surge of Transformers in
computer vision, the issue has aroused severely. A resource-hungry model is hardly implemented for
limited hardware or single-customers-based GPU. Therefore, this work focuses on these concerns
and proposes an efficient but robust backbone, which equips with channel and spatial direction
attentions, so the attentions help to expand receptive fields in shallow convolutional layers and
pass the information to every layer. An attention-boosted network based on already efficient CNNs,
Universal Pixel Attention Networks (UPANets), is proposed. Through a series of experiments,
UPANets fulfil the purposes of learning global information with less needed resources and outshine
many existing SOTAs in CIFAR-{10, 100}.

Keywords: computer vision; image classification; CNN; attention

1. Introduction

The development of computer vision has experienced a range of trends in this decade.
Several introducing models [1–6] in open datasets competition significantly improved the
accuracy of the image classification, which includes deep convolutional neural networks
(CNNs) with residual calculation [7–14]. With the deep CNNs from stacking convolutional
layers, models could capture local characteristics and global profiles with the increasing
receptive fields [15]. However, this deep policy will raise the needed parameters and then
makes one customer-based GPU unable to hold it. Besides CNNs, vision in Transformer
(ViT) [16] has opened a path of applying the pure Multi-Head Attentions, which is from
the natural language processing, to classify images by learning global information. While
ViT arouses even influential works [17,18], we are facing a more severe issue of draining
GPUs than deep CNNs because most Transformer-based networks require more powerful
GPUs with large exclusive CUDA memory to calculate. Although sparse Attention in
Informer [19] is trying to ameliorate the burden on GPUs, training Transformer-based
models in a customer-based GPU to gain a decent performance remains impractical. It thus
motivates this work to find a balance between computational costs and capturing image
information globally.

To unleash the calculating pressure in a GPU and have a decent performance simulta-
neously, making a layer in shallow depth equipped with a broad receptive field is critical.
Namely, if we can make layers mature quickly (in early depth), it is not necessary to have
a deep structure to increase receptive fields. Instead of choosing already power-hungry
Transformer-based structures, endowing learning global information ability to CNNs is
rational because of the sharing filters mechanism in convolutional layers. Then, the issue
that needs to be addressed is how to endow learning global information ability to CNNs

Entropy 2022, 24, 1243. https://doi.org/10.3390/e24091243 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24091243
https://doi.org/10.3390/e24091243
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6701-2730
https://orcid.org/0000-0001-6399-9710
https://doi.org/10.3390/e24091243
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24091243?type=check_update&version=2

Entropy 2022, 24, 1243 2 of 23

rather than stacking convolutional layers to increase the receptive field. This work proposes
Channel Pixel Attention (CPA) for helping convolutional layers to obtain global information
directly, as shown in Figure 1. By CPA, models can combine information across the channel
to generate more complex feature maps and further make shallow depth layers process
similarly to deep depth layers.

Entropy 2022, 24, x FOR PEER REVIEW 2 of 24

have a deep structure to increase receptive fields. Instead of choosing already power-hun-
gry Transformer-based structures, endowing learning global information ability to CNNs
is rational because of the sharing filters mechanism in convolutional layers. Then, the issue
that needs to be addressed is how to endow learning global information ability to CNNs
rather than stacking convolutional layers to increase the receptive field. This work pro-
poses Channel Pixel Attention (CPA) for helping convolutional layers to obtain global in-
formation directly, as shown in Error! Reference source not found.. By CPA, models can
combine information across the channel to generate more complex feature maps and fur-
ther make shallow depth layers process similarly to deep depth layers.

Figure 1. Channel Pixel Attention (CPA) Process and Samples. The image on the top is an originally
sampled image from CIFAR-10. The feature maps in the middle line are the outputs generated from
the CNNs before processing CPA. On the bottom line are the samples generated from CPA. The red
square is the sum of weighted pixels from each orange square pixel in the same position.

In line with the same notion and the observations in [20], another direction to boost
model learning and help information transport well among convolutional layers is build-
ing connections among a block, which is usually a unit with stacking of multiple convo-
lutional layers and stacking as a layer module. To amplify the CPA effect, a hybrid con-
nection with CPA is proposed. UPA blocks process lossless information from concatenat-
ing multiple UPA blocks in a stack and filter out vital information through residual con-
nection. By this operation, the received information is not only from the last block but also
the accumulating information until this block, so the CPA in each block can further absorb
features from other blocks to amplify the receptive fields.

To transmit lossless learned information and feedback among layers, connecting each
layer module is common in many object-detection tasks (e.g., saliency, semantic, and in-
stance objects detection) within an auto-encoder-based structure in which the input and
output share the exact image size with a bottleneck in a network. Nevertheless, the same
picture is not seen in image classification. In contrast, the effect of merely applying resid-
ual and concatenating connections to prevent information loss will eventually saturate
[21]. For this reason, the Extreme Connection (ExC) is proposed to connect each UPA layer

Figure 1. Channel Pixel Attention (CPA) Process and Samples. The image on the top is an originally
sampled image from CIFAR-10. The feature maps in the middle line are the outputs generated from
the CNNs before processing CPA. On the bottom line are the samples generated from CPA. The red
square is the sum of weighted pixels from each orange square pixel in the same position.

In line with the same notion and the observations in [20], another direction to boost
model learning and help information transport well among convolutional layers is building
connections among a block, which is usually a unit with stacking of multiple convolutional
layers and stacking as a layer module. To amplify the CPA effect, a hybrid connection with
CPA is proposed. UPA blocks process lossless information from concatenating multiple
UPA blocks in a stack and filter out vital information through residual connection. By this
operation, the received information is not only from the last block but also the accumulating
information until this block, so the CPA in each block can further absorb features from
other blocks to amplify the receptive fields.

To transmit lossless learned information and feedback among layers, connecting each
layer module is common in many object-detection tasks (e.g., saliency, semantic, and
instance objects detection) within an auto-encoder-based structure in which the input and
output share the exact image size with a bottleneck in a network. Nevertheless, the same
picture is not seen in image classification. In contrast, the effect of merely applying residual
and concatenating connections to prevent information loss will eventually saturate [21]. For
this reason, the Extreme Connection (ExC) is proposed to connect each UPA layer module
with learnable Spatial Pixel Attention (SPA) along with the existing Global Average Pooling
in UPANets. As a result, instead of simply extending the connection to classification, a
learnable global pooling in spatial direction, SPA, involves making sure that essential pixels
occupy a significant portion in the sending of information to the output layer. A smooth
updating landscape is expected to be generated to ensure robustness.

Entropy 2022, 24, 1243 3 of 23

Thus, by forming the proposed components into balanced but powerful networks, we
furtherly propose Universal Pixel Attention Networks (UPANets). Through the evaluations
of this work, the contributions can be summarized as follows:

• Propose UPANets with UPA Block equipped with Channel Pixel Attention (CPA)
and a combination of Spatial Pixel Attention (SPA) and Extreme Connection (ExC)
connecting each UPA Layer Module to find the balance between performance and cost.

• CPA considers pixel information across channels and helps CNNs form complex
features even in shallow depth with fewer parameters. In addition, by applying
concatenating feature maps in a network, the capturing ability of CPA can be amplified
to cross blocks detection.

• SPA and ExC help to generate a smooth learning landscape and contribute to learning
spatial information to pass important pixel information, respectively.

• A competitive image classification model surpasses well-known SOTAs in CIFAR-
{10, 100} and Tiny ImageNet.

This paper firstly discusses the essential background and motivations in Section 1,
and then the well-known observations and relevant works toward image classification
are introduced in Section 2. Next, the core of this work, the proposed method UPANets
and its structures are introduced in Section 3. Then, to examine the proposed method,
the comparisons between the proposed methods, UPANets, and other novel methods in
well-known datasets can be observed in Section 4. Finally, the conclusion is in Section 5, and
the extra findings and simulations of UPANets are summarized in the Appendices A–D.
We share our implemented code at the link: https://github.com/hanktseng131415go/
UPANets (accessed on 17 July 2022).

2. Related Works
2.1. Attentions

Attention exists in many forms. Motivated by Transformer [22], Multi-Head Attention
served the purpose of considering global information, so the model becomes robust and
powerful, but the draining computational resource breaks the balance between performance
and used parameters. Although ViT [16] used the image patches to reduce the needed
parameters, the problem remains. Later, the variants [17,18] with multiple Transformer-
based units in a network make the draining problem severer. Apart from learning a mega
dataset to make Transformer’s Attentions useful, DeiT-B [23] used the proposed attention
to transfer the pre-trained parameters into a Transformer on image classification. However,
it only relocates the draining issue from end-to-end training to knowledge distillation.
Despite this dilemma, big companies, such as Google, Microsoft, and Facebook, do not
stop exploring more because of the path of considering global information in Transformers.
Nonetheless, having a stack of GPUs is not common for most users, which drives the need
to learn global information with fewer resources.

On the ground of applying Attentions in CNNs, the draining issue caused by At-
tentions is minor, but the existing Attentions mainly focus on local information or are
limited toward paying attention in the current block. One of the most well-known Atten-
tion in CNNs is Convolutional Block Attention Module (CBAM) [24], which arbitrarily
applies max and average pooling to care pixels. Although the Attentions in CBAM are
parameter-less, the potential of losing information by max and average pooling remains.
Similarly, SENets [25] uses global average pooling to squeeze the spatial information into
one representative value. Then, it uses multi-layers perceptron (MLP) with a ReLU and
Softmax to make channel attention. By embedding SE-Block after each block afterword,
it showed improvements in VGGs [2], InceptionNets [3,4], and ResNeXts [26], but the
same issue of losing information from arbitrarily average pooling is hovering. In object
detection, operation toward a convolutional output to serve the purpose of pixel attention
is also a trend. For example, DANet [27] is embedded behind a backbone network as a
feature extractor (e.g., ResNets [5]) and applies two dot-products on the outputted feature
maps with Softmax among the two Attentions in the Channel Attention Module, and the

https://github.com/hanktseng131415go/UPANets
https://github.com/hanktseng131415go/UPANets

Entropy 2022, 24, 1243 4 of 23

same operation on the width and height of feature maps in the Position Attention Module.
However, these modules only care about the feature maps from the final layer module.
Additionally, GCNet [28] uses a similar module as DANet’s in each block and replaces
the dot-product operations with a 1× 1 convolutional kernel, namely paying attention
to the current block. The applying operation in GCNet with a 1× 1 convolutional kernel
did not outshine using a one-layer perceptron as a cross-channel attentional operation
in our comparison in Appendix B. Another attention to learning cross channels in the
current block is the shuffle operation from ShuffleNets v1 [29] and v2 [30]. Shuffling the
order of CNNs kernel weight in groups breaches the independent learning process when
detecting images in group CNNs, so the next layer of group CNNs can detect the other
group CNNs feature maps. Nonetheless, the shuffle operation is taken back, and thus
performance is limited; and please see Section 4.2.2. Unit Subtraction Convolution (USC) in
RK-Net [31], similar to the parameter-free operation in ShuffleNets, replaces conventional
dot-product with subtraction to extract the key points from the feature map. Another
replacing traditional convolutional operation work is Local Pattern Network (LPN) [32],
which proposes a feature partition strategy to take advantage of contextual features with
the parameter-free operation. By viewing ShuffleNets, USC, and LPN, colouring CNNs
operation with different mechanisms help the network to consider more information to
perform better. In sum, inheriting a similar notion, our CPA brings a new direction to pay
attention to across the channel. The mature feature maps are furtherly proved with better
performance compared with the 1× 1 convolutional layer, shuffle operation, and SENet in
Section 4.

2.2. Structure Design

A good structure design could affect the performance and the parameters convert
ratio because of being able to help information to transmit to different layers properly.
ResNets have introduced residual connection that offers a great path to let deep learning
fulfil the true meaning of deep, namely letting original information pass to deep layers
intact. Additionally, the residual connection prevents the potential of facing overfitting.
To explain the underlying reasons, the visualization of the loss landscape [20] has proven
that. Another underlying reason in [20] is the dense connection in DenseNets [33]. Densely
connection connects original and outputting information by reusing feature maps in deep
layers. By observing landscapes from DenseNets in [20], the loss landscapes are smoother
than ResNets. However, according to the statement from EfficientNet [21], the effect will
be saturation despite using skip-connection or densely-connection. Most importantly, in
our simulation of Section 4.3, the efficiency between parameters and accuracy degrades
severely when layers in both ResNets and DenseNets grow. In our comparison in Section 4.3,
UPANets has a better conversion ratio than the formers.

3. UPANets

This section details the proposed method, UPANets, and the relevant components.
Firstly, the Attention approach designed channel-wise is revealed. Consequently, a hybrid
block with residual and concatenation learning in UPA Block shows how they work together
in UPANets. After the proposed SPA in ExC, the structure of UPANets is shown.

3.1. Channel Pixel Attention

A convolutional kernel is good at capturing local information, but each kernel can only
detect a specific pattern, which limits the ability. Conventionally, stacking convolutional
layers to expand the pattern library is intuitive but deadly, as discussed in Section 1. To ex-
pand the library without overstacking layers, having the ability to learn global information
is vital. Therefore, the Channel Pixel Attention (CPA) is proposed. CPA applies a one-layer
perceptron to pay attention to the pixel in the same position across channels. By fusing

Entropy 2022, 24, 1243 5 of 23

patterns across channels, the library can be expanded, and the detected patterns can also be
more complex; please see Figure 1. The operation can be represented as (1):

X =
n

∑
c=1

xR
c WT

c + b, (1)

where c indicates the cth channel, X ∈ RN×C×W×H , xR
c ∈ RN×W×H×C, which is reshaped

to perform a dot product with WT
c , WT

c ∈ RN×C×C.
After the pixel attention is processed by a one-layer perceptron, Batch Normalization

and Layer Normalization with residual connection are applied afterwards. The workflow
of CPA can be demonstrated in Figure 2, and the sample feature maps toward the inputs in
an actual image with demonstration are shown in Figure 1, in which the outputted feature
maps from the CPA process combine their original features and supportive information
from others. These combined features show that CPA can promote feature maps to fuse
more complex ones without losing original features. Compared with the deep structure,
CPA can help a shallow network form more complex patterns, expanding receptive fields.

Entropy 2022, 24, x FOR PEER REVIEW 5 of 24

3.1. Channel Pixel Attention
A convolutional kernel is good at capturing local information, but each kernel can

only detect a specific pattern, which limits the ability. Conventionally, stacking convolu-
tional layers to expand the pattern library is intuitive but deadly, as discussed in Section
1. To expand the library without overstacking layers, having the ability to learn global
information is vital. Therefore, the Channel Pixel Attention (CPA) is proposed. CPA ap-
plies a one-layer perceptron to pay attention to the pixel in the same position across chan-
nels. By fusing patterns across channels, the library can be expanded, and the detected
patterns can also be more complex; please see Error! Reference source not found.. The
operation can be represented as (1):

𝑋 = 𝑥 𝑊 + 𝑏, (1)

where 𝑐 indicates the cth channel, 𝑋 ∈ ℝ × × × , 𝑥 ∈ ℝ × × × , which is reshaped to
perform a dot product with 𝑊 , 𝑊 ∈ ℝ × × .

After the pixel attention is processed by a one-layer perceptron, Batch Normalization
and Layer Normalization with residual connection are applied afterwards. The workflow
of CPA can be demonstrated in Error! Reference source not found., and the sample fea-
ture maps toward the inputs in an actual image with demonstration are shown in Error!
Reference source not found., in which the outputted feature maps from the CPA process
combine their original features and supportive information from others. These combined
features show that CPA can promote feature maps to fuse more complex ones without
losing original features. Compared with the deep structure, CPA can help a shallow net-
work form more complex patterns, expanding receptive fields.

Figure 2. Channel Pixel Attention Structure. The green and blue lines represent the original and
processed information, respectively. In the stage of stride one, one CPA is involved with a concate-
nation. In the stage of stride two, a parallel CPA are processed with residual learning to decide
essential to pass, and then a down-sampling is applied by avgpool2d.

3.2. UPA Blocks
As the discussion in Section 2 toward ResNets and DenseNets, it is crucial that a block

not only processes image information well but can also pass lossless features not to waste
the processed information from previous blocks. To achieve that, a hybrid combination is
proposed for collecting the feature maps from the previous blocks by concatenating and
filtering out essential feature maps to the next layer by residual learning. By

Figure 2. Channel Pixel Attention Structure. The green and blue lines represent the original and pro-
cessed information, respectively. In the stage of stride one, one CPA is involved with a concatenation.
In the stage of stride two, a parallel CPA are processed with residual learning to decide essential to
pass, and then a down-sampling is applied by avgpool2d.

3.2. UPA Blocks

As the discussion in Section 2 toward ResNets and DenseNets, it is crucial that a block
not only processes image information well but can also pass lossless features not to waste
the processed information from previous blocks. To achieve that, a hybrid combination is
proposed for collecting the feature maps from the previous blocks by concatenating and
filtering out essential feature maps to the next layer by residual learning. By concatenating,
it can preserve original information and further help to amplify the CPA effect by learning
not only the cross channels information in the current block among UPA layer modules,
see Section 3.3. Furtherly, please, see the UPA Blocks structure in Figure 3.

Observing Figures 2 and 3, the difference between stride one and stride two is whether
to use the concatenate operation or not. On the other hand, the residual connection is
applied in CPA, which determines whether it should output the current learned information
or the ones from the last block.

Entropy 2022, 24, 1243 6 of 23

Entropy 2022, 24, x FOR PEER REVIEW 6 of 24

concatenating, it can preserve original information and further help to amplify the CPA
effect by learning not only the cross channels information in the current block among UPA
layer modules, see Section 3.3. Furtherly, please, see the UPA Blocks structure in Error!
Reference source not found..

Figure 3. UPA Blocks Structure in the Stride One and Stride Two Sets.

Observing Error! Reference source not found. and Error! Reference source not
found., the difference between stride one and stride two is whether to use the concatenate
operation or not. On the other hand, the residual connection is applied in CPA, which
determines whether it should output the current learned information or the ones from the
last block.

3.3. UPA Blocks
Continuing the discussion in Section 3.2, a model can preserve processed information

from previous blocks by applying concatenation in UPA Block. After that, combining mul-
tiple UPA Blocks to form a layer module makes CPA pay attention to the vital pixel across
channels from multiple blocks. Namely, through CPA, CNNs can access every processed
feature in the layer module. If it comes to down-sampling, a parallel residual CPA in-
volves deciding the important pixel from the accumulating feature maps to pass. See Er-
ror! Reference source not found.; UPA Layer Module helps CPA pay attention across
channels throughout accumulating blocks.

Figure 3. UPA Blocks Structure in the Stride One and Stride Two Sets.

3.3. UPA Blocks

Continuing the discussion in Section 3.2, a model can preserve processed information
from previous blocks by applying concatenation in UPA Block. After that, combining
multiple UPA Blocks to form a layer module makes CPA pay attention to the vital pixel
across channels from multiple blocks. Namely, through CPA, CNNs can access every
processed feature in the layer module. If it comes to down-sampling, a parallel residual
CPA involves deciding the important pixel from the accumulating feature maps to pass.
See Figure 4; UPA Layer Module helps CPA pay attention across channels throughout
accumulating blocks.

Entropy 2022, 24, x FOR PEER REVIEW 7 of 24

Figure 4. UPA Layer Module. In the UPA block 0, a stride two UPA block using the residual con-
nection with 2 × 2 kernel average pooling is applied.

In Error! Reference source not found., except for the stride two version operation in
block 0, each block follows the stride one version operation. Further, the width of every
stride one version block is smaller than its input shape, and that can be referred to in the
following Equation: 𝑤 = 𝑊 /𝑏, (2)

where 𝑏 = 1 ⋯ 𝑛, 𝑊 indicates the summation of adding width of this layer, the width is
the filter number or channel number, 𝑤 means the outputted width of this block, and 𝑤 equals to double width of the last layer because the original input remains, and the
processed information is appended after that. For example, if the width of layer module 1
is set to 16, the outputted width of layer module 1 will be 32 because of concatenation.
Therefore, the width of block 0 in layer module 2 is 32, 𝑤 = 32. Then, as the number of
blocks in layer 2 is 4, 𝑏 = 4, the width of each block is 8, 𝑤 = 8 because 𝑊 = 32 and = 8. In this case, the outputted width from this UPA Block of the current UPA Layer
Module will be 32 + 8 = 40.

3.4. Spatial Pixel Attention
Although Global Average Pooling (GAP) does not require extra computational cost,

it is suffering the potential of losing information because of arbitrarily averaging out over-
all spatial information. To ameliorate this concern, this work proposes Spatial Pixel Atten-
tion (SPA) with learnable parameters by applying a one-layer perceptron to learn essential
pixels in the same spatial direction. With the involved learnable process, SPA helps to
determine which pixel to be amplified or ignore. SPA mechanism can be defined as the
following formula:

𝑋 = 𝑥 𝑊 + 𝑏, (3)

where 𝑐 indicates the cth channel, 𝑋 ∈ ℝ × × , 𝑥 ∈ ℝ × × , 𝐿 = 𝑊 × 𝐻 , and 𝑊 ∈ℝ × × .
In Error! Reference source not found., the process from (b) to (c) is implemented by

a one-layer perceptron. Through the layer, SPA can determine to pay the appropriate at-
tention to the essential pixels and then squeeze the entire pixels into one-pixel information
by a dot-product instead of arbitrary pooling with average.

Figure 4. UPA Layer Module. In the UPA block 0, a stride two UPA block using the residual
connection with 2× 2 kernel average pooling is applied.

Entropy 2022, 24, 1243 7 of 23

In Figure 4, except for the stride two version operation in block 0, each block follows
the stride one version operation. Further, the width of every stride one version block is
smaller than its input shape, and that can be referred to in the following Equation:

wb = Wl/b, (2)

where b = 1 · · · n, Wl indicates the summation of adding width of this layer, the width
is the filter number or channel number, wb means the outputted width of this block, and
w0 equals to double width of the last layer because the original input remains, and the
processed information is appended after that. For example, if the width of layer module
1 is set to 16, the outputted width of layer module 1 will be 32 because of concatenation.
Therefore, the width of block 0 in layer module 2 is 32, w0 = 32. Then, as the number of
blocks in layer 2 is 4, b = 4, the width of each block is 8, wb = 8 because W0 = 32 and
32
4 = 8. In this case, the outputted width from this UPA Block of the current UPA Layer

Module will be 32 + 8 = 40.

3.4. Spatial Pixel Attention

Although Global Average Pooling (GAP) does not require extra computational cost, it
is suffering the potential of losing information because of arbitrarily averaging out overall
spatial information. To ameliorate this concern, this work proposes Spatial Pixel Attention
(SPA) with learnable parameters by applying a one-layer perceptron to learn essential
pixels in the same spatial direction. With the involved learnable process, SPA helps to
determine which pixel to be amplified or ignore. SPA mechanism can be defined as the
following formula:

X =
n

∑
c=1

xR
c WT

c + b, (3)

where c indicates the cth channel, X ∈ RN×C×1, xR
c ∈ RN×C×L, L = W×H, and WT

c ∈ RN×L×1.
In Figure 5, the process from (b) to (c) is implemented by a one-layer perceptron.

Through the layer, SPA can determine to pay the appropriate attention to the essential
pixels and then squeeze the entire pixels into one-pixel information by a dot-product
instead of arbitrary pooling with average.

Entropy 2022, 24, x FOR PEER REVIEW 8 of 24

Figure 5. Spatial Pixel Attention. The demonstration takes a 2 × 2 feature map, as shown in (a),
with 𝑐 = 8 as an example. Then, the process from (a) to (b) reshapes the convolutional image. From
(b) to (c) is the SPA process, and its function is similar to the global average pooling.

3.5. Extreme Connection
Connecting the output layer with each inner layer in a network often generates a

smooth landscape [20]. With a smooth landscape, the probability of having a robust result
with many merits, such as quickly converging, arises. To do that, building such a connec-
tion would help. Here, an Extreme Connection (ExC) is proposed, which considers both
the information from SPA and GAP. Error! Reference source not found. reveals the ap-
plied extreme connection, and this operation can be represented as the following: 𝑋 = 𝐹 𝑆𝑃𝐴 (𝑥) + 𝐺𝐴𝑃 (𝑥), ⋯ , 𝑆𝑃𝐴 (𝑥) + 𝐺𝐴𝑃 (𝑥) , (4)

where 𝑋 ∈ ℝ × , which is the output from the flatten-concatenate 𝐹. 𝑁 is the data num-
ber, and 𝐶 represents the number of channels. Additionally, 𝑏 means the blockth in a net-
work.

Figure 5. Spatial Pixel Attention. The demonstration takes a 2× 2 feature map, as shown in (a), with
c = 8 as an example. Then, the process from (a) to (b) reshapes the convolutional image. From (b) to
(c) is the SPA process, and its function is similar to the global average pooling.

3.5. Extreme Connection

Connecting the output layer with each inner layer in a network often generates a
smooth landscape [20]. With a smooth landscape, the probability of having a robust result
with many merits, such as quickly converging, arises. To do that, building such a connection
would help. Here, an Extreme Connection (ExC) is proposed, which considers both the

Entropy 2022, 24, 1243 8 of 23

information from SPA and GAP. Figure 6 reveals the applied extreme connection, and this
operation can be represented as the following:

X = F[SPA1

(
xR

1

)
+ GAP1

(
xR

1

)
, · · · , SPAb

(
xR

b

)
+ GAPb

(
xR

b

)
], (4)

where X ∈ RN×C, which is the output from the flatten-concatenate F. N is the data
number, and C represents the number of channels. Additionally, b means the blockth in
a network.

Entropy 2022, 24, x FOR PEER REVIEW 8 of 24

Figure 5. Spatial Pixel Attention. The demonstration takes a 2 × 2 feature map, as shown in (a),
with 𝑐 = 8 as an example. Then, the process from (a) to (b) reshapes the convolutional image. From
(b) to (c) is the SPA process, and its function is similar to the global average pooling.

3.5. Extreme Connection
Connecting the output layer with each inner layer in a network often generates a

smooth landscape [20]. With a smooth landscape, the probability of having a robust result
with many merits, such as quickly converging, arises. To do that, building such a connec-
tion would help. Here, an Extreme Connection (ExC) is proposed, which considers both
the information from SPA and GAP. Error! Reference source not found. reveals the ap-
plied extreme connection, and this operation can be represented as the following: 𝑋 = 𝐹 𝑆𝑃𝐴 (𝑥) + 𝐺𝐴𝑃 (𝑥), ⋯ , 𝑆𝑃𝐴 (𝑥) + 𝐺𝐴𝑃 (𝑥) , (4)

where 𝑋 ∈ ℝ × , which is the output from the flatten-concatenate 𝐹. 𝑁 is the data num-
ber, and 𝐶 represents the number of channels. Additionally, 𝑏 means the blockth in a net-
work.

Figure 6. Structure of UPANets. The illustration of the proposed modules is assembled by showing
the ExC among UPANets in the bottom right corner.

As shown in Figure 6, ExC builds the relationship from the final hidden layer to the
output of each block. In addition, SPA evaluates which pixel should be paid more attention
toward the class to support GAP. Integrating both operations with layer normalization
allows both sides’ information to be scaled to the same level to learn.

3.6. UPANets Structure

In Figure 6, the cooperation between each proposed module is illustrated. The pro-
posed CPA is applied among each UPA Block. Additionally, ExC is applied to connect every
UPA Layer Module with the proposed SPA to cooperate with GAP. The detail transferring
of size, width, and the proposing Attention in UPANets toward CIFAR-10 is presented
in Table A1.

4. Experiment
4.1. Experiment Environment Settings

This simulation implemented UPANets and is compared with CNNs-based SOTA
models. The experimental environment comprises a customer-based GPU (RTX Titan with
24 GB) and an eight-core CPU (intel i9-9900KF) with 32 GB RAM. Despite the limitation of
available hardware, although we cannot implement ImageNet to evaluate, this simulation

Entropy 2022, 24, 1243 9 of 23

experiment compared UPANets and others in CIFAR-{10, 100} and tiny ImageNet datasets.
Every training process was implemented in a cosine annealing learning schedule with a half
cycle. Additionally, the training optimizer was stochastic gradient descent with an initial
learning rate = 0.1, momentum = 0.9, and weight decay = 0.0005. A simple combination
of data argumentation was applied with random crop in padding = 4, random horizontal
flip, normalization in CIFARs and tiny ImageNet. As this simulation conducted a series of
experiments with different epochs, the specific number of used epochs is revealed before
each sub-section experiment description.

On the other hand, apart from mainly recording performance in accuracy (Top—
1 Error), because we argue that finding a balance between performance and used resources
is essential, efficiency is applied to examine the turnover rate throughout the experiments.
This consideration shows that blindly chasing higher performance by adding parameters is
irrational. The efficiency can be represented as the following Equation:

E = Acc/P, (5)

where E represents the efficiency, P means the size of used parameters, and Acc is the
abbreviation of the accuracy. Through Equation (5) above, it can learn whether this structure
or setting can convert the parameters into performance efficiently, and it can also be
recognized as the ratio of accuracy and parameters. For example, if two parameters
contribute a 100% accuracy, the efficiency could be presented as E = 0.5. Additionally,
if four parameters contribute another 100% accuracy, the efficiency could be presented
as E = 0.25. Following the above examples, E = 0.5 is greater than E = 0.25, meaning
higher efficiency.

4.2. Ablation Study

In this sub-section, we implemented a series of ablation comparisons toward different
components among UPANets. The performance of UPANets with F = 16 in CIFAR-{10, 100}
are revealed in the following comparisons, as “F” shows in Table A1, and each performance
was recorded in the testing stage with the highest accuracy. The total number of epochs in
this sub-section was set to 100, and the experiment setting followed the previous description
in Section 4.1.

4.2.1. Global Fusion from Channel Pixel Attention

By Section 3.1, it is expected that CPA can promote CNNs to consider the global
information of images as ViT [22], but CPA achieve that by only conducting a one-layer
perceptron. By this one-layer perceptron, CPA only requires one-third of parameters
compared with the Attentions in ViT with processing a Query, Key, and Value from three
one-layer perceptrons every time.

In order to illustrate learned global information from CPA, Figure 7 is sampled from
the first 32 feature maps from the CNNs in UPA Block 0 before the CPA in UPA Layer 2.
Figure 7 contains three rectangles in green, orange, and red. It is evident that the green
region from CNNs only detected a specific pattern of the kernel, and some kernels only
detected background information. However, a feature map remains dim if the kernel cannot
detect a feature. Most importantly, based on the concatenation in UPA Block and operation
in the UPA layer module, although residual and concatenation are involved, CNNs still
only detected specific patterns. A typical way to prevent dull outputs is adding more width
to increase the pattern variety in CNNs, but it is a curse to ramp up more parameters. The
above discussion explains the saturation of ResNets and DenseNets, despite residual and
concatenation learning.

Entropy 2022, 24, 1243 10 of 23

Entropy 2022, 24, x FOR PEER REVIEW 10 of 24

4.2.1. Global Fusion from Channel Pixel Attention
By Section 3.1, it is expected that CPA can promote CNNs to consider the global in-

formation of images as ViT [22], but CPA achieve that by only conducting a one-layer
perceptron. By this one-layer perceptron, CPA only requires one-third of parameters com-
pared with the Attentions in ViT with processing a Query, Key, and Value from three one-
layer perceptrons every time.

In order to illustrate learned global information from CPA, Error! Reference source
not found. is sampled from the first 32 feature maps from the CNNs in UPA Block 0 before
the CPA in UPA Layer 2. Error! Reference source not found. contains three rectangles in
green, orange, and red. It is evident that the green region from CNNs only detected a
specific pattern of the kernel, and some kernels only detected background information.
However, a feature map remains dim if the kernel cannot detect a feature. Most im-
portantly, based on the concatenation in UPA Block and operation in the UPA layer mod-
ule, although residual and concatenation are involved, CNNs still only detected specific
patterns. A typical way to prevent dull outputs is adding more width to increase the pat-
tern variety in CNNs, but it is a curse to ramp up more parameters. The above discussion
explains the saturation of ResNets and DenseNets, despite residual and concatenation
learning.

Figure 7. Samples of Fusion Feature Maps in UPANets.

Conversely, with the help of CPA, the orange area is immune to the issue in CNNs.
Additionally, with UPA Blocks and UPA Layer Modules, the green region of the first 16th
feature maps is from the root CNNs (CNNs in UPA Layer Module 0), 17th to 20th feature
maps are from the root and UPA Block 0, etc. By CPA seeing feature maps from root CNNs
to UPA Block 4, the outputs from CPA are gradually complex. That shows the capability
of learning cross channels global information block to block and helps to expand the re-
ceptive field directly. Therefore, every feature map from CPA covers the learned infor-
mation from itself to the others, so each pixel considers pixels located at the same position
as others by learnable weights. Namely, the CPA can determine which pixel is helpful for
consideration. Lastly, the samples of Conv + CPA possess the detected local patterns from

Figure 7. Samples of Fusion Feature Maps in UPANets.

Conversely, with the help of CPA, the orange area is immune to the issue in CNNs.
Additionally, with UPA Blocks and UPA Layer Modules, the green region of the first 16th
feature maps is from the root CNNs (CNNs in UPA Layer Module 0), 17th to 20th feature
maps are from the root and UPA Block 0, etc. By CPA seeing feature maps from root CNNs
to UPA Block 4, the outputs from CPA are gradually complex. That shows the capability of
learning cross channels global information block to block and helps to expand the receptive
field directly. Therefore, every feature map from CPA covers the learned information from
itself to the others, so each pixel considers pixels located at the same position as others by
learnable weights. Namely, the CPA can determine which pixel is helpful for consideration.
Lastly, the samples of Conv + CPA possess the detected local patterns from the CNNs and
conclude the global features from others. A sample of learned patterns in CNN and CPA
by inputting noise can be seen in Appendix C.

4.2.2. Comparing with ShuffleNet

When we look at learning global information, it can be understood as sharing learned
information with others. Under this notion, as the discussion toward ShuffleNets in 0, the
shuffle operation is close to this idea. By shuffling the order of independently learned
feature maps, the afterwards grouped CNNs have the chance to map to the pattern from
the different groups. The groups in CNNs are dividing the channels (filters) into several
independent groups to detect (e.g., channels = 16, groups = 2, which means they will be
separated into two groups with 8 channels where each group will not share the learned
parameters). Therefore, in Table 1, a comparison between CPA and the shuffle operation in
ShuffleNets is evaluated under CNNs groups in two and four, respectively. The bold font
indicate the best performance in the indicator.

Entropy 2022, 24, 1243 11 of 23

Table 1. Comparison of Cross Channels Learning in UPANet16.

UPANet16 CIFAR-10
Acc % (Top 1 Error)

CIFAR-100
Acc % (Top 1 Error)

Size
(Million)

(CIFAR-10, CIFAR-100)

Efficiency
(Acc % / Million)

(CIFAR-10, CIFAR-100)

w/o CPA
w/o Shuffle

CNNs in groups = 1
93.54 (0.0646) 72.98 (0.2702) (1.43, 1.48) (65.32, 49.42)

w/o CPA
w/o Shuffle

CNNs in groups = 2
92.64 (0.0736) 71.0 (0.29) (0.72,0.77) (129.67, 92.21)

CPA
CNNs in groups = 2 94.2 (0.058) 74.52 (0.2548) (1.02, 1.06) (92.53, 70.12)

Shuffle
CNNs in groups = 2 93.33 (0.0667) 71.98 (0.2802) (0.96, 1.01) (96.75, 71.31)

w/o CPA
w/o Shuffle

CNNs in groups = 4
90.69 (0.0931) 68.75 (0.3125) (0.37, 0.41) (245.11, 167.68)

CPA
CNNs in groups = 4 93.79 (0.0621) 73.55 (0.2645) (0.78, 0.83) (119.58, 88.73)

Shuffle
CNNs in groups = 4 92.93 (0.0707) 71.33 (0.2837) (0.73, 0.78) (127.14, 91.97)

CPA
CNNs in groups = 1
(Ours UPANet16)

94.90 (0.0510) 75.15 (0.2485) (1.51, 1.56) (62.85, 48.17)

4.2.3. Building Connection with Learnable Pooling

In Section 3.5 toward ExC, one of the reasons for introducing the connection is creating
a smooth loss landscape to raise the potential for having a robust result. To verify this idea,
the best approach is plotting the landscapes from loss and Top–1 Error (accuracy). Therefore,
a series of landscape visualizations toward models with and without ExC in CIFAR-10 is
conducted followingly. Additionally, we argued that arbitrarily GAP spatial information
would suffer with the potential of losing important information. As a result, along with
the visualizations, the proposed SPA participated in this simulation with performance
evaluations in CIFAR-{10, 100} afterwards.

On the ground of visualizing landscapes, to make the loss of each competitor the same,
we applied a min-max scaler to scale each loss into [0:1], and then we could compare the
landform under the same standpoint. For Top—1 Error, as the scale is already in [0:1] in
percentage, the scaling is skipped toward accuracy. Please see the landscapes toward scaled
loss and Top—1 Error from Figure 8 to Figures 9 and 10 to Figure 11, separately.

Regarding the benefits of SPA, we have seen that it helps smooth the landscape.
Another observable benefit, in Table 2, is performance boosting. Although, compared Final
SPA with Final GAP, the performance increased in both CIFAR-{10, 100}, the winnings are
reversed when cooperating with ExC. Whereas the non-absolute improvement of working
with ExC, the improvement happened while ExC and GAP worked together. A more
significant improvement is also seen in having ExC, SPA, and GAP together, in the bold
fonts. Given the most significant improvements in performance and landscapes, we opt for
ExC + SPA + GAP with proposed methods to form UPANets.

Entropy 2022, 24, 1243 12 of 23

Entropy 2022, 24, x FOR PEER REVIEW 12 of 24

scaled loss and Top—1 Error from Error! Reference source not found. to Error! Reference
source not found. and Error! Reference source not found. to Error! Reference source not
found., separately.

Figure 8. Scaled Loss Landscapes of UPANets16 Variants.

Figure 9. Scaled Loss Landscapes of UPANet16.

Figure 8. Scaled Loss Landscapes of UPANets16 Variants.

Entropy 2022, 24, x FOR PEER REVIEW 12 of 24

scaled loss and Top—1 Error from Error! Reference source not found. to Error! Reference
source not found. and Error! Reference source not found. to Error! Reference source not
found., separately.

Figure 8. Scaled Loss Landscapes of UPANets16 Variants.

Figure 9. Scaled Loss Landscapes of UPANet16.
Figure 9. Scaled Loss Landscapes of UPANet16.

Entropy 2022, 24, 1243 13 of 23Entropy 2022, 24, x FOR PEER REVIEW 13 of 24

Figure 10. Top—1 Error Landscapes of UPANets16 Variants.

Figure 11. Top—1 Error Landscapes of UPANets16.

Regarding the benefits of SPA, we have seen that it helps smooth the landscape. An-
other observable benefit, in Error! Reference source not found., is performance boosting.
Although, compared Final SPA with Final GAP, the performance increased in both
CIFAR- {10, 100}, the winnings are reversed when cooperating with ExC. Whereas the
non-absolute improvement of working with ExC, the improvement happened while ExC
and GAP worked together. A more significant improvement is also seen in having ExC,
SPA, and GAP together, in the bold fonts. Given the most significant improvements in
performance and landscapes, we opt for ExC + SPA + GAP with proposed methods to
form UPANets.

Figure 10. Top—1 Error Landscapes of UPANets16 Variants.

Entropy 2022, 24, x FOR PEER REVIEW 13 of 24

Figure 10. Top—1 Error Landscapes of UPANets16 Variants.

Figure 11. Top—1 Error Landscapes of UPANets16.

Regarding the benefits of SPA, we have seen that it helps smooth the landscape. An-
other observable benefit, in Error! Reference source not found., is performance boosting.
Although, compared Final SPA with Final GAP, the performance increased in both
CIFAR- {10, 100}, the winnings are reversed when cooperating with ExC. Whereas the
non-absolute improvement of working with ExC, the improvement happened while ExC
and GAP worked together. A more significant improvement is also seen in having ExC,
SPA, and GAP together, in the bold fonts. Given the most significant improvements in
performance and landscapes, we opt for ExC + SPA + GAP with proposed methods to
form UPANets.

Figure 11. Top—1 Error Landscapes of UPANets16.

Table 2. Comparison of UPANets16 Variants in CIFAR-{10, 100}.

UPANet16 CIFAR-10
Acc % (Top 1 Error)

CIFAR-100
Acc % (Top 1 Error)

Size
(Million)

(CIFAR-10, CIFAR-100)

Efficiency
(Acc %/Million)

(CIFAR-10, CIFAR-100)

Final GAP 94.66 (0.0534) 74.63 (0.2537) (1.507162, 1.530292) (63.11, 48.78)
Final SPA 94.70 (0.0530) 74.72 (0.2491) (1.506427, 1.530306) (63.13, 48.84)

ExC + GAP 94.75 (0.0525) 74.60 (0.2540) (1.510042, 1.554772) (62.75, 48.13)
ExC + SPA 94.60 (0.0542) 75.09 (0.2491) (1.512431, 1.557161) (62.64, 48.45)

ExC + SPA + GAP 94.90 (0.051) 75.15 (0.2485) (1.512431, 1.557161) (62.85, 48.71)

Entropy 2022, 24, 1243 14 of 23

4.3. Comparison with SOTAs

After evaluating a range of proposed components, these vital parts form UPANets, and
it is vital to compare them with existing SOTAs. In UPANets, setting F = 16, 32, and 64 as the
channel number base represents different widths of UPANets. Using these variant width
UPANets with existing CNNs-based models in CIFAR-{10, 100} as former simulations,
we can see a much clearer place among SOTAs. Additionally, because of the hardship of
being unable to evaluate on ImageNet, a Tiny ImageNet is chosen as an alternative. In
the following comparison, the models are reimplemented based on the work in the link
(https://github.com/kuangliu/pytorch-cifar accessed on 23 October 2020) following the
experiment setting in Section 4.1, except for setting epochs in 200.

4.3.1. Comparison in CIFARs

In this comparison, the performance of each model was recorded in accuracy toward
testing data, parameters size in million, and efficiency in Equation (5) with the best per-
formance in the bold fonts in tables. As there are three performance indexes in Table 3,
it presents the information in a scatter plot as Figure 12, which contains accuracy on the
y-axis and efficiency on the x-axis. The size of the circle toward each model represents the
parameter size in a million. The same policies apply to Table 4 and Figure 13.

Entropy 2022, 24, x FOR PEER REVIEW 15 of 24

Figure 12. UPANets Performance Position with SOTAs in CIFAR-10.

Table 3. UPANets Performance with SOTAs in CIFAR-10.

Model Test Avg Accuracy Size (M) Efficiency
ShuffleNet_V2 91.26 1.26 72.21
EfficientNet_B0 91.35 3.60 25.38
MobileNet_V2 91.71 2.30 39.93

SeNet18 93.71 1.34 69.69
VGG16 93.83 14.73 6.37

PreActResNet18 94.36 11.17 8.45
DenseNets121_16GR 94.81 1.76 53.78

SimpleDLA 94.99 15.14 6.27
DenseNet201 95.13 18.10 5.25

UPANet16 (Ours) 95.32 1.51 63.13
ResNet18 95.35 11.17 8.53
ResNet50 95.45 23.52 4.06

RegNetY_400MF 95.46 5.71 16.71
DLA 95.49 16.29 5.86

ResNet101 95.62 42.51 2.25
UPANet32 (Ours) 95.88 5.93 15.93
ResNeXt29_2x64d 95.76 9.13 10.49
ResNeXt29_32x4d 95.78 4.77 20.06
UPANet64 (Ours) 96.47 23.60 4.09

Figure 12. UPANets Performance Position with SOTAs in CIFAR-10.

https://github.com/kuangliu/pytorch-cifar

Entropy 2022, 24, 1243 15 of 23

Table 3. UPANets Performance with SOTAs in CIFAR-10.

Model Test Avg Accuracy Size (M) Efficiency

ShuffleNet_V2 91.26 1.26 72.21
EfficientNet_B0 91.35 3.60 25.38
MobileNet_V2 91.71 2.30 39.93

SeNet18 93.71 1.34 69.69
VGG16 93.83 14.73 6.37

PreActResNet18 94.36 11.17 8.45
DenseNets121_16GR 94.81 1.76 53.78

SimpleDLA 94.99 15.14 6.27
DenseNet201 95.13 18.10 5.25

UPANet16 (Ours) 95.32 1.51 63.13
ResNet18 95.35 11.17 8.53
ResNet50 95.45 23.52 4.06

RegNetY_400MF 95.46 5.71 16.71
DLA 95.49 16.29 5.86

ResNet101 95.62 42.51 2.25
UPANet32 (Ours) 95.88 5.93 15.93
ResNeXt29_2x64d 95.76 9.13 10.49
ResNeXt29_32x4d 95.78 4.77 20.06
UPANet64 (Ours) 96.47 23.60 4.09

Entropy 2022, 24, x FOR PEER REVIEW 16 of 24

Figure 13. UPANets Performance Position with SOTAs in CIFAR-100.

Figure 13. UPANets Performance Position with SOTAs in CIFAR-100.

Entropy 2022, 24, 1243 16 of 23

Table 4. UPANets performance with SOTAs in CIFAR-100.

Model Test Avg Accuracy Size (M) Efficiency

EfficientNet_B0 69.74 3.63 19.22
ShuffleNet_V2 71.15 1.36 52.47
MobileNet_V2 71.96 2.41 29.83

SeNet18 72.55 1.36 53.49
VGG16 74.96 14.77 5.07

SimpleDLA 76.72 15.19 5.05
UPANet16 (Ours) 76.73 1.56 49.05

preactresnet18 77.31 11.22 6.89
DenseNets121_16GR 77.35 1.81 42.76

RegNetY_400MF 78.44 5.75 13.64
DLA 78.68 16.34 4.82

UPANet32 (Ours) 78.78 6.02 12.90
ResNet18 78.81 11.22 7.02

ResNeXt29_32x4d 79.16 4.87 16.27
DenseNet201 79.25 18.23 4.35

ResNeXt29_2x64d 79.38 9.22 8.61
ResNet101 79.54 42.70 1.86
ResNet50 79.59 23.71 3.36

UPANet64 (Ours) 80.29 23.84 3.37

In this implemented CIFAR-10 comparison, UPANet64 has the best accuracy. By
plotting each model in Figure 12, UPANets have outstanding performance-balancing
efficiency and accuracy in the scatter plot. In addition, the models claimed in the lite
structure are located in the bottom right area, but they lost certain accuracy. On the
other side, UPANet16 and DenseNet are located in the upper right corner, indicating
that the proposed model and DenseNets have high efficiency. As for the accuracy in
Table 3, UPANet64 is the only model reaching over 96% accuracy without many parameters,
especially compared with ResNet101 and DenseNet201. A similar overall distribution
toward the three indexes is witnessed in implemented CIFAR-100 comparison. Although
UPANet16 and UPANet32 are falling behind in terms of efficiency, UPANet64 is the one
which passes the 80% accuracy in CIFAR-100. As a result, UPANets performed well in both
open datasets from the evaluated points.

4.3.2. Comparison in Tiny ImageNet

Although we compared a series of SOTAs with UPANets in CIFAR-{10, 100}, the
difficulty of datasets is smaller than Tiny ImageNet, as it needs to classify more labels,
which is about double that of CIFAR-100. Moreover, the image size is two times larger
than CIFARs, so we only examined UPANets64 in 100 epochs with the same experimental
setting as the above comparisons. Further, some SOTAs, which were also examined on Tiny
ImageNet, are shown together in Table 5.

Table 5. UPANets Performance with SOTAs in Tiny ImageNet.

Model Test Avg Accuracy Size (M) Efficiency

DenseNets + Residual
Networks [34] 60.00 N/A N/A

PreActResNets18 [35] 63.48 N/A N/A
UPANets64 (Ours) 67.67 24.40 2.77

As a whole, UPANets has not only performed excellently in widely-used datasets
but also in a complex dataset, in this Tiny ImageNet. Moreover, based on classification
performance, the proposed UPANets can be one of the state-of-the-art models in the Tiny
ImageNet benchmark (Checked on April 2021).

Entropy 2022, 24, 1243 17 of 23

5. Conclusions

This work proposed a novel backbone, UPANets, for image classification. Each
proposed component in the framework fulfils specific objectives and helps the model
outshine existing SOTAs in terms of performance and efficiency. The positive findings and
potential contributions can be concluded as follows.

5.1. CPA in Processing Global Information with Benefits

First, CPA captures global information across channels to form more complex feature
maps, expanding the receptive fields of shallow layers. That is, the shallow layers will
quickly mature to boost performance. On the other hand, the more mature layers indicate
fewer needs for stacking deep. With further application of concatenation in UPA blocks with
accumulating UPA layer modules, the effect is amplified more to ramp up the advantages.

5.2. SPA with ExC Brings Better Environments for Learning

Connecting each layer, transporting essential spatial information by learnable attention
brings smoother landscapes. As the concern of losing information by arbitrarily averaging
out spatial pixels, SPA ameliorates it with performance improvements. Moreover, ExC
learned that passing feedback from SPA to each layer forms a smooth landform.

5.3. SPA with ExC Brings Better Environments for Learning

Finally, comparing with a series of SOTAs in CIFAR-{10, 100} and Tiny ImageNet, the
results of UPANets are better than most existing SOTAs. As a result, it is convinced that
UPANets can perform competitively in image classification. Further, this practical evidence
shows that learning universal pixels channel-wise and spatial-wise with the proposed
modules can effectively utilize parameters.

In sum, these attempts create a way to develop an efficient backbone for effectively
processing universal information with decent performance.

Author Contributions: Conceptualization, S.-J.L.; Formal analysis, J.F. and X.-J.Z.; Funding acqui-
sition, S.-J.L.; Investigation, S.M., Y.-P.W. and J.-Y.S.; Methodology, C.-H.T.; Project administration,
S.-J.L.; Supervision, X.-J.Z.; Validation, X.-J.Z.; Writing—original draft, C.-H.T.; Writing—review &
editing, S.-J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Taiwan Ministry of Science and Technology grant number
MOST 111-2410-H-A49-019.

Data Availability Statement: This research is analyzed based on CIFAR-{10, 100} datasets (from
https://www.cs.toronto.edu/~kriz/cifar.html accessed on 23 October 2020) and Tiny ImageNet
(from https://www.kaggle.com/c/tiny-imagenet accessed on 23 October 2020).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Dimension Illustration in UPANets Structure

In the Table A1 for UPANets structure in CIFAR-10, N represents the data number, F
indicates the filters number, Bi are blocks, d means the depth multiplier, b is the number of
the block, and w is the convolutional width. UPA Block 0 and the other blocks follow the
stride 2 version and stride 1 version UPA block, respectively.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/c/tiny-imagenet

Entropy 2022, 24, 1243 18 of 23

Table A1. The UPANets Structure for CIFAR-10.

Layers Blocks Input size Output size Structure

UPA Layer
Module 0 UPA Block 0 N × 32× 32× 3 N × 32× 32× F

{[
3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA

}
UPA Layer Module 1

B1 = 4d
UPA Block 0 N × 32× 32× F N × 32× 32× (

(
F

B1

)
+ F)

F0

{[
3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA

}
UPA Block

1~4d N × 32× 32× Fb−1 N × 32× 32× (
(

F
B1

)
+ Fb−1)

Fb

{[
3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA

}
× 4d

UPA Layer Module 2
B2 = 4d

UPA Block 0 N × 32× 32× 2F N × 16× 16× (
(

2F
B2

)
+ 2F)

F0

[

3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA,

Avgpool2d(stride 2)

UPA Block

1~4d N × 16× 16× Fb−1 N × 16× 16× (
(

2F
B2

)
+ Fb−1)

Fb

{[
3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA

}
× 4d

UPA Layer Module 3
B3 = 4d

UPA Block 0 N × 16× 16× 4F N × 8× 8× (
(

4F
B3

)
+ 4F)

F0

[

3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA,

Avgpool2d(stride 2)

UPA Block

1~8d N × 8× 8× Fb−1 N × 8× 8× (
(

4F
B3

)
+ Fb−1)

Fb

{[
3× 3 conv, 2w
3× 3 conv, 1w

]
+ CPA

}
× 4d

Ex-Connected Layer

N × 32× 32× F(Layer Module 0 output),

N × 32× 32× 2F(Layer Module 1 output),
N × 16× 16× 4F(Layer Module 2 output),
N × 8× 8× 8F(Layer Module 3 output),
N × 4× 4× 16F(Layer Module 4 output),

N × 1× 1×

(F + F + 4F + 8F + 16F) SPA+ GAP

Output Layer N × 1× 31F N × 10 Linear

Appendix B. Comparison of Perceptron and CNNs in Attention

In Section 3.1, we bring a cross Channels Pixel Attention (CPA) mechanism. A one-
layer perceptron is applied to offer the service in CPA. Additionally, 1 × 1 CNNs is a
standard option to map the information across channels. However, as the simulation in
Table A2 shows, the performances of CNNs have fallen behind using one-layer perceptron,
one-layer perceptron in bold fonts. The underlying reason could be that although CNNs
can share patterns, the single parameter in each sharing pattern is limited to carrying on
vital information. Additionally, as the one-layer perceptron is operating in dot-product, the
information is shared and combined with each one, indicating our point of CPA detecting
cross channels in the same pixel position.

Table A2. The Comparison of Perceptron and CNNs as an Attention.

UPANet16
CIFAR-10

Acc %
(Top 1 Error)

CIFAR-100
Acc %

(Top 1 Error)

Size
(M)

(10, 100)

Efficiency
(Acc %/M)

(10, 100)

CNNs 94.76 (0.0442) 74.85 (0.2515) (1.51, 1.56) (62.75, 47.98)
FC 94.90 (0.051) 75.15 (0.2485) (1.51, 1.56) (62.85, 48.17)

Appendix C. Sample Pattern of the CNN and CPA in UPA Block

CPA paying attention under the operation of UPA blocks among UPA layer modules,
CPA can learn cross-channels-blocks pixel to form universal attention. That is contributed
by concatenation in UPA blocks and accumulating of UPA layer module. To observe the
learned patterns from the global range, inputting a random noise to extract pattern profiles
was conducted in Figure A1, with the same extracting policy as Figure 7.

Entropy 2022, 24, 1243 19 of 23Entropy 2022, 24, x FOR PEER REVIEW 20 of 24

Figure A1. Samples of Fusion Feature Maps in UPANets with Noise.

Appendix D. Landscape toward UPANets and Others
The introduction of the visualizing loss landscape method in [20] helps researchers

understand the possible training landscape among the parameters of a model. By the de-
scription of the actual implementing source code (https://github.com/tomgoldstein/loss-
landscape, https://github.com/JoelNiklaus/loss_landscape accessed on 20 April 2021), the
primary usage is setting a random sampling range in [−1:1] with a specific sampling num-
ber (default: 50). However, as this sampling method is similar to the sensitivity analysis
in determining feature importance, only a good sampling range can produce a calculata-
ble loss. This dilemma impeded us when we were trying to visualize a sensitive model,
such as DenseNets, because a little adding noise might cause the loss to Nan. Therefore,
how to define a good sampling range is a challenge. On the other hand, although filter
normalization has been introduced [20] to compare loss landscapes from different models,
we found that different loss ranges still make comparing hard. An enormous total loss
range will make most landscapes smother because an outlier will break the harmony of
the loss map.

Toward the dilemmas, we ushered an automatic search and min-max scaled into our
visualization. First, a doable visualization range with binary search is applied in advance
based on the original method from [−1:1]. Later, we used min-max scaling for every loss
landscape to make the two landscapes comparable. Finally, for demonstrating, we end-
to-end trained DenseNets and our models in CIFAR-10 based on the code in this project
(https://github.com/kuangliu/pytorch-cifar accessed on 23 October 2020) and applied the
ushered methods in the following pre- and post-scaled landscapes.

Appendix D.1. Comparison with DenseNet
The visualizable sampling range was 0.0375: 0.0375 with 50 samples. In Figure

A2, the largest loss broke the harmony of the original loss landscape. The normal loss
owns the majority number, but it is hard to see the fluctuation of the landscape from the
relative more minor loss. As a result, a flattened space created an illusion. Min-max scaled
loss landscape shows a much different view. Although the centre of the map is still flat,

Figure A1. Samples of Fusion Feature Maps in UPANets with Noise.

Appendix D. Landscape toward UPANets and Others

The introduction of the visualizing loss landscape method in [20] helps researchers
understand the possible training landscape among the parameters of a model. By the de-
scription of the actual implementing source code (https://github.com/tomgoldstein/loss-
landscape, https://github.com/JoelNiklaus/loss_landscape accessed on 20 April 2021), the
primary usage is setting a random sampling range in [−1:1] with a specific sampling num-
ber (default: 50). However, as this sampling method is similar to the sensitivity analysis in
determining feature importance, only a good sampling range can produce a calculatable
loss. This dilemma impeded us when we were trying to visualize a sensitive model, such
as DenseNets, because a little adding noise might cause the loss to Nan. Therefore, how to
define a good sampling range is a challenge. On the other hand, although filter normaliza-
tion has been introduced [20] to compare loss landscapes from different models, we found
that different loss ranges still make comparing hard. An enormous total loss range will
make most landscapes smother because an outlier will break the harmony of the loss map.

Toward the dilemmas, we ushered an automatic search and min-max scaled into our
visualization. First, a doable visualization range with binary search is applied in advance
based on the original method from [−1:1]. Later, we used min-max scaling for every loss
landscape to make the two landscapes comparable. Finally, for demonstrating, we end-
to-end trained DenseNets and our models in CIFAR-10 based on the code in this project
(https://github.com/kuangliu/pytorch-cifar accessed on 23 October 2020) and applied the
ushered methods in the following pre- and post-scaled landscapes.

Appendix D.1. Comparison with DenseNet

The visualizable sampling range was [−0.0375 : 0.0375] with 50 samples. In Figure A2,
the largest loss broke the harmony of the original loss landscape. The normal loss owns the
majority number, but it is hard to see the fluctuation of the landscape from the relative more
minor loss. As a result, a flattened space created an illusion. Min-max scaled loss landscape
shows a much different view. Although the centre of the map is still flat, the surrounding
loss stands erect on edge. Not only can the scaled landscape reveal a much more reasonable

https://github.com/tomgoldstein/loss-landscape
https://github.com/tomgoldstein/loss-landscape
https://github.com/JoelNiklaus/loss_landscape
https://github.com/kuangliu/pytorch-cifar

Entropy 2022, 24, 1243 20 of 23

profile, but scaling can also make different landscapes comparable. Therefore, the exact
search and scaled policies were applied to UPANet16 in [−0.0375 : 0.0375] to compare with
DenseNet in Figure A3 and the Top—1 Error ones in Figure A4.

Entropy 2022, 24, x FOR PEER REVIEW 21 of 24

the surrounding loss stands erect on edge. Not only can the scaled landscape reveal a
much more reasonable profile, but scaling can also make different landscapes comparable.
Therefore, the exact search and scaled policies were applied to UPANet16 in 0.0375: 0.0375 to compare with DenseNet in Figure A3 and the Top—1 Error ones in
Figure A4.

Figure A2. The Pre and Post Scaled Loss Landscape of DenseNets.

Figure A3. The Pre- and Post-Scaled Loss Landscape of UPANets16.

Figure A4. The Top—1 Error Landscapes of UPANets16 and DenseNet.

Comparing Figure A2 to Figure A4 in the range 0.0375: 0.0375 , UPANet can dis-
tribute a similar view as DenseNet, but there are fewer enormous losses at the edge of the

Figure A2. The Pre and Post Scaled Loss Landscape of DenseNets.

Entropy 2022, 24, x FOR PEER REVIEW 21 of 24

the surrounding loss stands erect on edge. Not only can the scaled landscape reveal a
much more reasonable profile, but scaling can also make different landscapes comparable.
Therefore, the exact search and scaled policies were applied to UPANet16 in 0.0375: 0.0375 to compare with DenseNet in Figure A3 and the Top—1 Error ones in
Figure A4.

Figure A2. The Pre and Post Scaled Loss Landscape of DenseNets.

Figure A3. The Pre- and Post-Scaled Loss Landscape of UPANets16.

Figure A4. The Top—1 Error Landscapes of UPANets16 and DenseNet.

Comparing Figure A2 to Figure A4 in the range 0.0375: 0.0375 , UPANet can dis-
tribute a similar view as DenseNet, but there are fewer enormous losses at the edge of the

Figure A3. The Pre- and Post-Scaled Loss Landscape of UPANets16.

Entropy 2022, 24, x FOR PEER REVIEW 21 of 24

the surrounding loss stands erect on edge. Not only can the scaled landscape reveal a
much more reasonable profile, but scaling can also make different landscapes comparable.
Therefore, the exact search and scaled policies were applied to UPANet16 in 0.0375: 0.0375 to compare with DenseNet in Figure A3 and the Top—1 Error ones in
Figure A4.

Figure A2. The Pre and Post Scaled Loss Landscape of DenseNets.

Figure A3. The Pre- and Post-Scaled Loss Landscape of UPANets16.

Figure A4. The Top—1 Error Landscapes of UPANets16 and DenseNet.

Comparing Figure A2 to Figure A4 in the range 0.0375: 0.0375 , UPANet can dis-
tribute a similar view as DenseNet, but there are fewer enormous losses at the edge of the

Figure A4. The Top—1 Error Landscapes of UPANets16 and DenseNet.

Comparing Figure A2 to Figure A4 in the range [−0.0375 : 0.0375], UPANet can dis-
tribute a similar view as DenseNet, but there are fewer enormous losses at the edge of
the landscape. Especially, it seems models can quickly reach a minimum in UPANet16
Top—1 Error map with a lower gap in the margin.

Appendix D.2. UPANet16 Variants Original Landscapes

In our visualizations in UPANet16 and its variants, using the default range of [−1:1]
can already offer the visualization, which indicates UPANets are not as sensitive as

Entropy 2022, 24, 1243 21 of 23

DenseNets. This also implies the robustness of UPNets toward the noise, as the method
of [20] is sampling parameters from a different angle, like adding noise to see the loss
changing. So, the sensitive changes formed the landforms we obtained. The scaled ones
have been shown in Section 4.2.3. Figures from Figure A5 to Figure A6 show the pre-scaled
landscapes for each variant of UPANet16.

Entropy 2022, 24, x FOR PEER REVIEW 22 of 24

landscape. Especially, it seems models can quickly reach a minimum in UPANet16 Top—
1 Error map with a lower gap in the margin.

Appendix D.2. UPANet16 Variants Original Landscapes
In our visualizations in UPANet16 and its variants, using the default range of [−1:1]

can already offer the visualization, which indicates UPANets are not as sensitive as Dense-
Nets. This also implies the robustness of UPNets toward the noise, as the method of [20]
is sampling parameters from a different angle, like adding noise to see the loss changing.
So, the sensitive changes formed the landforms we obtained. The scaled ones have been
shown in Section 4.2.3. Figures from Figure A5 to Figure A6 show the pre-scaled land-
scapes for each variant of UPANet16.

Figure A5. Original Loss Landscapes of UPANets16 Variants. Figure A5. Original Loss Landscapes of UPANets16 Variants.

Entropy 2022, 24, x FOR PEER REVIEW 23 of 24

Figure A6. Original Landscapes of UPANets16.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

ProcessingSyst. 2012, 25, 1097-1105.
2. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
3. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

4. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA , 27–30 June 2016; pp.
2818–2826.

5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp 770–778.

6. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42,
2011–2023.

7. Yung, J.; Gelly, S.; Houlsby, N. Big Transfer (BiT): General Visual Representation Learning. arXiv 2020, arXiv:1912.11370.
8. Ridnik, T.; Lawen, H.; Noy, A.; Baruch, E.B.; Sharir, G.; Friedman, I. Tresnet: High performance gpu-dedicated architecture," In

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 January 2021;
pp. 1400–1409.

9. Zhao, S.; Zhou, L.; Wang, W.; Cai, D.; Lam, T.L.; Xu, Y. SplitNet: Divide and Co-training. arXiv 2020, arXiv:2011.14660.
10. Kabir, H.M.D.; Abdar, M.; Khosravi, A.; Jalali, S.M.J.; Atiya, A.F.; Nahavandi, S.; Srinivasan, D. Spinalnet: Deep neural network

with gradual input. arXiv 2020, arXiv:2007.03347.
11. Lee, H.; Kim, H.-E.; Nam, H. Srm: A style-based recalibration module for convolutional neural networks. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1854–1862.
12. Shah, A.; Kadam, E.; Shah, H.; Shinde, S.; Shingade, S. Deep residual networks with exponential linear unit. In Proceedings of

the Third International Symposium on Computer Vision and the Internet, Jaipur, Rajasthan, India, 21–24 September 2016; pp.
59–65.

13. Misra, D. Mish: A self regularized non-monotonic activation function. arXiv 2019, arXiv:1908.08681.
14. Deng, W.; Feng, Q.; Gao, L.; Liang, F.; Lin, G. Non-convex Learning via Replica Exchange Stochastic Gradient MCMC. In

Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 2474–2483.
15. Borji, A.; Cheng, M.-M.; Hou, Q.; Jiang, H.; Li, J. Salient object detection: A survey. Comput. Vis. Media 2019, 5, 117–150.
16. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

Figure A6. Original Landscapes of UPANets16.

Entropy 2022, 24, 1243 22 of 23

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
2. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
3. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper

with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

4. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

6. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
42, 2011–2023. [CrossRef] [PubMed]

7. Yung, J.; Gelly, S.; Houlsby, N. Big Transfer (BiT): General Visual Representation Learning. arXiv 2020, arXiv:1912.11370.
8. Ridnik, T.; Lawen, H.; Noy, A.; Baruch, E.B.; Sharir, G.; Friedman, I. Tresnet: High performance gpu-dedicated architecture. In

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 January 2021;
pp. 1400–1409.

9. Zhao, S.; Zhou, L.; Wang, W.; Cai, D.; Lam, T.L.; Xu, Y. SplitNet: Divide and Co-training. arXiv 2020, arXiv:2011.14660.
10. Kabir, H.M.D.; Abdar, M.; Khosravi, A.; Jalali, S.M.J.; Atiya, A.F.; Nahavandi, S.; Srinivasan, D. Spinalnet: Deep neural network

with gradual input. arXiv 2020, arXiv:2007.03347. [CrossRef]
11. Lee, H.; Kim, H.-E.; Nam, H. Srm: A style-based recalibration module for convolutional neural networks. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1854–1862.
12. Shah, A.; Kadam, E.; Shah, H.; Shinde, S.; Shingade, S. Deep residual networks with exponential linear unit. In Proceedings of the

Third International Symposium on Computer Vision and the Internet, Jaipur, Rajasthan, India, 21–24 September 2016; pp. 59–65.
13. Misra, D. Mish: A self regularized non-monotonic activation function. arXiv 2019, arXiv:1908.08681.
14. Deng, W.; Feng, Q.; Gao, L.; Liang, F.; Lin, G. Non-convex Learning via Replica Exchange Stochastic Gradient MCMC. In

Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 2474–2483.
15. Borji, A.; Cheng, M.-M.; Hou, Q.; Jiang, H.; Li, J. Salient object detection: A survey. Comput. Vis. Media 2019, 5, 117–150. [CrossRef]
16. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
17. Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in Transformer. arXiv 2021, arXiv:2103.00112.
18. Hudson, D.A.; Zitnick, C.L. Generative Adversarial Transformers. arXiv 2021, arXiv:2103.01209.
19. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence

Time-Series Forecasting. arXiv 2020, arXiv:2012.07436.
20. Li, H.; Xu, Z.; Taylor, G.; Studer, C.; Goldstein, T. Visualizing the loss landscape of neural nets. arXiv 2017, arXiv:1712.09913.
21. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, PMLR, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114.
22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.

arXiv 2017, arXiv:1706.03762.
23. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation

through attention. arXiv 2020, arXiv:2012.12877.
24. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
25. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.
26. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.
27. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154.
28. Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings

of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019.
29. Hluchyj, M.G.; Karol, M.J. Shuffle net: An application of generalized perfect shuffles to multihop lightwave networks. J. Lightwave

Technol. 1991, 9, 1386–1397. [CrossRef]
30. Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of

the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.
31. Lin, J.; Zheng, Z.; Zhong, Z.; Luo, Z.; Li, S.; Yang, Y.; Sebe, N. Joint Representation Learning and Keypoint Detection for Cross-view

Geo-localization. IEEE Trans. Image Process. 2022, 31, 3780–3792. [CrossRef] [PubMed]
32. Wang, T.; Zheng, Z.; Yan, C.; Zhang, J.; Sun, Y.; Zheng, B.; Yang, Y. Each part matters: Local patterns facilitate cross-view

geo-localization. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 867–879. [CrossRef]

http://doi.org/10.1145/3065386
http://doi.org/10.1109/TPAMI.2019.2913372
http://www.ncbi.nlm.nih.gov/pubmed/31034408
http://doi.org/10.1109/TAI.2022.3185179
http://doi.org/10.1007/s41095-019-0149-9
http://doi.org/10.1109/50.90937
http://doi.org/10.1109/TIP.2022.3175601
http://www.ncbi.nlm.nih.gov/pubmed/35604972
http://doi.org/10.1109/TCSVT.2021.3061265

Entropy 2022, 24, 1243 23 of 23

33. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

34. Abai, Z.; Rajmalwar, N. DenseNet Models for Tiny ImageNet Classification. arXiv 2019, arXiv:1904.10429.
35. Kim, J.-H.; Choo, W.; Song, H.O. Puzzle mix: Exploiting saliency and local statistics for optimal mixup. In Proceedings of the

International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 5275–5285.

	Introduction
	Related Works
	Attentions
	Structure Design

	UPANets
	Channel Pixel Attention
	UPA Blocks
	UPA Blocks
	Spatial Pixel Attention
	Extreme Connection
	UPANets Structure

	Experiment
	Experiment Environment Settings
	Ablation Study
	Global Fusion from Channel Pixel Attention
	Comparing with ShuffleNet
	Building Connection with Learnable Pooling

	Comparison with SOTAs
	Comparison in CIFARs
	Comparison in Tiny ImageNet

	Conclusions
	CPA in Processing Global Information with Benefits
	SPA with ExC Brings Better Environments for Learning
	SPA with ExC Brings Better Environments for Learning

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Comparison with DenseNet
	UPANet16 Variants Original Landscapes

	References

