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Abstract: In this paper, we focus on a challenging, but interesting, task in speech emotion recognition
(SER), i.e., cross-corpus SER. Unlike conventional SER, a feature distribution mismatch may exist
between the labeled source (training) and target (testing) speech samples in cross-corpus SER be-
cause they come from different speech emotion corpora, which degrades the performance of most
well-performing SER methods. To address this issue, we propose a novel transfer subspace learning
method called multiple distribution-adapted regression (MDAR) to bridge the gap between speech
samples from different corpora. Specifically, MDAR aims to learn a projection matrix to build the re-
lationship between the source speech features and emotion labels. A novel regularization term called
multiple distribution adaption (MDA), consisting of a marginal and two conditional distribution-
adapted operations, is designed to collaboratively enable such a discriminative projection matrix to
be applicable to the target speech samples, regardless of speech corpus variance. Consequently, by
resorting to the learned projection matrix, we are able to predict the emotion labels of target speech
samples when only the source label information is given. To evaluate the proposed MDAR method,
extensive cross-corpus SER tasks based on three different speech emotion corpora, i.e., EmoDB,
eNTERFACE, and CASIA, were designed. Experimental results showed that the proposed MDAR
outperformed most recent state-of-the-art transfer subspace learning methods and even performed
better than several well-performing deep transfer learning methods in dealing with cross-corpus
SER tasks.

Keywords: cross-corpus speech emotion recognition; speech emotion recognition; domain adaptation;
transfer learning; subspace learning

1. Introduction

Speech is one of the most natural behaviors through which emotional information is
communicated in the daily life of human beings [1,2]. Hence, research into speech emotion
recognition (SER), which seeks to enable machines to learn how to automatically under-
stand emotional states, e.g., Happy, Fear f ul, and Sad, from speech signals, has attracted
attention among affective computing, pattern recognition, and speech signal processing
research communities. Over recent decades, many well-performing SER methods have
been proposed and have achieved promising levels of performance for widely-used speech
emotion corpora [3–8]. However, the existing SER methods are far from being practically
applicable. One of the major reasons is that such methods do not consider real-world scenar-
ios, in which the training and testing speech signals may be recorded by different acoustic
sensors. For example, the audio data of EmoDB [9], a widely-used speech emotion corpus,
were recorded using a Sennheiser MKH40-P48 microphone and a Tascam DA-P1 portable
DAT recorder. However, as for another popular speech emotion corpus, CASIA [10], its
samples were recorded using a RODE K2 (a large membrane microphone) and Fireface
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800 (sound card). When using these two speech emotion corpora to alternatively serve
training and testing purposes, an evident feature distribution mismatch inevitably exists
between their corresponding feature sets due to the acoustic sensor difference. Hence, the
performance of an initially well-performing SER method will drop significantly.

The above example highlights a challenging, but interesting, task in SER, i.e., cross-
corpus SER. Formally, in the task of cross-corpus SER, the training and testing speech
sample sets belong to different corpora. The emotion label information of the training
sample sets is provided, while the target sample sets’ labels are not entirely given. We need
to enable a classifier guided by the source emotion label information to accurately predict
the emotions of the unlabeled testing speech samples. Note that, in what follows, we follow
the custom in the research concerning transfer learning and domain adaptation [11–13],
which are closely related to cross-corpus SER, and refer to the training and testing speech
samples/signals/corpora/feature sets as the source and target sets, respectively, such that
readers can better understand this paper.

In this paper, we try to deal with cross-corpus SER tasks from the perspective of
transfer learning and domain adaptation and propose a straightforward transfer sub-
space learning method called multiple distribution-adapted regression (MDAR). As with
most existing transfer subspace learning methods [14–18], MDAR aims to learn a projec-
tion matrix to find a common subspace bridging the source and target speech samples
from different corpora. However, we pay more attention to designing an emotion wheel
knowledge-guided regularization term to help MDAR better eliminate the feature distri-
bution difference between the source and target speech samples. Specifically, instead of
directly measuring and improving both corpora’s marginal feature distribution gaps, our
MDAR incorporates the idea of joint distribution adaption (JDA) [17] and joint alleviation of
marginal distribution mismatch and fine emotion class-aware conditions. More importantly,
unlike existing JDA-based methods [16,17,19,20], MDAR extends the JDA operation to a
multiple distribution adaption (MDA) method by additionally introducing a well-designed
rough emotion class-aware conditional distribution adaption to improve the feature dis-
tribution difference alleviation between the speech samples from different corpora. By
resorting to MDA, MDAR can learn both corpus invariant and emotion discriminative
feature representations for cross-corpus SER.

To evaluate the proposed MDAR, we carried out extensive cross-corpus SER ex-
periments on three widely used speech emotion corpora, including EmoDB [9], eNTER-
FACE [21], and CASIA [10]. The experimental results showed that, compared with existing
state-of-the-art transfer subspace learning, and several well-performing deep transfer
learning methods, our MDAR achieved more promising performance when dealing with
cross-corpus SER tasks. In summary, the main contributions of this paper are three-fold:

1. We propose a novel transfer subspace learning method called MDAR to deal with
cross-corpus SER tasks. The basic idea of MDAR is very straightforward, i.e., learning
corpus invariant and emotion discriminative representations for both source and
target speech samples belonging to different corpora such that the classifier learn-
ing based on the labeled source speech samples is also applicable to predicting the
emotions of target speech signals.

2. We present a new distribution difference alleviation regularization term called MDA
for MDAR to guide the corpus invariant feature learning for the recognition of the
emotions of speech signals. MDA collaboratively aligns marginal, fine emotion class-
aware conditional, and rough emotion class-aware feature distributions between
source and target speech samples.

3. Three widely used speech emotion corpora, i.e., EmoDB, eNTERFACE, and CASIA,
were used to design the cross-corpus SER tasks to evaluate the proposed MDAR.
Extensive experiments were conducted to demonstrate the effectiveness and superior
performance of MDAR in coping with cross-corpus SER tasks.

The remainder of this paper is organized as follows: Section 2 reviews progress in
cross-corpus SER. Section 3 provides details of the proposed MDAR method. In Section 4,
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extensive cross-corpus SER experiments, conducted to evaluate the proposed MDAR
method, are described. Finally, we conclude this paper in Section 5.

2. Related Works

In this section, we briefly review recent advances in research concerning cross-corpus
SER. To deal with cross-corpus SER tasks, considerable effort has been applied by re-
searchers to focus on solving its key problem, i.e., relieving the feature distribution dif-
ference between the source and target speech samples belonging to different corpora. In
what follows, we first describe the progress of cross-corpus SER based on transfer subspace
learning methods. Moreover, we also introduce recent research into the use of deep transfer
learning methods to deal with cross-corpus SER tasks.

2.1. Transfer Subspace Learning for Cross-Corpus SER

The earliest investigations into cross-corpus SER may be traced to [22], in which
Schuller et al. proposed the adoption of different normalization methods, including speaker
normalization (SN), corpus normalization (CN), and speaker-corpus normalization (SCN)
to balance the source and target speech corpora. Then, the classifier which absorbs only the
emotion discriminant information from the source speech corpus can also be applied to the
target speech corpus. Subsequently, transfer subspace learning methods have been used to
address the cross-corpus SER problem. For example, Hassan et al. [23] built an importance-
weighted support vector machine (IW-SVM) classifier integrating three typical IW methods,
i.e., kernel mean matching (KMM) [24], unconstrained least-squares importance fitting
(uLSIF) [25], and the Kullback–Leibler importance estimation procedure (KLIEP) [26], to
compensate for source speech samples such that the feature distribution gap between two
different speech emotion corpora can be better removed. Recently, Song et al. [27] and
Zhang et al. [16] designed transfer subspace learning models to learn a shared projection
matrix to jointly build the relationship between the emotion labels and transformed speech
features, and to align the source and target speech samples’ feature distributions.

2.2. Deep Transfer Learning for Cross-Corpus SER

Apart from the above subspace learning methods, inspired by the success of deep
transfer learning and deep domain adaptation in many cross-domain visual recognition
tasks, researchers have also designed domain invariant deep neural networks to deal
with the cross-corpus SER problem. For example, Deng et al. [28,29] proposed a series
of unsupervised deep domain adaptation methods using autoencoder (AE) networks in-
stead of projection matrices to seek a common subspace for both source and target speech
signals such that their new representations in the common subspace are similarly dis-
tributed. Gideon et al. [30] were motivated by the idea of generative adversarial networks
(GANs) [31] and presented an adversarial discriminative domain generalization (ADDoG)
model to cope with cross-corpus SER tasks. ADDoG consists of three major modules, i.e.,
a feature encoder, an emotion classifier, and a critic. Among these, the critic is one of the
major modules aiming to remove the bias between the source and target speech corpora
by estimating their earth-mover or Wasserstein distance. In addition, it is also of note
that, unlike most existing methods, ADDoG made use of speech spectrums rather than
hand-crafted speech features to serve as the inputs of networks. Hence, it is an end-to-end
learning method.

3. Proposed Method
3.1. Notations

In this section, we address the proposed MDAR method in detail and describe how to
use MDAR to deal with cross-corpus SER tasks. To begin with, we give several notations
which are needed in formulating MDAR. Suppose we have a set of labeled source speech
samples from one corpus whose feature matrix is denoted by Xs ∈ Rd×ns , where d is the
dimension of the speech feature vectors and ns is the source speech sample number. Their
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corresponding emotion ground truth information is denoted by a label matrix Ys ∈ Rc×ns ,
where c is the emotion class number and its ith column yi = [yi

1, . . . , yi
c]

T describes its
corresponding speech sample’s emotion information. As for yi, only the jth entry is set as 1
while the others are set as 0 if this speech sample’s label is the jth emotion.

Simliarly, let the target speech feature matrix corresponding to the other corpus and
its corresponding unknown label matrix be Xt ∈ Rd×nt and Yt ∈ Rc×nt , where nt is the
target sample number. According to the emotion class, we divide the source and target
speech feature matrices Xs and Xt into {X(1)

s f , . . . , X(c)
s f } and {X(1)

t f
, . . . , X(c)

t f
}, where X(i)

s f

and X(i)
t f

denote the source and target speech feature matrices corresponding to the ith
emotion among the fine emotion class set {1, . . . , c}. Accordingly, several fine emotion
class feature matrix sets can further merge to obtain the rough emotion class feature matrix
set for source and target speech samples, which can be expressed as {X(1)

sr , . . . , X(cr)
sr } and

{X(1)
tr

, . . . , X(cr)
tr
}, where X(i)

sr and X(i)
tr

represent the feature matrices corresponding to the
ith rough emotion class and cr is the rough emotion class number.

3.2. Formulation of MDAR

As described previously, the basic idea of MDAR is to build a subspace learning model
to learn emotion discriminative and corpus invariant representations for both source and
target speech samples belonging to different corpora. To achieve this goal, we propose to
use the label-information-guided feature space to serve as the subspace and then learn a
projection matrix to build the relationship between this subspace and the original feature
space, which can be formulated as a simple linear regression optimization problem:

min
U
‖Ys −UTXs‖2

F, (1)

where U is such a satisfactory projection matrix and ‖ · ‖F denotes the Frobenius norm of
a matrix. Using U, we can easily transform the speech samples from the original feature
space to the emotion label space. In other words, this learned projection matrix is endowed
with emotion discriminative ability.

Subsequently, we need to further enable the projection matrix U to be robust to the
variance of speech corpora such that it is applicable to the problem of cross-corpus SER.
To this end, we design a regularization term to help MDAR learn such an expectative
projection matrix, whose corresponding optimization problem can be expressed as follows:

min
U
‖UT‖2,1 + λ1(‖

1
ns

UTXs1s −
1
nt

UTXt1t‖2

+
c

∑
i=1
‖ 1

n(i)
s f

UTX(i)
s f 1(i)s f −

1

n(i)
t f

UTX(i)
t f

1(i)t f
‖2 +

cr

∑
i=1
‖ 1

n(i)
sr

UTX(i)
sr 1(i)sr −

1

n(i)
tr

UTX(i)
tr

1(i)tr
‖2), (2)

where λ1 is a trade-off parameter controlling the balance between different terms, and
1s, 1t, 1(i)s f , 1(i)t f

, 1(i)sr , and 1(i)tr
are all the one-valued vectors, and their dimensions are the

numbers of source and target samples denoted by ns and nt, target and target samples
corresponding to ith fine emotion class denoted by n(i)

s f and n(i)
t f

, and source and target

samples corresponding to ith rough emotion class denoted by n(i)
sr and n(i)

tr
, respectively.

From Equation (2), it is clear that the objective function designed for the corpus ro-
bustness of the projection matrix consists of a l2,1 norm and a combination of marginal, fine
emotion class-aware conditional, and rough emotion class-aware conditional distributions
aligned functions with respect to U, respectively. These two terms correspond to two
aspects of our efforts regarding MDAR:

1. ‖UT‖2,1 can be called the feature selection term. Minimizing ‖UT‖2,1 helps the MDAR
learn a row-sparse projection matrix, which suppresses the speech features con-
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tributing less to the distinction of different emotions, while highlighting the features
contributing most to distinction.

2. The other aspect is the multiple distribution adaption (MDA), which corresponds to
the resting three terms. Among these, the first two terms are so-called joint distribu-
tion adaptions (JDA) [16,17,19,20]. JDA is a combination of the marginal distribution
adaption and the fine emotion class-aware conditional adaption and has been demon-
strated the effectiveness in coping with domain adaptation and other cross-domain
recognition tasks. Our MDA can be viewed as an extension of JDA incorporating an
additional rough emotion class-aware conditional distribution-adapted term, which
enables further enhancement of the corpus invariant ability of the proposed MDAR.

Finally, by combining Equations (1) and (2), we arrive at the eventual optimization
problem of the proposed MDAR method, which can be formulated as follows:

min
U
‖Ys −UTXs‖2

F + λ‖UT‖2,1 + µ(‖ 1
ns

UTXs1s −
1
nt

UTXt1t‖2

+
c

∑
i=1
‖ 1

n(i)
sr

UTX(i)
s f 1(i)s f −

1

n(i)
t f

UTX(i)
t 1(i)t f

‖2 +
cr

∑
i=1
‖ 1

n(i)
sr

UTX(i)
sr 1(i)sr −

1

n(i)
tr

UTX(i)
tr

1(i)tr
‖2), (3)

where λ and µ = λ× λ1 are the trade-off parameters to balance all the terms.

3.3. Disturbance Strategy for Constructing Rough Emotion Groups in MDA

The major inspiration for designing the rough emotion class-aware conditional distri-
bution adapted term to obtain MDA was the recent work of [32], in which a modified 2D
arousal-valence emotion wheel consisting of two dimensions, i.e., valence and arousal, is
presented. To better understand our motivation, we repost Yang et al.’s emotion wheel in
Figure 1. From Figure 1, it is clear that each typical discrete emotion, e.g., Angry, Happy,
and Surprise, can be mapped to one point in the emotion wheel based on its corresponding
valence and arousal degrees. As the emotion wheel shows, there is an intrinsic distance
between two emotions according to their positions on the emotion wheel. Several typical
emotions, e.g., Fear v.s. Disgust, and Surprise v.s. Happy, are very similar and difficult
to distinguish from their distance measured with respect to the valence and arousal. In
other words, it may be hard to directly align the fine class-aware conditional distribution
associated with these emotions due to the unavailability of target speech sample emotion
labels. Although we can predict their pseudo emotion labels to calculate statistics for the
fine class-aware conditional distribution, the emotion discriminative ability of MDAR is
limited in the initial iterations of optimization.

Figure 1. The 2D arousal-valence emotion wheel proposed by Yang et al. [32]. This is a reduced
version involving only the emotions used in this paper.

To relieve this tension, in this paper, we introduce the rough emotion class-aware
conditional distribution-adapted term and present a disturbance strategy to construct its
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rough emotion class groups. Specifically, along the valence dimension, we first divide the
emotions into two rough emotion class groups including Positive-Valence (Surprise, Happy,
and Neutral) and Negative-Valence (Angry, Disgust, Fear, and Sad). Then, regarding the
specific cross-corpus SER task, we make several modifications to the original rough emotion
groups to break the inseparability of some emotions which have a close distance with
respect to the degree of valence and arousal. For example, we can switch Angry and
Surprise for High-Valence and Low-Valence groups. Finally, following the modified mixed
emotion groups, we calculate the rough emotion class-aware conditional distribution-
adapted term ∑cr

i=1 ‖
1
ns

UTX(i)
sr 1(i)sr − 1

nt
UTX(i)

tr
1(i)tr
‖2.

Note that, introducing the above rough emotion class-aware conditional distribution-
adapted term under the disturbance strategy for MDAR has two expectative benefits.
First, the modification of the mixed emotion groups alleviates the inseparability of the
emotion elements in Positive-Valence or Negative-Valence groups and, hence, assists fine
emotion class-aware conditional distribution adaption in MDAR. Second, unlike the fine
emotion class-aware conditional distribution adaption, performing a rough adaption does
not require over-precise target pseudo-labels, which affects the fine emotion class-aware
conditional distribution adaption. However, the proposed rough adaption does not have
this drawback because it only needs rough emotion labels of target speech samples, the
prediction of which is an easier task.

3.4. Predicting the Target Emotion Label Using MDAR

Once the optimal projection matrix of MDAR denoted by Û is learned, we are able to
predict the emotion label of the target speech samples according to the following criterion:

emo_label = arg max
i

yte
t (i). (4)

Note that yte
t denotes the target emotion label vector and can be computed by yte

t =
ÛTxte

t , where xte
t is its corresponding feature vector and yte

t (i) is its ith entry.

3.5. Optimization of MDAR

The optimization of MDAR can be solved by the alternated direction method (ADM)
and inexact augmented Lagrangian multiplier (IALM) [33]. Specifically, we first initialize
the projection matrix U and then repeat the following two major steps until convergence:

1. Predict the target emotion labels based on the projection matrix U and Equation (4).
Then compute the original marginal and two aware conditional feature distribution
gaps denoted by ∆m, ∆

(i)
f , and ∆

(i)
r according to the predicted target emotion labels

using the following Equations (5)–(7):

∆m =
1
ns

Xs1s −
1
nt

Xt1t. (5)

∆
(i)
f =

1

n(i)
s f

X(i)
s f 1(i)t f

− 1

n(i)
t f

X(i)
t f

1(i)t f
, (6)

where i = {1, . . . , c}.

∆
(i)
r =

1

n(i)
sr

X(i)
sr 1(i)sr −

1

n(i)
tr

X(i)
tr

1(i)tr
, (7)

where i = {1, . . . , cr}.
2. Solve the following optimization problem:

min
U
‖[Ys, 0]−UT [Xs,

√
µ∆]‖2

F + λ‖UT‖2,1, (8)
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where 0 ∈ Rc×(c+cr+1) is a zero matrix, and ∆ = [∆m, ∆
(1)
f , . . . , ∆

(c)
f , ∆

(1)
r , . . . , ∆

(cr)
f ] ∈

Rd×(c+cr+1).

As for Equation (8), IALM can be used to efficiently optimize it. More specifically,
we introduce an auxiliary variable P satisfying P = U. Thus, we can convert the original
optimization problem to a constrained problem as follows:

min
U,P
‖L− PTZ‖2

F + λ‖UT‖2,1, s.t. P = U, (9)

where L = [Ys, 0] and Z = [Xs,
√

µ∆].
Subsequently, we can write its corresponding Lagrangian function as follows:

L(U, P, T, κ) = ‖L− PTZ‖2
F + λ‖UT‖2,1

+Tr[TT(P−U)] +
κ

2
‖P−U‖2

F, (10)

where Tr(·) denotes the trace of a square matrix, T is the multiplier matrix and κ is the
trade-off parameter. By alternatively minimizing the Lagrangian function with respect to
the variables, we can obtain the optimal U. We summarize the detailed updating rules in
Algorithm 1.

Algorithm 1 Complete updating rule for learning the optimal U in Equation (10).
Repeat the following steps until convergence:
1. Fix U, T, and κ, update P: minP ‖L− PTZ‖2

F + Tr(TTP) + κ
2‖P−U‖2

F, which results
in P = (2ZZT + κI)−1(κU− T− ZLT).

2. Fix P, T, and κ, update U: minU
λ
κ ‖UT‖2,1 +

1
2‖UT − (PT + TT

κ )‖2
F, whose solution is

obtained by

ci =
‖pi+

ti
κ ‖−

λ
κ

‖pi+
ti
κ ‖

(pi +
ti
κ ), if λ

κ < ‖pi +
ti
κ ‖, where pi and ti are the ith row of P and T,

respectively. Otherwise, ci = 0.
3. Update T and κ: T = T + κ(P−U), and κ = min{ρκ, κmax}.
4. Check convergence: ‖P−U‖F < ε.

4. Experiments
4.1. Speech Emotion Corpora and Experimental Protocol

In this section, we describe cross-corpus SER experiments to evaluate the proposed
MDAR method. In what follows, we give the detail of the evaluation experiments.

1. Speech Emotion Corpora: Three widely-used speech emotion corpora, i.e., EmoDB
(Berlin) [9], eNTERFACE [21], and CASIA [10], were adopted to design cross-corpus
SER tasks. EmoDB is a German corpus and was collected by Burkhardt et al. from
TU Berlin, Germany. It consists of 535 acted speech samples from 10 speakers, in-
cluding five females and five males. Each speech sample is assigned one of seven ba-
sic emotion labels, i.e., Neutral(NE), Angry(AN), Fear(FE), Happy(HA), Sad(SA),
Disgust(DI), and Boredom. eNTERFACE is an English audio-visual emotion database
consisting of 42 speakers from 14 different nationalities. The emotions involved are
AN, DI, FE, HA, SA, and Surprise(SU). In the experiments, we only adopted its
audio subset. CASIA is a Chinese speech emotion corpus designed by the Institute of
Automation, Chinese Academy of Science, China. It includes 1200 speech samples
covering six basic emotions, i.e., AN, SA, FE, HA, NE, and SU.

2. Task Detail: We used two of the above speech emotion corpora to serve as the source
and target corpora, alternatively, and thus derived six typical cross-corpus SER tasks,
i.e., B → E, E → B, B → C, C → B, E → C, and C → E, where B, E, and C are short
for EmoDB, eNTERFACE, and CASIA, and the left and right corpora of the arrow
correspond to the source and target corpora, respectively. It is of note that, since
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these corpora have different emotions, in each cross-corpus SER task, we extracted
speech samples sharing the same emotion labels to ensure label consistency. The
detailed sample statistical information of the selected speech emotion corpora is given
in Table 1.

3. Performance Metric: As for the performance metric, the unweighted average recall
(UAR) [22], defined as the accuracy per class averaged by the total emotion class
number, was chosen.

Table 1. The sample statistics of the selected speech corpora used in cross-corpus SER tasks.

Tasks Speech Corpus (# Samples from Each Emotion) #Sample

B→E EmoDB (AN: 127, SA: 62, FE: 69, HA: 71, DI: 46) 375
E→B eNTERFACE (AN: 211, SA: 211, FE: 211, HA: 208, DI: 211) 1052

B→C EmoDB (AN: 127, SA: 62, FE: 69, HA: 71, NE: 79) 408
C→B CASIA (AN: 200, Sad: 200, FE: 200, HA: 200, NE: 200) 1000

E→C eNTERFACE (AN: 211, SA: 211, FE: 211, HA: 208, SU: 211) 1052
C→E CASIA (AN: 200, SA: 200, FE: 200, HA: 200, SU: 200) 1000

4.2. Comparison Methods and Implementation Detail

For comparison, we included recent well-performing transfer subspace learning meth-
ods, i.e., transfer component analysis (TCA) [14], geodesic flow kernel (GFK) [15], subspace
alignment (SA) [34], domain-adaptive subspace learning (DoSL) [35], and joint distribution
adaptive regression (JDAR) [16]. Linear SVM was used as the classifier and we report its
results for all the cross-corpus SER tasks to serve as the baseline. Since subspace learn-
ing methods are not end-to-end methods, they need a hand-crafted speech feature set to
describe speech signals. In the experiments, we adopted IS09 [36] and IS10 [37] feature
sets provided by the INTERSPEECH 2009 Emotion Challenge and the INTERSPEECH
2010 Paralinguistic Challenge, respectively, for all the subspace learning methods. The
IS09 feature set consists of 384 elements produced by 32 low-level descriptors (LLDs), e.g.,
fundamental frequency (F0), Mel-frequency cepstrum coefficient (MFCC), their first-order
difference, and their 12 corresponding functions, e.g., mean, maximal, and minimal value.
Compared with IS09, the IS10 feature set contains more LLDs and functions such that its
element number increases to 1582. Both feature sets can be conveniently extracted using
the openSMILE toolkit [38]; detailed information is available in [36,37].

Furthermore, we also compared our MDAR method with several recent state-of-the-art
deep transfer learning methods including the deep adaptation network (DAN) [39], the
domain-adversarial neutral network (DANN) [40], deep-CORAL [41], the deep subdomain
adaptation network (DSAN) [42], and the deep transductive transfer regression network
(DTTRN) [20]. For these deep learning methods, AlexNet was chosen as the CNN backbone
and we also used AlexNet to conduct the experiments to serve as the baseline. The speech
spectrums served as the network inputs instead of the hand-crafted speech feature sets.
Specifically, the frame size and overlap were first set as 350 and 175 sampling points, re-
spectively. Then, for each speech signal, all the frames were windowed using the Hamming
function and subsequently transformed to individual spectrums by resorting to Fourier
transformation. Finally, these individual spectrums composed the spectrum of the speech
signal. Note that due to the unavailability of target label information in cross-corpus SER, a
cross-validation method cannot be used to determine the optimal hyper-parameters for
all the methods. Hence, following most existing studies [16,35,39,42], in our experiments,
we searched the hyper-parameters for all the methods from a preset interval and then
reported their best UAR corresponding to the best optimal hyper-parameter. The details of
the hyper-parameter setting for all the transfer learning methods were as follows:

1. TCA, GFK, and SA: For these three methods, the hyper-parameter, i.e., the reduced
dimension, needed to be set. In the experiments, we searched it from [5 : 5 : dmax],
where dmax is the maximal dimension.
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2. DoSL and JDAR: DoSL and JDAR have two trade-off parameters controlling the
balance between the original loss function and two regularization terms, in which one
corresponds to the sparsity and the other corresponds to feature distribution adaption.
We searched them both from [5 : 5 : 200] in the experiments.

3. DAN and DSAN: DAN and DSAN both have a trade-off parameter to balance the
original loss and the MMD regularization term. In the experiments, we set it by
searching from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}.

4. DANN: As for DANN, it also has only one trade-off parameter. We searched it from
the parameter set {0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 0.5} throughout the experiments.

5. DTTRN: Since the protocol in [20] was identical to ours, we used the results reported
in their experiments for comparison .

6. MDAR: Similar to DoSL and JDAR, our MDAR also had two hyper-parameters, i.e.,
λ and µ. They were used to control the balance between the original regression loss
function and the two regularization terms, including the feature selection and feature
distribution difference alleviation terms. In the experiments, they were also both
searched from the parameter interval [5 : 5 : 200]. In addition, the rough emotion class
number cr was set to 2 (High-Valence and Low-Valence). The disturbance strategy for
the two mixed rough emotion groups was performed as follows: Reassign Disgust
from the Low-Valence group to the High-Valence group for B → E and E → B, and
Fear from the Low-Valence group to the High-Valence group for B → C and C → B.
Switch Angry and Surprise for E→ C and C → E.

4.3. Results and Discussion
4.3.1. Comparison with Transfer Subspace Learning Methods

The experimental results are shown in Tables 2–4. Among these, Tables 2 and 3 corre-
spond to the comparison among the transfer subspace learning methods using IS09 and
IS10 as the feature sets, respectively. From Tables 2 and 3, several interesting observations
can be made:

Table 2. The comparison results among all the transfer subspace learning methods of using IS09 as
feature set, in which the best results are highlighted in bold.

Method B→ E E→B B→C C→B E→C C→E Average

SVM 28.93 23.58 29.60 35.01 26.10 25.14 28.06
TCA 30.52 44.03 33.40 45.07 31.10 32.32 36.07
GFK 32.11 42.48 33.10 48.08 32.80 28.13 36.17
SA 33.50 43.89 35.80 49.03 32.60 28.17 36.33

DoSL 36.12 38.95 34.40 45.75 30.40 31.59 36.20
JDAR 36.33 39.97 31.10 46.29 32.40 31.50 36.27

MDAR 36.52 40.29 33.10 47.32 31.70 31.21 36.69

Table 3. The comparison results among all the transfer subspace learning methods of using IS10 as
feature set, in which the best results are highlighted in bold.

Method B→ E E→B B→C C→B E→C C→E Average

SVM 34.50 28.13 35.30 35.29 24.30 26.81 30.73
TCA 32.60 44.53 40.50 51.47 33.20 29.77 38.68
GFK 36.01 40.11 40.00 45.93 33.00 29.09 37.35
SA 35.65 43.92 37.50 47.06 32.10 30.61 37.80

DoSL 36.82 43.33 36.80 48.45 35.60 33.91 39.15
JDAR 37.95 47.80 42.70 48.97 35.60 37.58 41.76

MDAR 38.90 48.95 43.00 49.52 35.80 37.30 42.26
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Table 4. The comparison results between our MDAR of using IS09 and IS10 as feature sets and all the
deep transfer learning methods, in which the best results are highlighted in bold.

Method B→ E E→B B→C C→B E→C C→E Average

AlexNet 29.49 31.03 33.20 41.91 27.80 27.25 31.78
DAN 36.13 40.41 39.00 49.85 29.00 31.47 37.64

DANN 33.38 43.68 39.20 53.71 29.80 29.25 38.05
Deep-CORAL 35.03 43.38 38.30 48.28 31.00 30.89 37.81

DSAN 36.25 46.90 40.30 50.69 28.70 32.61 39.41
DTTRN 37.70 48.20 40.40 55.20 31.20 33.60 41.10

MDAR + IS09 36.52 40.29 33.10 47.32 31.70 31.68 36.69
MDAR + IS10 38.90 48.95 43.00 49.52 35.80 37.30 42.26

First, it is clear that the proposed MDAR method achieved the best UAR averaged
by the results of all the six cross-corpus SER tasks among all the transfer subspace learn-
ing methods when using both IS09 and IS10 feature sets to describe the speech signals.
Specifically, the average UAR achieved by our MDAR reached 42.26% and 36.69% in the
experiments using IS09 and IS10 as the feature sets, respectively, with promising increases
of 0.50% and 0.42% over the second best results (41.76% obtained by JDAR [16] + IS10 and
36.33% obtained by SA [34] + IS09). This indicates that our MDAR demonstrated superior
overall performance compared to recent state-of-the-art transfer subspace learning methods
when dealing with cross-corpus SER tasks.

Second, it was also evident that, using IS10 as the speech feature set, our MDAR
achieved more promising results in terms of UAR than all the comparison methods for the
four cross-corpus SER tasks (B → E, E → B, B → C, and E → C) among all the six tasks.
Although in the resting tasks our MDAR did not beat the other transfer subspace learning
methods, the performance of MDAR was very competitive against the best-performing
transfer subspace learning methods, e.g., 37.30% (MDAR) vs. 37.58% (JDAR) in the task of
B→ E.

Last, but not least, from the comparison between Tables 2 and 3, it is clear that the
performance of all the transfer subspace learning methods varied with respect to the
feature set used to describe speech signals. Specifically, the IS10 feature set included more
low-level acoustic descriptors and statistical functions than IS09, which provided more
emotion discriminative information when recognizing the emotions of speech signals.
Hence, the performance of all the transfer subspace learning methods with the IS10 feature
set increased remarkably compared to IS09. This remarkable performance increase indicates
that, when dealing with cross-corpus SER tasks, the capacity of the hand-crafted speech
feature set chosen to describe the speech signals is very important for the transfer of
subspace learning methods.

4.3.2. Comparison with Deep Transfer Learning Methods

Table 4 shows the comparison between our MDAR and several recent state-ot-the-
art deep transfer learning methods. From Table 4, it can be seen that, in terms of the
average UAR, all the deep transfer learning methods outperformed our MDAR using IS09
as the feature set to describe the speech signals. However, when using the IS10 feature set,
the performance of our MDAR increased from 36.69% to 42.26% in terms of the average
UAR, beating the deep transfer learning methods. More importantly, our MDAR, together
with the IS10 feature set, showed superior performance compared with the comparison
deep learning methods in five of six cross-corpus SER tasks. These observations further
confirmed the effectiveness and satisfactory performance of the proposed MDAR in coping
with cross-corpus SER tasks, which would otherwise lose to the deep transfer learning
methods if the hand-crafted speech feature set has adequate ability to describe the speech
signals adopted.
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4.3.3. Going Deeper into Disturbance Strategy in MDAR

As Equation (2) shows, our MDAR absorbs the knowledge of the emotion wheel to
design a rough emotion class-aware conditional distribution-adapted term to help corpus-
invariant feature learning. In this distribution-adapted term, two rough emotion groups are
obtained in advance, according to the valence dimension under the guidance of the distur-
bance strategy, i.e., switching several emotion elements in both groups. Therefore, it is inter-
esting to consider whether the proposed strategy (denoted by the Proposed Modi f ication)
is effective for improving MDAR in coping with cross-corpus SER tasks. To this end, we
conducted additional experiments choosing tasks using the IS09 feature set as the represen-
tatives, and then adopted the original valence-based rough emotion groups to compute
this well-designed term (denoted by the Original Version) for MDAR. Table 5 presents the
experimental results. From Table 5, it can be seen that MDAR achieved better performance
when using the proposed disturbance strategy to modify the rough emotion groups and to
compute its corresponding conditional distribution-adapted term compared with using the
original method.

Table 5. Comparison between the MDAR model, with and without the guidance of the disturbance
strategy, in the cross-corpus SER experiments using the IS09 speech feature set. The best result in
each task are highlighted in bold.

Rough
Emotion
Groups

B→ E E→B B→C C→B E→C C→E Average

Proposed
Modifi-
cation

36.52 40.29 33.10 47.32 31.70 31.68 36.69

Original
Version 36.33 39.89 31.50 46.51 32.00 31.50 36.28

4.3.4. Sensitivity Analysis of Trade-Off Parameters in MDAR

From the optimization problem of MDAR shown in Equation (3), it is known that
our MDAR has two major trade-off parameters, including λ and µ, controlling the balance
between the original regression loss and the distribution-adapted regularization terms.
This generates an interesting problem, i.e., how the performance of the proposed MDAR
changes with respect to these two parameters. To investigate this, we conducted additional
experiments choosing the tasks B → E and C → B, using the IS09 feature set as the
representatives. Specifically, we alternatively fixed one parameter at the optimal value and
varied the other for a parameter interval centered at its optimal value, and then performed
MDAR for each task. The experimental results are shown in Figure 2, in which the fixed
parameter and the varying parameter interval are also provided. From Figure 2, it is clear
that the performance of the proposed MDAR varied slightly with respect to the change in
both trade-off parameters, which indicates that our MDAR was less sensitive to the choice
of its trade-off parameters.
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Figure 2. Experimental results of trade-off parameter sensitivity analysis for MDAR, where the λ and
µ are set as λ = [1 : 10], µ = 50 for the left and λ = 5, µ = [1 : 10] for the right in (a), and λ = [1 : 10],
µ = 80 for the left and λ = 5, µ = [70 : 90] for the right in (b).

5. Conclusions

In this paper, we investigated the problem of cross-corpus SER and proposed a novel
effective transfer subspace learning method called MDAR. Unlike most existing transfer
subspace learning methods, the proposed MDAR absorbs the emotion wheel knowledge
and adopts a well-designed distribution-adapted regularization term which considers the
marginal distribution adaption and two-scale emotion-aware conditional adaption to jointly
alleviate the feature distribution mismatch between the source and target speech corpora.
Extensive cross-corpus SER experiments were carried out to evaluate the performance of
the proposed MDAR method. The experimental results demonstrated the effectiveness of
MDAR and its superior performance over recent state-of-the-art transfer subspace learning
methods, including several high-performing deep transfer learning methods, in coping
with cross-corpus SER tasks.
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