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Abstract: We introduce a quantum geometric tensor in a curved space with a parameter-dependent
metric, which contains the quantum metric tensor as the symmetric part and the Berry curvature
corresponding to the antisymmetric part. This parameter-dependent metric modifies the usual
inner product, which induces modifications in the quantum metric tensor and Berry curvature by
adding terms proportional to the derivatives with respect to the parameters of the determinant
of the metric. The quantum metric tensor is obtained in two ways: By using the definition of the
infinitesimal distance between two states in the parameter-dependent curved space and via the
fidelity susceptibility approach. The usual Berry connection acquires an additional term with which
the curved inner product converts the Berry connection into an object that transforms as a connection
and density of weight one. Finally, we provide three examples in one dimension with a nontrivial
metric: an anharmonic oscillator, a Morse-like potential, and a generalized anharmonic oscillator;
and one in two dimensions: the coupled anharmonic oscillator in a curved space.

Keywords: quantum phase transitions; quantum metric tensor; geometric phases; geometric quantum
information

1. Introduction

Quantum information geometry is a recent approach to describing quantum informa-
tion properties using geometry. If we consider pure states, one of the most used geometric
measures is the quantum geometric tensor (QGT) introduced by Provost and Vallee in [1].
The real part of this tensor has been used to predict quantum phase transitions (QPTs) [2–7]
and the imaginary part corresponds to the Berry curvature [8] which is an essential el-
ement to detect quantum interference [9,10]. Furthermore, the Berry curvature can be,
in some cases, very useful to detect a QPT [11,12]. In the case of mixed states, the situa-
tion is more subtle because countless metric tensors satisfy the Fisher–Rao equivariance
property [13–16]. In this case, introducing a metric tensor using a symmetric Jordan product
could be the indicated procedure [17,18]. In the case of pure states, it is easy to check that
the approach of Provost and Vallee is equivalent to the introduction of a Jordan product
using the covariance matrix [19]. Because, for the moment, we are interested only in pure
states, we will consider an extension of the work of Provost and Vallee [1]. To obtain this
tensor, one needs to consider a family {ψ(λ)} of normalized vectors of some Hilbert space
that depend smoothly on an m-dimensional real parameter λ = (λ1, . . . , λm) ∈ Rm and on
the computation of the infinitesimal distance between two states in the parameter space

d(ψ(λ + δλ), ψ(λ)) = ‖ψ(λ + δλ)− ψ(λ)‖. (1)

By requiring that this distance is invariant under the gauge transformation ψ→ e−iα(λ)ψ,
one arrives at the QGT of the n-th state

Q(n)
ρκ :=

(
∂ρψn|∂κψn

)
−
(
∂ρψn|ψn

)
(ψn|∂κψn), (2)
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where ∂ρ = ∂
∂λρ

and the internal product is defined in the usual flat space

(φ(x, λ)|ψ(x, λ)) =
∫

Vol
ddxφ∗(x, λ)ψ(x, λ) (3)

The (symmetric) real part of the QGT yields the quantum metric tensor (QMT) [1]

G(n)
ρκ = Re Q(n)

ρκ , (4)

which is a Riemannian metric and provides the distance δ`2 = G(n)
ρκ (λ)δλρδλκ between the

quantum states |ψn(x, λ)) and |ψn(x, λ + δλ)), corresponding to infinitesimally different
parameters. The (antisymmetric) imaginary part of the QGT encodes the Berry curvature [8]

F (n)
ρκ = −2 Im Q(n)

ρκ , (5)

which, after being integrated over a surface subtended by a closed path in the parameter
space, gives rise to Berry’s phase [8]. Moreover, (2) includes the Berry gauge connections
defined by

βρ(λ) = −i(ψ(λ)|∂ρψ(λ)). (6)

From another perspective, one of the most interesting quantities in quantum information
theory is the quantum fidelity [20], which corresponds to the modulus of the overlap
between two pure states

F(ψ′, ψ) =
∣∣(ψ′|ψ)∣∣ (7)

This fidelity is a valuable measure of the loss of information during the transportation of a
quantum state over a long distance. Using the fidelity between two states that differ by an
infinitesimal change in the parameters δλ, it is possible to recover the QMT (4) which is
called the fidelity susceptibility [5].

An alternative definition to the QGT is to rewrite it in a perturbative form by inserting
the identity operator I = ∑m|m)(m| in the first term of Equation (2) and using

(m|∂ρn) =
(m|∂ρ Ĥ|n)

En − Em
for m 6= n, (8)

which follows from the eigenvalue equation Ĥ|n) = En|n), then the QGT takes the form [4]

Q(n)
ρκ = ∑

m 6=n

(n|∂ρ Ĥ|m)(m|∂κ Ĥ|n)
(Em − En)2 . (9)

This expression shows that the singular points of the QGT can be associated with the QPT,
which are characterized by the ground-state level crossing under the variation of some
parameters of the system. However, this is only a heuristic argument that can be analyzed
more carefully using the scaling properties of the QGT [11,12,21]. In general, it is clear
from Equation (9) that the components of the QGT are singular at the points where the
parameters take a value λ∗ ∈ M such that En(λ∗) = Em(λ∗).

Moreover, recent studies have shown that some materials present relevant changes in
their electronic structure if they acquire a curvature [22]; even, in some cases, the curvature
can induce new quantum phase transitions [23]. Consequently, it will be interesting to
build a generalization of Provost and Vallee’s work by considering an internal product
for a curved space where the metric may depend on some parameters. The main result
of our work is this extension of the QGT in a curved space, and we show that the QMT
acquires new relevant terms arising from the parameter-dependent metric. Furthermore,
the Berry connection and curvature also have extra terms, and its properties under a general
coordinate transformation change dramatically (23). The contents of this work are as fol-
lows: In Section 2, we propose the extension to curved space by using a geometric approach



Entropy 2022, 24, 1236 3 of 18

similar to Provost and Vallee’s. In Section 3, we explicitly build the Berry curvature and
the quantum geometric tensor. In Section 4, we present two one-dimensional examples
of the application of our procedure. In Section 5, we present a two-dimensional coupled
anharmonic oscillator, with a curved metric. Section 6 contains an example with a Berry
curvature different from zero. Finally, in Appendix A, we present an alternative deduction
of the quantum metric tensor in curved space by computing the fidelity susceptibility.

2. Quantum Metric Tensor: Geometrical Approach

As we have mentioned in the introduction, we are interested in the case where the
metric does depend on the parameters of the system, λ ∈ Rm. Then, the inner product must
be replaced in a form that takes into account this dependence by introducing the square
root of the determinant of the metric as the measure of the integral:

(φ(λ), ψ(λ))→ 〈φ(λ)|ψ(λ)〉 =
∫

Vol
dN x
√

gφ∗(λ)ψ(λ) (10)

where g = det gij(x, λ) is the determinant of our N−dimensional configuration space
metric. First of all, we have to note that the normalization condition 〈ψ|ψ〉 = 1 implies

∂ρ〈ψ|ψ〉 = 〈∂ρψ|ψ〉+ 〈ψ|∂ρψ〉 − 1
2
〈σρ〉 = 0 (11)

where we define
σρ ≡ gµν∂ρgµν (12)

and ρ ∈ 1, . . . , m. This quantity, which arises solely due to the curvature of the spatial
metric, is responsible for the extra terms that appear in the generalization of the QGT.
Because the measure of the inner product has been modified, and the metric may depend
on the parameters of the system, we need to realize that the metric also must change by
the variation of the parameter λ in a specific way. Therefore, the inner product should be
read as

〈φ(λ)|ψ(λ)〉 =
∫

Vol
dN x

(
g1/4(λ)φ(λ)

)∗(
g1/4(λ)ψ(λ)

)
≡ 〈g1/4(λ)φ(λ)|g1/4(λ)ψ(λ)〉

(13)

where the
√

g has been separated into two factors of g1/4. This factorization of
√

g is taken
to consider the variation of the metric that corresponds to the state where the parameter
has been shifted infinitesimally. It is easy to note that the volume element of this inner
product remains invariant under coordinate transformations x → x′ = f (x), because the
parameters λ do not depend on the coordinate x. Then, the metric transforms under the
coordinate transformation as usual:

gµν(x′, λ) =
∂xα

∂xµ

∂xβ

∂xν
gαβ(x, λ)

gµν(x′, λ′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x, λ′).

(14)

Thus, the determinant of the transformed metric will compensate the Jacobian, which
arises from dN x. Under the assumption of the adiabatic approximation, we can proceed to
define a distance between a given state ψ(λ) and itself with shifted parameter ψ(λ′) in its
respective shifted parameter manifold in the following manner:

‖ψ(λ + δλ)− ψ(λ)‖2 =2− 〈g1/4(λ + δλ)ψ(λ + δλ)|g1/4(λ)ψ(λ)〉
− 〈g1/4(λ)ψ(λ)|g1/4(λ + δλ)ψ(λ + δλ)〉

(15)

Up to second order, this equation can be written in the following form:
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‖g1/4(λ + δλ)ψ(λ + δλ)− g1/4(λ)ψ(λ)‖2 = γρκδλρδλκ (16)

where

γρκ ≡
1
2

(
〈g1/4∂ρψ|g1/4∂κψ〉+ 〈g1/4∂κψ|g1/4∂ρψ〉

)
− 1

8

(
〈g1/4ψ|σκ |g1/4∂ρψ〉+ 〈g1/4ψ|σρ|g1/4∂κψ〉

)
− 1

8

(
〈g1/4∂ρψ|σκ |g1/4ψ〉+ 〈g1/4∂κψ|σρ|g1/4ψ〉

)
+

1
16
〈σρσκ〉

(17)

and 〈σρσκ〉 is the expectation value of σρσκ with respect to our new definition of inner
product: 〈σρσκ〉 ≡ 〈g1/4ψ|σρσκ |g1/4ψ〉.

In an analogous way to [1], this tensor γρκ is not invariant under the gauge transfor-
mation ψ→ eiα(λ)ψ. To incorporate this invariance in the metric, we introduce a modified
Berry connection given by

βρ = −i〈g1/4ψ|g1/4∂ρψ〉+ i
4
〈σρ〉 (18)

which is real and, because 〈σρ〉 is gauge invariant, it transforms as βρ → βρ + ∂ρα, under a
gauge transformation.

Now, we can define a gauge-invariant symmetric tensor

Gρκ = γρκ − βρβκ (19)

which we also call the quantum metric tensor (QMT), given explicitly by

Gρκ =
1
2

(
〈g1/4∂ρψ|g1/4∂κψ〉+ 〈g1/4∂κψ|g1/4∂ρψ〉

)
− 1

2

(
〈g1/4∂ρψ|ψ〉〈g1/4ψ|g1/4∂κψ〉+ 〈g1/4∂κψ|g1/4ψ〉〈g1/4ψ|g1/4∂ρψ〉

)
− 1

8

(
〈g1/4ψ|σκ |g1/4∂ρψ〉+ 〈g1/4ψ|σρ|g1/4∂κψ〉

)
− 1

8

(
〈g1/4∂ρψ|σκ |g1/4ψ〉+ 〈g1/4∂κψ|σρ|g1/4ψ〉

)
+

1
8

(
〈σρ〉〈g1/4ψ|g1/4∂κψ〉+ 〈σκ〉〈g1/4ψ|g1/4∂ρψ〉

)
+

1
8

(
〈σρ〉〈g1/4∂κψ|g1/4ψ〉+ 〈σκ〉〈g1/4∂ρψ|g1/4ψ〉

)
+

1
16
〈σρσκ〉 −

1
16
〈σρ〉〈σκ〉

(20)

In the expression above, we notice several additional terms, all related to the nontriv-
ial metric introduced in the inner product, and it is reduced to the usual QMT in the
flat-space limit.

3. Berry Curvature and Quantum Geometric Tensor

From the normalization condition (11), we define the Berry connection as

βρ = −i〈ψ|∂ρψ〉+ i
4
〈σρ〉. (21)

First, we show that this quantity transforms as a connection under the transformation in
the parameter space λ→ λ′. We will consider that ψ′(λ′) = ψ(λ). Then, σρ transforms as
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〈σ′ρ〉 =
∣∣∣∣ ∂λ

∂λ′

∣∣∣∣( ∂λκ

∂λ′ρ
〈σκ〉+ 2

∂λα

∂λ′µ
∂2λ′µ

∂λ′ρ∂λα

)
(22)

Consequently, the Berry connection will transform as:

β′ρ =

∣∣∣∣ ∂λ

∂λ′

∣∣∣∣( ∂λκ

∂λ′ρ
βκ +

i
2

∂λα

∂λ′µ
∂2λ′µ

∂λα∂λ′ρ

)
(23)

Notice that βρ transforms as a density connection of weight one. This last property appears
because we integrate over the configuration space xi and not over the parameter space λρ.

By definition, the Berry curvature is the exterior derivative of the Berry connection

F = dβ, (24)

and by a straightforward computation, we obtain the components of the Berry curvature:

Fρκ = ∂ρβκ − ∂κ βρ

= −i
(
〈∂ρψ|∂κψ〉 − 〈∂κψ|∂ρψ〉

)
+

i
4
(
〈ψ|σρ|∂κψ〉 − 〈ψ|σκ |∂ρψ〉

)
+

i
4
(
〈∂ρψ|σκ |ψ〉 − 〈∂κψ|σρ|ψ〉

)
.

(25)

With all of this in mind, we define the quantum geometric tensor (QGT), which
combines the QMT and Berry curvature in one tensor:

Gρκ ≡ 〈∂ρ(g1/4ψ)|P|∂κ(g1/4ψ)〉 (26)

where P is a projection operator given by

P = I− |g1/4ψ〉〈g1/4ψ|. (27)

Omitting the g1/4 factors again, the QGT is explicitly given by

Gρκ =〈∂ρψ|∂κψ〉 − 〈∂ρψ|ψ〉〈ψ|∂κψ〉 − 1
4
〈ψ|σρ|∂κψ〉

− 1
4
〈∂ρψ|σκ |ψ〉+

1
4
〈σρ〉〈ψ|∂κψ〉+ 1

4
〈σκ〉〈∂ρψ|ψ〉

+
1
16
〈σρσκ〉 −

1
16
〈σρ〉〈σκ〉.

(28)

The relevance of this tensor lies in the fact that it provides the fundamental structures
underlying the parameter space: the symmetric part corresponds to the real part of (28),

Re(Gρκ ) = Gρκ (29)

and the antisymmetric (imaginary) part yields the Berry curvature

Im(Gρκ) =
1
2
Fρκ . (30)

This is in correspondence to the QGT obtained in [1]. The QGT has the attractive property
that it not only contains information about the frame bundle associated with the curvature
of the parameter space but also contains information about the fiber bundle associated with
the U(1) connection corresponding to the Berry phase. That both structures are contained
in the QGT implies that this tensor contains all the information of the parameter space and
its associated bundles. Another essential property of the QGT is that it allows the complete
study of the symmetries of the quantum system. For example, it shows explicitly that the
system is gauge invariant under phase transformations of the physical states.
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4. Examples of the Quantum Metric Tensor in Curved Space

To consider some examples of our construction, we use a Lagrangian of form

L =
1
2

gij(x, λ)ẋi ẋj −V(x, λ), (31)

that corresponds to a particle that is moving in curved space with a metric gij(x, λ) that
depends on some parameter λ, with Hamiltonian given by

H =
1
2

gij pi pj + V. (32)

Now, to build the Schrödinger equation in the coordinate representation, we introduce the
Laplace–Beltrami operator [24],

gij pi pj → ∇2ψ =
1
√

g
∂

∂xj

(
√

ggij ∂ψ

∂xi

)
(33)

Moreover, we can decompose the metric into solder forms or “inverse tetrads” ei
a(x, λ)

as follows
gij = ei

aeaj, ηab = eajeb
j (34)

where the metric ηab is an N−dimensional flat-space metric, and eb
j is the tetrad or vierbein.

In terms of solder forms, the Laplace–Beltrami operator is given by

∇2ψ =
1
e

∂

∂xj

(
eei

aeaj ∂ψ

∂xi

)
(35)

where e is the determinant of the tetrad eb
j . To start, we will consider systems in one-

dimensional space.

4.1. Anharmonic Oscillator in One Dimensional Curved Space

Let us consider a one-dimensional anharmonic oscillator in curved space with a metric
given by

g = 4λx2 (36)

In this case, the Lagrangian and Hamiltonian take the form

L = 2λx2 ẋ2 − ω2

2
λx4, (37)

H =
1
8

p2
x

λx2 +
ω2

2
λx4. (38)

We can obtain this system from the ordinary harmonic oscillator using a gauge transforma-
tion [25]. Using the Laplace–Beltrami operator (33), we can derive the time-independent
Schrödinger equation:

(
− h̄2

8λx2
d2

dx2 +
h̄2

8λx3
d

dx
+

ω2

2
λx4

)
ψn(x) = Enψn(x) (39)

with solutions given by

ψn(x) =
1√
2nn!

( ω

πh̄

)1/4
e−

ωλx4
2h̄ Hn

(√
ωλ

h̄
x2

)
(40)

for n = 0, 1, 2, . . . and Hn(x) are the Hermite polynomials.
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Moreover, the energy eigenvalues are the same as for the harmonic oscillator:

En = h̄ω

(
n +

1
2

)
n = 0, 1, 2, . . . (41)

Now, to compute the QGT, we note that ω and λ are the parameters of the system,
and because there is no imaginary term in ψn(x), we have that the Berry curvature is zero;
thus, the quantum geometric tensor is the same as the quantum metric tensor. Now, we
compute σρ as defined in (12) for ρ ∈ {λ, ω}

σλ = − 1
λ

(42)

σω = 0 (43)

Thus, we are able to compute the QMT for the n-excited state:

G[n] = (n2 + n + 1)

(
1

8λ2
1

8λω
1

8λω
1

8ω2

)
(44)

where we denote with square brackets [n] the dependence on the quantum number n. As
we have mentioned, the QGT and QMT are the same, and they are degenerated because
the parameters (ω, λ) are not independent.

4.2. Harmonic Oscillator with a Morse Type Potential

To introduce one example with a σρ that is coordinate dependent, we choose another
gauge-related potential to the harmonic oscillator. We will consider a potential that corre-
sponds to the short-range repulsion term of the Morse potential but in a one-dimensional
curved space with metric given by

g =
λ2

4
e−λx, (45)

which depends on the parameter λ and the configuration variable x. In this case, the
classical action and Hamiltonian are given by

S =
∫

dt
1
2

(λ2

4
e−λx ẋ2 −ω2e−λx

)
(46)

H =
2

λ2 eλx p2
x +

ω2

2
e−λx (47)

In order to show the differences between this system and the harmonic oscillator, we graph
the phase space for this system in Figure 1. In this way, Figure 1a shows the phase diagram
for different energies, Figure 1b for different λ, Figure 1c for different ω, and in Figure 1d,
the interesting symmetry that appears when changing the value λ→ −λ. Interestingly, the
loop gets “bigger” and wider for increasing energy, while increasing ω is the other way
around. For increasing λ, we can see that the loop gets wider but approaches 0 in the x
axis. Moreover, it presents the interesting fact that the loop gets inverted symmetrically by
changing the sign of the value of λ. We observe also that the system has a singularity at
x → ∞ for λ > 0 and at x → −∞ for λ < 0.
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(a) H(ω, λ) = Ei. (b) H(ω, λi) = 1

(c) H(ωi, λ) = 1 (d) H(ω,±λi) = 1

Figure 1. Phase diagrams for the Morse-like potential.

Then, for this system, the time-independent Schrödinger’s equation is obtained
from (33), with the metric given in (45),

[
− 2h̄2

λ2 eλx
(

λ

2
d

dx
+

d2

dx2

)
+

ω2

2
e−λx

]
ψn(x) = Enψn(x). (48)

In this case, we will focus only on the ground-state ψ0(x) which is given by

ψ0(x) = Ae−
ω
2h̄ e−λx

. (49)

with energy eigenvalue of E0 = h̄ω
2 .

To obtain the normalization constant A, we use the relation 〈ψ0|ψ0〉 = 1, where this
bracket is the inner product of the curved space, so that

〈ψ0|ψ0〉 = A2
∞∫
−∞

dx
(

λ

2
e−

λ
2 xe−

ω
h̄ e−λx

)
. (50)

If we perform the change in variable u = e−
λ
2 x, and noticing that u x→−∞−−−−→ 0 and u x→∞−−−→

−∞, we arrive to

〈ψ0|ψ0〉 = A2
∞∫

0

e−
ω
h̄ u2

du (51)

which is the usual harmonic oscillator constrained to the positive real line R+. Thus, the
normalization constant A is

A =
√

2
( ω

πh̄

) 1
4 (52)

We need to point out that the normalization constant differs from the usual harmonic
oscillator by a factor of

√
2.
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Before continuing, we have to mention that the Berry curvature of this system is again
zero. Thus, the QGT and QMT are the same.

Using (45), we compute σρ = g∂ρg−1.

σλ = x− 2
λ

σω = 0.
(53)

One big difference from the previous system is that σλ does depend on the coordinate
x, so we are going to need all the terms in Equation (20).

The components of the QMT for the ground state are given by:

Gλλ =〈∂λψ|∂λψ〉 − 〈∂λψ|ψ〉〈ψ|∂λψ〉+ 1
2
〈σλ〉〈∂λψ|ψ〉 − 1

2
〈∂λψ|σλ|ψ〉

+
1

16
〈σ2

λ〉 −
1
16
〈σλ〉2

(54)

Gλω = 〈∂λψ|∂ωψ〉 − 1
4
〈∂ωψ|σλ|ψ〉 (55)

Gωω = 〈∂ωψ|∂ωψ〉 (56)

For completion, we write the components for the QMT for the ground state explicitly:

Gλλ =
1

16λ2

[
4 + 2(γ− 4)γ + π2 + 2 ln(4)2 + 4(γ− 2) ln

(
4ω

h̄

)
+2 ln

(ω

h̄

)
ln
(

16ω

h̄

)] (57)

Gλω =
1

16λω

{
2− 2γ + 2erf

(√
ω

h̄

)
+ ln

(
h̄2

16ω2

)

+
1√
π

[
2 G3,0

2,3

(
ω

h̄

∣∣∣ 1, 1
0, 0, 3

2

)
−G3,0

2,3

(
ω

h̄

∣∣∣ 1, 1
0, 0, 1

2

)]} (58)

Gωω =
1

8ω2 (59)

where γ is the Euler constant, erf(z) the error function, and Gm,n
p,q

(
z
∣∣∣ a1, . . . , an, an+1, . . . , ap
b1, . . . , bm, bm+1, . . . , bq

)
the MeijerG function.

In Figure 2, we show the graphics for the components of the QMT, where we can
note that the components of Gλλ and Gωω are positive (graphics Figure 2a and Figure 2b,
respectively), while the component Gλω Figure 2c presents a change in sign. In the contour
plot Figure 2d, we plot Gλω for different values of λ, it is shown that the ω axis is cut in
the same point given by ω0 ∼ 1.03716, and in Figure 2e, we plot Gλω for different values
of ω, and we can appreciate that in the critical point ω = ω0, the curves change sign too.
This critical point ω0 ∼ 1.03716, most appreciated in Figure 2d, seems to have an impact on
the behavior of the system; thus, it can be related to Figure 1c where it makes softer the so
abrupt increase and decrease in momentum and accelerating back to infinity for ω < ω0
where Gλω is negative.

In addition, the QMT presents the particularity of being non-singular, that is, it has
a determinant different from zero, in contrast with the QMT of the harmonic oscillator.
Furthermore, all the components of the QMT show a quantum phase transition for ω = 0 or
λ = 0 where the system changes to a free particle. This transition is in some sense equivalent
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to the one presented in the phase space in the limit x → ±∞, which is nevertheless here
observed for any velocity, whereas in the phase space exists only for null velocity.

(a) (b)

(c)

(d) (e)

Figure 2. Components of the QMT for the Morse-like potential. (a ) Gλλ, (b) Gωω , (c)
Gλω , (d) Contour Plot of Gωλ, λ = (0.01, 0.05,−0.01,−0.05), (e) Contour Plot of Gωλ, ω =

(1.0371, 1.03714, 1.03718, 1.0372).

The 3D-Plot of Figure 3a shows that the determinant tends to zero to increasing values
of λ or ω and is always positive. In Figure 3b, we leave ω constant, while in Figure 3c, we
fix λ to a constant value.
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(a)

(b) (c)

Figure 3. Determinant of the QMT for the Morse-like potential. (a) 3-D Plot of the determinant,
(b) 2-D Projection of the determinant with ω constant. (c) 2-D Projection with λ fixed.

5. QGT Coupled Anharmonic Oscillator

For this example, we will consider a coupled anharmonic oscillator in curved space
with spatial metric:

g =

(
a2x2 0

0 b2y2

)
(60)

which is a diagonal matrix dependent explicitly on the parameters a and b. Then, the
Lagrangian is

L =
1
2

a2x2 ẋ2 +
1
2

b2y2ẏ2 − k1

2

(
a2

4
x4 +

b2

4
y4
)
− k2

2

(
a
2

x2 − b
2

y2
)2

(61)

so that the Hamiltonian is

H =
p2

x
2a2x2 +

p2
y

2b2y2 +
k1

2

(
a2

4
x4 +

b2

4
y4
)
+

k2

2

(
a
2

x2 − b
2

y2
)2

. (62)

Because we are interested in the QGT, we need to quantize this system. To do so, we will
consider the Laplace–Beltrami operator (33):

∇2ψ =
1√
abxy

(
∂x

(
by
ax

∂ψ

∂x

)
+ ∂y

(
ax
by

∂ψ

∂y

))
=

1
a2x2

∂2ψ

∂x2 −
1

a2x3
∂ψ

∂x
+

1
b2y2

∂2ψ

∂y2 −
1

b2y3
∂ψ

∂y

(63)

Thus, the time-independent Schrödinger equation is



Entropy 2022, 24, 1236 12 of 18

ĤΨn(x, y) = − h̄2

2a2x2
∂2Ψn(x, y)

∂x2 +
h̄2

2a2x3
∂Ψn(x, y)

∂x
− h̄2

2b2y2
∂2Ψn(x, y)

∂y2 +
h̄2

2b2y3
∂Ψn(x, y)

∂y

+
k1

2

(
a2x4

4
+

b2y4

4

)
Ψn(x, y) +

k2

2

(
ax2

2
− by2

2

)2

Ψn(x, y)

= EnΨn(x, y)

(64)

The ground-state solution is given by

Ψ0(x, y) = Aexp
[
−ω1a2x4

8
− ω2b2y4

8
− β

abx2y2

4

]
(65)

with
ω1 =

√
k1 = ω2, β =

1
2
(
√

k1 −
√

k1 + 2k2) < 0

and A is the normalization constant which will be obtained later.
The energy of this ground state is

E0 =
1
2
(ω+ + ω−) (66)

where
ω+ =

√
k1, ω− =

√
k1 + 2k2

are the frequencies of the normal modes. Then, we can write our ground-state solution as

Ψ0(U+, U−) = Aexp
[
−1

2

(
ω+U2

+ + ω−U2
−

)]
(67)

where we have defined

U± =
1√
2

(
ax2

2
± by2

2

)
. (68)

Now, it is time to compute the normalization constant so we can compute the QGT.
Note that the inner product in this case is given by

〈ψ|φ〉 =
∞∫
−∞

∞∫
−∞

dxdy
√

a2b2x2y2ψ∗(x, y)φ(x, y) (69)

Then, for the ground state:

〈Ψ0|Ψ0〉 =
∞∫

0

∞∫
0

dxdy 4ab xy A2exp
[
−ω1a2x4

4
− ω2b2y4

4
− β

abx2y2

2

]

=

∞∫
0

U+∫
−U+

dU+dU− A2exp
[
−
(

ω+U2
+ + ω−U2

−

)]

=
4A2arctan

(√
ω−
ω+

)
√

ω+ω−

= 1.

(70)

The change of the limits of integration and the factor of 4, arise from the definition√
x2 = |x|. We need to note that the region of integration stopped to be the whole plane

with the change in variables; instead, one only integrates on the region shown in Figure 4,
which is the upper cone delimited by U+ = |U−|.
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Figure 4. Region of Integration.

Then, we have that the ground-state solution is given by

Ψ0(x, y) =
(k1(k1 + 2k2))

1/8

2

√
arctan

(
1 + 2k2

k1

)1/4
exp

[
−
√

k1
8

a2x4 −
√

k1
8

b2y4 − 1
2
(
√

k1 −
√

k1 − 2k2)
abx2y2

4

]
(71)

where we have written explicitly the parameters of the system: {k1, k2, a, b}.
Because the wave function does not have an imaginary part, the Berry curvature is zero;

thus, the QGT is the same as the QMT. Because the algebraic expressions of the QMT do not give
any clear information about the behavior of it, we show in Figure 5 the plots or, more specific, the
projections of the components of the QMT. First thing to notice is that the plots of Gbk1 and Gbk2
are not to be found. This is because if one interchanges the parameters a and b, they are the same
as Gak1 and Gak2 , respectively, and this has a huge impact on the behavior of the QMT, making
it singular. The second thing to note is the dependence of the components of the QMT on the
parameters of the system, because Gk1k1 , Gk2k2 , and Gk1k2 only depend on the spring constant
k1 and the coupling constant k2, while the rest of the components depend also on the parameter
a and the component Gab depends on all four parameters k1, k2, a, and b with the peculiarity
that we can interchange a and b. Thirdly, the component for Gab with a = −1 and b = 1 is just
a translation by 1

2 of Gaa with a = 1. Finally, even though the plots for Gak2 with k1 = 1 and
k2 = 1 look alike, their difference is not a trivial function. It is easy to observe that when k1 and
a go to zero, the components of the QMT go to infinity, but it is not the case when k2 goes to
zero. In fact, the term Gk1k1 ∼

1
k2

1
is recovering the expression for the usual anharmonic oscillator,

see Section 4.1. This is not surprising because k2 = 0 means that the system is decoupled. Now,
the terms Gk1k2 and Gk2k2 also take the form of ∼ 1

k2
1
, Gaa ∼ 1

a2 , Gkia ∼
1

ak1
when i = 1, 2, and

Gab = 0. These results are not so unexpected because they mean that the QMT keeps some
information on the dimension of the space of parameters, which is a purely quantum effect.

As mentioned before, the determinant of the QMT is zero, which can be avoided by setting
one of the parameters a or b to be constant. This enables us to plot the subdeterminant of
the QMT in Figure 6 where we denoted as a suffix the parameter b set as a constant. One
can see that it is positive definite, and it diverges when k1, or a approaches zero. However,
when k2 → 0, then this subdeterminant takes the form∼ 1

a2k4
1
. Therefore, we can see how the

QMT, more specifically the subdeterminant DetQMTb, detects two different quantum phase
transitions: a → 0 the system collapse into a one-dimensional modified harmonic oscillator,
such as in Section 4.1, and the more interesting case k1 → 0, where at first glance one could think
it becomes the linear coupled harmonic oscillator [26,27], but in reality, the system becomes a
coupled harmonic oscillator with only two parameters [28]
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(a) Gk1k1
(b) Gk2k2 (c) Gk1k2 (d) Gaa, k1 = 1

(e) Gaa, k2 = 1 (f) Gaa, a = 1 (g) Gak1
, k1 = 1 (h) Gak1

, k2 = 1

(i) Gak1
, a = 1 (j) Gak2 , k1 = 1 (k) Gak2 , k2 = 1 (l) Gak2 , a = 1

(m) Gab, k1=1, k2 =1 (n) Gab, k1 =1, b=1 (o) Gab, k2 =1, b=1 (p) Gab, a=1, b= 1

Figure 5. Components of the QMT for the coupled anharmonic oscillator in a curved space.

.

(a) DetQMTb(k1 = 1, k2, a) (b) DetQMTb(k1, k2 = 1, a) (c) DetQMTb(k1, k2, a = 1)

Figure 6. Subdeterminant of the QMT of the coupled anharmonic oscillator in a curved space.

6. Generalized Anharmonic Oscillator in Curved Space

A well-known example of a system with Berry curvature is the generalized harmonic
oscillator [9,10,29] where the Hamiltonian is given by

H =
1
2

[
cx2 + b(xp + px) + ap2

]
(72)

and by a straightforward calculation, we obtain the Lagrangian:

L =
1
2a

ẋ2 − Ω
2

x2 − b
2a

(xẋ + ẋx) (73)
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with

Ω = c− b2

a
(74)

In our case, we are going to consider the generalized anharmonic oscillator with a = 1,
so that the determinant of the QGT for the generalized harmonic oscillator is different from
zero, with spatial metric

g = 4λx2 (75)

and Hamiltonian

H =
ap2

8λx2 +
b
4
(xp + px) +

cλx4

2
(76)

so that the Lagrangian is

L =
2λx2 ẋ2

a
− bλ

a
(x3 ẋ + ẋx3)− Ω

2
λx4 (77)

In this case, the time-independent Schrödinger equation is given by(
− h̄2

8λ

(
1
x2 ∂2

x −
1
x3 ∂x

)
− ih̄bx

2
∂x −

ih̄b
2

+
cλx4

2

)
ψn(x) = Enψ(x) (78)

where the time-independent solutions are

ψn(x) =
( ω

πh̄

)1/4 1√
2nn!

e−
ωλx4

2h̄ Hn

(√
ωλ

h̄
x2

)
e−

ibλx4
2h̄ (79)

and the energy eigenvalues are the same as the generalized harmonic oscillator:

En =

(
n +

1
2

)
h̄ω (80)

where ω =
√

c− b2.
In this case, the metric g and σρ are the same as the Equations (36), (42) and (43). Then,

the QMT for the n-excited state is

G[n] = (n2 + n + 1)


c

8ω2λ2 0 1
16ω2λ

0 c
8ω4 − b

16ω4
1

16ω2λ
− b

16ω4
1

32ω4

 (81)

which is degenerated.
In this case, the Berry curvature is different from zero. In fact, using Equation (25), we

have that for the n-excited state, it is given by

Fρκ [n] =
2n + 1
16ω3λ

 0 2c −b
−2c 0 −λ

b λ 0

. (82)

This curvature reduces to the Berry curvature of [9] in the limit λ→ ∞.

7. Discussion

In this paper, we have shown an extension of the QGT for curved spaces in which the
metric may depend on the parameters of the system. The derivation of the QMT was conducted
in two different manners: one in a geometrical way, extending the work of Provost and Vallee [1],
and the second one via the fidelity susceptibility approach, which is shown in Appendix A. To
obtain the QGT, we had to define a new Berry connection (18). This connection presents an extra
term solely dependent on the metric of the curved space. This new term and the modification
of the inner product are responsible for ensuring that the Berry connection transforms not only
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as a connection but also as a density of weight one. With this modified Berry connection, we
computed the Berry curvature. Finally, the QGT is given, and as expected, it contains the QMT
(symmetric/real part) and the Berry curvature (antisymmetric/imaginary part). It would be
exciting to find out if, using the QGT, it is possible to extract some global information beyond
the Chern character associated with the Berry curvature and the information contained in the
Pontrjagin characteristics classes [30]. To show the consequences of how a nontrivial metric
dependent on the parameters of the system affects the QMT and the Berry curvature, we
provided four examples: three in one dimension and one in two dimensions. One interesting
aspect of the one-dimensional examples is that they are isospectral, i.e., they have the same
energy as the harmonic oscillator. Thus, we conclude that the energy eigenvalues are not enough
to detect the particular system we are working with nor the QPTs that there might be. Another
interesting point is that the example with a Morse-like potential has some similarities with
the Liouville Quantum Theory on the Riemann sphere [31], and it will be interesting to use
our procedure to compute the QGT in this case. Moreover, the generalization of our results
to a perturbative form of the QGT to the curved background could be helpful in detecting
critical points in the shape of figures of interest [32], because the Laplace–Beltrami operator in
higher dimensions gives the Schrödinger equation without potential in the curved background.
Finally, we want to extend this work both for relativistic cases and for mixed states in order to
detect QPTs, e.g., for quantum black holes, perhaps in a similar way to the quantum complexity
approach of Susskind [33].
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Appendix A

In this appendix, we compute the fidelity susceptibility in curved space to corroborate
the new definition of the QMT (20). One of the most interesting quantities in quantum
mechanics and in quantum information theory [5,20] is the so-called overlap between two
states. In the first case, it gives the transition amplitude, while in the second, it represents
the “closeness” between two states. Moreover, the overlap is a useful measure of the loss of
information during the transportation of a quantum state over a long distance. Moreover,
it is used to define the fidelity in quantum information theory.

More accurately, one defines the overlap between two pure states as

f (ψ′, ψ) = 〈ψ′|ψ〉, (A1)

and the fidelity is only the modulus of the overlap:

F(ψ′, ψ) =
∣∣〈ψ′|ψ〉∣∣ (A2)
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Let us consider that our pure states depend adiabatically on an external m-dimensional
real parameter λ and we want to compute the fidelity between two close states, that is,
ψ′(λ) = ψ(λ + δλ). Moreover, we are going to consider that the spacetime metric depends
on this parameter, i.e., gµν = gµν(x, λ), so we define the fidelity to be

F(ψ′, ψ) =
∣∣∣〈(g1/4ψ)′|g1/4ψ〉

∣∣∣. (A3)

From now on, we are going to use the notation

F(λ + δλ, λ) =
∣∣∣〈g1/4(λ + δλ)ψ(λ + δλ)|g1/4(λ)ψ(λ)〉

∣∣∣ (A4)

to make it clear that we are considering two close states with respect to the parameter λ. To
compute the fidelity, it is easier to start with

| f (λ + δλ, δλ)|2 = 〈(g1/4ψ)′|g1/4ψ〉〈g1/4ψ|(g1/4ψ)′〉. (A5)

Thus, up to second order, we find that

| f (λ + δλ)|2 =1− δλρδλκ
[1

2

(
〈g1/4∂ρψ|g1/4∂κψ〉+ 〈g1/4∂κψ|g1/4∂ρψ〉

)
−
(
〈g1/4∂ρψ|g1/4ψ〉〈g1/4ψ|g1/4∂κψ〉

)
− 1

8

(
〈g1/4∂ρψ|σκ |g1/4ψ〉+ 〈g1/4∂κψ|σρ|g1/4ψ〉

)
− 1

8

(
〈g1/4ψ|σκ |g1/4∂ρψ〉+ 〈g1/4ψ|σρ|g1/4∂κψ〉

)
+

1
8

(
〈σρ〉〈g1/4ψ|g1/4∂κψ〉+ 〈σκ〉〈g1/4ψ|g1/4∂ρψ〉

)
+

1
8

(
〈σκ〉〈g1/4∂ρψ|g1/4ψ〉+ 〈σρ〉〈g1/4∂κψ|g1/4ψ〉

)
+

1
16
〈σρσκ〉 −

1
16
〈σρ〉〈σκ〉

]
.

(A6)

where we use ∂κ∂ρ〈g1/4ψ|g1/4ψ〉 = 0, and the linear term vanishes because of the normal-
ization condition (11).

Taking the square root of (A6), we obtain the fidelity

F(λ + δλ, λ) = 1− δλρδλκ

2
χρκ (A7)

where χρκ is the fidelity susceptibility given precisely by the expression (20) of the QMT,
where we symmetrize all the terms explicitly.
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