
Citation: Mezni, Z.; Delpha, C.;

Diallo, D.; Braham, A. Performance

of Bearing Ball Defect Classification

Based on the Fusion of Selected

Statistical Features. Entropy 2022, 24,

1251. https://doi.org/10.3390/

e24091251

Academic Editor: Yongbo Li

Received: 30 June 2022

Accepted: 31 August 2022

Published: 5 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Performance of Bearing Ball Defect Classification Based on the
Fusion of Selected Statistical Features
Zahra Mezni 1,2, Claude Delpha 3,* , Demba Diallo 4 and Ahmed Braham 2

1 Ecole Nationale Supérieure d’Ingénieurs de Tunis (ENSIT), University of Tunis, Tunis 1007, Tunisia
2 The Matériaux, Mesures et Applications (MMA) Laboratory, University of Carthage, Carthage 1054, Tunisia
3 Laboratoire des Signaux et Systèmes, CNRS, CentraleSupelec, Université Paris Saclay,

91192 Gif sur Yvette, France
4 Group of Electrical Engineering of Paris, CNRS, CentraleSupelec, Université Paris Saclay,

91192 Gif sur Yvette, France
* Correspondence: claude.delpha@l2s.centralesupelec.fr

Abstract: Among the existing bearing faults, ball ones are known to be the most difficult to detect and
classify. In this work, we propose a diagnosis methodology for these incipient faults’ classification
using time series of vibration signals and their decomposition. Firstly, the vibration signals were
decomposed using empirical mode decomposition (EMD). Time series of intrinsic mode functions
(IMFs) were then obtained. Through analysing the energy content and the components’ sensitivity
to the operating point variation, only the most relevant IMFs were retained. Secondly, a statistical
analysis based on statistical moments and the Kullback–Leibler divergence (KLD) was computed
allowing the extraction of the most relevant and sensitive features for the fault information. Thirdly,
these features were used as inputs for the statistical clustering techniques to perform the classification.
In the framework of this paper, the efficiency of several family of techniques were investigated
and compared including linear, kernel-based nonlinear, systematic deterministic tree-based, and
probabilistic techniques. The methodology’s performance was evaluated through the training accu-
racy rate (TrA), testing accuracy rate (TsA), training time (Trt) and testing time (Tst). The diagnosis
methodology has been applied to the Case Western Reserve University (CWRU) dataset. Using our
proposed method, the initial EMD decomposition into eighteen IMFs was reduced to four and the
most relevant features identified via the IMFs’ variance and the KLD were extracted. Classification
results showed that the linear classifiers were inefficient, and that kernel or data-mining classifiers
achieved 100% classification rates through the feature fusion. For comparison purposes, our proposed
method demonstrated a certain superiority over the multiscale permutation entropy. Finally, the
results also showed that the training and testing times for all the classifiers were lower than 2 s, and
0.2 s, respectively, and thus compatible with real-time applications.

Keywords: bearing ball fault; classification; feature selection and extraction; empirical mode
decomposition; statistical analysis; Kullback–Leibler divergence; machine learning

1. Introduction

Electric actuators are increasingly present in several application areas such as transport,
health or renewable energy. At the same time, the requirements for operational safety
and energy efficiency are becoming increasingly stringent. In response, condition-based
maintenance was introduced. It requires regular monitoring of all system components,
including electrical machines. Electrical machines operating increasingly under severe
conditions or at the limits of their capacity are subject to faults that can lead to failures [1–3].
Investigations in several industrial fields have revealed that rolling bearing elements
(RBEs) are the main sources of failures for almost 40% to 90% of low- to high-power
machines [4,5]. Several studies [6,7] have concluded that bearing ball fault is the most
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difficult to diagnose (detection and classification) because its effects are strongly attenuated
by the mechanical structure.

Bearing balls can be affected by corrosion, spalling, high temperatures or premature
wear due to overloading. In the long term, these degradations lead to holes in the balls.

It is of a paramount importance to investigate these types of faults considered as
incipient ones and that can be found in such electrical machines (synchronous or asyn-
chronous machines). In the considered testbed, three bearings were degraded. For each
of them, a hole with a different diameter was drilled in a ball to evaluate the proposed
diagnostic method.

It is usual to consider that fault detection and diagnosis methodologies can be sum-
marised in four major steps: (1) modelling, (2) data preprocessing, (3) feature extraction
and selection and (4) feature analysis for decision-making. The modelling is derived from
physics-based models or historic data. Because accurate analytical models are not readily
available, a data-driven approach has become more and more attractive thanks to the
increasingly digitalised systems. Vibration signals are still considered to contain the most
relevant information about the health of the bearings [8–11]. In fact, the main advantages of
vibration-based diagnosis is its ability to detect different types of defects, either distributed
or localised [9].

Before the extraction and analysis of the most representative fault features, raw time-
series vibration signals need to be preprocessed [8,12,13]. In this step, several operations
can be done depending on the fault detection requirements, the quantity of data and the
signal properties. One of the main operation consists in selecting the most appropriate
space of representation: time domain, frequency domain, or time–frequency domain [14].
The varying operating conditions lead to transient and nonstationary signals [15,16]. There-
fore, time-domain features and classical frequency-domain techniques such as FFT fail
to diagnose bearing faults. Over the years, several time–frequency (and time–scale) tech-
niques such as the short-time Fourier transform (STFT) [17,18], wavelet transform (WT)
and its derivatives namely the Wavelet packet transform (WPT), discrete wavelet transform
(DWT) [19,20], and Hilbert–Huang transform (HHT) [21,22] have been used to address this
issue. Nonetheless, the STFT suffers from a fixed window length, while the performance of
the WT strongly depends on the selection of the mother wavelet and the decomposition
level. Moreover, both methods are limited by the two contradictory targets that cannot be
reached simultaneously: a high time and frequency resolution [23].

In the past few decades, other decomposition techniques have been applied to vibra-
tion time series [24,25], among them, the empirical mode decomposition (EMD) [26,27],
ensemble empirical mode decomposition (EEEMD) [28–30] or variational mode decom-
position (VMD) [31–33]. Despite its shortcomings such as mode mixing and end ef-
fects [27,34,35], the EMD is still very popular. In fact, EMD decomposes a time-series
signal into a finite number of signals denoted as intrinsic mode functions (IMF), and a
residue. Each IMF represents the original signal in a frequency band ranging from high to
low frequencies. Compared to the original signal, the IMFs can better describe the intrinsic
properties of the raw data [36]. However, the fault information is not evenly distributed
among the IMFs.

Therefore, it is of utmost importance to select the most relevant IMFs and consider
the best features in order to obtain the highest detection and classification rates. Moreover,
the retained IMFs should also be robust to nuisances (environmental noise) and variable
operating conditions. In the literature, most of the studies focus on the classification
between inner race, outer race, cage and ball faults [11,12]. However, the classification of
ball faults based on their severities is more tedious and still an open research topic. This
paper addresses this problem and highlights the performance according to the chosen family
of classification techniques. Indeed, if we consider that when using statistical clustering
techniques, several solutions can be considered according to the nature of the data, their
linearity, their separability, and so forth, then the techniques can be separated in different
families. With no loss of generality, we can mention: linear projection techniques such as
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the principal component analysis [37] (PCA); kernel-based nonlinear techniques such as
the kernel principal component analysis (KPCA), support vector machines (SVMs) [38];
kernel estimation techniques such as the K-nearest neighbours (KNN) algorithm [39]; tree-
based techniques such as decision trees (DTs) [40]; or probabilistic techniques such as the
naive Bayes (NB) classifier [41]. For the ball bearing classification problem, we propose to
evaluate and compare the efficiency of these techniques.

To the best of our knowledge, a piece of equipment using vibration signal analysis for
industrial applications provides general information (fault isolation and a rough estimate
of the severity of the defect) on mechanical defects: loosening, rotor unbalance, bearings
or misalignment. The most usual professional bearing condition monitoring systems are
based on the characteristics of specific harmonics (RMS, frequency) extracted from time
series of vibration signals. However, the results could be biased due to ageing, variable
load conditions and environmental nuisances. The proposed method detailed in this work
complements the available instruments since it allows a more accurate analysis of bearing
defects, in this case, balls. The proposed methodology allows a more accurate diagnosis up
to the classification with information extracted from vibration data, which is so far the most
popular in the industry. Thanks to the preprocessing, the proposed method extracts fault
characteristics (statistical and distance-based features) that are the most sensitive to the
defect and robust to the nuisance and load variations. Processing times are also compatible
with real-time application. The proposed method is also in line with the growing use of
machine learning techniques.

The organisation of the paper is as follows: Section 2 highlights the paper contribution,
Section 3 describes the proposed ball fault diagnosis methodology. The EMD and the basics
of each data representation technique are shortly reviewed, and the extracted features are
introduced. Section 4 is devoted to the experimental evaluation of the classifiers using the
CWRU database. The conclusion and future research are presented in Section 5.

2. Paper Contribution

In the following, we propose a four-step methodology to perform ball fault classifica-
tion with the combination of properly selected statistical features. The vibration signals
used to illustrate the rational of the approach were obtained from the Case Western Reserve
University database [42]. In the preprocessing step, the EMD was adopted to decompose
the original signal into IMFs. Then, the most relevant ones were retained from the analysis
of their signal-to-noise ratio and their invariance to the operating conditions. The fault
features selected were derived from their first four statistical moments (i.e., mean, variance,
skewness, kurtosis) and their probability density functions (PDF) using the Kullback–
Leibler divergence [43–45]. The selection process identified the most relevant features as
the IMFs’ variance and the KLD. For the fault classification, the selected features were
merged then analysed with several techniques including the traditional PCA, KPCA, SVM,
and data exploration solutions with deterministic (KNN and DT) and probabilistic (NB)
approaches. The classification performance of all these techniques was evaluated and
compared in terms of training accuracy rate (TrA), testing accuracy rate (TsA), training time
(Trt) and testing time (Tst). The most suitable classification technique was then highlighted
and compared to the literature’s main results for this particular incipient fault diagnosis.

3. The Fault Diagnosis Methodology

Figure 1 gives an overview of the methodology with the four steps.
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Figure 1. Ball fault diagnosis methodology.

3.1. Preprocessing and Feature Extraction and Selection

The first step, modelling, assumed the use of vibration raw data. With no loss of
generality, the raw data used here were vibration time- dependent information recorded
with a sampling frequency of 12 kHz using accelerometers located at 12 o’clock on the
housing of the drive end and the fan end. This is detailed in Section 4.1, which describes
the experimental data. Note that the data corresponded to the healthy and three faulty
cases (0.007, 0.014, 0.021 inch) with four different load conditions: no load (L0), half-load
(L1), full load (L2), overload (L3). These load conditions allowed us to clearly observe the
influence of the machine’s torque.

For the second step, preprocessing, the raw vibration signals were decomposed into in-
trinsic mode functions (IMFs) using the EMD. In order to retain the most relevant IMFs [34]
from the 18 IMFs, the relative deviation percentage (RDP) of the IMFs’ signal-to-noise ratio
(SNR) was computed [46,47]. Table 1 presents the results.

Table 1. IMFs’ relative deviation percentage for signal-to-noise ratio.

IMF Rank SNR RDP (%)

1 5
2 11.7
3 21.6
4 20
5 17.3
6 22.3
7 28.2
8 34.8

9 44.9
10 51.8
11 59.2
12 62.1
13 68.2
14 68.9
15 59.1
16 62.1
17 83
18 81.1
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IMFs with an SNR RDP greater than 40 dB were considered irrelevant as they were
highly sensitive to the noise. As a consequence, only the first eight IMFs were considered
for the bearing ball fault diagnosis. It was also proved in [47] that the first IMF (IMF1)
was very sensitive to the load variation. Finally, only IMF2 to IMF8 were retained for the
feature extraction.

As depicted in Figure 2, in the feature extraction process, we analysed the first four
statistical moments and the Kullback–Leibler divergence (KLD) of these seven IMFs for
different operating conditions. It was found that [46,47]:

• The mean and the skewness had very poor detection performance
• The kurtosis had a very low sensitivity to the ball fault level.

Ball Vibration Signal

EMD

( 18 IMFs are obtained)

Mean Variance Skewness Kurtosis KLD

Performance Evaluation for each Statistical Information

SNR RDP and Robustness

Analysis

( 7 IMFs are retained)

vIMF2,3,4X kIMF2,3,4,6X X

Figure 2. IMF selection and feature extraction procedure.

Using the receiver operating characteristic (ROC) curve [48], the area under curve
(AUC) was computed as an efficiency criterion to proceed with the feature selection.
In Table 2, the AUC values are summarized for the four statistical moments, the KLD and
each retained IMF. It can be noticed that the most relevant features are selected whatever
the operating condition L0, L1, L2 and L3.

Table 2. Sensitivity of the different statistical information in multiple operating conditions.

AUC for Mean AUC for Variance AUC for Skewness AUC for Kurtosis AUC for KLD
IMF L0 L1 L2 L3 L0 L1 L2 L3 L0 L1 L2 L3 L0 L1 L2 L3 L0 L1 L2 L3

2 0.971 0.982 1 0.998 1 0.996 1 1 0.7 0.838 0.835 0.65 1 0.955 0.996 0.878 1 1 1 1
3 0.853 0.968 0.602 0.836 1 0.998 1 1 0.816 0.996 0.911 0.962 0.824 0.845 0.784 0.638 1 1 1 1
4 0.937 0.82 0.801 0.84 1 0.968 1 1 0.882 0.733 0.872 0.602 1 0.975 1 0.993 1 1 1 1
5 0.586 0.773 0.999 0.729 1 0.967 1 1 0.587 0.554 0.674 0.963 0.926 0.966 1 1 1 1 1 1
6 0.889 0.71 0.979 0.953 1 0.995 1 1 0.776 0.681 0.634 0.705 1 0.769 0.917 0.913 1 1 1 1
7 0.649 0.634 0.783 0.958 1 0.962 1 1 0.565 0.51 0.632 0.6 0.968 0.862 0.994 0.733 0.666 0.457 0.842 0.911
8 0.517 0.623 0.637 0.651 1 0.972 1 1 0.552 0.687 0.674 0.622 0.534 0.733 0.917 0.976 0.49 0.45 0.901 0.5

L0: no-load condition, L1: half-load condition, L2: full-load condition, L3: overload condition.

It can be noticed that the KLD and variance for most of the IMFs are the main features
to be retained whatever the operating condition. Furthermore, if the noise variation
is considered, then the sensitivity of these features are kept for a reduced number of
IMFs [46,47].

Finally, the most relevant features retained for the bearing ball extraction were as fol-
lows:

• Variance : IMF2, IMF3 and IMF4 ; denoted as vIMFj

• KLD: IMF2, IMF3, IMF4 and IMF6 ; denoted as kIMFj.
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Note that the subscript j indicates the rank of the considered IMF.

3.2. Feature Analysis

As shown in the flowchart from Figure 1, the choice of the appropriate classification
technique depends on whether the data are linearly separable or not. In the following,
a brief review of the classification methods proposed to be used in this work is presented.

3.2.1. Principal Component Analysis (PCA)

The PCA is a linear unsupervised technique. It projects the original data into a lower
dimension subspace while minimising the reconstruction error [37]. This method has in
fact received considerable attention in the fault detection and diagnosis framework over
the last three decades since no prior complex physical knowledge on the process is needed.
The only information required is a history of data representing several operating conditions.

However, most of the processes exhibit nonlinear behaviour and the measurements are
affected with noise whose distribution may be unknown. Therefore, linear methods such as
PCA may have poor performance. In the following, improved techniques are investigated
such as:

• Kernel-based techniques: kernel principal component analysis (KPCA) and support
vector machine (SVM);

• Deterministic systematic exploration techniques: K-nearest neighbours (KNN) and
decision tree (DT);

• Probabilistic systematic exploration techniques: naive Bayes classifiers (NB).

3.2.2. Kernel Principal Component Analysis (KPCA)

KPCA was firstly proposed by Scholkop et al. [49] and was provided as an alternative
to PCA, which allowed the nonlinear feature extraction from a dataset by using a specific
kernel. As reported in the literature, this technique has been successfully used in fault
detection and diagnosis (FDD) of several systems [50–53]. The main idea of this technique
relies on mapping the data into a feature space through a nonlinear function (denoted
as the kernel) so that PCA can be performed in that feature space. The kernel function
is the core of the KPCA algorithm. It is a positive semidefinite function that introduces
nonlinearity into the process. The most classic kernels considering two sample vectors x
and y are:

• The polynomial kernel defined as ( p ∈ R+ is the kernel’s order):

K(x, y) = (〈x, y〉+ 1)p (1)

• The Gaussian kernel defined as ( γ ∈ R+ is the standard deviation of the kernel):

K(x, y) = exp
(
−‖x− y‖2

2γ2

)
(2)

The performance of KPCA is strongly related to the selected kernel and to the tuning of its
hyperparameters, which depends on the data distribution [38,54]. In the following, for each
kernel, the performance is analysed with regard to the setting of each hyperparameter.
Despite its advantages, KPCA is time- and memory-consuming as the size of the database
increases with a third-order complexity O(N3), where N is the data set dimension and
required storage capacity for an (N × N) kernel matrix.

3.2.3. Support Vector Machine (SVM)

Used for classification, regression and outlier detection, an SVM is considered as one of
the most attractive supervised machine learning algorithms and was developed by Vapnick
in 1995 [55]. Its basic idea consists of finding the highest dimension feature space in which
the projected data are linearly separable with the highest margin between the different
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classes. This projection also requires the selection and tuning of kernel functions. Therefore,
choosing the kernel, then adjusting its hyperparameters, is also a critical task as it highly
impacts the classification’s performance. As for KPCA, famous and widely used kernels
are polynomial ones (i.e., Equation (1)) and Gaussian ones (i.e., Equation (2)). Their tuning
are both considered for this study.

3.2.4. K-Nearest Neighbours (KNN)

KNN is a nonparametric, supervised, and easy to implement classification technique.
This classifier is exclusively based on the selection of the classification metric, among which
we can cite the Euclidean distance (Euc), the city block distance (CB), the Minkowsky
distance (Mink) and the Chebyshev distance (Chb). The technique is based on distance
estimation and the tuning of a predefined number of nearest neighbours denoted K [56].
In [57], the determination of K as well as the pertinent metrics were analysed. In the
following, K was selected in the range of [1 : 10] and Euclidean and city block distances
were evaluated. They are recalled in the following.

If we consider two vectors A and B defined, respectively, with samples xi and yi such
as A = (x1, x2, ..., xm) and B = (y1, y2, ..., ym), the distance metrics are:

• Euclidean distance (Euc). It is defined by:

Euc(A, B) =

√
m

∑
i=1

(xi − yi)2 (3)

• City block distance (CB) given as:

CB(A, B) =
m

∑
i=1
| xi − yi | (4)

3.2.5. Decision Tree (DT)

A DT is considered as one of the most popular supervised machine learning tech-
niques for solving data classification or regression problems. With its graphical tree-based
geometry, the decisions are positioned at the ends of the branches also called leaves [58–60].
As in the KNN algorithm, a DT is also based on two main parameters: the maximum split
number criterion (MSpN), and the split criterion (Spc). In the following, MSpN was set to
50 to avoid overfitting. The maximum deviance reduction (MDR), twoing rule (TR) and
Gini’s split criteria were adopted in our approach to tune the Spc. More details can be
found in [57].

3.2.6. Naive Bayes (NB)

Naive Bayes is one of the powerful probability-based supervised machine learning
classification method. It has been used in several applications due to its simple implemen-
tation, ease of physical interpretation, fast computation speed and excellent classification
performance [61–63]. However, the assumption of conditional independence of variables
may limit its performance when dealing with real vibration data.

4. Results and Discussions

In this section, first, we introduce the experimental testbed and the data. Then, we
present the classification results for each of the method described in the previous section.

4.1. Experimental Data

The dataset from the CWRU [42] was used to evaluate the proposed methodology.
Figure 3 shows the CWRU’s experimental rig for the study of ball bearing defects. Vibration
measurements were acquired with three accelerometers placed in the 12 o’clock position
on the housing of the drive end (DE) and fan end (FE). SKF deep-groove ball bearings of
6205-2RS JEM and 6203-2RS JEM types were employed for both the DE end FE, respectively.
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Electro-discharge machining was used to generate different fault diameters ranging from
0.007 to 0.028 inch. Vibration signals were recorded at 12 kHz, under varying motor speeds
from 1797 to 1720 rpm and four motor load operating conditions denoted as:

• No-load condition (L0): 0% of the nominal load;
• Half-loaded condition (L1): 50% of the nominal load;
• Fully loaded condition (L2): 100% of the nominal load;
• Overloaded condition (L3): 150% of the nominal load;
• Combination of all the load conditions : (Ln).

 

 

Figure 3. Testbed of the CWRU for bearing defects [42] and the components of REBs : (a) Photo of
the test bench, (b) Structural description of the bench.

The four classes under study were as follows:

• H : corresponding to the healthy behaviour (no fault);
• F1 : faulty case with a severity of 0.007 inch;
• F2 : faulty case with a severity of 0.014 inch;
• F3 : faulty case with a severity of 0.021 inch.

The training and testing time were evaluated using a computer operating with Win-
dows 10 pro 64-bit and a processor Intel(R) Core(TM) i7-6500U CPU @ 2.50–2.59 GHz.

4.2. Experimental Validation

As depicted in Figure 2, in the first part of this work, the KLD of the retained IMFs
were considered as input features for the classification stage. Under a single load condition,
900 realisations of this feature were computed for each feature and for each fault severity
level. Taking the example of the unloaded condition L0 with one fault severity, the input
matrix for the classification was organized as follows:

kIMF2,1 kIMF3,1 kIMF4,1 kIMF6,1
kIMF2,2 kIMF3,2 kIMF4,2 kIMF6,2

...
...

...
...

kIMF2,900 kIMF3,900 kIMF4,900 kIMF6,900


Its elements can be generalized as kIMFj,i to be the ith realisation of the KLD for the

jth IMF.
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Therefore, for the fault cases (one healthy and three faulty cases), and the four load
conditions, the data matrix size was (14,400 × 4. In the following, two-thirds of the data
were used for training, and one-third for testing. Note that every case and condition were
equivalently represented either in the training or the testing process.

4.2.1. Linear Classification with PCA

From the PCA contribution rates under different load conditions displayed in Table 3,
it can be observed that more than 90% of the information can be captured with the first
three principal components. However, the projection of the data in the reduced dimension
space shown in Figure 4 reveals a poor classification performance: the different classes
have a huge number of overlaps.

Table 3. PCA contribution rates evaluation under different load conditions.

Load Condition PC Eigenvalue Variance Contribution (%) Cumulative Variance (%)

L0

1 2.638 65.956 65.956
2 0.982 24.572 90.53
3 0.277 6.932 97.46
4 0.105 2.537 100

L1

1 1.672 41.814 41.814
2 1.475 36.847 78.69
3 0.482 12.071 90.76
4 0.369 9.239 100

L2

1 3.073 75.927 75.927
2 0.744 18.617 94.55
3 0.136 3.422 97.97
4 0.081 2.031 100

L3

1 2.706 67.653 67.653
2 1.039 25.996 93.65
3 0.172 4.31 97.96
4 0.081 2.01 100

Ln

1 1.829 45.747 45.747
2 1.132 28.322 74.07
3 0.806 20.151 94.22
4 0.231 5.779 100

The bold values highlights the main PC used in the study with Figure 4.
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Figure 4. The three-dimensional principal subspace for bearing ball fault data under the different
load conditions.
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In the following sections, nonlinear classifiers are evaluated.

4.2.2. Kernel-Based Classifiers

As mentioned in the previous section, the key point for this classifier is the selection
and the tuning of the kernel. In the following, Gaussian and polynomial kernels were
evaluated. For the Gaussian kernel, we proposed to vary γ from 0.01 to 3.5 with a step of
0.01. For the polynomial kernel, the degree p was varied between 1 and 30. The results
under fully loaded condition are presented in Figure 5, where a threshold of 95% for
the cumulative variance contribution was used to set the most suitable values for each
kernel’s parameters.
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Figure 5. KPCA kernel function hyperparameters adjustment under fully loaded condition. (a) Gaus-
sian kernel width parameter regularisation; (b) polynomial kernel degree parameter regularisation.

As shown in Figure 5, the most significant cumulative variance contribution was
recorded for the Gaussian kernel with γ equal to 0.01, and for the polynomial kernel
with an order p ≥ 6. The degree of the polynomial kernel was set to 6 to minimise
the computation time. Once the kernels had been tuned, they were evaluated with all
load conditions. The results presented in Table 4 show that with the polynomial kernel,
the first kernel principal component (KPC) is of great significance (96.7% of the cumulative
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variance) while three KPCs are required to reach 91.3% of the feature variation with the
Gaussian kernel.

Table 4. KPCA contribution rates evaluation with Gaussian and polynomial kernels.

KPC
Variance Contribution Cumulative Variance (%)

Gaussian Kernel Polynomial Kernel Gaussian Kernel Polynomial Kernel

1 0.433 0.967 43.3 96.7
2 0.281 0.23 71.4 99
3 0.199 0.007 91.3 99.7
4 0.087 0.003 100 100

The bold values highlights the main PC used in the study with Figure 6.

The data projection displayed in Figure 6 shows a poor performance of the classifier
whatever the kernel is. A kernel-based technique with a higher dimensional projection
space such as a SVM could be an option. However, in previous works [57,64], it was shown
that a SVM combined with different approaches (one-against-all, one-against-one and di-
rected acyclic graph SVM) could provide satisfactory classification results. However, these
results were obtained to the detriment of high training times ( 132.1 s for the polynomial
kernel and 14.05 s for the Gaussian one). Therefore, in the following, systematic data
exploration techniques are evaluated: deterministic techniques such as KNN and DT and
a probabilistic-based approach (NB).
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Figure 6. KPCA scatter plot under the all-load-conditions combination. (a) Results with Gaussian
Kernel (γ = 0.01); (b) results with polynomial kernel (p = 6).
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4.2.3. Classification Results Based on the Systematic Data Exploration Strategy

In this study, deterministic (KNN, DT) and probabilistic (NB) classification techniques
were evaluated and compared in terms of the following criteria: training accuracy rate TrA,
testing accuracy rate TsA, training time Trt and testing time Tst.

Based on the results reported in Table 5, we can draw several conclusions when using
only the KLD of the most sensitive IMFs:

• Under the single-load condition, all the three classifiers exhibited good performance
despite a low testing accuracy rate of 96.5% for the NB classifier;

• Under the combined-load condition, the performance of the NB classifier was severely
degraded with 82.3% and 81.92% for the training accuracy rate and the testing accuracy
rate, respectively.

Table 5. Comparison of bearing ball fault classification using KLD of the IMFs.

Classifier KNN DT NB
Load (hp) L0 L1 L2 L3 Ln L0 L1 L2 L3 Ln L0 L1 L2 L3 Ln

Training accuracy rate (%) 98.2 99.8 99.1 100 99 98.3 100 98.6 100 98.6 98 99.3 98 99.6 82.3
Testing accuracy rate (%) 97.42 99.92 98.91 99.75 98.83 98.25 99.92 98.33 99.75 98.15 96.5 99.42 97.83 99.83 81.92

Training time (s) 0.31 0.9 0.31 0.3 0.56 0.28 0.24 0.25 0.25 1.15 0.65 0.75 0.7 0.67 1
Testing time (s) 0.03 0.02 0.03 0.02 0.15 0.02 0.02 0.01 0.02 0.05 0.05 0.02 0.02 0.02 0.05

The colors highlight the results for the three Machine Learning techniques.

To improve the classification results, we propose in the following to merge the most
relevant features (variance and KLD of IMF2 and IMF4) as displayed in Table 6.

Table 6. Final feature selection.

Features Relevant IMFs
Variance IMF2 IMF3 IMF4

KLD IMF2 IMF3 IMF4 IMF6

Three different case studies were considered:

� Case study with four features

� KLD and variance of IMF2 and IMF4, denoted as C4;

In this case study, the KLD and the variance of the selected IMFs (IMF2 and IMF4)
were merged together for each load condition as in the following matrix.

kIMF2,1 vIMF2,1 kIMF4,1 vIMF4,1

kIMF2,2 vIMF2,2 kIMF4,2 vIMF4,2
...

...
...

...
kIMF2,900 vIMF2,900 kIMF4,900 vIMF4,900


where kIMFj,i and vIMFj,i denote the KLD and variance of the jth component for their
ith realisation, respectively.

� Case study with two features

� KLD and variance of IMF2, denoted as C21;
� KLD and variance of IMF4, denoted as C22;
� Variances of IMF2 and IMF4, denoted as C23;
� KLD of IMF2 and IMF4, denoted as C24.

� Case study with one feature

� Variance of IMF2, denoted as C11;
� Variance of IMF4, denoted as C12;
� KLD of IMF2, denoted as C13;



Entropy 2022, 24, 1251 13 of 18

� KLD of IMF4, denoted as C14.

Note that for all the case studies, a well balanced two-thirds of the data were used for
training, and one-third for testing as mentioned before.

In a first stage, we present the results of the classification when the four features are
merged. These results are displayed in Table 7. Compared to those obtained in Table 5,
where only the kIMFj,i were used, we can notice that the NB’ results are far better. For
example, the testing accuracy rate TsA significantly increased from 96.5% to 99.83% under
L0. The training and testing accuracy rates were almost 100% for KNN and DT under
all load conditions. Compared to the previous case study where only the KLD was used,
the classification performance was far better when the KLD and variance of the retained
IMFs were merged. For the training time and testing time criteria, the variations for all the
classifiers were not too significant.

Table 7. Classification results using KLD and variance of IMF2 and IMF4

Classifier KNN DT NB
Load (hp) L0 L1 L2 L3 Ln L0 L1 L2 L3 Ln L0 L1 L2 L3 Ln

Training accuracy rate (%) 100 100 99.9 100 100 100 100 99.9 100 100 99.9 100 99.9 100 100
Testing accuracy rate (%) 100 100 100 100 100 100 100 100 100 100 99.83 100 99.85 100 100

Training time (s) 0.89 1.1 1.31 0.88 0.69 1.58 1.04 0.55 0.56 0.55 1.8 0.87 1.24 1.01 1.53
Testing time (s) 0.19 0.05 0.03 0.04 0.06 0.05 0.03 0.03 0.02 0.04 0.07 0.04 0.02 0.02 0.05

The colors highlight the results for the three Machine Learning techniques.

These results are encouraging for bearing ball fault classification using the CWRU
Database. In fact, Li et al. in [6], provided a comprehensive benchmark study of the CWRU
Database with several entropy-based fault classification methods. They pointed out the
difficulty of dealing with bearing ball fault, particularly in the case of F2 (the 0.014-inch
fault severity) where most of the classification algorithms exhibited a low performance.
In Table 8, we present the comparison results between the multiscale permutation entropy
(MPE), highlighted in [6], and our proposed method based on KLD and variance for the
specifically selected IMFs.

Table 8. Classification comparative results.

Ref

Fault Type Ball

[6]

Load (hp) L0 L1 L2 L3 Ln Mean

Algorithm Testing Accuracy Rates (%)

MPE

KNN 93 99 100 100 Not provided 98
SVM 81 99 100 98 Not provided 94.5

Logic regression 96 99 100 100 Not provided 98.75
Backpropagation NN 70 91 90 93 Not provided 86

Extreme learning Machine 92 90 100 100 Not provided 97.5
Soft regression 94 99 100 100 Not provided 98.25

Proposed technique KLD and variance
KNN 100 100 100 100 100 100

DT 100 100 100 100 100 100
NB 99.83 100 99.85 100 100 99.92

Our proposed methodology successfully overcame the problem related to the incipient
bearing ball fault classification for the CWRU database. The technique successfully reached
a 100% average for the testing accuracy rate with KNN and DT classifiers and 99.92% with
the NB classifier while the best classification accuracy recorded for the MPE-LR only had
an average of 98.75%.

For further analysis, the other combinations of features were analysed to emphasise
the overall robustness and sustainability of the proposed procedure. In the following,
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only the results (training accuracy rate and testing accuracy rate) higher than 99.9% are
presented in Table 9. It highlights the best feature, i.e., the most sensitive characteristic to
the fault occurrence. For example, in Table 9, it is shown that combining the KLD of IMF2
and the variance of IMF4 (denoted as C4), the testing accuracy rate is the highest for all
the operating points and all the classifiers. The percentages are higher than 99.9%, which
shows the effectiveness of the preprocessing and the feature selection.

Table 9. Best feature combinations according to the classification accuracy under different
load conditions.

KNN DT NB
Load Condition TrA (%) TsA (%) TrA (%) TsA (%) TrA (%) TsA (%)

L0

C4 C4 C4 C4 C4 C4
C21 C21 C21 C21 C21 C21

C23 C23

L1

C4 C4 C4 C4 C4 C4
C23 C22 C22 C22 C22 C22

C12 C23 C23 C23 C23 C23

C24 C12 C12

C12

L2

C4 C4 C4 C4 C4 C4
C23 C22 C23 C23 C23 C23

C12 C23 C12 C12 C12

C11

C12

L3

C4 C4 C4 C4 C4 C4
C21 C21 C21 C21 C21 C21

C23 C23 C23 C23 C23 C23

C11 C24 C11 C11 C11 C11

C11

Ln

C4 C4 C4 C4 C4 C4
C21 C21

C23 C22

C23

C24

C11

C12

C14
The color highlights the best feature combination for each load condition.

From these results, several conclusions can be drawn:

• For both training and testing steps, whatever the load condition or the used classifier,
case C4 with the combination of KLD and variance for IMF2 and IMF4 offers the
best performance.

• This analysis shows that it is possible to adapt to each case and meet the application
requirements. Taking the example of load L3 , we can choose to work with either
four features (C4), two features (C21) or even one feature (C11: variance of IMF2) to
reach 100% of classification accuracy. This flexibility can address the computation time
that is strongly linked to the number of used features corresponding to the input’s
dimension of the classification system.

• Finally, we can conclude that in our study, the KNN classifier offers the most efficient
combinations of features.
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The analysis of the classification accuracy is undoubtedly of great importance to
conclude on the efficiency of the preprocessing, extraction and feature analysis steps.
However, the evaluation of the computation time for each approach is also an important
element for an industrial application. Therefore, after selecting the feature combinations
that gave the best test and training accuracy rates, we evaluated the learning and testing
times as a function of load condition variation.

Only the results with four features (KLD and variance of IMF2 and IMF4 denoted as
C4) are displayed in Figure 7. It can be noticed that for all the classifiers, the computational
burden is acceptable with a testing time lower than 200 ms regardless of the load condition.
We notice that in the literature most of the techniques only provide the classification
accuracy [65–67].
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Figure 7. Classification time computation for the C4 feature selection. (a) Training time evaluation;
(b) testing time evaluation.

5. Conclusions

This work presented a methodology for bearing ball fault classification. According
to the literature, ball defects are the most difficult to detect because of their position in
the bearing. In their early phase, we proposed a specific methodology to proceed to these
incipient faults’ efficient detection and classification. Generally, bearing balls can be affected
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by corrosion, spalling, high temperatures or premature wear due to overloading and this
can lead, in the long term, to holes in the balls as considered here. The proposed method
was evaluated with the dataset provided by CWRU. The database proposes vibration data
under different operating conditions: variable motor rotation speeds (ranging from 1730
rpm to 1797 rpm), several defects with different severity levels (0.007 inch, 0.014 inch and
0.021 inch) and different load conditions ( L0, L1, L2 and L3). The proposed methodology
successfully classified the incipient ball fault with a classification rate higher than those
obtained in previous literature works.

The main idea of this proposed method relied on the preprocessing and feature
selection steps. For this purpose, we used an EMD for decomposing the ball vibration
signals into finite time–frequency domain bands (IMFs). Then, an energy analysis and
KLD evaluation allowed us to retain only the IMFs which were the most fault-sensitive
and robust to load variations. Finally, we showed that the variance and the KLD of the
retained IMFs were the best features for ball fault classification. As we dealt with real,
nonlinear and nonstationary signals, we confirmed that a PCA could not separate the
data. Three main nonlinear approaches were investigated including the kernel-based
techniques (KPCA or SVM), systematic deterministic (KNN and DT) or probabilistic (NB)
data exploration techniques. The performance of the classifiers was evaluated through the
following criteria: TrA, TsA, Trt and Tst. The results showed that merging the features led
to the highest classification accuracy compared to the data provided in the literature. We
also showed that this performance was compatible with industrial applications, regarding
the computation time constraints. Due to the lack of industrial manufacturer free-to-use
data and methodologies, a deeper comparison with these systems was not possible.
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