
 

 

 

 
Entropy 2022, 24, 1238. https://doi.org/10.3390/e24091238 www.mdpi.com/journal/entropy 

Article 

Decoding ‘Maximum Entropy’ Deconvolution 

Long V. Le 1,†, Tae Jung Kim 2,†, Young Dong Kim 2,* and David E. Aspnes 3,* 

1 Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam 
2 Department of Physics, Kyung Hee University, Seoul 02447, Korea 
3 Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA 

* Correspondence: ydkim@khu.ac.kr (Y.D.K.); aspnes@ncsu.edu (D.E.A.) 

† These authors contributed equally to this work. 

Abstract: For over five decades, the mathematical procedure termed “maximum entropy” (M-E) has 

been used to deconvolve structure in spectra, optical and otherwise, although quantitative measures 

of performance remain unknown. Here, we examine this procedure analytically for the lowest two 

orders for a Lorentzian feature, obtaining expressions for the amount of sharpening and identifying 

how spurious structures appear. Illustrative examples are provided. These results enhance the util-

ity of this widely used deconvolution approach to spectral analysis. 
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1. Introduction 

In a landmark thesis, Burg developed a formalism based on a maximum-entropy cal-

culation that provided a method of deconvolving spectra, i.e., sharpening dominant fea-

tures and detecting others too weak to be seen in the data [1]. Despite known limitations, 

which include unexplained shifts in energies and the appearance of spurious structures, 

this procedure has been used extensively for over five decades in fields as varied as geo-

physics [2], astronomy [3,4], X-ray photoelectron spectroscopy [5–10], and Raman spec-

troscopy [11–16], among others [17–19]. 

While numerical studies have outlined the general characteristics of the formalism 

[1,20–22], many details are not understood. For example, quantitative predictions of the de-

gree of sharpening do not exist, even for special cases. In this work, we approach this lack 

of understanding by solving the first- and second-order Burg equations analytically for a 

Lorentzian feature whose Fourier coefficients are those ( | |ne  ) of the continuum. This anal-

ysis parallels our previous work on noise reduction using the corrected maximum-entropy 

(CME) procedure [23], where a similar calculation was found to yield an exact analytic re-

sult. The results obtained here are also found to be exact, and are illustrated with repre-

sentative applications. Surprisingly, the degree of sharpening depends on the ratio of the 

width of the feature to the width of the spectral segment being analyzed. These results en-

hance the utility of this widely used deconvolution approach to spectral analysis. 

2. Theory 

The path through the origin, development, and reduction to practice of Burg’s de-

convolution theory began with the mid-century goal of extracting weak harmonic signals 

in stationary time series, where the signals are buried in Gaussian noise. The procedure 

started with autocorrelation, an operation incompatible with spectroscopy. Applications 

evolved through multiple steps, including forward prediction [24]. We do not attempt to 

trace the path here. We consider only the result, cast in a form suitable for the present 

application. This is Andersen’s approach [22], later extended to complex coefficients by 

Kesler and Hayken [25]. 
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In spectroscopy, the procedure is based on the Fourier coefficients of the spectrum 

being analyzed. To define these procedures, let ( )o j jP p   be a positive-definite spec-

trum consisting of (2 1)N   real values jp , N j N   , projected onto the range 

      according to 

2

2 1
j j

N


 


. (1)

The restriction to an odd number (2N + 1) of data is required by the maximum-en-

tropy derivation, and is also mathematically convenient. Next, let nR , N n N    be the 

set of digital Fourier coefficients associated with the jp , determined as 

1

2 1
j

N
in

n j
j N

R p e
N







 . (2)

Because the jp  are real, *
n nR R . Then, the CME representation ( )MP   of ( )oP   

of order M is given by [23] 

2
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(3)

where the Mna  are solutions of 
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    

   

. (4)

The Toeplitz (diagonal-constant) form originated with the need to perform autocor-

relation in time-sequence applications, and is retained for spectroscopy because maxi-

mum-entropy theory requires it. The theory is also best suited to Lorentzian features, be-

cause as shown below, Equation (3) reduces to Lorentzian form under small-term condi-

tions. 

The solution of these equations is readily obtained either by Levinson recursion 

[26,27] or by inverting the Toeplitz matrix. The resulting uppermost equation is solved for 

0Ma , after which the remaining coefficients are calculated. When the resulting spectrum 

( )MP   of Equation (3) is Fourier analyzed, the original coefficients 0 1, ,... MR R R  are found 

to be recovered exactly, while those for n M  continue the established trend. As previ-

ously shown in [23], it follows that this approach possesses all the advantages of the brick-

wall filter with none of the disadvantages, yielding the most accurate noise-free represen-

tation of spectral data with no apodization (filter-cutoff) errors. 

Burg/Andersen (B/A) deconvolution [22,25] is entirely different, sharing only the 

starting Toeplitz matrix and the final pseudo-Lorentzian form, Equation (3). Here, the ob-

jective is to obtain Mna  such that the denominator of Equation (3) approaches zero as 

closely as possible at the locations j  of the j features in the spectrum. The result is a 

sharpened or “whitened” version of the original. The calculation is a Levinson-like recur-

sion, generating a spectrum ( )P   that when Fourier-analyzed, the original nR  are 

found to be replaced with new values having a smaller decay coefficient, as described 

below. 

The specific B/A procedure is as follows. Assume that the elements Ma   of the solu-

tion vector of the Mth-order Toeplitz-matrix equation are known, but with the vector nor-

malized to 0 1Ma  . The term 01 Ma  in the right side vector of Equation (4) is replaced by 



Entropy 2022, 24, 1238 3 of 12 
 

 

a “power” MP  that is also determined from the Mth-order solution. (The terminology 

“power” is relevant for stationary time series but has no meaning for spectroscopy). Next, 

increase the size of R


 by adding 1 row and 1 column, so 1M M  . Now evaluate 

0

M

Mn M nb a R 







  ; (5)

'
1

0

M

Mn M n Mb a R 


  


  . (6)

From a stationary-time-sequence perspective, Equation (5) is a filter running in the 

forward direction, i.e., predicting the output Mnb  for increasing  , whereas Equation (6) 

is the same filter operating in the reverse direction, predicting '
Mnb  for decreasing  . 

Next, evaluate 

 

'
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
 (7)

The ( 1)M  -order solutions 1,M na  , 1MP   are then given by 

1,0 1Ma   ; (8)

* *
1, 1 1M n Mn M M na a C a     , 1, 2, ...,n M ; (9)

*
1, 1 1M M Ma C   ; (10)

 21 11 | |M M MP P C   . (11)

The recursion calculation is initiated with the starting values 

2
0

0
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n
i

P R


   (12)

and 00 10 1a a  . The starting value of 11a  is determined by minimizing 
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with respect to 11a . The results are 

 

1
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1
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11 1 1
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
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
; (14)

2
1 0 1(1 | | )P P C  . (15)

The calculation then proceeds with Equations (7)–(11). The bidirectional averaging 

implicit in Equations (5) and (6) minimizes odd-harmonic contributions, leading to decon-

volution. 
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3. Analytic Investigation 

We now consider analytic solutions, with the objectives of obtaining information 

about the deconvolution process, properties of the solutions, and useful estimates of the 

amount of sharpening that can be expected in specific situations. As with our previous 

work [23], we base our analysis on the Fourier coefficients | |ne   of the continuum nor-

malized Lorenzian 

 2 2
( )oP 

 




 
, (16)

which for mathematical simplicity we place at the center of the range      , defined 

by Equation (1). The digital Fourier transform ( )DP   of | |ne   is 

| |( )
N

n in
D

n N

P e   



   (17)

 2 ( 1)

2

1 2 cos( 1) cos( )

1 2 cos

Ne e N e N

e e
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

     

  

   


 
. (18)

2

2

1

1 2 cos

e

e e

 

  



 
  (19)

sinh

cosh cos





. (20)

In Equation (19), it is assumed that ( 1)N    is large enough that the apodization 

(“ringing”) term in Equation (18) can be discarded. The 1M   solution 1( )P   of Equa-

tions (3) and (4) is identical to Equation (19), except that it is exact. As shown in [23], with 
| |n

nR e  , all higher-order terms vanish. For small   and  , Equation (20) reduces to 

2 2

2
( )DP 






 
, (21)

which differs from Equation (16) only by the (1 2 )  normalizing factor of the continuum 

Fourier transform. Thus, the broadening is the square root of the closest approach of the 

denominator to zero. The full-width-half-maximum (FWHM) is 2 . 

We now consider the equivalent B/A M = 1 solution using Equations (3) and (14), 

providing detail as necessary. Substituting n
nR e   in Equation (14) yields 
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1

cosh



, (25)

where Equation (24) follows from Equation (23) by canceling the common sums, and 

Equation (25) from Equation (24) by multiplying the numerator and denominator by e . 

As a result of the special property of | |n
nR e  , the sums in Equation (23) cancel regard-

less of the initial and final values of n, so the resulting Equation (25) is independent of N. 

The remaining mathematics is more efficiently carried out in two parts, evaluating 

first the power prefactor 1P  and next the denominator 1D . For the prefactor, we find 

 2 2
1 11

1

1
N

n

n

P a e 



 
   

 
 , (26)

2

sinh

2cosh

e 


 , (27)

assuming that N is large enough that the apodization term in the numerator can be ig-

nored. Here, the sum depends on the starting value of n. We can remove this ambiguity 

by noting that the digital transform Equation (2) uses all terms N n N   , whereas 

Equation (26) is single-ended. Consistency is achieved by taking the average of sums start-

ing at 0n   and 1n  , in which case each term is considered once and only once. The 

result is 

 1 2

1 sinh

2 2cosh
P e e  
 


 (28)

1
tanh
2

  . (29)

The contribution of the denominator is 

1 2

1

1
1
cosh

i

D

e 






 
(30)

2

2

cosh

cosh 2cosh cos 1




   
. (31)

Combining the two expressions yields the 1M   lineshape ( )MP  , i.e., the 1M   

deconvolved version of ( )o jP  : 

 1 2

sinh 2
( )

4 cosh 2cosh cos 1
P 






   
. (32)

The structural similarity between Equations (19) and (32) is evident. 

This equation is best understood by repeating the small-term expansion leading to 

Equation (21) in the CME case. Performing the series expansions of sinh , cosh , and 

cos  for small   and  , we find 

3

1 4 2 2
4

4
2

3( )

4
4 2

P 




  

  
  

 

  (33)
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3

22 2 4
2

2 3

1
2 2 12




 



    

     
   

. (34)

Ignoring the small 4  term in the denominator, the lineshape is seen to be Lo-

rentzian, with a FWHM of 

2

2
FWHM

1 2
B A





. (35)

This can be compared to the FWHM of 2 for the original Lorentzian. The relative 

narrowing is more relevant, so we divide Equation (35) by 2 , which yields 

/FWHM

FWHM
B A

original

 (36)

2
~
24 2

 


 
, (37)

where in Equation (37) it is assumed that the second term in the radical can be ignored 

relative to the first. Since the dimensionless reference for   is the Fourier period 2π, we 

find the surprising result that the relative sharpening is also a function of the width of the 

structure relative to the width of the spectral segment being analyzed. For structures with 

values of  that are small compared to the intrinsic reference scale of 2π, the sharpening 

can be significant. 

While the 1M   B/A FWHM is obviously less than the original for 1  , a short 

calculation shows that it is always the case if 

24 0   . (38)

Because this inequality is satisfied for any  , the B/A process for 1M   always re-

sults in a narrower Lorentzian line. 

Because the width and peak values of the Lorentzian are related, narrowing is equiv-

alent to moving the singularity in the denominator closer to zero. At 0  , we find 

1 2 3

sinh 1
(0)

4(cosh 1) 4
P




  
 , (39)

compared to 1    for the original normalized Lorentzian. The pole has thus moved 2 

inverse powers of   closer to zero, consistent with the decreased width. 

At this point we note the importance of averaging: had normalization been per-

formed using only the first term in the denominator of Equation (23), the result would be 

11a e , yielding the CME result Equation (19). Had Equation (23) been normalized by 

the second term, the result would be 11 1a e  , violating a fundamental constraint of 

the theory. In essence, the B/A approach works because of averaging. 

It is straightforward to take the calculation one step further, determining the result 

for 2M  . Using the same strategy, we find 

21

2cosh

cosh 2
a





; (40)

22

1

cosh 2
a  


; (41)
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2
2 1 22(1 )P P a   (42)

2

2

sinh sinh 2

2cosh cosh 2

 


 
; (43)

2

2 22

cosh 2

cosh 2 2cosh i i
D

e e  




   
; (44)

whence 

2

2 22

sinh sinh 2
( )

2cosh cosh 2 2cosh i i
P

e e 


 

 


    
. (45)

This expression is significantly more complicated than that for 1( )P  , although its 

properties are easily determined. We consider first the extrema, which can be found by 

setting the derivative of the denominator with respect to   equal to zero. The calculation 

yields 

  2 20 2 cosh 2 cosh 2 2cosh . .i i i ii e ie e e c c             (46)

 2sin cosh cosh 2 2cosh 2 cos cosh        . (47)

The factored term sin  shows that one extremum occurs at 0  , as expected by 

symmetry. However, Equation (47) also has second and third extrema at locations given 

by 

1 cosh
cos 1

2 cosh


 
  

 
. (48)

Because cosh 2 cosh    for 0  , it follows that the right side of Equation (48) is 

less than 1 under all conditions, hence by symmetry this solution is valid for any . Thus 

for 2M  , the reconstruction of the single Lorentzian is split into two peaks. 

We next consider the small-term expansion for 2M  . Expanding Equation (47) to 

fourth order in   and  , we find 

 

3

2 22 2

4
( )P 






 . (49)

The denominator is the square of a parabola with singularities at    . This is 

consistent with the above analysis: the single peak of the original Lorentzian has split into 

two, with each new singularity located a distance   from the symmetry axis. The infin-

ities at     in Equation (45) are eliminated in a 6th-order expansion of the denomina-

tor, which yields the more accurate small-term result 

 

3

2 22 2 6

4
( )

' 4
P 





  
 , (50)

where 

 2' 1 7 3     . (51)

Because 
3

2 23 4

1 4
( ') (0)

'
P P


   

 
, the location 0   is a local minimum. 
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Thus, for 2M  , the singularities are moved even closer to zero, although the price 

paid is that two peaks are present instead of one. While it is possible to obtain an expres-

sion yielding the FWHM of each peak, the splitting has made the concept of sharpening 

irrelevant. We note that in going from 1M   to 2M  , the peak went from being the 

reciprocal of a fourth-order quantity to the reciprocal to a sixth-order quantity. 

Next, we note that small-term expansions may be expected to have limited utility. As 

an alternative, replacing ie z   and setting the denominator equal to zero yields 

2cosh cosh cosh 2z        (52)

cosh sinhi    . (53)

Again, we see that the result contains two peaks, which are now separated by ∆� =

���ℎΓ. 

The above calculations are too crude to have significant quantitative value, but they 

illustrate a basic mechanism that we expect to be valid in other situations: when too many 

peaks (too large a value of M) are requested, the existing peaks are not only shifted, but 

extra features appear. We expect this to apply to orders of M beyond 2 as well. 

4. Discussion 

To better visualize the nature of the solutions, we turn to numerical methods. Figure 

1 compares the normalized deconvolved spectrum for 1M  , calculated from Equation 

(32), to the original Lorentzian and the associated pseudo-Lorentzian calculated from 

Equations (16) and (19), respectively. The curves are shown on the expanded range 

1.5 1.5    to better display differences. On this scale, the Lorentzian and the pseudo-

Lorentzian are essentially identical, but the deconvolved result is larger than the others 

by a factor of about 2½. From Equation (35) the linewidth is reduced by a factor of 8.1, in 

agreement with Figure 1. It can be noted from Equation (35) that the extreme sharpening 

seen here is a direct consequence of the relatively small value 0.25   relative to the   

range of θ. Had we chosen a larger value of  , the relative amount of sharpening would 

have been less. 

 

Figure 1. Comparison of Lorentzian, pseudo-Lorentzian, and B/A lineshapes. 
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As noted above, when M exceeds the number of singularities, the system generates 

extra poles. Figure 2 illustrates this in detail. Here, we show the results of the B/A proce-

dure for 1, 2,M   and 3, comparing the results to each other and to the original Lo-

rentzian at the bottom. The enhancement of the amplitude of the 1M   spectrum with 

respect to the original Lorentzian is clear. Another striking feature is that the curve for 

2M   has two peaks instead of one, with the peaks located approximately at    ,as 

shown in the previous section. The curve for 3M   recovers the single dominant peak, 

but its amplitude is reduced by about a factor of 2. In addition, spurious satellites appear 

at 2    . Thus, if M exceeds the number of legitimate critical points in the spectrum, 

the result is not only extra features, but also a significantly reduced peak height when a 

feature coincides with a structure of the spectrum. 

 

Figure 2. B/A processing of the single Lorentzian (bottom spectrum) for M = 1, 2, and 3. All line-

shapes are to scale. 

Because spectra usually contain more than one feature, the question arises as to how 

much of the simple single-line theory is transferrable to spectra containing multiple struc-

tures. Figure 3 shows a model spectrum consisting of a pair of lines with 0.25  , sym-

metrically located about the origin with a separation of 10 0.314      . This is suf-

ficient for the peaks to remain distinct while retaining some overlap. It is seen that the 

2M   lineshapes are much sharper than the original, so the B/A procedure is effective. 

However, an examination of the numerical values shows that the broadening is about 

0.042, leading to a ratio of 0.17 compared to the predicted value of 0.123. The difference is 

about 30%. In addition, the singularities are found to lie at about 0.38  from the sym-

metry axis instead of 0.314 , a difference of 17%. Although no measures of broadening 

have appeared before, errors in the locations of singularities are well-known. We shall 

discuss this in more detail elsewhere. 
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Figure 3. Result of B/A processing of a double-peaked model spectrum. Details are given in the text. 

Figure 4 compares the capabilities of the CME and B/A approaches to deal with sin-

gularities separated essentially by the broadening parameter. The synthetic spectrum con-

sists of two poles, the first at 0.20    with an amplitude of 0.5, and the second at 

2 0.10    with an amplitude of 1.0. The broadening parameter 0.25   is the same in 

both cases, and both calculations were performed to the order 2M  . The CME is func-

tioning as it should, i.e., generating a replica of the data with white-noise coefficients re-

placed with most-probable values. The B/A response is qualitatively different, with the 

sharpening evident and the two singularities clearly identified. However, the B/A proce-

dure places these at 0.267  and +0.258, which is only qualitatively correct. The CME per-

forms better, but only at higher M. For 20M  , two poles are also identified, located at 

0.233  and +0.110, in better agreement with the correct values. 
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Figure 4. Results of B/A and CME processing of a double-peaked model spectrum. Details are given 

in the text. 

5. Conclusions 

In this work, we investigate the B/A procedure analytically for a single Lorentzian 

line and B/A orders 1M   and 2. We take advantage of the form | |ne   of the continuum 

Fourier coefficients of the Lorentz lineshape to obtain exact analytic expressions. In both 

cases, the Lorentz structure is deconvolved, with the amount of sharpening greater for 

2M   than 1M  . The 1M   case yields a simple analytic expression that can be used 

to estimate the amount of deconvolution that can be expected in given situations. Surpris-

ingly, the relative amount of deconvolution is not intrinsic to the structure but depends 

on the ratio of the width of the original structure to the width of the spectral segment 

being analyzed, not just on the width of the structure itself. 

The origin of spurious peaks is demonstrated to be the result of selecting an order 

that does not match the number of singularities in the structure, with degradation seen 

first as a splitting of a single peak, followed at higher orders with the appearance of satel-

lite structures and reductions in the enhancement of the main peak. In applications to a 

model spectrum and data, we find that when two peaks are present, B/A processing for 

order 2 highlights the structures, in contrast to the CME, although for large M the CME 

returns more accurate values of the singularities. 
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