
Scaling permissionless blockchains
via sharding

A Thesis submitted in fulfilment of the requirements for

the candidature of

Doctor of Philosophy

By

Runchao Han

Supervisor: Jiangshan Yu

Co-supervisor: Joseph Liu and Shiping Chen

Department of Software Systems and Cybersecurity

Faculty of Information Technology

Monash University

August 29, 2022

Abstract

Sharding is a promising approach to scale permissionless blockchains. In a

blockchain sharding protocol, participants are divided into different shards

and each shard processes transactions concurrently. Despite its wide adop-

tion in permissioned systems, transferring such success to permissionless

blockchains is still an open problem. To the best of our knowledge, no

blockchain sharding protocol has been proven secure or practical, and for-

mal security analysis on blockchain sharding protocols and their primitives

is still missing.

This thesis bridges this gap by systematically studying blockchain shard-

ing protocols and their primitives. We formalise blockchain sharding pro-

tocols and evaluate existing proposals, which reveals multiple security con-

cerns and design trade-offs overlooked by existing research. Most notably,

we identify two primitives that are necessary for blockchain sharding pro-

tocols but are overlooked by existing studies, namely shard allocation and

decentralised randomness beacon. We formalise these two primitives, and pro-

pose constructions that are proven secure and more efficient. Our propos-

als can serve as drop-in replacements in any blockchain sharding protocols,

and can be of independent interest. In addition, we identify two security

issues that exist in sharded blockchains and all non-sharded proof-of-work-

based blockchains, namely the cross-chain 51% attacks and the optionality

of the Atomic Swap protocol. We formally study their impact on the related

security properties and suggest countermeasures against them.

All of the results are supported by formal security proofs and experi-

mental evaluations.

Copyright notice

I certify that I have made all reasonable efforts to secure copyright permis-

sions for third-party content included in this thesis and have not knowingly

added copyright content to my work without the owner’s permission.

Name: Runchao Han

Date: August 29, 2022

Declaration

This thesis is an original work of my research and contains no material

which has been accepted for the award of any other degree or diploma at

any university or equivalent institution and that, to the best of my knowl-

edge and belief, this thesis contains no material previously published or

written by another person, except where due reference is made in the text

of the thesis.

Signature:

Print Name: Runchao Han

Date: August 29, 2022

List of publications

The following papers containing contents in this thesis have been published.

• Runchao Han, Haoyu Lin, and Jiangshan Yu. “RandChain: A Scalable

and Fair Decentralised Randomness Beacon. The 4th ACM Confer-

ence on Advances in Financial Technologies (AFT 2022).”

(Full version at https://eprint.iacr.org/2020/1033)

• Runchao Han, Zhimei Sui, Jiangshan Yu, Joseph Liu, and Shiping Chen.

“Fact and Fiction: Challenging the honest majority assumption of per-

missionless blockchains.” The 16th ACM Asia Conference on Com-

puter and Communications Security (AsiaCCS 2021).

(Full version at https://eprint.iacr.org/2019/752)

• Runchao Han, Haoyu Lin, and Jiangshan Yu. “On the optionality and

fairness of Atomic Swaps.” The First ACM Conference on Advances

in Financial Technologies (AFT 2019).

(Full version at https://eprint.iacr.org/2019/896)

The following papers containing contents in this thesis are in submission.

• Runchao Han and Jiangshan Yu. “Fair delivery of decentralised ran-

domness beacons.”

• Runchao Han, Jiangshan Yu, and Ren Zhang. “Analysing and Improv-

ing Shard Allocation Protocols for Sharded Blockchains.”

(Full version at https://eprint.iacr.org/2020/943)

• Runchao Han, Jiangshan Yu, Haoyu Lin, Shiping Chen, and Paulo

Esteves-Verı́ssimo. “On the Security and Performance of Blockchain

https://eprint.iacr.org/2020/1033
https://eprint.iacr.org/2019/752
https://eprint.iacr.org/2019/896
https://eprint.iacr.org/2020/943

Sharding.”

(Full version at https://eprint.iacr.org/2021/1276)

I am also fortunate to collaborate with other blockchain researchers. The

following papers are beyond the scope of this thesis.

• Runchao Han, Haoyu Lin, and Jiangshan Yu. “VRF-Based Mining:

Simple Non-Outsourceable Cryptocurrency Mining.” International Work-

shop on Cryptocurrencies and Blockchain Technology (CBT@ESORICS

2020).

(Full version at https://github.com/DEX-ware/vrf-mining/

blob/master/paper/main.pdf)

• Zhichun Lu, Runchao Han, and Jiangshan Yu. “General Congestion

Attack on HTLC-Based Payment Channel Networks.” 3rd Interna-

tional Conference on Blockchain Economics, Security and Protocols

(Tokenomics 2021)

(Full version at https://eprint.iacr.org/2020/456)

https://eprint.iacr.org/2021/1276
https://github.com/DEX-ware/vrf-mining/blob/master/paper/main.pdf
https://github.com/DEX-ware/vrf-mining/blob/master/paper/main.pdf
https://eprint.iacr.org/2020/456

Acknowledgements

I would like to thank Monash University and CSIRO’s Data61 for provid-

ing scholarships for my PhD. I also would like to thank The Department

of Software Systems and Cybersecurity, Faculty of Information Technology,

Monash University, for the additional support, especially during the COVID

outbreak.

I am grateful to my supervisor Jiangshan Yu, Joseph Liu and Shiping

Chen for guiding me towards research and providing me full academic free-

dom to explore different areas. The experience at Monash and CSIRO’s

Data61 was wonderful and is key to achieve my goals. In addition, I am

also grateful to Vincent Gramoli, Haiwu He, and Christos Kotselidis for the

trust and the initial guidance when I had no research or professional expe-

rience.

I am fortunate to work with many great researchers and engineers dur-

ing my PhD, including (chronologically) Nikos Foutris, Gary Shapiro, Haoyu

Lin, Ren Zhang, Zhichun Lu, Carsten Rudolph, Marthie Grobler, James

Boorman, Paulo Verissimo, and Jianyu Niu. I learned a lot from them and

would like to thank them for their contributions.

My PhD journey would be much less enjoyable without the friendship

from many colleagues at Monash University and CSIRO’s Data61, including

Maxime Buser, Ahmad Salehi Shahraki, Qin Wang, Dimaz Wijaya, Zhimei

Sui, Viet Vo, and everyone that I cannot have chance to meet often due to

the COVID.

Finally, I want to thank my partner Xin Lin and my family for the con-

stant support. This thesis would not be possible without them.

Contents

1 Introduction ... 1

1.1 Contributions ... 3

2 Background and Model .. 9

2.1 System setting ... 9

2.2 System components .. 9

2.3 Blockchain protocol .. 10

2.4 Sharded blockchain ... 12

3 Evaluation of sharded blockchains .. 14

3.1 Introduction ... 14

3.2 Protocol stack ... 17

3.2.1 Data layer .. 17

3.2.2 Membership layer .. 18

3.2.3 Intra-shard layer .. 18

3.2.4 Cross-shard layer .. 19

3.3 Existing sharded blockchains .. 20

3.4 Data layer .. 24

3.5 Intra-shard layer .. 26

3.5.1 Leader election ... 26

3.5.2 Consensus .. 29

3.6 Cross-shard layer .. 30

3.6.1 Concurrency Control .. 31

3.6.2 Atomic Commit .. 34

3.7 System-level analysis .. 39

3.7.1 Evaluation ... 40

I

3.7.2 Coherence of system settings .. 41

4 Analysing and improving shard allocation protocols for sharded

blockchains .. 43

4.1 Introduction ... 43

4.2 Formalising Shard allocation ... 46

4.2.1 System model .. 46

4.2.2 Syntax ... 49

4.2.3 Correctness properties .. 50

4.2.4 Performance metrics .. 54

4.3 Evaluating existing protocols .. 55

4.3.1 Evaluation criteria .. 56

4.3.2 Overview of evaluated proposals .. 57

4.3.3 System model .. 58

4.3.4 Correctness properties .. 59

4.3.5 Performance metrics .. 60

4.4 Observation and insights .. 61

4.4.1 Impossibility and trade-off .. 62

4.4.2 Parameterising the trade-off .. 65

4.5 WORMHOLE: Memory-dependent shard allocation 67

4.5.1 Primitives: RB and VRF ... 67

4.5.2 Key challenge and strawman designs ... 69

4.5.3 The WORMHOLE design ... 72

4.5.4 Theoretical analysis .. 73

4.5.5 Comparison with existing protocols .. 76

4.6 Integration of WORMHOLE ... 77

4.6.1 Design choices related to WORMHOLE ... 77

4.6.2 Integration analysis .. 79

II

4.7 Evaluation of WORMHOLE ... 80

4.7.1 Overhead analysis .. 81

4.7.2 Simulation ... 82

4.8 Related work ... 85

5 RandChain: A scalable and fair Decentralised Randomness Beacon ... 87

5.1 Introduction ... 87

5.2 Model of DRBs ... 91

5.2.1 System model .. 91

5.2.2 Correctness properties .. 91

5.2.3 Performance metrics .. 94

5.3 Design goals and strawman designs ... 94

5.3.1 Design goals: scalability and fairness .. 95

5.3.2 Strawman designs ... 96

5.4 Sequential Proof-of-Work ... 98

5.4.1 Preliminaries on VDFs ... 98

5.4.2 Basic idea of SeqPoW100

5.4.3 Definition102

5.4.4 Constructions105

5.4.5 Security and efficiency analysis .. .107

5.5 RANDCHAIN: DRB from SeqPoW110

5.5.1 DRB structure112

5.5.2 Synchronising and agreeing on blocks .. .112

5.5.3 Non-parallelisable mining113

5.5.4 Extracting a random output from a block114

5.5.5 Security analysis .. .115

III

5.6 Implementation and evaluation119

5.6.1 SeqPoW: benchmarks120

5.6.2 RANDCHAIN: end-to-end evaluation120

5.7 Comparison with existing DRBs125

5.7.1 Overview of existing DRBs125

5.7.2 Evaluation framework for DRBs126

5.7.3 Evaluation127

5.8 Limitations and resolutions130

5.8.1 Energy efficiency130

5.8.2 Churn tolerance131

5.8.3 Finality .. .131

6 Fair delivery of Decentralised Randomness Beacons133

6.1 Introduction133

6.1.1 Contributions134

6.2 Model .. .137

6.2.1 System model .. .138

6.2.2 Components of DRBs139

6.2.3 Security properties of DRBs140

6.2.4 Performance metrics .. .141

6.3 Delivery-fairness property .. .142

6.3.1 Defining delivery-fairness .. .142

6.3.2 Lower bound of delivery-fairness .. .144

6.4 Drand145

6.4.1 Primitive: BLS threshold signature145

6.4.2 Protocol specification146

6.4.3 Delivery-fairness analysis of ⇧Drand: The latency manip-

ulation attack147

IV

6.4.4 Delivery-fairness of ⇧LS
Drand .149

6.4.5 Gained insights .. .151

6.5 HydRand and GRandPiper .. .151

6.5.1 Primitives .. .151

6.5.2 HydRand protocol specification154

6.5.3 HydRand delivery-fairness analysis .. .154

6.5.4 GRandPiper protocol specification156

6.5.5 GRandPiper delivery-fairness analysis .. .157

6.5.6 Gained insights .. .157

6.6 SPURT158

6.6.1 Protocol specification158

6.6.2 Delivery-fairness analysis .. .159

6.7 Related work160

7 On the honest majority assumption of permissionless blockchains165

7.1 Introduction165

7.1.1 Contributions167

7.2 Formalisation169

7.2.1 System model and notations169

7.2.2 The 51-MDP model .. .171

7.3 Model evaluation175

7.3.1 Experimental methodology. .. .175

7.3.2 Evaluation176

7.3.3 Analysis .. .178

7.4 Evaluation of blockchains in the wild179

7.4.1 Mining power migration attacks .. .180

7.4.2 Cloud mining attacks .. .181

V

7.5 Case study: The 51% attack on Ethereum Classic183

7.5.1 The attack details .. .184

7.5.2 Evaluation185

7.5.3 Estimating the attacker’s net revenue186

7.6 The attacker’s strategy188

7.7 Discussions on attack prevention190

7.7.1 Quick remedies .. .190

7.7.2 Long term solutions .. .192

7.8 Related work193

8 On the optionality and fairness of Atomic Swaps195

8.1 Introduction195

8.1.1 Contributions196

8.2 Background199

8.2.1 Atomic Swap199

8.2.2 Option in Finance .. .200

8.3 Atomic Swap and American Call Option201

8.3.1 Atomic Swap201

8.3.2 American Call Option205

8.3.3 An Atomic Swap is a premium-free American Call Op-

tion207

8.4 Unfairness of Atomic Swaps208

8.4.1 Experimental setting208

8.4.2 Quantifying the unfairness .. .208

8.4.3 Estimating the premium212

8.5 Fair Atomic Swaps217

8.5.1 Design217

8.5.2 Our protocol .. .219

VI

8.6 Implementation222

8.6.1 Requirements .. .222

8.6.2 Smart contracts .. .223

8.6.3 Bitcoin script .. .226

8.7 Discussion230

8.7.1 Security of the Atomic Swap230

8.7.2 Other countermeasures .. .231

8.7.3 Limitations of our protocols .. .232

8.8 Related Work232

9 Conclusion234

List of Figures

1.1 An example sharded blockchain with three shards. 3

3.1 Four possible attacks on Atomic Commit (AC). 35

4.1 An example of Shard allocation. 44

4.2 Update-randomness property. 52

4.3 Relationship between self-balance µ and operability �. 64

4.4 Intuition of WORMHOLE ⇧WH
ShardAlloc. 69

4.5 Computation overhead of WORMHOLE. 80

4.6 Simulation results of WORMHOLE over 500 epochs (x axis) in

different churn rates. 84

5.1 Sequential Proof-of-Work. 101

5.2 Construction of SeqPoW. 106

5.3 The RANDCHAIN protocol. 111

5.4 Full specification of RANDCHAIN. 111

5.5 Evaluation of SeqPoW constructions. 119

5.6 Distribution of block propagation delay (BPD). 123

5.7 Block size, network overhead and decentralisation of RAND-

CHAIN. 124

6.1 Specification of Drand ⇧Drand. 147

6.2 Latency manipulation attack on DRBs. 148

6.3 Example of the latency manipulation attack on the non-lock-

step Drand. 148

6.4 Example of the latency manipulation attack on the lock-step

Drand. 149

6.5 Specification of HydRand ⇧HydRand. 162

VIII

6.6 Private beacon attack on DRBs. 163

6.7 Example of a private beacon attack on the lock-step HydRand. 163

6.8 Specification of GRandPiper ⇧GRandPiper. 163

6.9 Specification of SPURT ⇧SPURT. 164

7.1 51% Attacks in 2018-2020. 166

7.2 Impacts of parameters on the net revenue of 51% attacks. . . . 177

7.3 Mining power migration attacks on three different pairs of

blockchains. 179

7.4 Cloud mining attacks on selected 10 PoW blockchains. 181

7.5 Profitability of mining power migration attacks and cloud

mining attacks on Komodo (KMD). 183

7.6 Simulated 51% attack on ETC. 185

7.7 Impacts of vtx and Nc on the ETC attack. 192

8.1 Sequence diagram of the Atomic Swap. 202

8.2 Sequence diagram of the American Call Option. 203

8.3 The daily percentage changes for all selected cryptocurrency

pairs, stock indices and fiat currency pairs over one year (from

03/05/2018 to 03/05/2019). 210

8.4 The expected profit rate E↵ and the expected mitigated risk

rate E� for each cryptocurrency pair, stock index and fiat cur-

rency pair. 211

8.5 The binomial price tree T . 213

8.6 Estimated premium with different strike times for each cryp-

tocurrency pair, stock index and fiat currency pair. 216

8.7 Sequence diagram of our Atomic Swap. 220

IX

List of Tables

3.1 Evaluation of existing blockchain sharding proposals. 15

3.2 The protocol stack of blockchain sharding protocols. 17

3.3 Design choices of the data layer. 25

3.4 Evaluation of intra-shard layer. 27

3.5 Evaluation of Concurrency Control. 32

3.6 Evaluation of Atomic Commit. 37

4.1 Evaluation of seven permissionless Shard allocation protocols. 56

4.2 Evaluation of Shard allocation protocols that replace DRG

with a randomness beacon. Meanings of colours are same

as Table 4.1. F means the metric is improved by replacing

DRG with a randomness beacon. 76

5.1 SeqPoW v.s. relevant primitives. 102

5.2 Efficiency of two SeqPoW constructions. 110

5.3 Experimental settings and results. 119

5.4 Comparison of RANDCHAIN with existing DRBs. 126

6.1 Summary of evaluation results under synchronous networks. 137

7.1 Notations of parameters in 51-MDP. 170

7.2 State transitions and reward matrices of 51-MDP. 171

7.3 Data of 15 PoW blockchains and NiceHash prices. 182

7.4 All 12 double-spent transactions during the 51% attack on ETC.184

7.5 Taxonomy of existing attacks and analyses. 193

8.1 Summary of symbols in the Cox-Ross-Rubinstein Model. . . . 213

X

Chapter 1

Introduction

Blockchain, first introduced by Bitcoin [1], has gained significant at-

tention in the recent years. It allows a set of networked participants to

jointly maintain a tamper-resistant and censorship-resistant ledger, even

when a subset of them are compromised (aka Byzantine). Its tamper- and

censorship-resistance properties enables and reinforces numerous applica-

tions in different industries, such as finance, supply chain management, and

Internet of Things (IoT).

A concrete example of blockchain-based applications would be cur-

rency exchange. Consider two parties want to trade their currencies at a

certain exchange rate. In traditional centralised exchanges, they have to as-

sume the central server to be uncompromised in order to complete the trade.

Otherwise, if the central server is compromised, it will be possible that one

party transfers its money while the other party does not. Meanwhile, in

blockchains where all valid transactions will be eventually executed, such

trades can be made always successful, by using various on-blockchain pro-

tocols such as Atomic Swap and Automated Market Maker.

There are different types of blockchains in terms of the membership,

such as permissioned blockchains and permissionless blockchains. While

permissioned blockchains specify a set of known participants, permission-

less blockchains allow anyone on the Internet to join the system. For ex-

ample, Bitcoin [1] is the first permissionless blockchain. Compared to per-

missioned blockchains, permissionless blockchains relax the trust assump-

tion on memberships and are open to anyone, thus are more trusted and

widely adopted by the community. To date, there have been more than

20,000 blockchains that constitute 1 trillion USD market cap in total [2].

1

However, permissionless blockchains suffer from a fundamental blockchain

trilemma that obstacles their mass adoption. Informally, the blockchain trilemma

states that any blockchain can achieve at most two out of the following three

properties:

• Decentralisation: Each participant in the blockchain only has access

to a constant amount of resource in computation and communication.

• Scalability: The blockchain can process an increasing number trans-

actions per time unit with more participants.

• Security: The blockchain can achieve all necessary security properties

even when a predefined portion of participants are malicious.

Each of the three properties is important for the mass adoption of per-

missionless blockchains. Without decentralisation, a blockchain will be con-

trolled by a small set of participants, making it less trustworthy. Without

scalability, a blockchain can only process limited transactions per time unit,

limiting the number of concurrent users. Without security, transactions in a

blockchain will no longer be trustworthy.

There have been numerous permissionless blockchain proposals that

make different trade-offs over the three properties. A promising approach

among these proposals is sharding. It aims at achieving scalability and de-

centralisation while slightly compromising the security level to a reason-

able level. In a sharded blockchain, as depicted in Figure 1.1, participants

are divided into different shards, each of which maintains its own ledger

and processes transactions concurrently. Therefore, the sharded blockchain

can process more concurrent transactions with increasing number of shards,

leading to better scalability. In addition, a node only needs to store the trasn-

actions in a single shard rather than all transactions, leading to better decen-

tralisation.

2

Shard #1Nodes

Shard
allocation

Cross-shard
transaction

Intra-shard
transaction

Shard #2

Shard #3

Cross-shard
communication

Users

TxTx

Figure 1.1: An example sharded blockchain with three shards. A set of
nodes (of which a subset are Byzantine and marked as red) are divided
into three shards. Nodes in each shard maintain their own ledger. Users (of
which a subset are also Byzantine and marked as red) submit transactions to
shards, including intra-shard transactions (in green) and cross-shard trasn-
actions (in blue) that are related to multiple shards.

Several academic proposals [3]–[7] and industry projects [8], [9] on per-

missionless sharded blockchains have been proposed. Yet, it still remains

unknown whether existing blockchain sharding protocols are secure or prac-

tical. Existing proposals either lack formal security analysis [7]–[9], or only

provide analysis on some primitives such as distributed randomness gen-

eration [3], [4], shard allocation [5], and cross-shard transactions [4], [6].

Existing papers on analysing these proposals either merely summarise de-

signs [10] or focus on their certain primitives such as shard allocation [11]

and cross-shard transactions [12]. Therefore, a systematic security analy-

sis of permissionless sharded blockchains is still missing, and building a

sharded blockchain that is secure and practical remains an open challenge.

1.1 Contributions

To fill this gap, this thesis analyses and improves permissionless blockchain

sharding protocols and their underlying primitvies. We start from formalis-

ing blockchain sharding protocols (Chapter 2) and evaluating existing pro-

posals (Chapter 3), which reveals multiple security concerns and design

trade-offs. Through our evaluation, we identify two primitives that are

3

implicitly and informally studied by existing research, namely shard alloca-

tion and decentralised randomness beacon (DRB). The shard allocation protocol

allows nodes to be allocated into different shards securely, randomly and

dynamically w.r.t. the node churn. DRB allows nodes to generate unpre-

dictable and unbiasible random outputs periodically. We formalise these

two primitives, evaluate existing proposals, and propose constructions that

are proven secure and more efficient (Chapter 4-5). We also identify a new

security property delivery-fairness overlooked by existing research in DRB.

We provide the first formal definition to delivery-fairness, prove its lower

bound, and suggest modifications on existing DRB protocols to achieve

optimal delivery-fairness (Chapter 6). In addition, we identify two secu-

rity issues that are critical for both sharded blockchains and non-sharded

blockchains, namely the 51% attacks with external mining power and the

optionality of Atomic Swap protocols. We formalise the two issues, quan-

tify their impacts on the related security properties, and suggest counter-

measures against them (Chapter 7-8).

Systematic evaluation of blockchain sharding protocols. To evaluate

sharded blockchains, we deconstruct the blockchain sharding problem into

four foundational layers with orthogonal functionalities. The four layers in-

clude data layer that defines how the ledger is formatted and divided into

different shards; membership layer that defines how nodes are allocated to

different shards; intra-shard layer that defines how each shard processes lo-

cal transactions; and cross-shard layer that defines how shards process cross-

shard transactions. For each protocol layer, we suggest and analyse the re-

quired security properties and performance metrics for sharded blockchains

w.r.t. their design objectives and possible attacks. Of independent interest,

this can serve as an evaluation framework assisting the future development

for sharded blockchains.

4

We select seven state-of-the-art sharded blockchains, deconstruct them

into the four layers, and evaluate the layer according to our definitions.

The evaluated sharded blockchains include five academic proposals (Elas-

tico [3], Omniledger [4], Chainspace [6], RapidChain [5], and Monoxide [7])

and two industrial projects (Zilliqa [8] and Ethereum 2.0 [9]). We perform

the layer-wise evaluation, then perform the system-level evaluation for the

selected sharded blockchains. The evaluation shows that these protocols

fail to satisfy certain correctness properties, or meet them at the price of

strong assumptions or at least O(n2) communication complexity. Along the

way, we identify a number of new attacks, overlooked primitives and de-

sign trade-offs in blockchain sharding protocols.

Two key primitives: Shard allocation and decentralised randomness bea-

con. Based on the systematic analysis, we identify two primitives that are

necessary for building a sharded blockchain but are overlooked by exist-

ing research. The two identified primitives are shard allocation and decen-

tralised randomness beacon (DRB). Shard allocation allows nodes to be allo-

cated into different shards securely and dynamically w.r.t. the node churn.

DRB allows nodes to produce unpredictable and unbiasible random out-

puts periodically. We formally study them and propose constructions that

are proven secure and more efficient. These constructions serve as drop-in

replacements to existing blockchain sharding protocols.

For shard allocation, we provide the first formal study on this primi-

tive, and evaluate the shard allocation protocols in the seven permissionless

sharded blockchains above. Our results show that none of them is fully correct

or achieves satisfactory performance. Based on the evaluation, we observe and

prove a fundamental security-performance trade-off in blockchain shard-

ing protocols, then identify and define a new property memory-dependency

that is necessary for shard allocation protocols to parameterise this trade-

off. These insights allow us to construct WORMHOLE, a secure and efficient

5

shard allocation protocol that is the first to allow parameterisation over this

trade-off.

For DRB, we observe that existing approaches cannot scale due to a fun-

damental design: Participants contribute their local inputs and aggregate

them into a single output. In order to collaborate, participants should con-

tinuously broadcast messages to and synchronise with each other. The for-

mer incurs at least O(n2) communication complexity, and the latter requires

round synchronisation. To address the inherent limitations in the collabo-

rative design, we suggest a new design space for DRBs called competitive

DRBs, and propose RANDCHAIN, a scalable decentralised randomness bea-

con protocol that belongs to this design space. The central building block

of the RANDCHAIN protocol is a new primitive Sequential Proof-of-Work (Se-

qPoW), a cryptographic puzzle that takes a random and unpredictable num-

ber of sequential steps to solve. SeqPoW is also of independent interest in

other protocols such as leader election and Proof-of-Stake (PoS)-based con-

sensus.

We also observe a new security property in DRBs called delivery-fairness,

which is overlooked by existing literatures. Delivery-fairness concerns the

advantage that some participants learn random outputs earlier than other

participants in DRBs. We formalise the delivery-fairness property, prove

lower bound results of them in system settings aligned to the real-world en-

vironment, and suggest modifications over existing DRB protocols to achieve

optimal delivery-fairness.

Two cross-chain security issues. We also study two security issues that

exist in sharded blockchains and all non-sharded PoW-based blockchains,

namely the cross-chain 51% attacks and the optionality of the Atomic Swap

protocol. We formalise these two issues, quantify their impact on the related

security properties, and suggest countermeasures against them.

6

In the 51% attack in PoW-based blockchains, the adversary mines a

blockchain longer than the honest blockchain secretly, and later publishes

its blockchain to revert the honest blockchain. The 51% attack can utilise ex-

ternal mining power from other blockchains or cloud mining services such

as NiceHash [13]. The adversary may obtain more profits by launching such

cross-chain 51% attacks compared to using such mining power to mine a

blockchain honestly. We study two cases of the cross-chain 51% attacks,

namely the mining power migration attack and the cloud mining attack. In the

mining power migration attack, the adversary migrates mining power from

a stronger blockchain containing more mining power to attack a weaker

blockchain containing less mining power. In the cloud mining attack [14],

the adversary rents mining power from cloud mining services (e.g., Nice-

hash[13]) to attack a blockchain. We formally analyse two variants of 51%

attacks using externally available mining power, and show that 51% attacks

are feasible and more profitable than honestly mining for most blockchains.

Our analysis implies two results. First, the honest majority assumption does

not hold for these blockchains. Second, instead of encouraging miners to

mine honestly, the incentive mechanism encourages miners to launch 51%

attacks and break “honest majority”.

Atomic Swap [15] is a protocol where two parties on two blockchains

atomically exchange their cryptocurrencies without trusted third party. It is

known to have the optionality: The swap initiator can choose to proceed or

abort the swap before the timelock (with the default value of 24 hours) ex-

pires. This allows the adversary, as the swap initiator, to speculate without

any penalty: When the timelock is about to expire, if the price of the swap

participant’s asset rises, the swap initiator will proceed the swap so that he

will profit; and if the price of the swap participant’s asset drops, the swap

initiator can abort the swap, so that he will not lose money. We show that

an atomic is equivalent to a premium-free American Call Option, and quan-

7

tify the unfairness of the Atomic Swap by using the Cox-Ross-Rubinstein

option pricing model [16]. Our results show that, in the default setting, the

premium should be approximately 2% for Atomic Swaps with cryptocur-

rency pairs, while the premium is approximately 0.3% for American Call

Options with stocks and fiat currencies. We then suggest improvements to

implement the premium mechanism in the Atomic Swap protocol to make

it fair.

8

Chapter 2

Background and Model

In this chapter, we formally define the blockchain protocol and the

blockchain sharding protocol.

2.1 System setting

We start from specifying the system setting of blockchain protocols.

The system setting of a sharded blockchain concerns two aspects, namely

network synchrony and fault tolerance degree.

Network synchrony concerns the timing guarantees of message deliveries.

We consider three network models: Synchrony where messages are deliv-

ered within a known finite time bound; partial synchrony [17] where mes-

sages are delivered within a known finite time bound plus an unknown

global stabilisation time (GST); and asynchrony where messages are deliv-

ered eventually but without a known time bound.

Fault tolerance degree concerns the resilience of the protocol, in terms of

the level of threat it can cope with while remaining correct. Given the per-

missionless settings, we consider Byzantine faults. The fault tolerance de-

gree is quantified as the least percentage of voting power that the Byzantine

adversary should control to break the protocol. Different protocols quan-

tify voting power using different metrics, such as computing power in PoW-

based consensus and deposited cryptocurrency in PoS-based consensus.

2.2 System components

The blockchain protocol contains three components, namely nodes, users

and the ledger.

9

Nodes are participants who jointly maintain the ledger for the system. The

system is permissionless: Anyone can participate in the system as a node,

and nodes can join and leave the system at any time. Each node pi has a pair

of secret key and public key (ski, pki), and is identified by its public key pki

in the system.

Users are clients that create transactions and send them to nodes. Nodes

verify incoming transactions continuously. If an incoming transaction is

valid, then the node moves it to its memory pool, i.e., the set of pending trans-

actions. For each epoch, nodes in each shard sample some transactions from

their memory pools to agree on.

Ledger is the collection of system states jointly maintained by nodes. We

model the ledger following the approach of Chainspace [6]. Specifically, let

“object” be the irreducible unit of system states. The ledger consists of a

number of objects, or a number of transactions recording changes of objects.

Each object is owned by a user, and has a unique identifier and a value (i.e.,

the amount of coins). Each transaction consists of input objects and output

objects, plus some transaction fee. Each object can only be the output of

a single transaction. An object is inactive if the current ledger includes a

transaction with this object as input. An object is active if the current ledger

includes a transaction creating this object and no transaction takes this ob-

ject as input. Note that this model captures both the UTXO model (e.g., in

Bitcoin) where each active object is an unspent transaction output (UTXO)

and the account model (e.g., in Ethereum) where each account controls a

number of objects and a transaction modifies multiple objects atomically.

2.3 Blockchain protocol

We formally define blockchains based on well-established models [18].

In a blockchain, nodes jointly maintain a ledger formed as a blockchain, i.e.,

a chain of blocks. Each block records a number of transactions. Each trans-

10

action records transition of some states. To abstract the process of verify-

ing transactions, we define a transaction verification oracle V (tx, L, `) that,

given transaction tx, ledger L and height `, outputs 1 if tx is a valid trans-

action at height ` of ledger L, otherwise 0. The transaction format and def-

inition of V (·) depends on the data layer design, which we will analyse in

§3.4.

Same as distributed ledger protocols [18], a blockchain has to satisfy

persistence and Liveness. To distinguish properties between a non-sharded

blockchain and a sharded blockchain, we label persistence and liveness of

a non-sharded blockchain as chain-persistence and chain-liveness, respec-

tively. Chain-Persistence formally states the tamper-resistance of blockchains.

It specifies that if a valid transaction tx becomes d-deep (i.e., is followed

by d consecutive blocks) in the blockchain of a correct node, then it will

be “stable”: All correct nodes will include tx in the same position of their

blockchains, and the adversary cannot revert tx in their blockchains.

Definition 2.3.1 (d-Chain-Persistence). A blockchain satisfies d-Chain-Persistence

if the following holds. If a correct node in the blockchain includes a valid

transaction tx at height ` on its local ledger which is at least (` + d)-long,

then any correct node in the blockchain includes tx at the same position as

the node’s ledger.

Chain-Liveness formally states the censorship-resistance of blockchains.

It specifies that if a valid transaction tx is submitted to correct nodes for a

certain time range of generating u new blocks, then tx will eventually be

stable (i.e., become d-deep in blockchains of all correct nodes), and the ad-

versary cannot censor tx, i.e., preventing tx from being included.

Definition 2.3.2 ((u, d)-Chain-Liveness). A blockchain satisfies (u, d)-Chain-

Liveness if the following holds. If a valid transaction tx is given as input to

all correct nodes in a blockchain for u consecutive blocks, then all correct

11

nodes in the blockchain will include tx in a block that is at least d-deep on

its local ledger.

2.4 Sharded blockchain

Sharded blockchain aims at scaling the blockchain by maintaining mul-

tiple blockchains in parallel. In a sharded blockchain, nodes are partitioned

into a fixed number of m shards, and each node only belongs to a single

shard. Each shard maintains its own ledger: Nodes in each shard execute

consensus to agree on some new transactions; pack agreed transactions into

a block; and append the block to the ledger.

A sharded blockchain has to satisfy three properties, namely persis-

tence, liveness, and validity. First, a sharded blockchain satisfies persistence

and liveness if all shards in the sharded blockchain satisfy persistence and

liveness, respectively.

Definition 2.4.1 (d-Persistence). A sharded blockchain satisfies d-Persistence

iff all shards satisfy d-Chain-Persistence.

Definition 2.4.2 ((u, d)-Liveness). A sharded blockchain satisfies (u, d)-Liveness

iff all shards satisfy (u, d)-Chain-Liveness.

In addition, a sharded blockchain has to satisfy validity, meaning that

no transaction in the ledger is conflicted with each other. There are two

types of transactions, namely intra-shard transactions whose input and out-

put objects belong to a single shard and cross-shard transactions whose input

and output objects belong to different shards. Nodes in different shards

need to communicate with each other to process cross-shard transactions,

in order to guarantee that cross-shard transactions are not conflicted with

each other.

To abstract the process of resolving conflicts introduced by cross-shard

transactions, we define oracle C(txx, txy) that, given two transactions txx

12

and txy, outputs 1 if txx and txy are conflicted, otherwise 0. The definition

of transaction conflicts and the specification of C(·) depend on the data layer

design, which we will analyse in §3.4. Cross-shard communication may be

required in C(·).

Definition 2.4.3 (Validity). For any two correct nodes from any two shards

kx and ky (x = y is possible), if they include transaction txx and txy in the

blocks at height `x and `y in their local ledgers Lx and Ly, respectively, then

the following holds:

• V (txx, Lx, `x) = 1,

• V (txy, Ly, `y) = 1, and

• C(txx, txy) = 0.

13

Chapter 3

Evaluation of sharded blockchains

3.1 Introduction

In this chapter, we perform a systematic evaluation of permissionless

sharded blockchains based on the formalisation in Chapter 2. Our eval-

uation identifies a considerable number of new attacks, design trade-offs

and open challenges. Most notably, we identify an important design choice

that is overlooked by existing sharded blockchains, namely the coherence

of system settings across layers. Our study will help designers and devel-

opers to better understand the sharding system and design principles and

pitfalls, assisting the future development of secure and practical sharding

techniques for permissionless blockchains.

Systematic evaluation. To evaluate sharded blockchains, we deconstruct

the blockchain sharding problem into four foundational layers with orthog-

onal functionalities. The four layers, summarised in §3.2, include data layer

that defines how the ledger is formatted and divided into different shards;

membership layer that defines how nodes are allocated to different shards;

intra-shard layer that defines how each shard processes local transactions;

and cross-shard layer that defines how shards process cross-shard transac-

tions. The functionality of data layer is captured by a set of verification

rules; the functionality of membership layer is captured by shard allocation,

which will be formally studied in Chapter 4; the functionality of intra-shard

layer is captured by leader election [19] and consensus; and the functional-

ity of cross-shard layer is captured by Concurrency Control [20] and Atomic

Commit [21]. For each protocol layer, we suggest and analyse the required

security properties and performance metrics for sharded blockchains w.r.t.

14

Table 3.1: Evaluation of existing blockchain sharding proposals.

System setting Correctness Performance

Net.
sy

nc.

Fau
lt

toler
an

ce

Pers
ist

an
ce

Liven
es

s

Vali
dity

Comm.

co
mpl.

Elastico Sync. 0 3 3 3 O(n2)
Omniledger Sync. 1/3 3 7 7 O(n2)
RapidChain Sync. 0† 3 3 7 O(n2)
Chainspace Part. Sync. 1/3 3 3 7 O(n2)
Monoxide Sync. 1/2 3 3 7 O(n)

Zilliqa Sync. 1/3 3 3 3 O(n2)
Ethereum 2.0 Sync. 1/3 3 7 3 O(n)

† RapidChain’s shard allocation protocol cannot tolerate any fault, which
will be analysed in Chapter 4.

their design objectives and possible attacks. Of independent interest, this

can serve as an evaluation framework assisting the future development for

sharded blockchains.

We select seven state-of-the-art sharded blockchains, deconstruct them

into the four layers, and evaluate the layer according to our definitions. The

evaluated sharded blockchains, summarised in §3.3, include five academic

proposals (Elastico [3], Omniledger [4], Chainspace [6], RapidChain [5], and

Monoxide [7]) and two industrial projects (Zilliqa [8] and Ethereum 2.0 [9]).

Evaluation results. We perform the layer-wise evaluation in §3.4-3.6, then

perform the system-level evaluation in §3.7 for the selected sharded blockchains.

The evaluation, summarised in Table 3.1, shows that these protocols fail to

satisfy certain correctness properties, or meet them at the price of strong

assumptions or at least O(n2) communication complexity. Most notably,

a single Byzantine node can stall the leader election protocol (Table 3.4a)

and the shard allocation protocol [11], breaking the liveness of Elastico and

RapidChain, respectively. In addition, a single Byzantine user can create

conflicted views of cross-shard transactions for different shards, breaking

the validity of Omniledger, RapidChain and Monoxide (Table 3.6).

15

Along the way, we identify a number of new attacks, overlooked sub-

protocols and design trade-offs in blockchain sharding protocols. For the

data layer (§3.4), we identify five design choices and analyse two design

trade-offs parameterised by how the ledger is partitioned among shards

and how transactions are ordered. For the intra-shard layer (§3.5), we show

that existing proposals overlook the leader election protocol, which in fact is

challenging to design and relies on strong assumptions. For the cross-shard

layer (§3.6), we relate the distributed transaction problem with the cross-

shard communication problem, which consists of two protocols, namely

Concurrency Control [22]–[24] and Atomic Commit [25]. We narrow down

the design space of Concurrency Control for sharded blockchains and anal-

yse the trade-offs in different designs. We identify three new attacks on

Atomic Commit in sharded blockchains, and show that Non-Blocking Atomic

Commit (NB-AC) [25], a variant of Atomic Commit, is necessary to resist

these attacks. Our evaluation in the NB-AC model shows that cross-shard

communication requires either a centralised coordinator or shared informa-

tion among shards, which is consistent with a recent work [12]. We also

analyse the trade-off between communication overhead and timing of con-

sistency [26] for cross-shard communication.

Insights on the coherence of system settings. Based on the system-level

evaluation, we identify an overlooked design choice that greatly affects a

sharded blockchain’s security and performance, namely the coherence of sys-

tem settings across layers. All evaluated sharded blockchains assume differ-

ent system settings for different protocol layers, without corresponding ar-

chitectural guarantees. Unless a hybrid architecture were used, assuming

different system settings across layers will weaken security and/or reduce

performance [27]. We show that for each evaluated sharded blockchain, re-

placing subprotocols to those with consistent assumptions will improve its

security and/or performance.

16

Table 3.2: The protocol stack of blockchain sharding protocols.

Protocol layer Sub-protocol Functionality

Cross-shard layer Atomic Commit Protecting correctness of cross-shard transactions

Concurrency Control Protecting correctness of concurrent transactions

Intra-shard layer Consensus Agreeing on transactions within each shard

Leader election Electing a leader for each shard

Membership layer Shard allocation Partitioning nodes into different shards

Data layer - Defining the ledger format

3.2 Protocol stack

In this section, we deconstruct the sharded blockchain into four pro-

tocol layers focusing on orthogonal functionalities. As summarised in Ta-

ble 3.2, the protocol stack consists of four layers, including 1) data layer that

defines the ledger’s format; 2) membership layer that partitions nodes into dif-

ferent shards; 3) intra-shard layer that agrees on transactions within a shard;

and 4) cross-shard layer that processes cross-shard transactions.

3.2.1 Data layer

Data layer concerns the ledger format, i.e., how system states are repre-

sented, evolved, and stored. Apart from concerns that exist in non-sharded

blockchains, the data layer raises some additional concerns on cross-shard

transactions, and thus affects the cross-shard layer design in sharded blockchains.

First, how transactions are ordered affects the frequency of resolving con-

flicts between concurrent transactions. In addition, how ledgers are parti-

tioned among shards affects the communication overhead of verifying cross-

shard transactions. Concurrency Control and Atomic Commit, the two pro-

tocols addressing these two concerns, constitute the cross-shard layer. We

will analyse the design spaces and their trade-offs of the data layer in §3.4.

17

3.2.2 Membership layer

Membership layer is responsible for allocating nodes into different shards.

This functionality is informally studied in existing blockchain sharding pro-

posals. We formally study this primitive which we call shard allocation in

Chapter 4, and assume all shard allocation protocols are secure in this chap-

ter. Summarising the major results of analysis in Chapter 4, we identify

a trade-off between the resistance against the single-shard takeover attack and

the overhead of reshuffling in shard allocation protocols, and propose WORM-

HOLE, a new shard allocation protocol that allows parameterisation over

this trade-off.

3.2.3 Intra-shard layer

Intra-shard layer is responsible for processing intra-shard transactions

in this shard and cross-shard transactions involving this shard. The intra-

shard layer protocol acts the same way as a non-sharded blockchain, where

nodes jointly maintain a ledger of transactions and keep agreeing on new

transactions. The non-sharded blockchain protocol usually involves two

subprotocols, namely leader election and (leader-based) consensus. For each

epoch in a shard, nodes run the leader election protocol to elect a leader (aka

primary node). The leader samples a subset of valid transactions from its

memory pool, packs them into a block, and broadcasts this block to other

peers in this shard. Nodes in this shard then execute the consensus protocol

to agree on these transactions and update states of the ledger accordingly.

We will analyse leader election and consensus for sharded blockchains in

§3.5.

Although blockchain protocols can be leaderless, we still include leader

election in the framework for two reasons. The first reason is the complete-

ness: all our evaluated sharded blockchains use leader election protocols,

18

except for Chainspace. The second reason is that without leader election,

blockchain protocols have to employ leaderless consensus, which remains

more of theoretical interest due to the high communication complexity and

strong assumptions [28].

3.2.4 Cross-shard layer

Cross-shard layer is responsible for processing cross-shard transactions

that involve multiple shards. Processing cross-shard transactions faces two

major challenges, namely 1) resolving conflicts between concurrent cross-

shard transactions and 2) including cross-shard transactions “atomically”:

Eventually, a cross-shard transaction is either included or omitted in the

ledgers of all involved shards. Both challenges also exist in distributed trans-

actions that involve multiple computers. Existing distributed systems re-

search [29] suggests to handle the two tasks by using Concurrency Control

(CC) [20] and Atomic Commit (AC) [22], respectively.

To explain CC and AC, we will use an example cross-shard transaction

tx. Let tx = {a1 ! b2} be a cross-shard transaction that takes object a1 on

shard #1 as input and outputs object b2 on shard #2. As tx involves both

shard #1 and #2, it has to be included in both shards.

Concurrency Control. In non-sharded blockchains, a transaction is in-

cluded in the ledger instantly once the block including it is included in

the ledger. In sharded blockchains, including tx is likely to take multiple

epochs, as tx are processed by two different shards that are executing inde-

pendently. Within this time gap, there might be concurrent conflicted trans-

actions attempting to access a1 and b2. To avoid anomalies caused by con-

flicted transactions, the cross-shard layer has to achieve a property called

isolation (“I” in ACID [30]), which specifies how and when changes made

by a transaction become visible to other transactions. Concurrency Control

(CC) [20] is a family of protocols that achieve isolation by properly schedul-

19

ing concurrent-but-conflicted transactions. We will analyse CC for sharded

blockchains in §3.6.1.

Atomic Commit. Shard #1 and #2 should have the same decision on tx:

Eventually, both shards should include or discard tx. Otherwise, if shard

#1 includes but shard #2 omits tx, then a1 is locked (i.e., cannot be spent)

forever. If shard #1 omits but shard #2 includes tx, then a1 is used as input

twice, leading to a double-spending attack. Atomic Commit (AC) is the

family of protocols to ensure a transaction is included or discarded in all

involved shards. We will analyse AC for sharded blockchains in §3.6.2.

3.3 Existing sharded blockchains

In this section, we summarise the design of sharded blockchains that

we will evaluate. As the analysis focuses on permissionless settings, we

choose to evaluate seven state-of-the-art permissionless sharded blockchains,

including five academic proposals Elastico [3], Omniledger [4], RapidChain [5],

Chainspace [6] and Monoxide [7], and two industry projects Zilliqa [8] and

Ethereum 2.0 [31].

Elastico and Zilliqa. In Elastico [3], the ledger is formed as a single

blockchain. Each node maintains the entire ledger. For each epoch, nodes

in a special shard called final committee execute a Distributed Randomness

Generation (DRG) protocol [32] to generate a random output. Each node

solves a PoW with the random output and its public key as input. The

node is allocated to a shard according to the prefix of its PoW solution. The

first shard becomes the final committee. In each shard, nodes execute Monar-

chy [33] to elect a leader, and execute PBFT [34] to agree on the block pro-

posed by the leader. The final committee gathers all blocks, merges them into

a single block, and appends it to the ledger.

Zilliqa [8] is an industry project that adapts the Elastico protocol with

three main optimisations. First, the random output is derived from the

20

last block’s hash rather than generated from DRG. Second, instead of us-

ing Monarchy for leader election, the node with the smallest PoW solu-

tion in a shard is elected as leader. Third, Zilliqa incorporates Collective

Signing [35] with PBFT, in order to reduce communication complexity from

O(n2) to O(n).

Omniledger. In Omniledger [4], the ledger is partitioned into different

shards. Each part of the ledger is structured as a Directed Acyclic Graph

(DAG) of blocks. Each block consists of a number of objects (rather than

transactions). Objects are distributed to different shards according to their

IDs. For each epoch, all nodes execute the RandHound [36] DRG protocol

to produce a random output. Nodes are allocated to shards randomly by

a centralised identity authority. In each shard, each node runs Verifiable

Random Function (VRF) over the random output and its identity, and the

node with the smallest VRF output is elected as leader. The leader proposes

a block, and nodes execute ByzCoinX – an optimised version of the Byz-

Coin [35] consensus protocol – to agree on the block.

Omniledger employs the Atomix protocol to process cross-shard trans-

actions. We describe Atomix by using the cross-shard transaction tx =

{a1 ! b2} in §3.2.4 as an example. First, the user sends tx to shard #1 and re-

quests shard #1 to lock a1. Nodes in shard #1 verify tx, perform a ByzCoinX

consensus on locking a1, and send a proof-of-acceptance of a1 to the user. The

user then constructs a unlock-to-commit transaction consisting of the proof-of-

acceptance of a1, tx, and b2, then sends this transaction to shard #2. Nodes

in shard #2 execute ByzCoinX consensus over the unlock-to-commit transac-

tion. If including this transaction, nodes in shard #2 execute another Byz-

CoinX consensus on making b2 an active object. If rejecting this transaction,

the leader of shard #2 sends a proof-of-rejection to the user, then the user

constructs a unlock-to-abort transaction consisting of the proof-of-rejection to

21

shard #1. Upon the unlock-to-abort transaction, nodes in shard #1 perform a

ByzCoinX consensus to unlock a1.

RapidChain. In RapidChain [5], the ledger is partitioned into different

shards. Each part of the ledger is formed as a blockchain. Each block con-

sists of a set of transactions. Each transaction is allocated to a shard ac-

cording to the input object’s ID. Each node should solve a PoW to join the

system. Nodes are allocated to different shards following the Commen-

sal Cuckoo rule [37]. For each epoch, nodes in each shard elect a leader

(RapidChain does not specify the leader election protocol), and execute a

synchronous BFT consensus protocol [38] to agree on the block proposed by

the leader. The leader is also responsible for coordinating cross-shard trans-

actions. Given cross-shard transaction tx = {a1 ! b2}, the leader of shard #2

splits tx to two intra-shard transactions: tx1
a
= {a1 ! x} and tx2

b
= {x! b2},

then sends tx1
a

and tx2
b

to nodes in shard #1 and shard #2, respectively. Af-

ter nodes in shard #1 agree on tx1
a
, the leader of shard #2 proposes tx2

b
, and

nodes in shard #2 executes consensus to agree on tx2
b
. As long as tx is valid,

tx will eventually be included by both shards (without being rolled back).

Chainspace. Chainspace [6] is a sharded smart contract platform. In

Chainspace, the ledger is partitioned into different shards. Each part of

the ledger consists of a Directed Acyclic Graph (DAG) of objects, as well

as transaction hashes. Objects are distributed to shards according to their

IDs. Chainspace does not specify how newly joined nodes are allocated to

different shards. If an existing node wants to move to another shard, then it

should send a request to the system by using a transaction, and nodes vote

to approve its request. Chainspace does not elect leaders for intra-shard

consensus. Instead, once a node receives a transaction, this node will initi-

ate a consensus within its shard (plus a cross-shard AC if the transaction is

cross-shard) on that transaction.

22

To process cross-shard transactions, Chainspace employs the S-BAC

protocol, which combines an optimistic concurrency control (OCC) proto-

col and an AC protocol. Unlike in other sharded blockchains, S-BAC re-

quires input shards to communicate with each other. Thus, we describe

S-BAC using a transaction with multiple inputs in different shards. Let

tx = {a1, b2 ! c3} be a transaction with two inputs a1 on shard #1 and

b2 on shard #2, and an output c3 on shard #3. In S-BAC, the user first sends

tx = {a1, b2 ! c3} to shard #1 and #2, and the two shards verify tx with

an intra-shard consensus. If valid, the two shards exchange a1 and b2, and

execute another consensus to inactivate a1 and b2. Note that if a1 or b2 is

inactivated by another transaction before tx, shard #1 and #2 will agree to

abort tx and roll back all operations in tx. After that, the two shards send

tx to shard #3, and meanwhile exchange the status of a1 and b2 and respond

to the user. When shard #3 receives tx, shard #3 performs an intra-shard

consensus on creating c3.

Monoxide. Monoxide [7] partitions the ledger into different shards. Each

part of the ledger is formed as a blockchain. Each block contains a number of

transactions. Each transaction can only have one input object and one out-

put object. A transaction is allocated to a shard according to its input object’s

ID. Nodes can join any shards. Similar to Bitcoin, Monoxide employs PoW-

based leader election and Nakamoto consensus. Nodes are allowed to do

Chu-ko-nu mining, i.e., mine on multiple shards simultaneously. Monox-

ide takes a similar approach with RapidChain for cross-shard transactions:

Each cross-shard transaction is split to multiple intra-shard transactions that

are submitted individually. Nodes are incentivised to process cross-shard

transactions, as they want to earn the fee in these transactions. Monoxide

refers to this guarantee as eventual atomicity.

Ethereum 2.0. Ethereum 2.0 is the next generation of the Ethereum project [39],

aiming at scaling Ethereum via sharding. In Ethereum 2.0 [31], the ledger

23

is partitioned into different shards, including a beacon chain and a num-

ber of shard chains. The beacon chain is the main chain that stores cross-

shard transactions, manages validators who produce and verify blocks, and

generates random outputs periodically using the RANDAO protocol [40].

Nodes in shard chains execute consensus and append blocks independently.

Transactions belong to different smart contracts, and smart contracts are al-

located to different shards according to their IDs. Each node stores a part

of the ledger as well as block headers of the entire ledger. Each shard sam-

ples a subset of nodes called validators via the “custody game”, a deposit-

based weighted sortition. Nodes first deposit some coins in a special de-

posit contract to join the validator registry. Given the latest random out-

put, the deposit contract randomly samples a number of validators and a

leader from all nodes. The leader proposes a block, and validators exe-

cute the Casper [41] consensus protocol to agree on the block. To process

cross-shard transactions, users submit transactions on both input shards

and output shards. Given cross-shard transaction tx = {a1 ! b2} between

a sender and a receiver, the sender splits tx to two intra-shard transactions:

tx1
a
= {a1 ! x} and tx2

b
= {x ! b}. Then, the sender sends tx1

a
to shard

#1. Once tx1
a

is included, the shard will create a receipt consisting of the

block’s Merkle branch with tx1
a
, a1, and the receiver of tx2

b
. With this re-

ceipt and block headers of shard #1, any node can verify the status of a1.

The receiver verifies the receipt, and sends tx2
b

together with the receipt to

shard #2. Shard #2 then validates tx2
b

using the receipt, and will include tx2
b

if valid.

3.4 Data layer

We consider the following design choices for the data layer.

• Ledger unit: The irreducible unit in a ledger (e.g., transaction or object).

• Unit allocation: How a ledger unit is allocated to a shard.

24

Table 3.3: Design choices of the data layer.

Led
ger

unit

Unit all
oc.

Conse
nsu

s unit

Part
iti

onin
g

Ord
eri

ng

Elastico Tx Arbitrary Block Replicated Total
Omniledger Object ID Block Sharded Partial
RapidChain Tx Input ID Block Sharded Partial
Chainspace Tx Input ID Tx Sharded Partial
Monoxide Tx Input ID Block Sharded Partial

Zilliqa Tx Arbitrary Block Replicated Total
Ethereum 2.0 Tx SC. ID Block Sharded Partial

• Consensus unit: The item appended to the ledger for each consensus

epoch (e.g., block or transaction).

• Ledger partitioning: Whether each node stores a part of the ledger (sharded)

or the entire ledger (replicated).

• Ordering: How ledger units are ordered (e.g., partial ordering or total

ordering).

Table 3.3 summarises design choices of the data layer made by blockchain

sharding proposals, and we analyse the design trade-offs in ledger parti-

tioning and ordering.

Sharded v.s. replicated. While Elastico and Zilliqa fully replicate the

ledger among shards, other protocols divide the ledger into different shards.

The ledger partitioning has a direct impact on the construction of oracle

C(txx, txy). Replicating ledgers is similar to parallel chains [42]–[45], where

the ledger consists of multiple shards, and nodes execute consensus on these

shards in parallel. With all shards, nodes can verify cross-chain transactions

locally, and C(txx, txy) does not involve cross-shard communication [12],

which we will show is challenging to solve in §3.6. However, replicating

ledgers inevitably introduces O(m) more overhead on communication and

storage, where m is the number of shards.

25

This implies a trade-off between the overhead of cross-shard communi-

cation and storing/synchronising ledgers, parameterised by the portion of

the ledger maintained by a shard, similar to distributed databases. Ethereum

2.0 employs an in-between solution that minimises the overhead and does

not require cross-chain communication: Each node stores a part of the ledger

as well as block headers of the entire ledger, so that any node can verify

cross-shard transactions locally. We consider other possibilities over this

trade-off as future work.

Total ordering v.s. partial ordering. Except for Elastico and Zilliqa that

enforce total ordering on transactions, other protocols only enforce partial

ordering. This is consistent to the design principle of sharding: Trading

ordering requirements for parallel execution. In blockchains, some transac-

tions involve different sets of accounts that are independent of each other,

and thus can remain unordered. To enforce stronger ordering requirements,

the sharded blockchain will require shards to synchronise with each other,

which inevitably introduces extra communication overhead. For example,

Elastico and Zilliqa allow nodes in a special shard called final committee to

merge blocks from all shards to a single one. Consequently, the final com-

mittee works as a barrier [46]: The sharded blockchain stalls only after all

shards send their blocks to the final committee.

3.5 Intra-shard layer

In this section, we evaluate the intra-shard layer. The evaluation shows

that leader election, while being overlooked by existing designs, is in fact

challenging to design and relies on strong assumptions.

3.5.1 Leader election

System setting. Apart from aspects mentioned in §2.1, we also evaluate

the weight for leader election. A node’s weight is in proportion to the chance

26

Table 3.4: Evaluation of intra-shard layer. N/A means the protocol is not
specified, and symbol “-” means the protocol is not needed.

(a) Leader election.
Protocol System setting Correctness Performance

Netw
ork

sy
nc.

Fau
lt toler

an
ce

W
eig

ht

Public
veri

f.

Uniq
uen

es
s

Unpred
ict

ab
ili

ty

Fair
nes

s

Term
in

ati
on

Comm. co
mpl.

Elastico Monarchy [33] Sync. 0‡ - 3 3 3 3 3 O(n2)
Omniledger VRF-based Sync. 1 - 3 3 3 3 3 O(n2)
RapidChain N/A N/A N/A - N/A N/A N/A N/A N/A N/A
Chainspace - - - - - - - - - -
Monoxide PoW-based Sync. 1/2 Comp. 3 7* 3 7† 3 O(n)

Zilliqa VRF-based Sync. 1 Comp. 3 3 3 3 3 O(n2)
Ethereum 2.0 PoS-based N/A N/A Stake 3 N/A N/A N/A N/A O(1)
‡ In Monarchy [33], a Byzantine node to withhold all messages, so that no leader will be
elected.
* The PoW-based leader election does not provide uniqueness. Instead, Nakamoto consen-
sus ensures only one of blocks at the same height is eventually included.
† With selfish mining [47], the adversary can increase its chance of being elected as leader.

(b) Consensus protocols.

Protocol System setting Correctness Performance

Netw
ork

sy
nc.

Fau
lt toler

an
ce

Agree
men

t

Vali
dity

Term
in

ati
on

Fin
ali

ty

Comm. co
mpl.

Elastico PBFT Part. Sync. 1/3 3 3 3 3 O(n2)†

Omniledger ByzCoinX Part. Sync. 1/3 3 3 7‡ 3 O(n)†

RapidChain [38] Sync. 1/2 3 3 3 3 O(n2)
Chainspace PBFT Part. Sync. 1/3 3 3 3 3 O(n2)†

Monoxide Nakamoto Sync. 1/2 3 3 3 7 O(n)
Zilliqa PBFT +

CoSi
Part. Sync. 1/3 3 3 3 3 O(n)

Ethereum 2.0 Casper
FFG

Sync. 1/3 3 3 7⇤ 3 O(n)

† The communication complexity here is the best-case one. In the worst case
where the leader is Byzantine, nodes need to invoke view change protocols,
which incur higher communication complexity (e.g., O(n3) in PBFT).
‡ In ByzCoinX consensus, when the elected leader is Byzantine, then it can break
liveness by not generating any block [48].
⇤ Casper FFG cannot terminate when no block reaches the finalisation threshold
at a certain height [49], [50].

27

of being elected as leader. For example, the weight can be computational

power and financial stake in PoW-based and PoS-based leader election, re-

spectively.

Correctness and performance metrics. We model the leader election for

sharded blockchains based on existing models [19], [51]. Leader election for

blockchain sharding should satisfy the following five properties:

• Public verifiability: Given a node’s public key, its leadership proof and

the system state, anyone can verify whether this node is the leader at

this system state.

• Uniqueness: After election, only one node (in a shard) can provide a

valid leadership proof.

• Unpredictability: For any epoch t, the probability of making an accurate

guess on the leader of any shard at the (t+1)-th epoch is in proportion

to the ratio between the guessed node’s weight and its shard’s total

weight at epoch t.

• Fairness: No node can manipulate its probability of being elected.

• Termination: For every epoch, eventually, there will be a node elected

as leader.

Public verifiability allows nodes to verify the leader’s identity. Unique-

ness ensures that only a single node can become the leader and initiate the

consensus protocol. Unpredictability and fairness prevent the adversary

from corrupting the leader throughout the protocol execution. Termination

prevents nodes in the sharded blockchain to lose liveness forever. The per-

formance metric of the leader election protocol is the communication com-

plexity.

Evaluation and analysis. Table 3.4a summarises our evaluation results.

Our evaluation shows that leader election is overlooked by existing propos-

28

als. Specifically, RapidChain and Ethereum 2.0 require leader election pro-

tocols but do not provide detailed specifications. Ethereum 2.0’s leader elec-

tion protocols samples the leader randomly according to the nodes’ stake,

which can be queried from the ledger and thus is verifiable. Elastico’s

leader election protocol Monarchy [33] incurs O(n2) communication com-

plexity, and a single Byzantine node can stall the protocol by withholding

messages. Monoxide’s PoW-based leader election and consensus protocols

require synchronous networks [52], [53]. Zilliqa elects the node with the

smallest PoW solution in a shard as leader. The process requires an all-to-all

broadcast with O(n2) communication complexity, and requires synchronous

networks in order to determine the timeout for the period of broadcasting

messages. Omniledger’s leader election protocol requires nodes to broad-

cast their VRF outputs, leading to O(n2) communication complexity.

Previous studies show that leader election is challenging in permission-

less settings. Calzado et al. [51] model and evaluate leader election proto-

cols under crash faults and dynamic mobile networks, and show that no

protocol resists against all failures. Boneh et al. [19] formalise Single Secret

Leader Election (SSLE) and propose two protocols, but both protocols rely

on randomness beacon and complex cryptographic primitives such as Fully

Homomorphic Encryption and Indistinguishable Obfuscation.

3.5.2 Consensus

Given the rich literature in consensus [54]–[57], we summarise cor-

rectness properties and performance metrics for consensus protocols, and

mention previously identified issues of consensus protocols used by these

blockchain sharding protocols. We consider system settings mentioned in

§2.3, and evaluate consensus protocols against the following properties [21]:

• Agreement: No two honest nodes decide differently.

29

• Validity: The value decided must be a value proposed.

• Termination: All honest nodes eventually decide.

• (Optional) Finality [58]: If a correct node appends a block B before an-

other block B0 to its local blockchain, then no correct node appends B0

before B to its local blockchain.

We consider a single performance metric, namely the communication

complexity. Table 3.4b summarises our evaluation on consensus. Note that

fault tolerance capacity is quantified by voting power, of which the defi-

nition depends on protocol designs. It shows that all consensus protocols

either require O(n2) communication complexity or fail to satisfy termination,

except for Monoxide’s Nakamoto consensus which assumes synchronous

networks. To summarise, Omniledger’s ByzCoinX consensus protocol does

not satisfy termination, as it can lose liveness when the leader is Byzan-

tine, as pointed out by Yu et al. [48]. Ethereum 2.0’s Casper FFG consen-

sus protocol executes upon a special smart contract, where nodes (aka val-

idators) post their votes to agree on the next block. Casper FFG assumes

synchronous networks neu2021ebb, and does not satisfy termination, as it

cannot terminate when none of the blocks at a certain height reaches the

finalisation threshold neu2021ebb, [49], [50].

3.6 Cross-shard layer

In this section, we evaluate the cross-shard layer. For CC, we find that

existing sharded blockchains do not separate Concurrency Control (CC) and

Atomic Commit (AC), and focus less on CC compared to AC. We evaluate

CC based on well-defined models in database literature [22]–[24], and anal-

yse the design space of CC for sharded blockchains. For AC, we show that

cross-shard transactions require a variant of AC called Non-Blocking AC

(NB-AC) [25]. Our evaluation in the NB-AC model shows that cross-shard

30

communication requires either a centralised coordinator or shared informa-

tion among shards, which is consistent with a recent work [12]. We also

analyse a trade-off between communication overhead and timing of consis-

tency [26].

3.6.1 Concurrency Control

System setting. CC does not rely on any of the system setting aspects

discussed in §2.3. A CC protocol specifies a set of rules that should be fol-

lowed when appending a transaction to the ledger. Any node can verify

whether a transaction satisfies these rules for a ledger, without relying on

communication with other nodes or trusted third parties.

Correctness and performance. CC’s correctness includes safety and live-

ness. Safety defines the isolation guarantee of transactions. There are vari-

ous isolation levels [22]. With higher isolation level, concurrent transactions

have less impact on each other, but fewer transactions can be executed con-

currently. There are two widely adopted isolation levels, namely serialisabil-

ity (I-S) and snapshot isolation (I-SI). Serialisability is the strongest isolation

guarantee, and snapshot isolation is a relatively weaker one.

• Serialisability (I-S) [23]: For any set of transactions (that might be ex-

ecuted concurrently) and their execution result r, there exists a se-

quence of them such that its execution result is equivalent to r.

• Snapshot isolation (I-SI) [24]: For any transaction tx, 1) all read opera-

tions on an object in tx return the same result (e.g., the result of the

first read operation), and 2) iff no other concurrent transactions mod-

ify objects read by tx, tx will commit, otherwise tx will rollback.

The key difference between them is that snapshot isolation does not

prevent the write skew anomaly, where two transactions (tx1, tx2) simulta-

neously read the same set of objects a and b, simultaneously make disjoint

31

Table 3.5: Evaluation of Concurrency Control.

Protocol Correctness Performance

Safe
ty

Liven
es

s No

cro
ss-

sh
ard

co
mm.

Elastico Coordinator I-S† 3 7
Omniledger PCC I-S 3* 3
RapidChain PCC I-S 3* 3
Chainspace OCC I-SI‡ 3 7
Monoxide PCC I-S 3* 3

Zilliqa Coordinator I-S 3 7
Ethereum 2.0 PCC I-S 3* 3
* Users have incentive to finish cross-shard transactions.
† I-S means serialisability. ‡ I-SI means snapshot isolation.

updates (e.g., tx1 updates a and tx2 updates b), and simultaneously commit,

without noticing the latest updates made by each other. Serialisability is

usually achieved by pessimistic CC (PCC), while snapshot isolation is usu-

ally achieved by optimistic CC (OCC).

Liveness is defined the same way as termination [59]: Transactions will

eventually terminate rather than halting halfway. To conclude, we evaluate

CC against the following two properties:

• Safety: The protocol guarantees a certain isolation level.

• Liveness: The execution of any transaction will eventually terminate.

For CC’s performance, we evaluate whether nodes in different shards

need to communicate with each other.

Taxonomy of CC. Existing studies [60], [61] categorise CC protocols into

four types, namely coordinator-based CC, timestamp-based CC (T/O, aka

deterministic scheduling) pessimistic CC (PCC), and optimistic CC (OCC).

Coordinator-based CC employs a centralised coordinator to order all trans-

actions and resolve conflicts between them. Timestamp-based CC employs

a global clock to timestamp transactions, and processes transactions chrono-

logically. PCC and OCC both rely on locks, but make different assumptions

32

on the conflict rate of transactions. PCC assumes most transactions are con-

flicted, and follows the two-phase locking (2PL) approach: A transaction

locks its accessed objects, then modifies objects, and finally releases locks on

the objects. OCC assumes few transactions are conflicted, and follows the

modify-validate-commit/rollback approach: A transaction modifies objects

while saving a copy of original objects, then verifies if other transactions

modify these objects, and finally commits modifications if no other transac-

tion does this, otherwise rolls back modifications.

Evaluation and analysis. Table 3.5 summarises our evaluation results on

CC. Elastico and Zilliqa use coordinated-based CC that achieves serialisabil-

ity and liveness, and requires cross-shard communication. The final com-

mittee receives blocks from all shards, and merge all blocks to a single one

where transactions are ordered. Omniledger, RapidChain, Monoxide and

Ethereum 2.0 use PCC that achieves serialisability, and requires no cross-

shard communication. They achieve liveness by using incentive: In order

to receive coins, users have to submit their cross-shard transactions to out-

put shards. Chainspace’s S-BAC protocol implements an OCC protocol that

achieves snapshot isolation and liveness. The OCC protocol forbids concur-

rent write operations, and detecting them requires cross-shard communica-

tion.

Design space of CC. According to Table 3.5, existing sharded blockchains

use any of them except for T/O. The reason why T/O is not used is that

there is no global clock in permissionless networks. Without a global clock,

timestamps cannot be reliably verified. Consequently, the adversary can

create transactions with any timestamps to re-order transactions arbitrarily,

breaking the isolation guarantee.

Coordinator-based CC is less complex to design than PCC and OCC, as

the coordinator has a complete view of all transactions. However, coordinator-

based CC achieves lower throughput limit than PCC and OCC. In coordinator-

33

based CC, the coordinator has to wait for all shards to produce blocks, then

merge all blocks to a single block and broadcast it. The waiting process

reduces the concurrency level, and thus the throughput limit.

PCC and OCC make different assumptions on the rate of conflicted

transactions: With more conflicted transactions, PCC outperforms OCC,

and vice versa. Apart from the conflict rate assumption, OCC requires

shards to communicate with each other in order to detect conflicted write

operations before including transactions, while PCC does not require cross-

shard communication. In addition, OCC allows to roll back transactions,

and the rolling back mechanism incurs more complexity in protocol design.

3.6.2 Atomic Commit

System setting. We consider aspects mentioned in §2.3.

Correctness. Apart from the previously known replay attack [62], we iden-

tify three new attacks on the Atomic Commit (AC) for sharded blockchains,

allowing us to introduce the required correctness properties. The four at-

tacks are as follows.

1) Equivocation (Figure 3.1a) The adversary submits two conflicted cross-

shard transactions to two shards (e.g., aborting and committing a cross-

shard transaction on shard #1 and #2, respectively). Without cross-

shard communication or the knowledge of the shard’s ledger, two

transactions will both be committed, breaking the agreement property.

2) Message withholding attack (Figure 3.1b) The adversary, who might be

a user or a node, withholds some messages that should be sent to

shards, in order to stop cross-shard transactions from being processed.

3) Replay attack [62] (Figure 3.1c) The adversary probes a cross-shard trans-

action, then replays it to the involved shards. In permissionless net-

works, nodes cannot distinguish whether their received messages are

34

Commit
Fake

commit

Start End

Forged
proof

Cross-shard tx

Shard #2

Shard #1

(a) Equivocation. The adversary fakes
tx that does not exist on shard #1, and
submits tx to shard #2 with a fake proof
that shard #2 includes tx.

Commit

Start

Keep
withholding

Cross-shard tx

(b) Messaging withholding. After sub-
mitting tx to shard #1, the adversary
keeps withholding tx on shard #2 so
that tx cannot terminate.

Commit

Commit

Start End
Replay

Probe

Adversary

Cross-shard tx

(c) Replay. The adversary probes and
replays tx on shard #2. Without proper
AC, object b2 can be locked, and/or ob-
ject a1 can be double-spent.

Commit

Commit

Start End

Malicious
fork

Cross-shard tx

(d) Publish-revert. After submitting tx
to both shards, the adversary creates a
longer fork that reverts tx on shard #1,
so that he can take object a1 as input
again.

Figure 3.1: Four possible attacks on Atomic Commit (AC). We use cross-
shard transaction tx = {a1 ! b2} as an example.

honest but delayed, or malicious. Such replayed messages can lead to

two scenarios. The first scenario (e.g., in Chainspace) is that the victim

shard considers the replayed transaction to be malicious so rejects it.

The second scenario (e.g., in Omniledger, Rapidchain, and Monoxide)

is that shards will have conflicted views on the replayed transaction.

4) Publish-revert attack (Figure 3.1d) In probabilistic consensus protocols

such as Nakamoto consensus, a transaction might be included first

and reverted later. Given a sharded blockchain with probabilistic con-

sensus, it is possible that a cross-shard transaction is included in out-

put shards but is reverted in input shards. Consequently, shards have

conflicted views on the transaction.

35

To resist against these attacks, AC in sharded blockchains should pro-

vide the same guarantee as Non-Blocking AC (NB-AC) [25], an AC variant

that additionally satisfies termination. NB-AC satisfies the following prop-

erties.

• Agreement: For any cross-shard transaction, all involved shards have

the same decision on it.

• Termination: For any cross-shard transaction, all involved shards even-

tually decide on it.

• Abort-validity: A cross-shard transaction will be aborted iff at least one

involved shard votes to abort it.

• Commit-validity: A cross-shard transaction will be included iff all in-

volved shards vote to include it.

Agreement, abort-validity and commit-validity jointly provide resis-

tance against transaction forging attacks. Termination provides resistance

against message withholding attacks. Agreement and termination jointly

provide resistance against replay attacks. Agreement provides resistance

against publish-revert attacks.

Performance. We evaluate two performance metrics, namely communica-

tion complexity and timing of consistency. We consider three levels of timing

of consistency [63]:

• Strict consistency: Transactions will be seen by all nodes once included;

• Casual consistency: For every two casually related transactions txx <

txy where txy is valid only when txx is included, then txy will not be

included unless txa is included.

• Eventual consistency: Transactions will be seen by relevant nodes but

without any timing guarantee.

36

Table 3.6: Evaluation of Atomic Commit. Symbol “-” means the protocol
has no name.

System setting Correctness Performance

Protocol Netw
ork

sy
nc.

Fau
lt toler

an
ce

Agree
men

t

Term
in

ati
on

Abort-
Vali

dity

Commit-
Vali

dity

Comm. co
mpl.

Tim
in

g

Elastico - Part. Sync. 1/3 3 3 3 3 O(n2) Strict
Omniledger Atomix Async. 1/3 7er 7w 3 3 O(n) Eventual
RapidChain - Async. - 7er 7w 3 3 O(1) Eventual
Chainspace S-BAC Part. Sync. 1/3 3 3 3 7r O(n2) Casual
Monoxide - Async. - 7erp 7w 3 3 O(1) Eventual

Zilliqa - Part. Sync. 1/3 3 3 3 3 O(n) Strict
Ethereum 2.0 - Async. - 3 7w 3 3 O(1) Eventual
e vulnerable to equivocations. w vulnerable to message withholding attacks, but with limited impacts on security.
r vulnerable to replay attacks. p vulnerable to publish-revert attacks, can be fixed by a simple countermeasure.

Evaluation of correctness properties. Table 3.6 summarises our evaluation

results on AC. Omniledger, RapidChain and Monoxide are vulnerable to

equivocations: The adversary, who acts as a user, can commit a cross-shard

transaction on a shard while aborting this cross-shard transaction on the

other shard. As they do not require shards to communicate with each other

when verifying cross-shard transactions, the cross-shard trasnaction will be

committed on a shard and aborted on the other shard, breaking agreement.

As analysed in the paper [62], in Chainspace the replay attack can make

a cross-shard transaction to be rejected even all shards commit it, breaking

the commit-validity; and in Omniledger, RapidChain and Monoxide the re-

play attack can create conflicted views on cross-shard transactions for dif-

ferent shards, breaking agreement.

The original Monoxide AC protocol is vulnerable to the publish-revert

attack: The adversary can allow cross-shard transactions to be included to

output shards while reverting them in input shards, breaking agreement.

We suggest a simple verification rule as the countermeasure: A cross-shard

transaction is valid in output shards only when it becomes deep enough

(and thus irreversible) in input shards. The deepness can be verified by

attaching the block headers after a cross-shard transaction in input shards.

Omniledger, RapidChain, Monoxide and Ethereum 2.0’s AC protocols

are vulnerable to message withholding attacks: The adversary, who acts as

37

a user, can withhold cross-shard transactions on output shards, breaking

termination. Nevertheless, such withholding only affects the adversary’s

coins and does not affect other nodes or the protocol execution. In order to

receive coins, users are incentivised to finish cross-shard transactions.

Evaluation of performance metrics. Elastico’s AC requires nodes in the fi-

nal committee to execute a PBFT consensus, and Chainspace’s S-BAC proto-

col requires nodes to execute PBFT consensus for multiple times, both lead-

ing to O(n2) communication complexity. Omniledger and Zilliqa’s AC pro-

tocols require nodes in involved shards to execute the CoSi-based PBFT con-

sensus, leading to O(n) communication complexity. RapidChain, Monoxide

and Ethereum’s AC protocols do not need nodes to execute extra intra-shard

consensus, leading to O(1) communication complexity.

In Elastico and Zilliqa, after all shards send their blocks to the final

committee, the final committee merges all blocks and broadcasts the merged

block to all nodes, leading to strict consistency. In Chainspace, each cross-

shard transaction invokes an AC among only involved shards, leading to ca-

sual consistency. In Monoxide and Chainspace, cross-shard transactions are

split into and processed by different shards independently without cross-

shard communication, leading to eventual consistency.

Challenges of achieving agreement. Our evaluation shows that achieving

agreement is challenging, due to equivocations and replay attacks. In fact,

when shards maintain different parts of the ledger, achieving agreement be-

tween shards is proven to be impossible without a trusted third party [12].

In a nutshell, when blockchains control disjoint sets of information, solving

cross-chain communication, i.e., making blockchains to agree on something,

is equivalent to solve fair exchange, which is proven impossible without a

trusted third party [64]. The impossibility also applies to cross-shard com-

munication when shards maintain different parts of the ledger.

38

To workaround the impossibility, sharded blockchains have to either

employ a trusted party or enforce shards to share some information. Elas-

tico and Zilliqa employ a final committee that stores the entire ledger and

coordinates all cross-shard transactions. This requires the final committee to

be trustworthy, and introduces non-negligible storage and communication

overhead. Ethereum 2.0 requires nodes to store block headers and work as

lightweight clients of all shards, so that every node can verify all cross-shard

transactions.

Timing of consistency v.s. communication overhead. Elastico and Zilliqa

achieve strict consistency by enforcing all shards to synchronise with each

other in every epoch. Chainspace achieves casual consistency by enforcing

shards to synchronise with each other upon each cross-shard transaction

involving them. Consequently, only a subset of shards needs to synchro-

nise with each other in every epoch, leading to less communication over-

head than Elastico and Zilliqa. Monoxide achieves eventual consistency by

allowing shards to process cross-shard transactions independently and con-

currently, without communicating with each other. This is consistent with

the consistency-performance trade-off in traditional databases [65] and dis-

tributed systems [66], [67], where enforcing higher consistency level incurs

more overhead and reduces performance.

3.7 System-level analysis

In this section, we provide the system-level evaluation on sharded blockchains

based on the results in §3.4-3.6. The evaluation results in Table 3.1 show

that these protocols fail to satisfy certain correctness properties, or meet

them at the price of strong assumptions or at least O(n2) communication

complexity. We also identify an overlooked design choice: The coherence

of system settings across layers. Namely, different protocol layers make

different assumptions on the system settings. We show that for each eval-

39

uated sharded blockchain, replacing subprotocols to those with consistent

assumptions will improve its security and/or performance.

3.7.1 Evaluation

System setting. If a system consists of multiple protocols, then it remains

secure only when all assumptions made by its protocols hold, otherwise

some protocols cannot achieve all correctness properties [27], compromising

the entire system. Therefore, the system remains secure under the strongest

assumptions made by its protocol layers. Given this observation, we derive

the system settings of the sharded blockchains from the individual layer

evaluation.

According to the evaluation in §3.4-3.6, all evaluated sharded blockchains

assume different system settings on different layers. In addition, Elastico

and RapidChain cannot tolerate a single Byzantine node, otherwise the live-

ness will be broken. Specifially, if the adversary can corrupt a single node

in Elastico or RapidChain, then it can stall the leader election protocol or

the Feldman Verifiable Secret Sharing protocol [68] in its shard allocation

protocol in a shard, respectively. Consequently, the shard will stall and all

transactions involved in this shard will not be processed, breaking liveness

of the sharded blockchain.

Correctness properties. We consider correctness properties defined in

Chapter 2, namely persistence, liveness, and validity. All sharded blockchains

satisfy persistence. In Omniledger and Ethereum 2.0, as the adversary can

break the consesnus’ termination to stall shards according to analysis in

§3.5.2, they do not satisfy liveness. To fix the liveness issue, one has to choose

a consensus protocol that satisfies all correctness properties. Note that such

consensus protocols require at least O(n2) communication complexity ac-

cording to the well-known lower bound result [69]. In Omniledger, Rapid-

Chain, Chainspace and Monoxide, as the adversary can break the Atomic

40

Commit’s agreement to create conflicted cross-shard transactions in differ-

ent shards according to analysis in §3.6.2, they do not satisfy validity. To fix

the validity issue, one has to choose an Atomic Commit protocol that satis-

fies all correctness properties and works around the impossibility result [12]

as analysed in §3.6.2.

3.7.2 Coherence of system settings

Based on the evaluation, we observe a design choice that is overlooked

by existing proposals, namely the coherence of system settings across lay-

ers. In particular, different protocol layers make different system settings,

without corresponding architectural guarantees. Consequently, unless a hy-

brid architecture were used, assuming different system settings across lay-

ers will weaken security and/or reduce performance [27]. In the context of

blockchain sharding, to remain correct on all layers, the sharded blockchain

can only work in the environment that satisfies the strongest system setting

made by protocol layers. Otherwise, some protocol layers cannot be fully

correct, and the entire sharded blockchain can be compromised.

If the sharded blockchains are deployed in the strongest system settings

assumed in Table 3.1, then by replacing protocols relying on weaker sys-

tem settings with those relying on the strongest system setting, the sharded

blockchain can achieve better performance without compromising security.

Elastico, Omniledger and Zilliqa can improve the performance by replacing

the partially synchronous PBFT consensus protocol with synchronous ones.

If Omniledger instantiates the Sybil-resistance mechanism by using an iden-

tity authority as described in the paper [4], then Omniledger can also use

it to coordinate cross-shard transactions in order to improve the timing of

consistency and the communication overhead of Atomic Commit. Monox-

ide and Ethereum 2.0 can improve the performance by replacing the asyn-

41

chronous shard allocation and Atomic Commit protocols with synchronous

ones.

If the sharded blockchains are deployed in weaker system settings than

those in Table 3.1, then they cannot achieve some correctness properties.

For example, if the network is partially synchronous, then some sharded

blockchains lose some correctness properties. Specifically, Elastico, Om-

niledger, and Zilliqa’s leader election protocols cannot achieve termination,

breaking the system’s liveness. RapidChain, Monoxide and Ethereum 2.0’s

consensus protocol cannot achieve agreement, breaking the system’s persis-

tence.

42

Chapter 4

Analysing and improving shard allocation proto-

cols for sharded blockchains

4.1 Introduction

Our evaluation in Chapter 3 shows that existing permissionless sharded

blockchains overlook the design of allocating nodes into different shards.

While this problem can be solved by various approaches in traditional per-

missioned settings [70]–[74], it is challenging in permissionless sharded blockchains.

First, the adversary can launch single-shard takeover attacks (aka 1% attacks) [75],

[76] by gathering its nodes to a single shard and compromise a shard’s con-

sensus. As voting power is split among shards, launching such attacks re-

quires much fewer nodes compared to 51% attacks in non-sharded blockchains.

To resist against single-shard takeover attacks, sharded blockchains should

1) prevent nodes from choosing shards freely, and 2) achieve load balance

where each shard contains a comparable number of nodes. Otherwise, shards

with fewer nodes can be compromised with less effort. Without a global

view of the network and centralised membership management, a common

solution is to randomly allocate nodes into shards.

On the other hand, the permissionless setting inherently has node churn [77],

where nodes may join or leave the system at any time. To achieve load bal-

ance under node churn, permissionless sharded blockchains need to adap-

tively re-balance nodes over time. An intuitive solution is to randomly shuf-

fle all nodes for every epoch. However, when a node is allocated to a new

shard, it needs to synchronise the new shard’s ledger and find new peers,

which introduces non-negligible overhead and makes the node temporarily

43

Shard 3

Shard 2

Shard 4

Shard 1

Shard 3

Shard 2

Shard 4

Shard 1

shard
allocation

node
churn

Joining
nodes

Leaving
nodes

rebalance

Shard 3

Shard 2

Shard 4

Shard 1

Moving
nodes

Figure 4.1: An example of shard allocation. New nodes (in blue) may join
the system and existing nodes (in red) may leave the system. After a state
update, a subset of nodes (in yellow) may be relocated.

unavailable. The blockchain community recognises this issue as the reshuf-

fling problem [78], [79].

To address the above issues, permissionless sharded blockchains should

employ a mechanism that allocates nodes into shards securely, randomly,

and dynamically. We refer to such primitive as shard allocation, of which the

intuition is depicted in Figure 4.1. Five nodes are allocated in shard #3 and

four of them later left the system. To prevent the only node in shard #3 from

becoming a single point of failure, the system has to allocate some nodes to

shard #3 to re-balance the shards.

A systematic study on shard allocation is still missing. Existing works

on permissionless sharded blockchains focus on either the system-level de-

sign [3]–[8], [10], [31], [80] or other components such as ledger structure [81]

and cross-shard communication [12]. Other peer-to-peer protocols such as

distributed hash tables [82], [83] and distributed slicing [84]–[87] cannot be

directly adapted for this primitive, as they usually assume rational adver-

sary and choose liveness over safety.

Contributions. This chapter provides the first study on shard allocation,

the overlooked core component for permissionless shared blockchains. In

particular, we formalise the shard allocation protocol, evaluate the shard

allocation protocols of existing blockchain sharding protocols, observe in-

sights and propose WORMHOLE, a correct and efficient shard allocation pro-

tocol for permissionless blockchains. Our contributions are summarised as

follows.

44

1. We provide the first study on formalising the shard allocation proto-

col for permissionless blockchains (§4.2). The formalisation includes

the syntax, correctness properties and performance metrics, and can

be used as a framework for evaluating shard allocation protocols.

2. Based on our framework, we evaluate the shard allocation protocols

in seven state-of-the-art permissionless sharded blockchains (§4.3),

including five academic proposals Elastico [3] (CCS’16), Omniledger [4]

(S&P’18), RapidChain [5] (CCS’19), Chainspace [6] (NDSS’19), and

Monoxide [7] (NSDI’19), and two industry projects Zilliqa [8] and Ethereum

2.0 [9]. Our results show that none of these protocols is fully correct or

achieves satisfactory performance.

3. We observe and prove the impossibility of simultaneously achiev-

ing optimal self-balance and operability (§4.4.1). Self-balance repre-

sents the ability to re-balance the number of nodes in different shards;

and operability represents the system performance w.r.t. the cost of re-

allocating nodes to a different shard. While this impossibility has been

conjectured [78], [79] and studied informally [4], we formally prove

it is impossible to achieve optimal values on both, and quantify the

trade-off between them. All existing sharded blockchains except for

Omniledger make extreme choices on either self-balance or operabil-

ity, leading to serious security or performance issues.

4. We identify and define a property memory-dependency that is neces-

sary for shard allocation protocols to parameterise the trade-off be-

tween self-balance and operability (§4.4.2). Memory-dependency (aka

non-memorylessness in signal processing literatures [88]) specifies that

the shard allocation relies on both the current and previous system

states. The parameterisation support opens a new in-between design

space and makes the system configurable for different application sce-

45

narios. We formally prove the necessity of memory-dependency for sup-

porting such parameterisation.

5. We propose WORMHOLE, a correct and efficient shard allocation pro-

tocol (§4.5), and analyse how to integrate WORMHOLE into sharded

blockchains (§4.6). We formally prove that WORMHOLE achieves all

correctness properties, and supports parameterisation of self-balance

and operability. We also classify existing sharded blockchains, and

analyse how to integrate WORMHOLE into each type of them.

6. We implement WORMHOLE, and evaluate its overhead and perfor-

mance metrics in real-world settings (§4.7). We implement WORM-

HOLE in Rust, and evaluate the overhead of integrating WORMHOLE

into different designs of sharded blockchains. We simulate WORM-

HOLE with 128 shards and 32768 nodes, and evaluate the dynamic load

balance and operability under different churn conditions. The results

show that WORMHOLE achieves consistent load balance and operabil-

ity with our theoretical analysis, and can recover quickly from load

imbalance.

4.2 Formalising shard allocation

This section defines shard allocation protocol, including its system model,

syntax, correctness properties, and performance metrics.

4.2.1 System model

A sharded blockchain consists of a fixed number of m shards, each of

which maintains a ledger formed as a blockchain, and processes transac-

tions concurrently. Each node i in the system has a pair of secret key ski

and public key pki, and is identified by pki. The sharded blockchain pro-

ceeds in epochs. For each epoch t, new nodes and existing nodes execute

46

the shard allocation protocol to obtain a new shard membership w.r.t. the

current system state stt. Nodes find peers in the same shard by exchanging

shard memberships/proofs, then execute consensus with peers to agree on

new blocks. Each block includes the block proposer’s shard membership

and proof, apart from other data common in non-sharded blockchains. Let

nt

k
be the number of nodes in shard k 2 [m] and nt =

P
m

k=1 n
t

k
be the total

number of nodes in epoch t, where [m] = {1, 2, . . . ,m}.

Epoch and global system state. An epoch t begins when a new global and

unique system state stt is available. How and when a system state is gen-

erated depends on the concrete protocol design. For example, Elastico [3],

Omniledger [4], RapidChain [5] and Ethereum 2.0 [9] use a decentralised

randomness beacon protocol to generate random outputs as system states;

Zilliqa [8] merges blocks from all shards in an epoch, then extracts a global

system state from the merged block.

Most sharded blockchains demand that the system state can be ac-

cessed by nodes securely and synchronously. We make the same assump-

tion in line with these proposals. To focus on analysing the shard allocation

protocol ⇧ShardAlloc, we assume the system state generation protocols are se-

cure.

Sybil resistance. To defend against Sybil attacks where the adversary

spawns numerous nodes to compromise the consensus, permissionless sharded

blockchains must employ a Sybil-resistant mechanism. For example, Elas-

tico, RapidChain, and Zilliqa require nodes solving PoW puzzles to obtain

shard memberships; Monoxide and Ethereum 2.0 employ PoW-based and

Proof-of-Stake (PoS)-based Nakamoto-style consensus; and Omniledger sup-

ports any Sybil-resistant mechanisms, and instantiates it with a trusted iden-

tity authority. Among these Sybil resistance mechanisms, Nakamoto-style

consensus requires network synchrony and certain fault tolerance capac-

ity [89], affecting the sharded blockchain’s system model.

47

Node churn. Node churn [77] happens at any point of the protocol exe-

cution: some new nodes join and some existing nodes leave the sharded

blockchain. As we study shard allocation across epochs, we consider node

churn happens at the end of each epoch for simplicity. Let ↵ and � be the

joining rate and leaving rate, respectively. At the end of epoch t, ↵tnt new

nodes will join and �tnt existing nodes will leave the sharded blockchain.

For two consecutive epochs t and t+ 1, nt+1 = (1� �t + ↵t)nt.

Network model. The network model concerns the timing guarantee of de-

livering messages. Depending on different proposals’ settings, the network

model is either synchrony, partial synchrony [17], or asynchrony. A network

is synchronous if the adversary can delay a message up to a known finite

time bound �; is asynchronous if the adversary can delay a message arbi-

trarily without any known time bound; and is partially synchronous [17] if

it is asynchronous before an unknown Global Stabilisation Time (GST) and

becomes synchronous after GST.

We say ⇧ShardAlloc is synchronous if the adversary can break its safety by

delaying messages beyond �; is partially synchronous if safety is guaran-

teed before GST and both safety and liveness are guaranteed after GST; and

is asynchronous if a correct node can calculate its shard membership locally

without communicating with other nodes (assuming synchronous access to

system states).

Adversary. The adversary aims to break some of ⇧ShardAlloc’s correctness

properties that we will define in §4.2.3. Let � be the fault tolerance capacity

of ⇧ShardAlloc, where � is no bigger than the consensus protocol’s fault toler-

ance capacity . Otherwise, even when the adversary’s nodes are evenly

distributed among shards, the adversary can compromise every shard. The

adversary is adaptive: at any time, it can corrupt any set of less than �nt

nodes, i.e., make these nodes Byzantine, where t is the epoch number. The

adversary can read internal states of corrupted nodes, and direct corrupted

48

nodes to arbitrarily forge, modify, delay, and/or drop messages from them.

The adversary can read and/or delay messages from correct nodes. The

delay period is subjected to the network model assumed by the sharded

blockchain.

4.2.2 Syntax

We formally define the shard allocation protocol as follows.

Definition 4.2.1 (Shard allocation ⇧ShardAlloc). A shard allocation protocol

⇧ShardAlloc is a tuple of polynomial time algorithms

⇧ShardAlloc = (Setup,Gen, Join,Update,Verify)

Setup(�)! pp : On input the security parameter �, outputs the public pa-

rameter pp.

Gen(pp)! (sk, pk): A probabilistic function, which on input public param-

eter pp, produces a secret key sk and a public key pk.

Join(pp, ski, stt)! (k, ⇡i,stt,k) : On input secret key ski, public parameter pp

and state stt, outputs the ID k of the shard assigned for node i, the

proof ⇡i,stt,k of assigning i to k at stt. The input may also be public key

pki of node i, depending on concrete constructions. This also applies

to Update(·).

Update(pp, ski, stt, k, ⇡i,stt,k, stt+1)! (k0, ⇡i,stt+1,k
0) : On input the public pa-

rameter pp, secret key ski, state stt, shard index k, proof ⇡i,stt,k and the

next state stt+1, outputs the identity k0 of the newly assigned shard for

i, a shard assignment proof ⇡i,stt+1,k
0 .

Verify(pp, pki, stt, k, ⇡i,stt,k)! {0, 1} : Deterministic. On input public param-

eter pp, i’s public key pki, system state stt, shard index k and shard

assignment proof ⇡i,stt,k, outputs 0 (false) or 1 (true).

49

Algorithm 1: Typical execution of shard allocation protocol
⇧ShardAlloc in a sharded blockchain, from node i’s perspective.

(kt,⇡i,stt,kt) ⇧ShardAlloc.Join(pp, ski, stt) // Join in epoch t
st⇤, k⇤,⇡⇤ stt, kt,⇡i,stt,kt // State, shard and proof in epoch t
repeat

Wait for a new state st+
// Update shard membership and proof

(k⇤,⇡i,st⇤,k⇤) ⇧ShardAlloc.Update(pp, ski, st⇤, k⇤,⇡i,st⇤,k⇤ , st+)
st⇤ st+
// Messages may attach k⇤ and ⇡i,st⇤,k⇤

Execute consensus with peers in shard k⇤
until node i leaves the system

Algorithm 1 describes the typical execution of ⇧ShardAlloc in a sharded

blockchain, from a node i’s perspective. ⇧ShardAlloc.Setup(�) is executed once

at the beginning of the protocol execution. To join the system in epoch t,

node i executes ⇧ShardAlloc.Join(·) to obtain a shard membership k⇤ and the

associated membership proof ⇡i,st⇤,k⇤ , so that it can execute consensus with

peers in shard k⇤. Upon epoch t+1, node i needs to execute⇧ShardAlloc.Update(·)

to update its shard membership. Other nodes can execute ⇧ShardAlloc.Verify(·)

to verify whether node i has a valid and updated shard membership.

4.2.3 Correctness properties

We consider three correctness properties for ⇧ShardAlloc, namely liveness,

allocation-randomness, and unbiasibility, plus an optional property allocation-

privacy.

Liveness. This property ensures that correct nodes can obtain valid shard

memberships timely: Given a system state, all correct nodes will finish com-

puting Update(·) (or Join(·) if the node newly joins the system) before the

next epoch. Otherwise, nodes cannot find their shards or participate in con-

sensus, and consequently, the block producing is stalled.

Definition 4.2.2 (Liveness). A shard allocation protocol ⇧ShardAlloc satisfies

liveness iff for every epoch t, every correct node i will finish computing

⇧ShardAlloc.Update(pp, ski, stt�1, kt�1, ⇡i,stt�1,kt�1 , stt) (or⇧ShardAlloc.Join(pp, ski, stt)

50

if t = 1) before epoch t+1 such that⇧ShardAlloc.Verify(pp, pk,+i, stt, kt, ⇡i,stt,kt) =

1, where pp is the public parameter, ski is node i’s secret key, (stt�1, kt�1, ⇡i,stt�1,kt�1)

and (stt, kt, ⇡i,stt,kt) are the system state, node i’s allocated shard and node

i’s shard membership proof in epoch t� 1 and t, respectively.

Allocation-randomness. This property ensures that every node is allo-

cated to a random shard [3], [4], [8]. Otherwise, if the adversary can predict

shard allocation results, then it can launch the single-shard takeover attack by

corrupting nodes that will be allocated to a specific shard. We stress that

allocation-randomness specifies the shard allocation process for every node

independent of others, rather than specifying a global permutation of all

nodes’ shard allocation results, which is impossible when node churn exists

and nodes have no global view on the network. Such independent decisions

may lead to some extreme cases where some shards are almost empty, but

with negligible probability Example3.10, [90].

We consider two parts of allocation-randomness, namely join-randomness

and update-randomness. Join-randomness specifies that a newly joined node

is assigned to each shard with equal probability.

Definition 4.2.3 (Join-randomness). A shard allocation protocol ⇧ShardAlloc

with m shards satisfies join-randomness iff for any secret key ski, public

parameter pp and state stt, the probability that node i is allocated to shard k

is

Pr
h
k = k0 (k0,⇡i,stt,k0) Join(pp, ski, stt)

i
=

1

m
± ✏

where k, k0 2 [m], and ✏ is a negligible value.

Update-randomness specifies the probability distribution of existing

nodes’ shard allocation. To remain balanced under churn, existing nodes

may need to move to other shards upon state update. Moving to a new

shard is computation- and communication-intensive, as a node needs to

synchronise and verify the new shard’s ledger, which can take hundreds

51

...

Figure 4.2: Update-randomness. After executing ⇧ShardAlloc.Update(·), the
probability that a node stays in its shard (say shard 1) is �, and the prob-
ability of moving to each other shard is 1��

m�1 .

of Gigabytes [4], [91]–[93]. If a large portion of nodes move to other shards

upon each state update, then this introduces non-negligible overhead and

may make the system unavailable for a long time. To avoid this, only a small

subset of nodes should be moved within each state update. We define � as

the probability that a node stays in the same shard after a state update. We

define update-randomness as follows.

Definition 4.2.4 (Update-randomness). A shard allocation protocol⇧ShardAlloc

with m shards satisfies update-randomness iff there exists � 2 [0, 1) such

that for any k 2 [m], secret key ski and public parameter pp, the probability

that node i updates its shard membership from shard k at state stt to shard

k0 at state stt+1 is

Pr

"
k = k0

(k0,⇡i,stt+1,k
0)

Update(pp, ski, stt, k,⇡i,stt,k, stt+1)

#
=

8
<

:
� ± ✏ (k0 = k)

1��

m�1 ± ✏ (k0 6= k)

(4.1)

where k0 2 [m], and ✏ is a negligible value.

When � = 1
m

, ⇧ShardAlloc achieves optimal update-randomness, as all

nodes are shuffled randomly under uniform distribution. This definition is

intuitively depicted in Figure 4.2.

Definition 4.2.5 (Allocation-randomness). A shard allocation protocol satis-

fies allocation-randomness if it satisfies join-randomness and update-randomness.

52

Unbiasibility. This property ensures that the adversary cannot manipulate

the shard allocation results. While allocation-randomness defines the prob-

ability distribution of shard allocation, unbiasibility rules out attacks on ma-

nipulating the probability distribution, e.g., the join-leave attack [94], [95].

Definition 4.2.6 (Unbiasibility). A shard allocation protocol ⇧ShardAlloc satis-

fies unbiasibility iff given a system state, no node can manipulate the proba-

bility distribution of the resulting shard of⇧ShardAlloc.Join(·) or⇧ShardAlloc.Update(·),

except with negligible probability.

Allocation-privacy. This property ensures that no one can learn a node’s

shard membership without the node providing them by itself. Compared

to allocation-randomness, allocation-privacy further prevents the adversary

from computing a node’s membership if the adversary has no access to

the node’s secret key. We consider allocation-privacy to be optional, as it

has both advantages and disadvantages. On the positive side, allocation-

privacy is necessary for the sharded blockchain to resist against the adaptive

adversary: If the adversary cannot learn others’ shard memberships, then it

cannot corrupt nodes in a specific shard, but only a random set of nodes

scattered across shards. On the negative side, allocation-privacy makes

nodes difficult to find peers in the same shard. If the sharded blockchain

employs a consensus protocol that requires broadcasting operations, then

nodes have to execute an extra peer finding protocol [3], [8] before execut-

ing consensus, introducing non-negligible communication overhead. Thus,

if the sharded blockchain is not required to resist against an adaptive adver-

sary, then ⇧ShardAlloc does not need to achieve allocation-privacy.

Definition 4.2.7 (Join-privacy). A shard allocation protocol ⇧ShardAlloc with

m shards provides join-privacy iff for any secret key ski, public parameter

pp, and state stt, without the knowledge of ⇡i,stt,k and ski, the probability of

53

making a correct guess k0 on k is

Pr
h
k0 = k (k,⇡i,stt,k) Join(pp, ski, stt)

i
=

1

m
± ✏

where k, k0 2 [m], and ✏ is a negligible value.

Definition 4.2.8 (Update-privacy). A shard allocation protocol⇧ShardAlloc with

m shards provides update-privacy iff for some � 2 [0, 1), any k 2 [1,m], se-

cret key ski, public parameter pp, and two consecutive states stt and stt+1,

without the knowledge of ⇡i,stt+1,k
0 and ski, the probability of making a cor-

rect guess k00 on k0 is

Pr

"
k00 = k0

(k0,⇡i,stt+1,k
0)

Update(pp, ski, stt, k,⇡i,stt,k, stt+1)

#
=

8
<

:
� ± ✏ (k00 = k)

1��

m�1 ± ✏ (k00 6= k)

(4.2)

where k0, k00 2 [m], and ✏ is a negligible value.

Definition 4.2.9 (Allocation-privacy). A shard allocation protocol ⇧ShardAlloc

satisfies allocation-privacy iff it satisfies both join-privacy and update-privacy.

4.2.4 Performance metrics

We consider three performance metrics, namely communication com-

plexity, self-balance and operability.

Communication complexity. Communication complexity is the amount

of communication (measured by the number of messages) required to com-

plete a protocol [96]. For shard allocation, we consider the communication

complexity of all correct nodes obtaining shard memberships when joining,

and updating shard memberships upon a new epoch. The communication

of synchronising new shards is omitted.

Self-balance. Nodes should be uniformly distributed among shards. Oth-

erwise, the fault tolerance threshold of shards with fewer nodes and the

performance of shards with more nodes may be reduced [7], [97]. Due to

54

node churn and lack of a global view, reaching global load balance is im-

possible for permissionless networks. Instead, the randomised self-balance

approach – where a subset of nodes move to other shards randomly – pro-

vides the optimal load balance guarantee. We quantify the self-balance as the

ability that ⇧ShardAlloc recovers from load imbalance.

Definition 4.2.10 (Self-balance). When executing⇧ShardAlloc on m equal-sized

shards in epoch t (i.e., nt

i
= nt

j
for all i, j 2 [m]), ⇧ShardAlloc is µ-self-balanced

iff

µ = 1� max
8i,j2[m]

|nt+1
i
� nt+1

j
|

nt
(4.3)

Value µ measures the level of imbalance among shards after an epoch.

When µ = 1, ⇧ShardAlloc achieves the optimal self-balance: Regardless of how

many nodes join or leave the system during the last epoch, the system can

balance itself within an epoch.

Operability. To balance shards, ⇧ShardAlloc should move some nodes to

other shards upon each state update. As mentioned, moving nodes to other

shards introduces non-negligible overhead and may make the system un-

available for a long time. Operability was introduced to measure the cost of

moving nodes [4]. We define operability as the probability that a node stays

at its shard upon a state update. If ⇧ShardAlloc satisfies update-randomness

with � (Definition 4.2.4), then its operability is �, i.e., �-operable. When

� = 1, ⇧ShardAlloc is most operable: Nodes will never move after joining the

network.

4.3 Evaluating existing protocols

In this section, we model shard allocation protocols of seven state-of-

the-art sharded blockchains and evaluate them based on our framework.

For simplicity, we refer a sharded blockchain’s shard allocation protocol as

55

Table 4.1: Evaluation of seven permissionless shard allocation protocols.
Red indicates strong assumptions, unsatisfied correctness properties, and
relatively weaker performance. Yellow indicates moderate assumptions and
partly satisfied correctness properties. Green indicates weak assumptions,
satisfied correctness properties, and better performance.

System model Correctness Performance metrics

State updateNetw
ork

model

Tru
ste

d co
mponen

ts

Fau
lt toler

an
ce

Public
veri

fiab
ili

ty

Liven
es

s

Allo
ca

tio
n-ra

nd.

Unbias
ib

ili
ty

Priv
ac

y
o

Jo
in

co
mm. co

mpl.

Update
co

mm. co
mpl.

Self
-b

ala
nce

Opera
bili

ty

Elastico New
block

Sync. - 1/3 3 3 3 7 3 O(nf) O(nf) 1 1
m

Omniledger New
block

Part. sync. - 1/3 3 3 3 3 7 O(n) O(n) ⇠ O(n3) 1� (2m�3)�t
3m�3

2
3

RapidChain Nodes
joining

Sync. - 0 7 3 3 3 7 O(n2) O(n2) 1� �t max(1� ↵tn, 0)

Chainspace - Async. Smart
contracts

 3 3 7 7 7 - O(n) 1� �t -

Monoxide - Async. - 3 3 7 3 7 0 0 1� �t 1
Zilliqa New

block
Async. - 3 3 3 7 3 O(n) O(n) 1 1

m

Ethereum 2.0 - Async. - 3 3 7 3 7 0 0 1� �t 1
WORMHOLE

(§4.5)
New
rand.

Async. Rand.
Beacon⇤

 3 3 3 3 3 O(n) O(n) 1� �t +
�t

2op 1� m�1
m·2op

o Optional property.
⇤WORMHOLE can rely on an external randomness beacon, or allow a group of nodes to run a decentralised randomness beacon protocol similar to
Elastico, Omniledger, RapidChain and Ethereum 2.0.
 is the fault tolerance capacity of the sharded blockchain’s consensus protocol.

the sharded blockchain’s name. Our evaluation (summarised in Table 4.1)

shows that none of them is fully correct or achieves satisfactory perfor-

mance.

4.3.1 Evaluation criteria

The evaluation framework includes the system model, correctness prop-

erties (§4.2.3), and performance metrics (§4.2.4). The system model concerns

the network model and fault tolerance capacity in §4.2.1, plus the trusted

components that some proposals assume in order to guarantee the correct-

ness. The node churn and adversary’s goals in §4.2.1 are common in all

proposals, and thus are omitted. As the evaluation framework focuses on

shard allocation, other subprotocols in sharded blockchains – e.g., system

state generation, consensus and cross-shard communication – are assumed

secure.

We stress that shard allocation’s fault tolerance capacity is no bigger

than the consensus protocol’s fault tolerance capacity . For example, if all

56

correctness properties in the shard allocation protocol hold even when all

nodes are Byzantine (e.g., guaranteed by a trusted third party), the shard

allocation protocol achieves the fault tolerance capacity of .

4.3.2 Overview of evaluated proposals

We choose seven state-of-the-art sharded blockchains, including five

academic proposals Elastico [3], Omniledger [4], Chainspace [6], Rapid-

Chain [5], and Monoxide [7], and two industry projects Zilliqa [8] and Ethereum

2.0 [9]. We briefly describe their shard allocation protocols below.

Elastico, Omniledger and RapidChain rely on distributed randomness

generation (DRG) protocols for shard allocation. In Elastico, nodes in a spe-

cial shard called final committee run a commit-and-reveal DRG protocol [98]

to produce a random output. Each node then solves a PoW puzzle derived

from the random output and its identity, and will be assigned to a shard

according to its PoW solution. In Omniledger, all nodes in the network

execute a synchronous leader election protocol based on a verifiable ran-

dom function. The leader then initiates the RandHound [36] DRG protocol

with the other nodes to generate a random output. If the leader election

fails for five times, then nodes fallback to run an asynchronous DRG proto-

col [99]. Given the latest random output, nodes derive a unique permuta-

tion of them, and 1
3 nodes in the beginning of the permutation are shuffled

to other shards randomly. In RapidChain, nodes in a special shard called

reference committee execute a Feldman Verifiable Secret Sharing (VSS) [68]-

based DRG protocol to generate a random output. To join the system, a

node needs to solve a PoW puzzle parameterised by the random output.

The puzzle serves no other purpose than allowing the node to join the sys-

tem. The reference committee then executes the Commensal Cuckoo rule [37]

as follows. Interval [0, 1) is equally divided into different fragments, each

representing a shard. Each new node is mapped to an ID x 2 [0, 1) based on

57

its identity, and is allocated to the shard whose interval includes x. Existing

nodes with IDs close to x are “pushed” to other shards randomly.

Chainspace, Monoxide, Zilliqa and Ethereum 2.0 do not rely on DRG

protocols for shard allocation. In Chainspace, a node can apply to move

to another shard at any time, and other nodes vote to decide on the appli-

cations. The voting works over a special smart contract ManageShards,

whose execution is assumed to be correct and trustworthy. Monoxide and

Ethereum 2.0 allocate nodes into different shards according to their ad-

dresses’ prefixes. Zilliqa is built upon Elastico, but it uses the last block’s

hash value as the current epoch’s random output.

4.3.3 System model

Network model. A shard allocation protocol is synchronous if the ad-

versary can break its safety by delaying messages beyond the latency upper

bound�; is partially synchronous if such > � delay only affects liveness but

not safety, and liveness is resumed once the network becomes synchronous;

and is asynchronous if a correct node can calculate its shard membership

locally without communicating with other nodes. Note that we assume

in §4.2.1 that nodes have secure and synchronous access to system states,

and other subprotocols of the sharded blockchain (including system state

generation) are secure. Elastico and RapidChain are synchronous, as they

employ the synchronous DRG protocols [68], [98]. Omniledger is partially

synchronous, as it employs the partially synchronous RandHound DRG pro-

tocol. Chainspace, Monoxide, Zilliqa and Ethereum 2.0 are asynchronous:

In Chainspace, a node submits a smart contract transaction to obtain or up-

date a shard membership, and the liveness is achieved once the transaction

is received by the smart contract; Monoxide and Ethereum 2.0 allow nodes

to calculate shards locally without communicating with others; and Zilliqa

replaces the DRG [98] in Elastico by using block hashes as system states

58

that can be accessed synchronously by assumption, and nodes can calculate

their shards locally given the system states.

Trusted components. These protocols assume no trusted component, ex-

cept for Chainspace that assumes trusted smart contracts.

Fault tolerance capacity. Elastico and Omniledger achieve the fault toler-

ance capacity of � = 1
3 , which is inherited from their DRG protocols. Rapid-

Chain cannot tolerate any faults, as one faulty node can make the Feldman

VSS lose liveness by withholding shares. In Chainspace, Monoxide, Zilliqa,

and Ethereum 2.0, all correctness properties of shard allocation are guaran-

teed when all nodes are Byzantine. For Monoxide and Ethereum 2.0, com-

puting shards is offline. Chainspace assumes trusted smart contracts. For

Zilliqa, blocks are produced correctly by assumption and shard computa-

tion is offline. Thus, their shard allocation protocols achieve fault tolerance

capacity of .

4.3.4 Correctness properties

Public verifiability. All of these shard allocation protocols achieve pub-

lic verifiability except for RapidChain. RapidChain’s shard allocation is not

publicly verifiable, as the deployed Commensal Cuckoo protocol is not pub-

licly verifiable.

Liveness. All shard allocation protocols satisfy liveness.

Allocation-randomness. Elastico, Omniledger, RapidChain, and Zilliqa

satisfy allocation-randomness, as all nodes are shuffled for each epoch. Chainspace

does not satisfy allocation-randomness, as nodes can choose which shard to

join. Monoxide and Ethereum 2.0 do not satisfy allocation-randomness, as

nodes can choose their preferred shards by choosing addresses.

Unbiasibility. Elastico and Zilliqa do not fully achieve unbiasibility. Com-

pared to the PoW puzzles in Bitcoin-like systems, the PoW puzzles in Elas-

59

tico and Zilliqa are less challenging to solve, allowing the adversary to solve

multiple puzzles within an epoch and choose a preferred shard to join.

Chainspace does not achieve unbiasibility, as it does not satisfy allocation-

randomness and nodes are free to choose shards.

Allocation-privacy. Elastico and Zilliqa satisfy allocation-privacy, as the

allocated shard remains secret if the node does not reveal its PoW solution.

Therefore, Elastico and Zilliqa employ an extra peer finding mechanism

called “overlay setup”, where a special shard called “directory commit-

tee” collects and announces nodes’ allocated shards. Omniledger, Rapid-

Chain, and Chainspace do not satisfy allocation-privacy as memberships

can be queried at the identity blockchain, the reference committee and the

ManageShards smart contract, respectively. Monoxide and Ethereum 2.0

do not satisfy allocation-privacy, as nodes’ addresses are publicly known.

4.3.5 Performance metrics

Communication complexity. Elastico’s shard allocation requires O(nf)

messages per epoch, where n and f are the number of nodes and faulty

nodes, respectively. For each epoch, the final committee needs to run the

DRG protocol, which consists of a vector consensus [32] with communica-

tion complexity O(nf). Ideally, the final committee in Elastico has n

m
nodes,

and the communication complexity is O(n

m

f
m) = O(nf) (m is constant). For

Omniledger, Join(·) requires O(n) communication, as each new node re-

quests to a node for joining the system. The communication complexity

of Update(·) is O(n) or O(n3): The best case of Update(·) is that the leader

election and RandHound are both successful, leading to O(n) messages;

and the worst case is that nodes fallback to run the asynchronous DRG [99]

with communication complexity O(n3). RapidChain’s shard allocation re-

quires O(n2) messages per epoch, which is inherited from Feldman VSS [68].

Monoxide and Ethereum 2.0 requires no communication for shard alloca-

60

tion, as nodes decide their shards locally. Zilliqa requires O(n) messages

per epoch as each node needs to retrieve the latest block.

Self-balance. In Elastico and Zilliqa, all nodes are shuffled for each epoch,

leading to the self-balance of 1 with negligible bias. In Omniledger, 1
3 nodes

are shuffled for each epoch, leading to operability � = 2
3 . By Lemma 4.4.1

(introduced later in §4.4.1), Omniledger’s self-balance will be µ = 1� (2m�3)�t
3m�3 .

The self-balance of RapidChain, Chainspace, Monoxide and Ethereum 2.0 is

1��t. In the worst case where no nodes newly join the system and �nt nodes

in the same shard leave the system, self-balance becomes n��tn
n

= 1� �t.

Operability. The operability of Elastico and Zilliqa are 1
m

, as all nodes are

shuffled for each new epoch. The operability of Omniledger is � = 2
3 , as 1

3

nodes are shuffled for each epoch. The operability of RapidChain is max(1�

↵tn, 0), where  2 [0, 1] is the size of the interval in which nodes should

move to other shards, and ↵t is the join churn rate in epoch t. In epoch t,

there are ↵tn nodes joining the network, and each newly joined node causes

the reallocation of n other nodes. The operability then becomes 1� ↵tn·n
n

=

1 � ↵tn. As operability cannot be smaller than 0 in reality, operability is

max(1 � ↵tn, 0). We cannot determine the operability of Chainspace, as

Chainspace does not specify how many nodes can propose to change their

shards. Monoxide and Ethereum 2.0 have the operability of 1, as nodes in

Monoxide and Ethereum 2.0 never move to other shards.

4.4 Observation and insights

Table 4.1 shows that no shard allocation protocols achieves optimal self-

balance and operability simultaneously. We formally prove that achieving

optimal values on both of them is impossible. We then identify a new prop-

erty memory-dependency that enables parameterising the trade-off between

them, opening a new in-between design space configurable for different ap-

plication scenarios.

61

4.4.1 Impossibility and trade-off

According to Table 4.1, except for Omniledger and RapidChain, self-

balance µ is either 1 � �t or 1, and operability � is either 1 or 1
m

. In fact,

achieving optimal self-balance and operability simultaneously still remains

as an open problem, and has been extensively discussed in the blockchain

community [78], [79]. We prove that, however, this is impossible for any cor-

rect shard allocation protocol. The proof starts from analysing the relation-

ship between self-balance µ and operability �. Lemma 4.4.1 formally states

the relationship.

Lemma 4.4.1. If a correct shard allocation protocol ⇧ShardAlloc with m shards satis-

fies update-randomness with �, the self-balance of ⇧ShardAlloc is µ = 1 �
��� (�m�1)�t

m�1

���

, where �t is the percentage of nodes leaving the network in epoch t.

Proof. By Definition 4.2.10, in epoch t, the number nt

k
of nodes in any shard

k is n
t

m
. By join-randomness, newly joined nodes will be uniformly allocated

into shards. Thus, without the loss of generality, we assume at the end of

epoch t, no node joins the network (↵ = 0) and �tnt nodes leave the net-

work. Let �nt

k
be the number of leaving nodes in shard k 2 [m] in epoch

t, we have
P

m

k=1�nt

k
= �tnt. Upon the next system state stt+1, each node

executes ⇧ShardAlloc.Update(·), and its resulting shard complies with the prob-

ability distribution in Definition 4.2.4. After executing ⇧ShardAlloc.Update(·),

there are some nodes in shard k moving to other shards, and there are some

nodes from other shards moving to shard k as well.

By the definition of operability, there are �(nt

k
��nt

k
) nodes in shard k

that do not move to other shards. There are

(1� �t)n
t
� (nt

k
��nt

k
) (4.4)

62

nodes that do not belong to shard k. By Definition 4.2.4, there are

1� �

m� 1
[(1� �t)n

t
� (nt

k
��nt

k
)] (4.5)

nodes moving to shard k. Thus, the number nt+1
k

of nodes in shard k in

epoch t+ 1 is

nt+1
k

= �(nt

k
��nt

k
) +

1� �

m� 1
[(1� �t)n

t
� (nt

k
��nt

k
)] (4.6)

=
�m� 1

m� 1
(nt

k
��nt

k
) +

(1� �)(1� �t)

m� 1
nt (4.7)

By Definition 4.2.10, to find µ, we should find the largest |nt+1
i �nt+1

j |
nt ,

which can be calculated as

|nt+1
i
� nt+1

j
|

nt
=

|
�m�1
m�1 (n

t

i
��nt

i
)� �m�1

m�1 (n
t

j
��nt

j
)|

nt
(4.8)

=
|
�m�1
m�1 (�nt

i
��nt

j
)|

nt
(4.9)

Thus, when (�nt

i
��nt

j
) is maximal, |nt+1

i �nt+1
j |

nt is maximal, and µ can be

calculated. As there are �tnt nodes leaving the network in total, the maximal

value of (�nt

i
��nt

j
) is �tnt. Therefore, µ can be calculated as

µ = 1� max
8i,j2[m]

|nt+1
i
� nt+1

j
|

nt
(4.10)

= 1� max
8i,j2[m]

|
�m�1
m�1 (�nt

i
��nt

j
)|

nt
(4.11)

= 1�
|
�m�1
m�1 �tn

t
|

nt
= 1�

����
(�m� 1)�t

m� 1

���� (4.12)

Figure 4.3 visualises their relationship in Lemma 4.4.1. The line never

reaches the point (1, 1), indicating that ⇧ShardAlloc can never achieve opti-

mal values for them simultaneously. With operability increasing, the self-

balance increases to 1 when �  1
m

, then decreases when � � 1
m

. When

63

Figure 4.3: Relationship between self-balance µ and operability �. We pick
m = 10 and �t = 0.005 as an example. No shard allocation protocol can go
above the blue line to reach the orange area.

� = 0, self-balance becomes 1 � �t

m�1 . This is because when � = 0, all nodes

are mandatory to change their shards. As shard k has fewer nodes, during

⇧ShardAlloc.Update(·) it loses fewer nodes but receives more nodes from other

shards. When � = 1
m

, self-balance becomes 1, i.e., optimal.

Therefore, it is impossible to achieve optimal values for self-balance

and operability simultaneously. Theorem 4.4.2 formally states the impossi-

bility.

Theorem 4.4.2. Let �t be the percentage of nodes leaving the network in epoch

t. It is impossible for a correct shard allocation protocol ⇧ShardAlloc with m shards

to achieve optimal self-balance and operability simultaneously for any �t > 0 and

m > 1.

Proof. We prove this by contradiction. Assuming self-balance µ = 1 and

operability � = 1. According to Lemma 4.4.1, µ = 1 only when either �t = 0

or �m = 1. As � = 1 and m > 1, �m > 1. Thus, ⇧ShardAlloc can achieve µ = 1

and � = 1 simultaneously only when �t = 0. However, �t > 0, which leads

to a contradiction.

64

4.4.2 Parameterising the trade-off

As shown in Figure 4.3, (1, 1 � �t) and (1
m
, 1) are two extreme cases

in the trade-off between self-balance and operability, and shard allocation

protocols lying at these two points are impractical. In addition, none of our

evaluated protocols allows parameterising this trade-off. We prove that, to

parameterise this trade-off, sharding protocols should be memory-dependent,

where the shard allocation result depend not only on the current system

state, but also on the previous ones. In signal processing literatures, this

property is also known as non-memorylessness, where the output signal does

not only depend on the current input, but also some previous inputs [88].

Formally, memory-dependency is defined as follows.

Definition 4.4.1 (Memory-dependency). A shard allocation protocol⇧ShardAlloc

is memory-dependent iff for any public parameter pp, secret key ski, and

shard k, the output of⇧ShardAlloc.Update(pp, ski, stt, k, ⇡i,stt,k, stt+1) depends

on system states earlier than stt.

By Definition 4.2.4, both self-balance and operability are related to the

probability � of nodes staying at the same shard. To parameterise self-

balance and operability, a shard allocation protocol should incorporate shard

allocation results of previous epochs. When � 2 (1
m
, 1), the probability

distribution of allocation-randomness is non-uniform, and the membership

proof of each epoch t depends on that in the previous epoch t � 1. As the

membership proof of epoch t� 1 also depends on that of epoch t� 2, recur-

sively, each membership proof depends on all historical membership proofs.

Thus, memory-dependency is necessary for parameterising the trade-off be-

tween self-balance and operability. Theorem 4.4.3 formally states such ne-

cessity.

65

Theorem 4.4.3. If a correct shard allocation protocol ⇧ShardAlloc is µ-self-balanced

and �-operable where µ 2 (0, 1 � �t) and � 2 (1
m
, 1), then ⇧ShardAlloc is memory-

dependent.

Proof. We prove this by contradiction. Assuming ⇧ShardAlloc is non-memory-

dependent, i.e., the output of

⇧ShardAlloc.Update(pp, ski, stt, k, ⇡i,stt,k, stt+1)

only depends on stt and stt+1. This means there exists no � � 1 such that

⇡i,stt,k involves any information of stt��.

When � 2 (1
m
, 1), the distribution of the resulting shard of⇧ShardAlloc.Update(·)

is non-uniform, given the update-randomness property. In this case, execut-

ing ⇧ShardAlloc.Update(·) requires the knowledge of k – index of the shard that

i locates at state stt. Thus, ⇡i,stt+1,k
0 – one of the output of ⇧ShardAlloc.Update(·)

– should enable verifiers to verify node i is at shard k in epoch t.

Verifying node i is at shard k in epoch t is achieved by verifying ⇡i,stt,k.

Thus, ⇡i,stt+1,k
0 depends on stt and ⇡i,stt,k. Similarly, ⇡i,stt,k depends on stt�1

and ⇡i,stt�1,k, and ⇡i,stt�1,k depends on stt�2 and ⇡i,stt�2,k. Recursively, ⇡i,stt,k

depends on all historical system states. Thus, if the assumption holds, then

this contradicts update-randomness.

Remark 1. When � = 1
m

or 1, ⇧ShardAlloc.Update(·) does not rely on any prior

system state. When � = 1
m

, the resulting shard of ⇧ShardAlloc.Update(·) is uni-

formly distributed, so ⇧ShardAlloc.Update(·) can just assign nodes randomly

according to the incoming system state. When � = 1, the resulting shard of

⇧ShardAlloc.Update(·) is certain. All of our evaluated shard allocation protocols

choose � = 1
m

or 1, except for RapidChain using Commensal Cuckoo and

Chainspace allowing nodes to choose shards upon requests.

66

4.5 WORMHOLE: Memory-dependent shard allo-

cation

Based on the gained insights, we propose WORMHOLE, a correct and

efficient shard allocation protocol. WORMHOLE relies on a randomness bea-

con (RB) to generate the system states, and a verifiable random function

(VRF) to guide the nodes in computing their shards. By being memory-

dependent, WORMHOLE supports parameterisation of self-balance and op-

erability. We formally analyse WORMHOLE’s correctness, and its communi-

cation and computational complexity.

4.5.1 Primitives: RB and VRF

Randomness beacon. Similar to existing sharded blockchains such as Elas-

tico, Omniledger, and Zilliqa, WORMHOLE allocates nodes based on some

randomness. RB [100] is a service that periodically generates random out-

puts. RB is instantiated by either an external party or by a group of nodes

via a decentralised randomness beacon (DRB) protocol. RB satisfies the fol-

lowing properties [101]:

• RB-Availability: No node can prevent the protocol from making progress.

• RB-Unpredictability: No node can know the value of the random out-

put before it is produced.

• RB-Unbiasibility: No node can influence the value of the random out-

put to its advantage.

• RB-Public-Verifiability: Everyone can verify the correctness of the ran-

dom output.

RB schemes are both readily available and widely used. Public ex-

ternal RBs are maintained by countries such as the US [100], Chile [102],

67

and Brazil [103], as well as reputable institutions such as Cloudflare [104],

EPFL [105], and League of Entropy [106]. DRB protocols can be constructed

from Publicly Verifiable Secret Sharing (PVSS) [36], [101], [107], Verifiable

Delay Functions [108], [109], Nakamoto consensus [110], and real-world

entropy [111], [112]. Several sharded blockchains, including Elastico, Om-

niledger, and RapidChain, employ DRB to produce the system states al-

ready; Ethereum 2.0 uses DRB for its consensus; emerging projects such as

Filecoin [113] rely on an external RB for its consensus.

Verifiable random function. A VRF [114]–[116] is a public-key version of a

hash function, which computes an output and a proof from an input string

and a secret key. Anyone with the associated public key and the proof can

verify 1) whether the output is from the input, and 2) whether the output

is generated by the owner of the secret key. Some VRFs support batch ver-

ification [117], [118], i.e., verifying multiple VRF outputs at the same time,

which is faster than verifying VRF outputs one-by-one. Formally, a VRF is

a tuple of four algorithms:

• VRFKeyGen(�) ! (sk, pk): On input a security parameter �, outputs

the secret/public key pair (sk, pk).

• VRFEval(sk,m) ! (h, ⇡): On input sk and an arbitrary-length string

m, outputs a fixed-length random output h and proof ⇡.

• VRFVerify(pk,m, h, ⇡) ! {0, 1}: On input pk, m, h, ⇡, outputs the veri-

fication result 0 or 1.

• (Optional) VRFBatchVerify(pk, ~m, ~h, ~⇡) ! {0, 1}: On input pk, a series

of strings ~m = (m1, . . . ,mn), outputs ~h = (h1, . . . , hn), and proofs ~⇡ =

(⇡1, . . . , ⇡n), outputs the verification result 0 or 1.

VRF should satisfy the following three properties [119].

68

xxxxxxxxxdabc dabcxxxxx0456

=

Action of
the node

Join shard
#abc+1

Move to
shard #456+1

1111xxxxxxxxx

Stay at shard
#456+1

0456xxxxx1234

Move to
shard #234+1

=

Randomness
Beacon

Figure 4.4: Intuition of WORMHOLE ⇧WH
ShardAlloc. All numbers are in hexadec-

imal. We use op = 4 and m = 163 as an example, and assume epoch 0 is the
last non-memory-dependent epoch.

• VRF-Uniqueness: It is computationally hard to find (pk,m, h, h0, ⇡, ⇡0)

such that h 6= h0 and VRFVerify(pk,m, h, ⇡) = VRFVerify(pk,m, h0, ⇡0) =

1.

• VRF-Collision-Resistance: It is computationally hard to find (m,m0) such

that h = h0where (h, ·) VRFEval(sk,m) and (h0, ·) VRFEval(sk,m0).

• VRF-Pseudorandomness: It is computationally hard to distinguish the

random output of VRFEval(·) from a random string without the knowl-

edge of the corresponding public key and the proof.

4.5.2 Key challenge and strawman designs

The key challenge in designing a memory-dependent shard allocation

protocol is the recursive dependency problem: A shard membership proof in

epoch t needs to prove its shard membership in epoch t� 1 (i.e., “the mem-

ory”); and the shard membership proof in epoch t� 1 needs to prove that in

epoch t�2, and so on. Therefore, an extra mechanism is necessary to bound

the number of history proofs.

A strawman design is to prescribe a fixed number of history proofs, so

that all shard allocations but the earliest one is verifiable. However, this

approach allows the adversary to enumerate all the shards as the earliest

69

shard, and only releases one that leads them to the target shard, similar to

the well-known grinding attack [89], [120] against proof-of-stake protocols.

Another strawman design is to periodically discard history proofs, so

that nodes only need to provide history proofs up to the last non-memory-

dependent epoch. Let each unit with w epochs be an era, which begins when

t mod w = 0 and ends when t mod w = w � 1, where t is the epoch num-

ber. At each era’s beginning, a node discards all history proofs, and com-

putes the shard membership in a non-memory-dependent way, i.e., only

based on its secret key and the current system state. This bounds the num-

ber of history proofs, but all nodes are likely to be allocated to new shards at

each era’s beginning, lowering the operability significantly for one epoch.

70

Algorithm 2: Full construction of WORMHOLE ⇧WH
ShardAlloc.

Algorithm calcShard(m, op, hx, hx+1, . . . , hy):
idx x
for j 2 [x+ 1, y] do

if MSB(op, hj) = LSB(op, hidx) then
idx j // Can be cached

shard id (hidx mod m) + 1
return shard id

Algorithm calcNMDEpoch(w, ski, stt):
// NMD = non-memory-dependent

tera t� (t mod w)
t�era tera � w
g�
i,t
,⇡�

i,t
 VRFEval(ski, st�era)

t�nmd t�era + (g�
i,t

mod w)

gi,t,⇡i,t VRFEval(ski, stera)
tnmd tera + (gi,t mod w)
last t�nmd < t < tnmd ? t�nmd : tnmd

return (last, (g�
i,t
,⇡�

i,t
, gi,t,⇡i,t))

Algorithm Setup(�):
m, op, w �
return (m, op, w)

Algorithm Join(pp, ski, stt):
m, op, w pp
(last,⇡range) calcNMDEpoch(w, ski, stt)
for j 2 [last, t] do

hj ,⇡j VRFEval(ski, stj)

k calcShard(m, op, hlast, . . . , ht)
⇡i,stt,k (last,⇡range, hlast, . . . , ht,⇡last, . . . ,⇡t)
Store ⇡i,stt,k in memory
return k,⇡i,stt,k

Algorithm Update(pp, ski, stt, k,⇡i,stt,k, stt+1):
m, op, w pp
(last,⇡range, hlast, . . . , ht,⇡last, . . . ,⇡t) ⇡i,stt,k
(last+,⇡+

range) calcNMDEpoch(w, ski, stt+1)
Remove (hj ,⇡j) from memory for
j 2 [last, last+)

ht+1,⇡t+1 VRFEval(ski, stt+1)
k0 calcShard(m, op, hlast+ , . . . , ht+1)
⇡i,stt+1,k

0

(last+,⇡+
range, hlast+ , . . . , ht+1,⇡last+ , . . . ,⇡t+1)

Store ⇡i,stt+1,k
0 in memory

return k0,⇡i,stt+1,k
0

Algorithm Verify(pp, pki, stt, k,⇡i,stt,k):
m, op, w pp
(last,⇡range, hlast, . . . , ht,⇡last, . . . ,⇡t) ⇡i,stt,k
(g�

i,t
,⇡�

i,t
, gi,t,⇡i,t) ⇡range

tera t� (t mod w)
t�era tera � w
t�nmd t�era + (g�

i,t
mod w)

tnmd tera + (gi,t mod w)
// Verify memory range

if

t�nmd < t < tnmd ^ last 6= t�nmd _

tnmd  t ^ last 6= tnmd _

VRFVerify(pki, st�era, g
�
i,t
,⇡�

i,t
) = 0 _

VRFVerify(pki, stera, gi,t,⇡i,t) = 0

then

return 0

~st, ~h, ~⇡
(stlast, . . . , stt), (hlast, . . . , ht), (⇡last, . . . ,⇡t)

if VRFBatchVerify(pki, ~st, ~h, ~⇡) = 0 then
return 0 // Can be cached

if k 6= calcShard(m, op, hlast, . . . , ht) then
return 0

return 1

71

4.5.3 The WORMHOLE design

WORMHOLE addresses the above challenge by (1) prescribing a non-

memory-dependent shard allocation per node per era and (2) randomis-

ing this non-memory-dependent epoch for each node, so that the size of a

membership proof is bounded and nodes discard history proofs in different

epochs. Algorithm 2 provides the full construction of WORMHOLE.

Each node i determines the non-memory-dependent epoch and the al-

located shard in this epoch by using calcNMDEpoch(·). When an era starts at

epoch t (when t mod w = 0), node i calculates VRFEval(ski, stt)! (gi,t, ⇡i,t),

where stt is RB’s output, i.e., the system state, in epoch t. Then at epoch

t + (gi,t mod w), the node will remove all the memory and move to shard

k = (gi,t mod m) + 1. Note that both the reallocation epoch and the allo-

cated shard are non-memory-dependent, and this happens exactly once per

era.

The other w� 1 epochs are memory-dependent, and each node i deter-

mines the allocated shard by using calcShard(·). At epoch t, node i computes

VRFEval(ski, stt)! (hi,t, ⇡i,t). Let op be the parameter for parameterising op-

erability (and self-balance). Let LSB(x,m) and MSB(x,m) be the least and

most significant x bits of m, respectively. Node i stays in the same shard,

i.e., ki,t = ki,t�1 if LSB(op, hi,t�1) 6= MSB(op, hi,t), otherwise moves to shard

ki,t = (hi,t mod m) + 1. This injects the memory-dependency to the shard

memberships of two consecutive epochs. Increasing op improves operabil-

ity but reduces self-balance, and vice versa. Figure 4.4 illustrates this idea.

To join the system, a node i executes Join(·): It calculates VRF out-

puts and proofs since the last non-memory-dependent epoch, and executes

calcShard(·) to calculate its allocated shard k. The shard membership proof

⇡i,stt,k includes a sequence of VRF outputs (hlast, . . . , ht) and their VRF proofs

(⇡last, . . . , ⇡t), where last is the last non-memory-dependent epoch calcu-

lated from calcNMDEpoch(·).

72

Upon epoch t + 1, node i executes Update(·) as follows. It first calcu-

lates the VRF output of stt+1. If epoch t + 1 is memory-dependent, then

calcShard(·) only needs to check if MSB(op, ht+1) = LSB(op, hidx) and com-

pute idx and shard id accordingly, where hidx is cached from epoch t. If

epoch t + 1 is non-memory-dependent, then the previous proofs are dis-

carded and the shard ID is (ht+1 mod m) + 1.

To verify proof ⇡i,stt,k, Verify(·) uses calcNMDEpoch(·) to verify the last

non-memory-dependent epoch, uses VRFBatchVerify(·) to verify VRF out-

puts, and uses calcShard(·) over these VRF outputs to verify its output against

k. Previous verification results can be cached and reused: Upon an up-

dated membership proof ⇡i,stt+1,k
0 , the verifier can reuse most of the results

in verifying ⇡i,stt,k, including verification results of previous VRF outputs

and calcShard(·).

Construction without allocation-privacy. As mentioned in §4.2.3, allocation-

privacy is not always a desired property. To remove allocation-privacy in

⇧WH
ShardAlloc, one can replace VRFEval(ski, stt) with H(pki||stt), where ski and

pki are key pairs of node i, stt is the system state, and H(·) is a cryptographic

hash function.

4.5.4 Theoretical analysis

Correctness. We first summarise the security analysis. WORMHOLE sat-

isfies liveness as a node can compute Join(·) and Update(·) locally. WORM-

HOLE satisfies unbiasibility, as VRFEval(·) and calcShard(·) are deterministic

functions, and system states are unbiasible, guaranteed by RB. WORMHOLE

satisfies join-randomness, as VRF produces uniformly distributed outputs.

When the epoch is a memory-dependent epoch, the probability that two

random outputs share the same op-bit substring is 1
2op . Within the proba-

bility 1
2op , the probability that two random outputs result in the same shard

is 1
m

. This leads to � = 1 � 1
2op ·

m�1
m

= 1 � m�1
m·2op . When the epoch is a

73

non-memory-dependent epoch, the node will be shuffled, leading to � = 1
m

.

Thus, WORMHOLE satisfies allocation-randomness. WORMHOLE satisfies

allocation-privacy, as one cannot compute Join(·) or Update(·) for a node

without knowing its secret key. The probability of guessing shard alloca-

tion follows the proof of allocation-randomness.

Then, we provide the formal proof below.

Lemma 4.5.1. ⇧WH
ShardAlloc satisfies liveness.

Proof. By RB-Availability, the RB is always producing random outputs, and

therefore new system states regularly. Given a new system state, any honest

node can execute ⇧WH
ShardAlloc.Update(·) (or ⇧WH

ShardAlloc.Join(·) for newly joined

nodes). As both ⇧WH
ShardAlloc.Join(·) and ⇧WH

ShardAlloc.Update(·) can be computed

locally without interacting with other nodes, the execution of them will

eventually terminate.

Lemma 4.5.2. ⇧WH
ShardAlloc satisfies unbiasibility.

Proof. We prove this by contradiction. Assuming that ⇧WH
ShardAlloc does not

satisfy unbiasibility: Given a system state, an adversary can manipulate the

probability distribution of the output shard of ⇧WH
ShardAlloc.Join(·) or .Update(·)

with non-negligible probability. This consists of three attack vectors: 1)

the adversary can manipulate the system state; 2) when ⇧WH
ShardAlloc.Join(·)

or ⇧WH
ShardAlloc.Update(·) are probabilistic, the adversary can keep generating

memberships until outputting a membership of its preferred shard; and 3)

the adversary can forge proofs of memberships of arbitrary shards.

By RB-Unbiasibility, the randomness produced by RB is unbiasible,

so the system state of ⇧WH
ShardAlloc is unbiasible. By VRF-Collision-resistance,

given a secret key, the VRF output of the system state is unique except for

negligible probability. This eliminates the last two attack vectors and en-

sures that the VRF output of the unbiasible system state is unbiasible. The

output shard of ⇧WH
ShardAlloc.Join(·) or ⇧WH

ShardAlloc.Update(·) is a modulus of the

74

VRF output, which is also unbiasible. This eliminates the first attack vec-

tor. Thus, if ⇧WH
ShardAlloc does not resist against the first attack vector, then

this contradicts RB-Unbiasibility; and if ⇧WH
ShardAlloc does not resist against the

second and/or the last attack vectors, then this contradicts VRF-Collision-

resistance.

Lemma 4.5.3. ⇧WH
ShardAlloc satisfies join-randomness.

Proof. We prove this by contradiction. Assuming that⇧WH
ShardAlloc does not sat-

isfy join-randomness, i.e., the probabilistic of a node joining a shard k 2 [m]

is 1
m
+ ✏ for some k and non-negligible ✏. Running Join(·) requires the execu-

tion of VRFEval(·) over a series of system states. By VRF-Pseudorandomness,

VRF outputs of system states are pseudorandom. As a modulo of a VRF

output, the output shard of ⇧WH
ShardAlloc.Join(·) is also pseudorandom. Thus,

if ⇧WH
ShardAlloc does not satisfy join-randomness, then this contradicts VRF-

Pseudorandomness.

Lemma 4.5.4. ⇧WH
ShardAlloc satisfies update-randomness.

Proof. We prove this by contradiction. Assuming that ⇧WH
ShardAlloc does not

satisfy update-randomness, i.e., with non-negligible probability, there is no

� such that the probability of a node joining a shard k complies with the

distribution in Definition 4.2.4. When epoch t is a non-memory-dependent

epoch, the node will be shuffled. By VRF-Pseudorandomness, the probabil-

ity of moving to each shard is same. Thus, there is a � = 1
m

that makes the

output shard of Update(·) to comply with the distribution in Definition 4.2.4.

When t is a memory-dependent epoch, the last VRF output remains

unchanged. In ⇧WH
ShardAlloc.Update(·), given the last VRF output, the proba-

bility that the op MSBs of the new VRF output equal to op LSBs of the last

VRF output is 1
2op . By VRF-Pseudorandomness, the probability of moving

to each other shard is same. Thus, there is a � = 1 � 1
2op ·

m�1
m

= 1 � m�1
m·2op

that makes the output shard of Update(·) to comply with the distribution in

Definition 4.2.4.

75

Table 4.2: Evaluation of shard allocation protocols that replace DRG with a
randomness beacon. Meanings of colours are same as Table 4.1. F means
the metric is improved by replacing DRG with a randomness beacon.

System model Correctness Performance metrics

State update Netw
ork

model

Tru
ste

d co
mponen

ts

Fau
lt toler

an
ce

Public
veri

fiab
ili

ty

Liven
es

s

Allo
ca

tio
n-ra

nd.

Unbias
ib

ili
ty

Priv
ac

y
o

Jo
in

co
mm. co

mpl.

Update
co

mm. co
mpl.

Self
-b

ala
nce

Opera
bili

ty

Elastico New block Async.F Rand.
Beacon⇤

 F 3 3 3 7 3 O(n)F O(n)F 1 1
m

Omniledger New block Part. sync. Rand.
Beacon⇤

 F 3 3F 3 3 7 O(n) O(n)F 1� (2m�3)�t

3m�3
2
3

RapidChain Nodes
joining

Async.F Rand.
Beacon⇤

 F 7 3 3 3 7 O(n)F O(n)F 1� �t max(1� ↵tn, 0)

Zilliqa New block Async.F Rand.
Beacon⇤

 3 3 3 7 3 O(n) O(n) 1 1
m

WORMHOLE
(§4.5)

New rand. Async. Rand.
Beacon⇤

 3 3 3 3 3 O(n) O(n) 1� �t +
�t

2op 1� m�1
m·2op

o Optional. ⇤ Shard allocation protocols can rely on an external randomness beacon, or allow nodes to run a decentralised randomness beacon
protocol. is the fault tolerance capacity of the sharded blockchain’s consensus protocol.

Thus, if⇧WH
ShardAlloc does not satisfy update-randomness, then this contra-

dicts VRF-Pseudorandomness.

Lemma 4.5.5. ⇧WH
ShardAlloc satisfies allocation-privacy.

Proof. This follows proofs of Lemma 4.5.3 and 4.5.4.

Performance metrics. The communication complexity of Join(·) and Update(·)

of ⇧WH
ShardAlloc are O(n) where n is the number of nodes, as each node needs to

receive a constant number of system states for executing Join(·) and Update(·).

A⇧WH
ShardAlloc proof contains [3, 2w+2) VRF outputs/proofs, where w is the era

length. Join(·) invokes VRFEval(·) for [1, 2w) times, leading to computational

complexity O(w). Update(·) invokes VRFEval(·) for once, leading to compu-

tational complexity O(1). Verify(·) invokes VRFVerify(·) for once if verifica-

tion results are cached, otherwise VRFBatchVerify(·) over [1, 2w) VRF output-

s/proofs, leading to computational complexity O(1) or O(w), respectively.

By update-randomness, ⇧WH
ShardAlloc’s operability � = 1� m�1

m
·

1
2op = 1� m�1

m·2op .

By Definition 4.4.1, ⇧WH
ShardAlloc’s self-balance µ = 1�

��� (�m�1)�t
m�1

��� = 1� �t +
�t

2op .

4.5.5 Comparison with existing protocols

Table 4.1 summarises the comparison result. It shows that WORMHOLE

is the only shard allocation protocol that is fully correct and achieves sat-

isfactory performance, without relying on strong assumptions. To make a

76

fair comparison, we also evaluate shard allocation protocols while assum-

ing RB, and the evaluation results are summarised in Table 4.2. Chainspace,

Monoxide and Ethereum 2.0 are omitted as their shard allocation protocols

do not rely on randomness.

According to Table 4.2, these proposals are improved in terms of the

system model and communication complexity. All of them achieve O(n)

communication complexity, where the concrete overhead depends on the

instantiation and implementation, including cryptographic primitives and

message formats. However, they still suffer from some problems they orig-

inally have, and WORMHOLE still outperforms them. For example, among

the correctness properties, only Omniledger’s liveness issue is fixed. In

addition, Omniledger should still assume partial synchorny, as liveness is

guaranteed only under synchronous networks. To compute shard member-

ships, nodes have to broadcast their identifies and agree on a permutation

of them, which require synchrony. Moreover, all of them still suffer from

weak operability except for Omniledger.

4.6 Integration of WORMHOLE

In this section, we analyse how to integrate WORMHOLE into different

sharded blockchains, and the corresponding impact on the system model

and overhead.

4.6.1 Design choices related to WORMHOLE

The overhead introduced by WORMHOLE can be affected by two design

choices of the sharded blockchain, namely the existence of identity registry

and the choice of consensus protocol.

Existence of identity registry. Some sharded blockchains employ an iden-

tity registry that tracks identities of nodes in the system. For example,

Elastico, RapidChain and Zilliqa require a special shard to be the identity

77

registry; Omniledger instantiates the Sybil-resistant mechanism by using

a trusted identity authority; and Chainspace requires nodes to maintain a

special smart contract managing identities.

The existence of identity registry decides where a shard membership is

verified and stored. If the sharded blockchain employs an identity registry,

then the identity registry can maintain and verify all shard memberships,

and a node can query other nodes’ shard memberships over the identity

registry. Without an identity registry, a node then has to receive and verify

other nodes’ shard memberships when executing other subprotocols (e.g.,

consensus).

Choice of consensus protocol. Existing research [121], [122] suggests to

classify consensus protocols into two types, namely BFT-style consensus

and Nakamoto-style consensus. In BFT-style consensus, given the latest

blockchain, nodes propose blocks, vote to agree on a unique block, and

append the agreed block to the blockchain. In Nakamoto-style consensus,

given the latest blockchain, nodes compete to solve a cryptographic puzzle.

If a node solves a puzzle, then it can append a new block associated to the

puzzle solution to the blockchain. Nodes follow a chain selection rule to

decide the main chain among all forks, and eventually the main chains of

different nodes converge to the same one.

The choice of consensus protocol decides when a shard membership

is queried or verified. With BFT-style consensus, a node has to addition-

ally verify a quorum of nodes’ shard memberships for each block. With

Nakamoto-style consensus, a node has to additionally verify the block pro-

poser’s shard membership for each block.

Classification of sharded blockchains. Our evaluated sharded blockchains

only belong to two “identity registry + consensus” combinations: Elastico,

Omniledger, Chainspace, Zilliqa and Ethereum 2.0 employ an identity reg-

78

istry and BFT-style consensus; and Monoxide employs Nakamoto-style con-

sensus without an identity registry.

4.6.2 Integration analysis

We then analyse how to integrate WORMHOLE into the two cases.

With identity registry, BFT-style consensus. In this case, every node ex-

ecutes WORMHOLE to obtain a shard membership with proof and submits

them to the identity registry for verification. For each new epoch, a node

needs to compute a VRF output with proof and send them to the identity

registry. The identity registry needs to send each node the set of all peers’

identities and the shard size. Every node then executes BFT-style consen-

sus with peers to agree on blocks. For each vote, a node looks up the the

voter node’s identity within the set. A block needs to obtain a quorum of

votes to be valid. The identity set can be replaced with a cryptographic ac-

cumulator [123], where the size and the lookup complexity can be sublinear

w.r.t. the set size. The identity registry also manages nodes’ identities and

handles Sybil attacks.

With this approach, the sharded blockchain inherits the network model

and fault tolerance capacity from its underlying consensus protocol, and

incurs some extra overhead as follows. The identity registry needs to ad-

ditionally receive, store and verify shard memberships and proofs for all

nodes. For each new epoch, each node needs to additionally submit a VRF

output and proof to the identity registry and receive the set of identities and

an integer, while the identity registry needs to verify a VRF output and up-

date the shard membership. For each block, each node needs to look up a

quorum of nodes’ shard memberships within the set.

No identity registry, Nakamoto-style consensus. In this case, every node

executes WORMHOLE to obtain a shard membership with proof, and keeps

solving puzzles to propose blocks over the main chain decided by the chain

79

(a) Newly joined nodes. (b) Existing nodes.

Figure 4.5: Computation overhead of WORMHOLE.

selection rule. Each block additionally attaches the miner’s shard mem-

bership and proof. Upon receiving a block, the node additionally verifies

the miner’s shard membership. Similar to Elastico, Chainspace, Zilliqa and

Ethereum 2.0, a node has to solve a cryptographic puzzle in order to obtain

an identity in the system. To support permissionless settings, the puzzle’s

difficulty is controlled by a difficulty adjustment mechanism.

The Nakamoto-style consensus will require WORMHOLE to assume a

synchronous network and the fault tolerance capacity depending on the

concrete Sybil-resistance mechanism, as analysed by Dembo et al. [89]. Nodes

need to possess the dedicated resource w.r.t. the Sybil-resisitance mecha-

nism in Nakamoto-style consensus. In addition, for every block, a node

needs to additionally receive, store and verify a shard membership and

proof.

4.7 Evaluation of WORMHOLE

In this section, we implement WORMHOLE and evaluate its overhead

and performance metrics in the wild. The evaluation results show that

WORMHOLE introduces little overhead and achieves performance metrics

consistent with the theoretical values.

80

4.7.1 Overhead analysis

Implementation and experimental setup. We implement WORMHOLE in

Rust. We use rug [124] for large integer arithmetic and bitvec [125] for

bit-level operations. We use w3f/schnorrkel [126], which implements

the standardised VRF [116] over the Curve25519 elliptic curve with Ristretto

compressed points [127] and the Schnorr-style aggregatable discrete log equiv-

alence proofs (DLEQs) [118] for batch verification. The size of keys, VRF

outputs and proofs are 32, 32 and 96 Bytes, respectively. System states are

simulated by rand [128]. We write the benchmarks using cargo-bench [129]

and criterion [130]. We specify the O3-level optimisation for compila-

tion, and sample 20 executions for each unique group of parameters. All

experiments were conducted on a MacBook Pro with a 2.2 GHz 6-Core Intel

i7 processor and a 16 GB RAM.

Benchmarks results. We benchmark Join(·), Update(·) and Verify(·) for

WORMHOLE. Recall that with era length w, a node reaches a non-memory-

dependent epoch for every w epochs on average. We choose w ranging from

256 to 2048 epochs. In Bitcoin’s setting where a block is generated for every

ten minutes, 256 and 2048 epochs take about 2 and 14 days, respectively.

Figure 4.5 shows the results. For newly joined nodes, the execution

time of Join(·) and Verify(·) increases linearly with the number of random

outputs. With 256 random outputs, Join(·) and Verify(·) take 39 and 12 ms,

respectively. With 2048 random outputs, Join(·) and Verify(·) take 300 and 90

ms, respectively. For existing nodes, Update(·) and Verify(·) take about 0.15

and 0.13 ms, respectively. A shard membership takes at most 4 Bytes, which

can support 232 shards. As VRF outputs and proofs are 32 and 96 Bytes, a

membership proof size S⇡ is (32 + 96) ⇤ 2w = 256w Bytes. The size S⇡ is

then 64 and 512 KB with w = 256 and 2048, respectively; and updating a

membership proof takes 128 Bytes.

81

Overhead of integration. We analyse the concrete overhead of integrat-

ing WORMHOLE into two types of sharded blockchains in §4.6.2 separately.

When employing an identity authority and BFT-style consensus, the iden-

tity registry needs to receive, store and verify shard memberships and proofs.

This incurs one-time overhead of S⇡ ⇤n on storage and communication, and

n non-cached Verify(·) invocations. For each epoch, each node sends a VRF

output and proof to the identity registry, the identity registry verifies it, and

sends back the set of identities and the shard size. Thus, each node sends 128

Bytes and receives 32 ⇤ n

m
Bytes, and the identity registry invokes a cached

Verify(·) once for each node. If replacing the set with a constant-size accumu-

lator of s Bytes, then the per-node communication overhead can be reduced

to s+128 Bytes. For each block, each node has to look up a quorum of nodes’

identities, which introduces computation overhead of n

m
lookup operations.

When employing Nakamoto-style consensus without identity author-

ity, for each block, a node needs to additionally receive, store and verify

a shard membership and proof, incurring the communication and storage

overhead of S⇡ and the computation overhead of a non-cached Verify(·) in-

vocation.

4.7.2 Simulation

We then simulate WORMHOLE in a network with 128 shards and 32768

nodes, confirming the theoretical results on WORMHOLE’s self-balance and

operability guarantees in §4.5.4.

Evaluation criteira. The simulation aims at observing the load balance and

operability in the real-world setting and comparing them with the theoreti-

cal analysis in §4.5.4.

Following existing distributed systems research [131], the observed load

balance is quantified as the coefficient of variation (CV), namely the ratio be-

tween the standard deviation std(·) and the mean value mean(·) of the node

82

distribution across shards. Specifically, the observed load balance in epoch

t is std(N t)
mean(N t) , where N

t = {nt

k
}k2[m] is the number nt

k
of nodes in every shard

k in epoch t. When CV is zero, then the system achieves optimal load bal-

ance, where every shard contains the same number of nodes. When CV is

smaller than 1, then it means the distribution is low-variance and the system

achieves satisfactory load balance.

The observed operability is quantified as the ratio between the number

of moved nodes and the number of existing nodes. Specifically, the ob-

served operability in epoch t is 1 �
n
t
moved
nt , where nt and nt

moved are the total

number of nodes and the number of moved nodes in epoch t, respectively.

Simulation setup. We simulate WORMHOLE with m = 128 shards, n =

128 ⇤ 256 = 32768 nodes, w = 2048, and operability degree � = 0.95 over

500 epochs with variant churn rate distribution. As there is no data avail-

able on the shard memberships of sharded blockchains, we align the sim-

ulated churn rate distribution to Bitcoin, where both the join rate ↵ and

leave rate � in 2021 are about 0.1 per day according to recent measure-

ment studies [132], [133]. Depicted in Figure 4.6(a), we simulate the fol-

lowing scenarios. (1) Epoch 1-50: ↵ 2 [0, 0.2], � 2 [0.09, 0.11], epoch 101-

150: ↵ 2 [0.09, 0.11], � 2 [0, 0.2], and epoch 201-250: ↵, � 2 [0, 0.2]. This

scenario evaluates WORMHOLE’s resilience against volatile join and leave

churn rates. (2) Epoch 301-350:↵ 2 [0.04, 0.06], � 2 [0.09, 0.11], which eval-

uates WORMHOLE’s resilience against the case of ↵ < �, which affects self-

balance and operability as analysed in Lemma 4.4.1. (3) Epoch 401-450: ↵ 2

[0.09, 0.11], � 2 [0.04, 0.06], which evaluates WORMHOLE’s resilience against

the case of ↵ > �. Other epochs are configured with ↵, � 2 [0.09, 0.11] to al-

low the network to recover and avoid influence between the above epoch

executions.

Simulation results (Figure 4.6). Figure 4.6(b) outlines the distribution of

nodes. Figure 4.6(c) shows the observed load balance, in both best-case and

83

Figure 4.6: Simulation results of WORMHOLE over 500 epochs (x axis) in
different churn rates. (a) Simulated churn rate (↵, �) over epochs. (b) Dis-
tribution of nodes over epochs. A node is static if it stays in the same shard
compared to the last epoch; is moved if it is allocated to another shard com-
pared to the last epoch; is new if it newly joins the system in this epoch; and
is left if it leaves the system in this epoch. (c) Observed load balance in the
best-case and worst-case execution. In the best case, a random set of nodes
leave the system, while in the worst case nodes in the same shard leave the
system. (d) Observed operability compared with the expected one.

worst-case execution. In the best-case execution, a random set of nodes

leave the network, and each shard is likely to lose a similar number of nodes.

In the worst-case execution, nodes in the same shard leave the network,

making the shards less balanced. We observe that in epoch 1-300 where the

average join rate ↵̄ equals to the average leave rate �̄, the observed load bal-

ance is about 0.1 and 0.6 in the best-case and worst-case execution, respec-

tively. In epoch 301-350 where ↵̄ < �̄, the observed load balance increases

to 0.5 and 1.1 in the best-case and worst-case execution, respectively. The

observed load balance is less than 1 in most cases, meaning that WORM-

84

HOLE achieves satisfactory load balance guarantee under high leave rate. In

addition, in epoch 351-400 where ↵̄ = �̄ again, the observed load balance in

the worst-case execution reduces from 1.1 to 0.8 monotonically within about

25 epochs. This shows that WORMHOLE can recover from temporary load

imbalance in a short time period. Moreover, in epoch 401-450 where ↵̄ > �̄,

the observed load balance reduces further by 0.1 in both the best-case and

worst-case execution. This is because newly joined nodes are uniformly dis-

tributed among shards, amortising the load imbalance.

Figure 4.6(d) shows the observed operability. We observe that while the

expected operability is 0.95, the observed operability is 0.95±0.01, meaning

that WORMHOLE can achieve the parameterised operability with little bias.

In epoch 351-400 where ↵̄ recovers to be equal to ↵̄, the maximum bias re-

mains stable rather than recovering to that in epoch 1-300. This is because

the number of nodes has been reduced, making the statistical results more

volatile. In epoch 401-450 where ↵̄ > �̄, the observed operability recovers to

that in epoch 1-300. This is also because newly joined nodes are uniformly

distributed among shards.

4.8 Related work

We briefly review existing research on sharding distributed systems

and compare our contributions with two studies systematising blockchain

sharding protocols.

Sharding for CFT distributed systems. Sharding has been widely de-

ployed in crash fault tolerant (CFT) systems to raise their throughput. Al-

locating nodes to shards in a CFT system is straightforward, as there is no

Byzantine adversaries in the system, and the total number of nodes is fixed

and known to everyone [70], [134], [135]. The main challenge is to balance

the computation, communication, and storage workload among shards. De-

spite a large number of load-balancing algorithms [71]–[74], [136], none

85

of them is applicable in the permissionless setting as they do not tolerate

Byzantine faults.

Distributed Hash Tables. Many peer-to-peer (P2P) storage services [82],

[83] employ Distributed Hash Tables (DHT) [137] to assign file metadata,

i.e., a list of keys, to their responsible nodes. In a DHT, nodes share the same

ID space with the keys; a file’s metadata is stored at the nodes whose IDs are

closest to the keys. Although designed to function in a permissionless en-

vironment, DHTs are vulnerable to several attacks [138]–[140], therefore are

not suitable for blockchains, which demands strong consistency on financial

data.

Distributed Slicing. Distributed Slicing [141] aims at grouping nodes with

heterogeneous computing and storage capacities in a P2P network to opti-

mise resource utilisation. In line with CFT systems, these algorithms [84]–

[87] require nodes to honestly report their computing and storage capacities,

therefore are not suitable in a Byzantine environment.

Evaluation of sharded blockchains. Wang et al. [10] propose an evaluation

framework based on Elastico’s architecture; Avarikioti et al. [80] formalise

sharded blockchains by extending the model of Garay et al. [18]. Both of

them aim at evaluating the entire sharded designs, and put most efforts

on DRG or cross-shard communication, neglecting the security and perfor-

mance challenges of shard allocation.

86

Chapter 5

RandChain: A scalable and fair Decentralised Ran-

domness Beacon

5.1 Introduction

Our evaluation in Chapter 3 shows that existing permissionless sharded

blockchains usually embed a Decentralised Randomness Beacon (DRB) pro-

tocol that allows nodes to jointly generate random outputs periodically. As

permissionless sharded blockchains require strong security guarantee due

to its high financial stake, DRBs in them have to be 1) scalable: Even with

a large number of participants, the DRB produces random outputs with an

expected rate, and 2) fair: Each participant controls comparable power on

deciding random outputs. Without scalability, the DRB can be maintained

only by a small set of participants. Without fairness, the DRB can be domi-

nated by a small subset of powerful participants out of the entire set. When

the DRB is dominated by a small set of participants, they can collude and

manipulate the randomness in order to take advantage in these permission-

less sharded blockchains supported by the DRB. However, designing a DRB

that is both scalable and fair remains an open challenge.

Existing DRBs do not scale. Most DRB protocols are built from peri-

odically executing a Distributed Randomness Generation (DRG) protocol,

where participants contribute their local entropy and aggregate them into a

single random output. Commonly used DRG protocols are based on thresh-

old cryptosystems [99], [142], [143], Verifiable Random Functions (VRFs) [144]–

[146], and/or Publicly Verifiable Secret Sharing (PVSS) [36], [101], [107],

[147]–[149].

87

While DRG-based DRBs are fair given their “one-man-one-vote” de-

sign, they are not scalable, as they suffer from at least O(n2) communication

complexity. DRG-based DRBs usually involve all-to-all broadcast primi-

tives, leading to at least O(n2) communication complexity. To overcome the

communication complexity bound, DRG-based DRBs have to employ a cen-

tral point that relays messages. The central point is either a dealer [99], [107],

[143], [146], [148] or a leader elected by a leader election protocol [36], [142],

[144], [145], [147]. A dealer is either implemented as a trusted party or in a

distributed manner which introduces extra communication overhead [150].

If the elected leader is corrupted, then it can bias random outputs by with-

holding messages and can compromise the liveness by sending messages to

and advancing rounds for only a subset of participants [151], [152]. To toler-

ate corrupted leaders, the DRB has to employ an extra round synchronisa-

tion protocol [152], which allows participants to re-synchronise and replace

the corrupted leader with a new leader to start a new round. However,

round synchronisation protocols introduce extra communication complex-

ity [151], [152] and/or increase latency [153].

The scalability crux: Participants are collaborative. We attribute these

limitations to the design that participants are collaborative: Participants con-

tribute their local inputs and aggregate them into a single output. The

collaborative process ensures that no participant can fully control random

outputs, making them hard to bias or predict. However, in order to col-

laborate, participants should continuously broadcast messages to and syn-

chronise with each other. The former incurs at least O(n2) communication

complexity, and the latter requires round synchronisation. All extra de-

signs incorporated with DRG – e.g., using dealers [99], [107], [143], [148],

leader election [36], [142], [144]–[147], sharding [36], [142], cryptographic

sortition [145], Byzantine consensus [101], [145], and erasure coding [107],

[148] – aim at reducing the impact of the above two limitations. However,

88

since all of them are in the collaborative design, they inherently suffer from

the two limitations and cannot address them completely.

Competitive DRBs: A new design space. To address the inherent lim-

itations in the collaborative design, we consider a new design space for

DRBs called competitive DRBs. Unlike existing DRBs where participants are

collaborative, participants in competitive DRBs compete to solve crypto-

graphic puzzles, whose solutions are unpredictable. The participant who

first solves the puzzle becomes the leader, and broadcasts the puzzle solu-

tion to other participants. Upon a new puzzle solution, participants execute

Nakamoto consensus [1] to agree on and append it to the sequence of puzzle

solutions, ensuring consistency and liveness. A random output is extracted

from each puzzle solution by using a Verifiable Delay Function (VDF) [154]

which takes longer time than the puzzle solution becoming irreversible in

the sequence. The time delay prevents the adversary from withholding its

puzzle solution and biasing the random output to its own advantage.

RANDCHAIN: The first scalable and fair DRB. We propose RANDCHAIN,

the first competitive DRB. RANDCHAIN works in permissioned settings iden-

tical to all existing DRBs, and is the first to achieve both scalability and

fairness: It allows an unbounded number of participants to participate and

restricts their voting power to be comparable. To achieve scalability, RAND-

CHAIN employs Nakamoto consensus [1] with linear communication com-

plexity. To achieve fairness, RANDCHAIN realises non-parallelisable mining [155],

where more processors do not give any advantage in solving a puzzle. As

no existing primitive can provide non-parallelisable mining, we introduce Se-

quential Proof-of-Work (SeqPoW), a cryptographic puzzle that takes a random

and unpredictable number of sequential steps to solve. SeqPoW is also of

independent interest in other protocols such as leader election and Proof-of-

Stake (PoS)-based consensus.

Contributions. Our contributions are summarised as follows.

89

• We identity and formalise a new design space for DRBs, namely com-

petitive DRBs, which break the scalability limit in existing DRB de-

signs.

• As existing primitives lack the properties desired by the competitive

DRBs (given the analysis in §5.3), we introduce and formalise the con-

cept of SeqPoW that satisfies these properties. We provide two con-

structions based on VDFs [156], [157] and Sloth [108], and analyse

their security and efficiency. We also discuss applications of SeqPoW

in leader election and Proof-of-Stake (PoS)-based consensus (§5.4).

• We provide RANDCHAIN as a concrete instantiation of competitive

DRBs, and provide an analysis on its security and performance (§5.5).

• We provide an implementation of SeqPoW and RANDCHAIN and eval-

uate their performance (§5.6). The implementation adds/changes about

4500 Rust lines of code (LoCs) on top of parity-bitcoin [158]. The

evaluation results show that RANDCHAIN is indeed scalable and fair:

with 1024 nodes, RANDCHAIN can produce a random output every 1.3

seconds (2.3x faster than RandHerd [36], 6.6x faster than HydRand [101]

with 128 nodes); utilise constant bandwidth of about 200 KB/s per

node (comparable with RandHerd with 1024 nodes and HydRand with

128 nodes); and provide nodes with comparable chance of producing

random outputs.

• We establish a unified evaluation framework of DRBs, and compare

RANDCHAIN with existing DRBs under this framework (§5.7). Our

comparison shows that RANDCHAIN is the only DRB that is secure,

scalable and fair, without relying on any trusted third party.

90

5.2 Model of DRBs

In this section, we define the model for DRBs, including the system

model, correctness properties and performance metrics.

5.2.1 System model

System setting. We consider the system setting common in most DRBs [36],

[99], [101], [107], [142]–[149]. In particular, a DRB contains a set of n partic-

ipants P = {p1, . . . , pn}. Each participant pk 2 P has a pair of secret key

skk and public key pkk, and is uniquely identified by pkk. Each participant

is only directly connected to a subset of peers in the system. Participants

jointly maintain a unique sequence of random outputs. Participants con-

tinuously execute the DRB protocol to agree on new random outputs and

append them to the sequence.

Network model. Network model concerns the timing guarantee of mes-

sages delivery between participants. We consider a synchronous network

where messages are delivered within a known finite time bound �.

Adversary model. The adversary controls ↵n processors, and can corrupt

at most ↵n participants in the system, where ↵ < 1
2 . The adversary is adap-

tive in the sense that it can corrupt any set of  ↵n participants at any time.

The adversary can coordinate corrupted participants without delay; and can

arbitrarily delay, drop, forge and modify messages from its corrupted par-

ticipants.

5.2.2 Correctness properties

Consistency and liveness. Similar to consensus, DRBs should satisfy

consistency and liveness. Consistency ensures that participants agree on a

unique sequence of random outputs, and liveness ensures that participants

91

produce new random outputs at an admissible rate. We adapt the common-

prefix and chain-growth definitions from Nakamoto consensus protocols [52],

[53], [159], [160] rather than the agreement and termination definitions from

BFT-style consensus protocols [34], as we consider a streamlined execution

rather than a single-shot execution.

For consistency, we adapt the common-prefix definition in Nakamoto-

style consensus where correct participants can only have different views

on a certain number of last blocks. In DRBs, the consistency ensures that

correct participants can only have different views on a certain number of

last random outputs. Some randomness-based applications require RB to

have finality [58], i.e., at any time, correct participants do not have conflicted

views on the random output, which is equivalent to 0-consistency or agree-

ment in Byzantine consensus [21].

Definition 5.2.1 (⌥-Consistency). For any two correct participants at any

time, their sequences can differ only in the last ⌥ 2 N random outputs.

For liveness, we adapt the chain-growth definition in Nakamoto-style

consensus where correct participants produce blocks at a certain rate. In

DRBs, the liveness ensures that correct participants produce random out-

puts at a certain rate. If the speed does not reach the lowest speed, then the

DRB cannot satisfy the requirement of real-world applications. Papers for-

malising a single-shot execution of DRBs refer liveness as termination [99],

[145], [149] or Guaranteed Output Delivery (G.O.D.) [107], [143], [148], [161]

where, for every round, a new random output will be produced.

Definition 5.2.2 ((t, ⌧)-Liveness). For any time period of length t, every cor-

rect participant learns at least t · ⌧ new random outputs, where t, ⌧ 2 R+.

Uniform distribution. Uniform distribution ensures that every random

output in the DRB is statistically close to a uniformly random string.

92

Definition 5.2.3 (Uniform distribution). Every random output is indistin-

guishable from a random string of the same length, except for negligible

probability.

Unpredictability. Unpredictability ensures that the adversary cannot pre-

dict random outputs that have not been produced yet. Otherwise, if the

adversary can predict future random outputs, then it can take advantage in

randomness-based applications.

Definition 5.2.4 (Unpredictability). Any adversary can only obtain negligi-

ble advantage on the following game. Assuming participants in the DRB

agree on an `-long sequence of random outputs. Before the (` + 1)-th ran-

dom output R`+1 is produced, the adversary makes a guess R0
`+1 on R`+1.

The adversary’s advantage is quantified as Pr
⇥
R0
`+1 = R`+1

⇤
.

Unbiasibility. Unbiasibility ensures that the adversary cannot influence

the produced random output to another value to its own advantage [36],

[101], [143], [161]. Otherwise, if the adversary can bias random outputs,

then it can take advantage in randomness-based applications. Unbiasibility

can be achieved by the output-independent-abort property [162]: The adver-

sary has to decide to proceed or abort the protocol before learning the proto-

col’s outcome. In the context of an ⌥-consistent DRB, output-independent-

abort ensures that, participants learn a random output only after it becomes

⌥-deep in a correct participant’s view.

Definition 5.2.5 (Unbiasibility). Assuming a DRB satisfies ⌥-consistency,

and participants in the DRB agree on an `-long sequence of random out-

puts. The adversary learns the (` + 1)-th random output R`+1 only after

(` + ⌥ + 1) consecutive random outputs are recorded in the sequence of at

least one correct participant, except for negligible probability.

93

5.2.3 Performance metrics

Communication complexity. Communication complexity is the total amount

of communication required to complete a protocol [96]. In the context of

DRBs, the communication complexity is quantified as the amount of com-

munication (in bits) all participants take to generate a random output. For

example, for a DRB that includes n participants and achieves O(n) (aka lin-

ear) communication complexity, each participant handles a constant amount

of communication for generating a random output, leading to the total amount

of communication proportional to n. A protocol may have different commu-

nication complexity in the best-case and worst-case executions.

Latency. Latency is the time required to complete a protocol. In the context

of DRBs, the latency is quantified as the time participants take to generate

a random output. Similarly, a protocol may have different latencies in the

best-case and worst-case executions. If the protocol’s latency only depends

on the actual network delay � but not the delay upper bound �, then the

protocol is responsive [163].

5.3 Design goals and strawman designs

In this section, we describe our two design goals, namely scalability and

fairness, and analyse two strawman designs towards them. The analysis

reveals the need for a cryptographic puzzle with two properties, namely

sequentiality and hardness. As no existing puzzle achieves these two prop-

erties simultaneously, we are motivated to propose a new primitive named

Sequential Proof-of-Work (SeqPoW, §5.4) that satisfies both properties, allow-

ing us to construct RANDCHAIN (§5.5).

94

5.3.1 Design goals: scalability and fairness

Our goal is to design a DRB that can serve security-critical protocols

and applications with high financial stake, such as public blockchains and

voting protocols. To ensure that the DRB can be trusted by such protocols

and applications, we demand two additional requirements on the DRB atop

the model in §5.2, namely scalability and fairness.

Scalability. Scalability specifies that the DRB can produce random outputs

regularly even in the presence of a large set of n participants. Having a large

set of participants reduces the trust needed on each participant, making the

DRB more resilient to malicious parties. Otherwise, if the DRB is main-

tained by a small set of participants, then they can collude to bias and/or

predict random outputs and thus take advantage in the randomness-based

applications.

To produce random outputs regularly when n is large, the DRB has to

minimise the communication complexity and latency. For communication

complexity, O(n) is considered scalable as each participant handles a con-

stant amount of communication independent with n, while O(n2) is not as

each node handles overwhelming communication overhead when n is large.

For latency, demand it to be as small as possible.

Fairness. Fairness specifies that each participant controls comparable vot-

ing power on deciding random outputs, regardless of their financial stake or

hardware resource. The voting power of a node is quantified as the amount

of its contributed entropy in collaborative DRBs, and as its chance of pro-

ducing the next block in competitive DRBs. Without fairness, few powerful

participants among all participants will control the randomness generation

process of the DRB. This is not desirable as the powerful participants can

collude to compromise the DRB, similar to the scalability case.

95

Unlike DRG-based DRBs that satisfy fairness immediately given the

“one-man-one-vote” nature, participants in competitive DRBs may have

different voting power, leading to weak fairness. We define fairness as the

maximum voting power difference among participants in the DRB. In the

context of competitive DRBs, fairness is the maximum difference of nodes’

chances of producing the next block.

Definition 5.3.1 (µ-Fairness). Assuming all messages are delivered instantly

and participants in a DRB agree on an `-long sequence of random outputs.

Let X(pk) be the event that participant pk produces the (` + 1)-th random

output earlier than other participants. For any two participants pi and pj ,

µ = min
8i,j2[n]

Pr[X(pi)]

Pr[X(pj)]

When µ = 1, the DRB achieves ideal fairness and the network is fully

decentralised, and vice versa when µ ! 0. As a design goal, we demand µ

to be as close to 1 as possible.

5.3.2 Strawman designs

We analyse two strawman designs towards the two goals. The anal-

ysis reveals the need for a cryptographic puzzle satisfying two properties,

namely sequentiality and hardness. No existing puzzle satisfies both of them

simultaneously.

Strawman#1: Nakamoto-style DRBs. The scalability goal requires the

DRB to achieve O(n) communication complexity. We have shown in §5.1

that no existing DRB achieves it without a trusted third party, motivating

us to propose the competitive DRB approach. A natural choice is building

upon the Nakamoto-style consensus, where each participant solves a PoW

puzzle to become the leader, and a random output is extracted from the

PoW solution deterministically.

96

Such design satisfies scalability but not fairness, as participants with

more mining hardware have more chance of mining blocks than others. To

achieve fairness, the DRB has to prevent participants from investing more

mining resource to take advantage in mining. A possible solution is the non-

parallelisable mining [155], where a participant can only use a single processor

for mining and cannot speed up mining by using multiple parallel proces-

sors. To realise non-parallelisable mining, the puzzle has to be sequential: it

cannot be solved faster by using multiple parallel processors.

Strawman#2: Applying time-sensitive cryptography. Sequentiality has

been formalised and achieved in time-sensitive cryptographic primitives.

For example, Verifiable Delay Functions (VDFs) [154] enforce a parameter-

isable time delay on generating outputs and allow to verify outputs fast.

Recent proposals [164], [165] apply VDFs to construct Nakamoto-style con-

sensus: Each participant derives a random output y from the latest system

state, maps y to a random time parameter t in a designated interval, and

solves a VDF with time parameter t. The first participant solving the VDF

derives the next random output from its VDF output.

However, Nakamoto-style consensus with existing time-sensitive prim-

itives achieves weaker fairness and consistency guarantee. All existing time-

sensitive primitives have a fixed time delay. Nakamoto-style consensus

with such puzzles is locally predictable [166]: Given the input x, each par-

ticipant can learn the time parameter t immediately, and thus can predict

when it will propose the next random output. The adversary can apply

such prediction to amplify its advantage in selfish mining [47] and double-

spending [1], weakening the system’s fairness and consistency guarantee,

respectively [166].

To make the mining process unpredictable, the puzzle has to take a ran-

dom and unpredictable number of attempts to solve. PoW satisfies such re-

quirement by providing the hardness property [167]: Upon each attempt on

97

solving the puzzle, the solver has probability 1
T

to solve the puzzle, where T

is a hardness parameter. However, none of existing primitives satisfies both

sequentiality and hardness.

5.4 Sequential Proof-of-Work

In this section, we introduce Sequential Proof-of-Work (SeqPoW), a PoW

variant that satisfies both sequentiality and hardness. We formalise SeqPoW,

provide two constructions, and analyse their security and efficiency.

5.4.1 Preliminaries on VDFs

Verifiable Delay Function (VDF) [154], [156], [157] allows a prover to

evaluate an input, and produce a unique output deterministically with a

succinct proof attesting the output’s correctness. The evaluation process

takes non-negligible and parameterisable time to execute, even with paral-

lelism.

Definition 5.4.1 (Verifiable Delay Function). A Verifiable Delay Function

VDF is a tuple of four algorithms

VDF = (Setup,Eval,Prove,Verify)

Setup(�)! pp: On input security parameter �, outputs public parameter

pp. Public parameter pp specifies an input domain X and an output

domain Y . We assume X is efficiently sampleable.

Eval(pp, x, t)! y: On input public parameter pp, input x 2 X , and time

parameter t 2 N+, produces output y 2 Y .

Prove(pp, x, y, t)! ⇡: On input public parameter pp, input x, output y, and

time parameter t, outputs proof ⇡.

98

Verify(pp, x, y, ⇡, t)! {0, 1}: On input pp, x, y, ⇡ and t, outputs 1 if y is a

correct evaluation, otherwise 0.

VDF satisfies the following properties

• Completeness: For all �, x and t,

Pr

2

66664

Verify(pp, x, y,

⇡, t) = 1

����������

pp Setup(�)

y Eval(pp, x, t)

⇡ Prove(pp, x, y, t)

3

77775
= 1 (5.1)

• Soundness: For all � and adversary A,

Pr

2

64
Verify(pp, x, y, ⇡, t) = 1

^Eval(pp, x, t) 6= y

�������

pp Setup(�)

(x, y, ⇡, t) A(pp)

3

75  negl(�) (5.2)

• �-Sequentiality: For any �, x, t, A0 which runs in time O(poly(�, t)) and

A1 which controls any polynomial amount of processors and runs in

less than time �(t),

Pr

2

66664
Eval(x, y, t) = y

����������

pp Setup(�)

A1 A0(�, t, pp)

y A1(x)

3

77775
 negl(�) (5.3)

VDFs are usually constructed from an iteratively sequential function

(ISF) and a succinct proof attesting the ISF’s execution results [156], [157].

ISF f(t, x) = gt(x) is a function that composes a sequential function g(x)

for t times. The fastest way of computing ISF f(t, x) is to iterate g(x) for t

times, as g(·) is sequential. Squaring and squaring root over cyclic groups

of unknown order (e.g., RSA group or class group [168]) are two sequential

functions with proven sequentiality [108], [169], [170]. Their repeated ver-

sions – repeated squaring [156], [157] and repeated squaring root [108] over

cyclic groups – are two widely used ISFs.

99

ISF f(·) usually provides the self-composability property: For any x and

(t1, t2), let y f(x, t1), we have f(x, t1 + t2) = f(y, t2). VDFs usually in-

herit the self-composability from ISFs. Such VDFs are known as self-composable

VDFs [171].

Definition 5.4.2 (Self-Composability). A VDF (Setup,Eval,Prove,Verify) sat-

isfies self-composability if for all �, x, (t1, t2),

Pr

2

64
Eval(pp, x, t1 + t2)

= Eval(pp, y, t2)

�������

pp Setup(�)

y Eval(pp, x, t1)

3

75 = 1 (5.4)

Lemma 5.4.1. If a VDF (Setup,Eval,Prove,Verify) satisfies self-composability,

then for all �, x, (t1, t2),

Pr

2

66666664

Verify(pp, x, y0,

⇡, t1 + t2) = 1

�������������

pp Setup(�)

y Eval(pp, x, t1)

y0 Eval(pp, y, t2)

⇡ Prove(pp, x, y0, t1 + t2)

3

77777775

= 1 (5.5)

5.4.2 Basic idea of SeqPoW

SeqPoW is a cryptographic puzzle that takes a random and unpre-

dictable number of sequential steps to solve. As shown in Figure 5.1, given

an initial SeqPoW puzzle S0, the prover keeps solving it by incrementing an

ISF. Each iteration takes the last output Si�1 as input and produces a new

output Si. For each output Si, the prover checks whether it satisfies a dif-

ficulty parameter T . If yes, then Si is a valid solution, and the prover can

generate a proof ⇡i on it. Given Si and ⇡i, the verifier can check Si’s correct-

ness without solving the puzzle again.

Comparisons with relevant primitives (Table 5.1). SeqPoW is the first

primitive that satisfies both sequentiality and hardness, and therefore can be

used for constructing RANDCHAIN. SeqPoW differs from VDFs and other

100

Prover SeqPoW
puzzle

Verifier

...

Diff checkDifficulty
T

Diff check Diff check

Iteratively
Sequential
Function

Figure 5.1: Sequential Proof-of-Work.

time-sensitive cryptographic primitives, e.g., Timelock Puzzle (TLP) [172]

and Proofs of Sequential Work (PoSW) [173], [174] in that, the SeqPoW

prover iterates an ISF for a randomised (rather than given) number of times.

In addition, compared to TLP, SeqPoW provides publicly verifiable outputs.

Compared to PoSW, SeqPoW allows outputs to be unique. SeqPoW differs

from PoW in that SeqPoW is sequential. SeqPoW differs from memory-hard

functions (MHFs) [175]–[177] in that, SeqPoW is bottlenecked by the proces-

sor’s frequency, whereas MHF is bottlenecked by the memory bandwidth.

Two concurrent works [164], [178] propose ways to randomise the num-

ber of iterations in VDFs, without formal treatment. We are the first to

formally study such primitives, including formal definitions, concrete con-

structions with security proofs, implementation and evaluation. We also

provide SeqPoW with uniqueness that both of them cannot achieve.

Applications. Given the unpredictability and hardness properties, Se-

qPoW is of independent interest for other protocols. First, SeqPoW can

improve the fairness of leader election protocols. Mining in PoW-based con-

sensus can be seen as a way of electing leaders: given a set of participants,

the first participant proposing a valid PoW solution becomes the leader and

proposes a block. SeqPoW can be a drop-in replacement of PoW for the

101

Table 5.1: SeqPoW v.s. relevant primitives.

Primitive
Execution Output

Seq
uen

tia
l

Step
s

Bottl
en

ec
k

Uniq
ue

Veri
fiab

le

Time-
sensitive

TLP 3 Fixed Proc. freq. 3 7

PoSW 3 Fixed Proc. freq. 7 3

VDF 3 Fixed Proc. freq. 3 3

Resource-
consuming

MHF 3or 7 Fixed Mem. bandw. 3 3

PoW 7 Random Proc. freq. +
of procs. 7 3

Our work
SeqPoWVDF 3 Random Proc. freq. 7 3

SeqPoWSloth 3 Random Proc. freq. 3 3

leader election purpose. In §5.5.3, we show that compared to parallelisable

PoW, SeqPoW-based leader election achieves better fairness.

Second, SeqPoW can improve the fault tolerance capacity of Proof-of-

Stake (PoS)-based consensus. In Proof-of-Stake (PoS)-based consensus [179],

each participant’s chance of mining a block is in proportion to its stake, e.g,

the participant’s balance. Most PoS-based consensus protocols [144], [147],

[180]–[182] select block proposers in a predictable [120], [166] way, thus are

vulnerable to various prediction-based attacks and tolerate less Byzantine

mining power [120], [166] than PoW-based consensus, as analysed in §5.3.

To make PoS-based consensus unpredictable, one can randomise the pro-

cess of selecting block proposers. SeqPoW can provide such functionality:

Each participant solves a SeqPoW with its identity, the last block, and the

difficulty parameter inversely proportional to its stake as input, and the first

participant solving its SeqPoW becomes the block proposer. A concurrent

and independent work [178] provides a concrete protocol following the sim-

ilar idea.

5.4.3 Definition

We present the formal syntax of Sequential Proof-of-Work (SeqPoW).

102

Definition 5.4.3 (Sequential Proof-of-Work (SeqPoW)). A Sequential Proof-

of-Work SeqPoW is a tuple of algorithms

SeqPoW = (Setup,Gen, Init, Solve,Verify)

Setup(�, , T)! pp: On input security parameter �, step 2 N+ and dif-

ficulty T 2 [1,1), outputs public parameter pp. Public parameter

pp specifies an input domain X , an output domain Y , and a crypto-

graphically secure hash function H : X ! Y , where X is efficiently

sampleable.

Gen(pp)! (sk, pk): A probabilistic function, which on input public param-

eter pp, produces a secret key sk 2 X and a public key pk 2 X .

Init(pp, sk, x)! (S0, ⇡0): On input public parameter pp, secret key sk, and

input x 2 X , outputs initial solution S0 2 Y and proof ⇡0. Some con-

structions may use public key pk as input rather than sk. This also

applies to Solve(·) and Prove(·).

Solve(pp, sk, Si)! (Si+1, bi+1): On input public parameter pp, secret key sk,

and i-th solution Si 2 Y , outputs (i+1)-th solution Si+1 2 Y and result

bi+1 2 {0, 1}.

Prove(pp, sk, i, x, Si)! ⇡i: On input public parameter pp, secret key sk, i,

input x, and i-th solution Si, outputs proof ⇡i.

Verify(pp, pk, i, x, Si, ⇡i)! {0, 1}: On input pp, pk, i, x, Si, and ⇡i, outputs 1

if Si is a valid solution, otherwise 0.

We define honest tuples and valid tuples as follows.

Definition 5.4.4 (Honest tuple). A tuple (pp, sk, i, x, Si, ⇡i) is (�, , T)-honest

if and only if for all pp Setup(�, , T), the following holds:

• i = 0 and (S0, ⇡0) Init(pp, sk, x), and

103

• 8i 2 N+, (Si, bi) Solve(pp, sk, Si�1) and ⇡i Prove(pp, sk, i, x, Si),

where (pp, sk, i� 1, x, Si�1, ⇡i�1) is (�, , T)-honest.

Definition 5.4.5 (Valid tuple). For all �, , T , and pp Setup(�, , T), a

tuple (pp, sk, i, x, Si, ⇡i) is (�, , T)-valid if

• (pp, sk, i, x, Si, ⇡i) is (�, , T)-honest, and

• Solve(pp, sk, Si�1) = (·, 1)

SeqPoW should satisfy completeness, soundness, hardness and sequential-

ity, plus an optional property uniqueness.

Definition 5.4.6 (Completeness). A SeqPoW scheme satisfies completeness

if for all �, , T ,

Pr

2

66666664

Verify(pp, pk, i,

x, Si, ⇡i) = 1

�������������

pp Setup(�, , T)

(sk, pk) Gen(pp)

(pp, pk, i, x, Si, ⇡i)

is (�, , T)-valid

3

77777775

= 1 (5.6)

Definition 5.4.7 (Soundness). A SeqPoW scheme satisfies soundness if for

all �, , T ,

Pr

2

66666664

Verify(pp, pk, i,

x, Si, ⇡i) = 1

�������������

pp Setup(�, , T)

(sk, pk) Gen(pp)

(pp, pk, i, x, Si, ⇡i)

is not (�, , T)-valid

3

77777775

 negl(�) (5.7)

Definition 5.4.8 (Hardness). A SeqPoW scheme satisfies hardness if for all

(�, , T)-honest tuple (pp, sk, i, x, Si, ⇡i),

�������
Pr

2

64bi+1 = 1

�������

(Si+1, bi+1)

Solve(pp, sk, Si, ⇡i)

3

75�
1

T

�������
 negl(�) (5.8)

104

Definition 5.4.9 (�-Sequentiality). A SeqPoW scheme satisfies �-sequentiality

if for all �, , T , i, x, A0 which runs in less than time O(poly(�, , i)) and A1

which runs in less than time �(i ·) with at most poly(�) processors,

Pr

2

666666666664

(pp, sk, i, x, Si, ⇡i)

is (�, , T)-honest

�����������������

pp Setup(�, , T)

(sk, pk) Gen(pp)

A1 A0(pp, sk)

Si A1(i, x)

⇡i Prove(pp, sk, i, x, Si)

3

777777777775

 negl(�) (5.9)

SeqPoW also has an optional property uniqueness, by which each Se-

qPoW puzzle only has a single valid solution Si. Before finding a valid

solution Si each Solve(·) attempt follows the hardness definition, but after

finding Si no further Solve(·) attempt returns a valid solution.

Definition 5.4.10 (Uniqueness (optional)). A SeqPoW scheme satisfies unique-

ness if for any two (�, , T)-valid tuples (pp, sk, i, x, Si, ⇡i) and (pp, sk, i, x, Sj, ⇡j),

i = j holds.

5.4.4 Constructions

Let H : {0, 1}⇤ ! {0, 1} be a cryptographic hash function; G be a cyclic

group with unknown order (e.g., RSA group or class group); HG : {0, 1}⇤ !

G be a function mapping an arbitrary string to an element on G; g be a

generator of G; sk be the secret key; and pk = gsk be the public key. Let

expression?x : y be the tenary operator that returns x if the expression is

true or y otherwise.

SeqPoW from VDFs (Figure 5.2a). Let be a step parameter, x be the

input, and T be the difficulty parameter. The prover runs Init(·), which gen-

erates the initial solution S0 = HG(pkkx). Then, the prover keeps running

Solve(·), which calculates an intermediate output Si = VDF.Eval(pp, Si�1,)

105

Setup(�, , T)

1 : ppVDF = (G, g) VDF.Setup(�)

2 : pp (ppVDF, , T)

3 : return pp

Gen(pp)

1 : (G, g, , T) pp

2 : Sample random sk 2 N
3 : pk gsk 2 G

4 : return (sk, pk)

Init(pp, pk, x)

1 : (G, g, , T) pp

2 : S0 HG(pkkx)

3 : return S0

Solve(pp, pk, Si)

1 : (ppVDF, , T) pp

2 : Si+1 VDF.Eval(ppVDF, Si,)

3 : bi+1 H(pkkSi+1) 
2

T
? 1 : 0

4 : return (Si+1, bi+1)

Prove(pp, pk, i, x, Si)

1 : (ppVDF, , T) pp

2 : (G, g) ppVDF

3 : S0 HG(pkkx)

4 : ⇡VDF VDF.Prove(ppVDF, S0, Si, i ·)

5 : return ⇡VDF

Verify(pp, pk, i, x, Si, ⇡i)

1 : (ppVDF, , T) pp

2 : (G, g) ppVDF

3 : S0 HG(pkkx)

4 : if VDF.Verify(ppVDF, S0, Si, ⇡i, i ·) = 0 then

5 : return 0

6 : if H(pkkSi) >
2

T
then

7 : return 0

8 : return 1

(a) SeqPoWVDF.

Setup(�, , T)

1 : pp (G, g, , T)

2 : return pp

Gen(pp)

1 : (G, g, , T) pp

2 : Sample random sk 2 N
3 : pk gsk 2 G

4 : return (sk, pk)

Init(pp, pk, x)

1 : (G, g, , T) pp

2 : S0 HG(pkkx)

3 : return S0

Solve(pp, pk, Si)

1 : (G, g, , T) pp

2 : Si+1 S
1
2

i

3 : bi+1 H(pkkSi+1) 
2

T
? 1 : 0

4 : return (Si+1, bi+1)

Prove(pp, pk, i, x, Si)

1 : return ?

Verify(pp, pk, i, x, Si, ⇡i)

1 : (G, g, , T) pp

2 : y Si

3 : if H(pkky) >
2

T
then return 0

4 : repeat i times

5 : y y2

6 : if H(pkky) 
2

T
then return 0

7 : if HG(pkkx) 6= y then return 0

8 : return 1

(b) SeqPoWSloth.

Figure 5.2: Construction of SeqPoW.

and checks whether H(pkkSi) 
2

T
. If true, then Si is a valid solution, and

the prover runs Prove(·), which outputs proof ⇡i attesting Si = VDF.Evali(pp, S0,).

Note that when VDF is self-composable, we have

Si = VDF.Eval(pp, Si�1,) = VDF.Evali(pp, S0,) = VDF.Eval(pp, S0, i ·)

The verifier runs Verify(·), which checks 1) whether Si = Eval
i(pp, S0,) by

running VDF.Verify(ppVDF, pk, i · , x, Si, ⇡i), and 2) whether Si satisfies the

difficulty T .

Unique SeqPoW from Sloth (Figure 5.2b). SeqPoWVDF does not pro-

vide uniqueness: The prover can keep incrementing the ISF to find as many

valid solutions as possible. We construct SeqPoWSloth with uniqueness from

106

Sloth [108], a slow-timed hash function. In Sloth, the prover calculates the

square root (on a cyclic group G) over the input for t times to get the out-

put. The verifier calculates the square over the output for t times to re-

cover the input and checks if the input is same as the one from the prover.

Although the verification is linear (and thus do not meet the VDF defini-

tion [154]), verification is faster than computing: On cyclic group G, squar-

ing is O(log |G|) times faster than square rooting. Similar to SeqPoWVDF,

SeqPoWSloth takes each of Si = f(i · , S0) as an intermediate output and

checks if H(pkkSi) 
2

T
. To make the solution unique, SeqPoWSloth only

treats the first solution satisfying the difficulty as valid. When verifying Si,

if the verifier finds an intermediate output Sj (j < i) satisfying the difficulty,

then Si is considered invalid.

5.4.5 Security and efficiency analysis

Security. We first summarise the security analysis. The completeness and

soundness are immediate from Sloth and VDFs’ completeness, soundness

and self-composability. By pseudorandomness of HG(·) and sequentiality of

Sloth and VDFs, Solve(·) outputs unpredictable solutions. As H(·) is mod-

elled as a random oracle and Solve(·) produces an unpredictable solution,

the probability that the solution satisfies the difficulty is 1
T

, leading to hard-

ness. The sequentiality and self-composability of Sloth and VDFs guarantee

the sequentiality of the SeqPoW constructions.

VDFs can be instantiated with any cyclic group, including the RSA

group that requires a trusted setup and the class group without such re-

quirement. The trusted setup is usually conducted by a trusted party or a

multi-party protocol [183], [184].

Then, we present the formal security proofs for the SeqPoW construc-

tions.

Lemma 5.4.2. SeqPoWVDF satisfies completeness.

107

Proof. Assuming a (�, , T)-valid tuple (pp, sk, i, x, Si, ⇡i), by completeness

and Lemma 5.4.1, VDF.Verify(·) will pass. As hash functions are determinis-

tic, difficulty check will pass. Therefore,

SeqPoWVDF.Verify(pp, pk, i, x, Si, ⇡i) = 1

Lemma 5.4.3. SeqPoWVDF satisfies soundness.

Proof. We prove this by contradiction. Assuming a tuple (pp, sk, i, x, Si, ⇡i)

that is not (�, , T)-valid and

SeqPoWVDF.Verify(pp, pk, i, x, Si, ⇡i) = 1

By soundness and Lemma 5.4.1, if (y, y+, ⇡+,) is generated by A, VDF.Verify(·)

will return 0. As hash functions are deterministic, if Si >
2

T
, difficulty check

will return 0. Thus, if (pp, sk, i, x, Si, ⇡i) is not (�, , T)-valid, then the adver-

sary can break soundness. Thus, this assumption contradicts soundness.

Lemma 5.4.4. SeqPoWVDF satisfies hardness.

Proof. We prove this by contradiction. Assuming

�������
Pr

2

64bi+1 = 1

�������

Si+1, bi+1

Solve(pp, sk, T, Si)

3

75�
1

T

�������
> negl(�) (5.10)

By sequentiality, the value of Si+1 is unpredictable before finishing Solve(·).

By pseudorandomness of hash functions, H(pkkSi+1) is uniformly distributed,

and the probability that H(pkkSi+1) 
2

T
is 1

T
with negligible probability.

This contradicts the assumption.

Lemma 5.4.5. SeqPoWVDF does not satisfy uniqueness.

108

Proof. By hardness, each of Si has the probability 1
T

to be a valid solution. As

i can be infinite, with (1 � ✏) probability where ✏ is negligible, there exists

more than one honest tuple (pp, sk, i, x, Si, ⇡i) such that H(pkkSi) 
2

T
.

Lemma 5.4.6. If the underlying VDF satisfies �-sequentiality, then SeqPoWVDF

satisfies �-sequentiality.

Proof. We prove this by contradiction. Assuming there exists A1 which runs

in less than time �(i ·) such that

Pr

2

666666666664

(pp, sk, i, x, Si, ⇡i)

2 H

�����������������

pp Setup(�, , T)

(sk, pk)
R
 Gen(pp)

A1 A0(�, pp, sk)

Si A1(i, x)

⇡i Prove(pp, sk, i, x, Si)

3

777777777775

(5.11)

is non-negligible. By �-sequentiality, A1 cannot solve VDF.Eval(ppVDF, y,)

within �(). By Lemma 5.4.1, Si can and only can be computed by compos-

ing VDF.Eval(ppVDF, y,) for i times, which cannot be solved within �(i ·).

Thus, if the assumption holds, then A1 can break the �-sequentiality property

of VDF, leading to a contradiction.

The completeness, soundness, hardness and sequentiality proofs of SeqPoWSloth

are identical to SeqPoWVDF’s. We prove SeqPoWSloth satisfies uniqueness be-

low.

Lemma 5.4.7. SeqPoWSloth satisfies uniqueness.

Proof. We prove this by contradiction. Assuming there exists two (�, , T)-

valid tuples (pp, sk, i, x, Si, ⇡i) and (pp, sk, i, x, Si, ⇡i) where j < i. According

to SeqPoWSloth.Solve(·), we have H(pkkSi) 
2

T
and H(pkkSj) 

2

T
, and

initial difficulty check in SeqPoWSloth.Verify(·) will pass. However, in the for

loop of SeqPoWSloth.Verify(·), if Si is valid, then verification of Sj will fail.

Then, SeqPoWSloth.Verify(·) returns 0, which contradicts the assumption.

109

Table 5.2: Efficiency of two SeqPoW constructions.

Solve(·) Prove(·) Verify(·) Proof
size

(Bytes)

SeqPoWVDF + Wes19 O() O(T) O(log T) s

SeqPoWVDF + Pie19 O() O(
p
 T log T) O(log T) s log2 T

SeqPoWSloth O() 0 O(T) 0

Efficiency (Table 5.2). SeqPoWVDF and SeqPoWSloth employ repeated squar-

ing on an RSA group and repeated square rooting on a prime-order group

as ISFs, respectively. Let s be the size (in Bytes) of a group element, and be

the step parameter. Each Solve(·) executes steps of the ISF, and the prover

attempts Solve(·) for T times on average to find a valid solution. Prove(·)

and Verify(·) generate and verify proofs of T consecutive modular squar-

ing operations, respectively.

We analyse SeqPoWVDF with both Wesolowski’s VDF (Wes19) [157] and

Pietrzak’s VDF (Pie19) [156] without optimisation/parallelisation techniques [156],

[157], [185]. According to the existing analysis [186], the proving complex-

ity, verification complexity and proof size of Wes19 are O(T), O(log T)

and s Bytes, respectively; and those of Pie19 are O(
p
 T log T), O(log T)

and s log2 T , respectively. When T = 240 and s = 32 Bytes, the proof sizes

of SeqPoWVDF with Wes19 [157] and with Pie19 [156] are 32 and 1280 Bytes,

respectively. SeqPoWSloth has the verification complexity of O(T) and uses

the solution itself to represent the proof.

5.5 RANDCHAIN: DRB from SeqPoW

In this section, we build the RANDCHAIN protocol. Figure 5.3 and 5.4

provides the intuition and full specification of RANDCHAIN, respectively.

In RANDCHAIN, participants jointly maintain a sequence of random out-

puts as a blockchain, where each random output is derived from a block

(§5.5.1). Specifically, participants agree on a unique blockchain by executing

110

...

...

...

Construct block

Solve SeqPoW puzzle Broadcast

Random
outputs

......

...

VDF
...

Ledger

Ledger

(a) Non-parallelisable mining (b) Nakamoto consensus and random output extraction

Figure 5.3: The RANDCHAIN protocol. (a) Upon block B`, each participant
keeps solving its own SeqPoW puzzle. The participant who first solves its
SeqPoW puzzle (the red one) proposes the next block B`+1 (in red). B`+1

piggybacks B` by including B`’s ID, i.e., B`+1.h� = B`.h. (b) Each partici-
pant maintains a local ledger formed as a DAG of blocks. It considers the
longest fork of the DAG as the main chain and mines over it. For each block
B`, the random output B`.R is extracted by a VDF that takes longer than
nodes extending (⌥ + 1) blocks (in this case ⌥ = 1) so that B`.R is learned
only after B` becomes irreversible.

mainChain(Ck)

1 : MCk ?
2 : foreach fork C⇤

k of Ck do

3 : if |C⇤
k | > |MCk| then MCk C⇤

k

4 : return MCk

randomOutput(pp, B, tVDF)

1 : (ppVDF, ·, ·) pp

2 : B.R VDF.Eval(ppVDF, B.pkkB.S, tVDF)

3 : B.⇡R VDF.Prove(ppVDF, B.pkkB.S,

4 : B.R, tVDF)

5 : return B.R, B.⇡R

MainProcedure(pp, skk, pkk)

1 : Synchronise ledger as Ck
// The following two lines read/modify Ck concurrently
2 : MineRoutine(pp, skk, pkk, Ck) in a thread
3 : SyncRoutine(pp, Ck) in a thread

MineRoutine(pp, skk, pkk, Ck)

1 : repeat
2 : MCk mainChain(Ck)

3 : B
� MCk[�1]

4 : i 0

5 : S SeqPoW.Init(pp, skk, B
�
.h)

6 : repeat
7 : if Ck is updated by SyncRoutine(·) then
8 : Repeat line 2-5
9 : S, b SeqPoW.Solve(pp, skk, S)

10 : i+ = 1

11 : if b = 1 then break
12 : h H(pkkkS)

13 : ⇡ SeqPoW.Prove(pp, sk, i, B�
.h, S)

14 : B (B�
.h, h, i, S, pkk, ⇡)

15 : Append B to MCk after B�

16 : Propagate B

SyncRoutine(pp, Ck)

1 : repeat
2 : Wait for a new block as B

3 : (h�
, h, i, S, pk, ⇡) B

4 : // B should point to an existing block

5 : if @B� 2 Ck : B
�
.h = h

� then discard B

6 : // B should have a valid ID h

7 : if h 6= H(pkkS) then discard B

8 : // B should include a valid puzzle solution

9 : if SeqPoW.Verify(pp, pk, i, h�
, S, ⇡) = 0 then

10 : Discard B

11 : Append B to Ck after block B
� where B

�
.h = h

�

12 : Propagate B

Figure 5.4: Full specification of RANDCHAIN.

the Nakamoto consensus, which ensures consistency, liveness, and scalabil-

ity in synchronous networks (§5.5.2). RANDCHAIN composes Nakamoto

consensus with our proposed SeqPoW puzzle to achieve non-parallelisable

mining, guaranteeing the fairness (§5.5.3). Each random output is extracted

from a block by using a Verifiable Delay Function (VDF) so that the random

output is learned only after the block becomes irreversible in the blockchain,

guaranteeing the uniform distribution, unpredictability and unbiasibility

(§5.5.4).

111

5.5.1 DRB structure

Each participant pk locally maintains a ledger Ck formed as a directed

acyclic graph (DAG) of blocks. Following Nakamoto consensus mainChain(·),

pk selects the longest fork in Ck as the main chain MCk. If there are multiple

longest forks at the same length, pk chooses the one it receives first. MCk is

formed as a blockchain, i.e., a totally ordered sequence of blocks. We denote

|MCk| as the length of MCk.

Each block B is of the format B = (h�, h, i, S, pk, ⇡), where h� is the

previous block ID, h is the current block ID, i is the SeqPoW solution index,

S is the SeqPoW solution, pk is the public key of this block’s creator, and ⇡

is the proof that S is a valid SeqPoW solution on input h�. Each block B is

identified by its ID B.h = H(B.pkkB.S), and points to a previous block B�

by setting B.h� = B�.h. One can extract a random output B.R from each

block B by using a deterministic function randomOutput(·), which we will

describe later in (§5.5.4).

5.5.2 Synchronising and agreeing on blocks

Each participant pk keeps running SyncRoutine(·) to synchronise its local

ledger Ck with other participants. Specifically, participant pk keeps receiving

blocks from other participants, verifying them, and adding valid blocks to

its local ledger Ck. Participant pk keeps tracking the main chain MCk fol-

lowing Nakamoto consensus mainChain(·), and executes the mining routine

MineRoutine(·) on MCk.

Same as PoW-based Nakamoto consensus, RANDCHAIN achieves con-

sistency and liveness in synchronous networks, and can tolerate an adver-

sary with mining power ↵ < 1
2 . As Nakamoto consensus is probabilistic,

RANDCHAIN does not achieve 0-consistency (aka finality). One can deploy

112

existing finality layer mechanisms [41], [187], [188] into RANDCHAIN. In

§5.8.3 we analyse two approaches of adding finality to RANDCHAIN.

RANDCHAIN inherits communication complexity and latency guaran-

tees from Nakamoto consensus. The communication complexity is O(n) as

the only communication is the leader broadcasting blocks. The latency is

tblock + �, where tblock is the parameterised block interval and � is the actual

network delay. Thus, RANDCHAIN achieves scalability.

5.5.3 Non-parallelisable mining

RANDCHAIN employs the SeqPoW puzzle for the mining routine, which

we call MineRoutine(·). Specifically, participant pk keeps solving the latest

SeqPoW puzzle S derived from SeqPoW.Init(pp, skk, B�.h), where pp is the

public parameter, skk is its secret key, and B�.h is the hash of MCk’s last

block. To solve puzzle S, participant pk keeps executing SeqPoW.Solve(·) un-

til finding a valid solution. With a valid solution, participant pk constructs a

block B, and appends B to MCk.

RANDCHAIN achieves non-parallelisable mining, leading to µ-fairness

with µ > 1
5 in practice where every node at least preserves a commodity

processor with 2⇠3 GHz frequency. Each participant has a unique input de-

riving a unique SeqPoW puzzle, so can only use a single processor for min-

ing. By SeqPoW’s sequentiality, to accelerate solving SeqPoW puzzles, one

can only increase the processor’s frequency. While commodity processors

usually achieve 2⇠3 GHz frequency, the most advanced processor achieves

the frequency of 8.723 GHz [189], which is hard to improve further due to

the voltage limit [190]. Hence, the fastest processor can mine at most five

times faster than normal processors, leading to µ > 1
5 . The limited speedup

is evidenced by the recent VDF Alliance FPGA Contest [191]–[193], where op-

timised VDF implementations are about four times faster than the baseline

implementation.

113

The adversary can weaken µ to � µ

2 by selfish mining, i.e., withholding

and publishing blocks adaptively w.r.t. blocks from honest miners [47]. To

defend against selfish mining attacks, one can deploy existing countermea-

sures [194]–[196], or finality protocols analysed in §5.8.3.

5.5.4 Extracting a random output from a block

Given block B, randomOutput(·) extracts the random output

B.R via VDF.Eval(pp,B.pkkB.S, tVDF), and computes proof B.⇡R via

VDF.Prove(ppVDF, B.pkkB.S,B.R, tVDF), where ppVDF and tVDF are VDF’s

public parameter and time parameter known to all participants, respec-

tively. The time parameter tVDF is chosen so that finishing Eval(·) takes

longer than participants extending (⌥ + 1) blocks for a ⌥-consistent

RANDCHAIN.

The time delay in randomOutput(·) ensures the unbiasibility of RAND-

CHAIN. If the random output is extracted from a block instantly, then the

adversary can withhold its block if it does not like the extracted random

output, compromising the unbiasibility. With the time delay of extending

(⌥ + 1) blocks, the adversary has to decide whether to broadcast or with-

hold its mined block before learning the random output. After learning

the random output, the block either becomes irreversible (if the adversary

broadcasts the block) or cannot be accepted anymore (if the adversary with-

holds the block).

RANDCHAIN satisfies uniform distribution: A �-bit random string can

be extracted from a block, where � is SeqPoW and VDF’s security parameter.

RANDCHAIN satisfies unpredictability, as the sequentiality of SeqPoW and

VDF implies their outputs are unpredictable as analysed in §5.4.1.

114

5.5.5 Security analysis

We prove RANDCHAIN (denoted as ⇧RandChain throughout the analy-

sis) achieves all correctness properties defined in §5.2 when the network

is synchronous and the adversary can corrupt ↵ < 1
2 of participants. Let

� = 1� ↵.

Consistency and liveness ⇧RandChain satisfies consistency and liveness

when the network is synchronous and the adversary can corrupt ↵ < 1
2 par-

ticipants in the system. The analysis is identical to PoW-based Nakamoto

consensus, where the adversary with mining rate ↵ is competing with cor-

rect nodes with mining rate � = 1� ↵.

Uniform distribution We prove that each block derives a �-bit uniformly

distributed random string, where � is the security parameter of SeqPoW

and VDF.

Lemma 5.5.1. ⇧RandChain satisfies uniform distribution.

Proof. Each random output B.R of⇧RandChain is extracted from a block B via

the VDF. By VDF’s sequentiality, each VDF output contains non-negligible

entropy that is unpredictable. A hash function can be applied to the VDF

output to extract a �-bit uniform random string [154].

Unpredictability In the prediction game, the (` + 1)-th block is either pro-

duced by correct participants or the adversary’s participants. If the adver-

sary’s advantage is negligible for both cases, then ⇧RandChain satisfies unpre-

dictability. When the (` + 1)-th block is produced by correct participants,

the adversary’s best strategy is guessing, leading to negligible advantage.

When the (` + 1)-th block is produced by the adversary’s participants, the

adversary’s best strategy is to produce as many blocks as possible before re-

ceiving a new block from the correct participants. First, consider ⇧RandChain

using SeqPoW without uniqueness.

115

Lemma 5.5.2. Assuming all messages are delivered instantly and participants

agree on a blockchain of length `. If the (` + 1)-th block is produced by a correct

participant, then the adversary’s advantage on the prediction game is 1
2 .

If the next output is produced by the adversary’s participants, the ad-

versary’s best strategy is to produce as many blocks as possible before re-

ceiving a new block from the correct participants. First, consider ⇧RandChain

using SeqPoW without uniqueness.

Lemma 5.5.3. Consider ⇧RandChain using SeqPoW without uniqueness. Assum-

ing all messages are delivered instantly and participants agree on a blockchain of

length `. If the (` + 1)-th block is produced by the adversary, then the adversary’s

advantage on the prediction game is k

2 with probability ↵k
· �.

Proof. The probability that the adversary and correct participants mine the

next block are ↵ and �, respectively. Note that ↵  1
2 for satisfying consis-

tency, and ↵ + � = 1.

Let Vk be the event that “the adversary mines k blocks at height (` + 1)

before correct participants mine a block at height (`+ 1)”. When SeqPoW is

not unique, a participant can mine unlimited number of blocks after a single

block. Thus, we have

Pr[Vk] = ↵k
· �

When Vk happens, the adversary’s advantage is k

2 .

Therefore, with probability ↵k
· �, the adversary mines k blocks before

correct participants mine a block, leading to the advantage of k

2 .

Then, we analyse ⇧RandChain using SeqPoW with uniqueness. Without

the loss of generality, we assume all participants share the same mining rate.

Lemma 5.5.4. Consider ⇧RandChain using SeqPoW with uniqueness. Assuming

all participants share the same mining rate, all messages are delivered instantly and

participants agree on a blockchain of length `. If the (` + 1)-th block is produced

116

by the adversary, then the adversary’s advantage on the prediction game is k

2 with

probability Pr[V 0
k
], where

Pr[V 0
k
] =

k�1Y

i=0

(↵n� i)

(↵n� i) + �n
· �

Proof. Similar to Lemma 5.5.3, the adversary and the correct participants

control mining rate ↵ and �, respectively. When all participants share the

same mining rate, the adversary and the correct participants control ↵n and

�n participants, respectively. Let V 0
k

be the event that “the adversary mines

k blocks at height (` + 1) before correct participants mine a block at height

(` + 1)”, where k  ↵n. By uniqueness, each participant can only mine a

single block at height (`+ 1), and the adversary can mine at most ↵n blocks

at height (`+ 1). Then, we have

Pr[V 00] = � (5.12)

Pr[V 01] = ↵ · � (5.13)

Pr[V 02] =
↵n�1
↵n

↵
↵n�1
↵n

↵ + �
· ↵ · � (5.14)

. . . (5.15)

Pr[V 0
k
] =

k�1Y

i=0

↵n�i
↵n

↵
↵n�i
↵n

↵ + �
· � (5.16)

=
k�1Y

i=0

(↵n� i)

(↵n� i) + �n
· � (5.17)

When V 0
k

happens, the adversary’s advantage is k

2 . Therefore, with

probability Pr[V 0
k
] =

Q
k�1
i=0

(↵n�i)
(↵n�i)+�n · �, the adversary mines k blocks before

correct participants mine a block, leading to the advantage of k

2 (where

k  ↵n).

117

Remark 2. The adversary’s advantage in ⇧RandChain with unique SeqPoW

is always smaller than in ⇧RandChain with non-unique SeqPoW. That is, for

every k, Pr[V 0
k
] < Pr[Vk]. Given k, we have

Pr[V 0
k
]

Pr[Vk]
=

Q
k�1
i=0

(↵n�i)
(↵n�i)+�n · �

↵k · �
(5.18)

=

Q
k�1
i=0

(↵n�i)
(↵n�i)+�n

↵k
(5.19)

As 0  i < ↵n, it holds that Pr[V 0
k]

Pr[Vk]
< 1 for all k.

Unbiasibility ⇧RandChain achieves unbiasibility by realising the output-

independent-abort notion [162]. With a VDF with time parameter long than

a new block becoming irreversible, the adversary has to decide whether to

broadcast or withhold a block before learning the random output.

Lemma 5.5.5. ⇧RandChain satisfies unbiasibility.

Proof. The proof is by contradiction. Assuming participants agree on an `-

long blockchain, and the adversary learns the random output B`+1.R in the

(` + 1)-th block B`+1 when every correct participant’s main chain contains

less than (` + ⌥ + 1) blocks, where ⌥ is the consistency degree. Recall that

extracting B`+1.R from B`+1 is by evaluating a VDF with a time parameter

longer than participants extending (⌥ + 1) blocks on the blockchain. By

VDF’s sequentiality, to learn B`+1.R, the adversary has to learn B`+1 first.

By SeqPoW’s sequentiality, the adversary can learn B`+1 only after learning

its previous block B`, which is already agreed by participants. Thus, the

adversary extracts B`+1.R from B`+1 only after a correct participant grows

its main chain from ` blocks to (`+⌥+1) blocks if the adversary withholds

B`+1, and to (` + ⌥ + 2) blocks if the adversary publishes B`+1, leading to a

contradiction to the assumption. Therefore, ⇧RandChain achieves unbiasibil-

ity.

118

Table 5.3: Experimental settings and results.

Experimental setting Experimental results
#nodes #machines Deployment Network Latency Net. overhead

RandHerd [36] 1024 32 Datacenter Simulated 3 sec 200 KB/s
HydRand [101] 128 128 Worldwide Real 8.6 sec 180⇠310 KB/s
RANDCHAIN 1024 128 Worldwide Real 1.3 sec 200 KB/s

Figure 5.5: Evaluation of SeqPoW constructions.

5.6 Implementation and evaluation

We implement SeqPoW and RANDCHAIN, and evaluate their perfor-

mance. The evaluation shows that all SeqPoW constructions are practi-

cal and RANDCHAIN is indeed scalable and fair. Specifically, on a clus-

ter of 1024 nodes (each as a participant), RANDCHAIN can produce a ran-

dom output every 1.3 seconds (2.3x faster than RandHerd [36] with 1024

nodes, 6.6x faster than HydRand [101] with 128 nodes); utilise constant

bandwidth of about 200 KB/s per node (comparable with RandHerd with

1024 nodes and HydRand with 128 nodes); and provide nodes with com-

parable chance of producing random outputs. The code is available at

https://github.com/rand-chain/rust-randchain-prototype.

119

https://github.com/rand-chain/rust-randchain-prototype

5.6.1 SeqPoW: benchmarks

Implementation. We implement the SeqPoW constructions in Rust. We

use rug [124] for big integer arithmetic, and implement the RSA group with

1024-bit keys and the group of prime order based on rug. We implement

the two SeqPoWVDF constructions based on the RSA group, and SeqPoWSloth

based on the group of prime order. Our implementations strictly follow

their original papers [108], [156], [157].

Experimental setting. For each function, we test T up to 256000, where

 is the step parameter and T is the difficulty. The code for benchmarking

is based on the cargo-bench [129] and criterion [130] benchmarking

suites. We specify O3-level optimisation for compilation, and sample ten

executions for each benchmarked function with a unique set of parameters.

All experiments were conducted on a machine with a 2.2 GHz 6-Core Intel

Core i7 Processor and a 16 GB 2400 MHz DDR4 RAM.

Performance (Figure 5.5). For all SeqPoW constructions, the running

time of Solve(·) increases linearly with T . This is as expected as Solve(·)

is dominated by the ISF. For SeqPoWVDF with Wes19, Prove(·) takes more

time than Solve(·), making it less suitable for instantiating RANDCHAIN. For

SeqPoWVDF with Pie19, Prove(·) and Verify(·) take negligible time compared

to Solve(·). For SeqPoWSloth, Solve(·) is about five times slower than Verify(·).

Although this is far from the theoretically optimal value, i.e., log2 |G| = 1024

in our setting [197], the verification overhead is acceptable for the use case

where random outputs are not generated frequently.

5.6.2 RANDCHAIN: end-to-end evaluation

We implement RANDCHAIN and evaluate it on computer clusters re-

garding the following metrics:

120

• Block propagation delay (BPD) is the time taken for the majority of

nodes to receive a block (§5.6.2).

• Block size is the size of a block. It varies w.r.t. blocktime (i.e., the aver-

age time interval between two blocks) as the VDF proof size increases

with the time parameter. We also estimate the network overhead of

propagating blocks amortised by time (§5.6.2).

• Network overhead is the average bandwidth utilisation, i.e., the aver-

age amount of data transferred in a time unit, of a node (§5.6.2).

• Decentralisation is the evenness of nodes’ chance of producing

blocks. It is quantified by the distribution of nodes in terms of the

number of blocks they produce on the main chain (§5.6.2).

Among the metrics, the former three are the empirical results of scala-

bility (where BPD infers latency and the rest two infer network overhead);

and decentralisation is the empirical result of fairness. We also compare

RANDCHAIN with state-of-the-art DRBs that have experimental results, in-

cluding RandHerd [36] and HydRand [101]. Table 5.3 summarises the eval-

uation results and comparison with RandHerd and HydRand.

Implementation and experimental settings. We implement RANDCHAIN

based on Parity-bitcoin [158], a Bitcoin implementation in Rust. Each

node plays as a participant of RANDCHAIN. It uses RocksDB [198] for

storage, and Bitcoin’s Wire protocol [199] for the P2P protocol stack. We

adapt the ledger structure, SeqPoW and relevant message types to RAND-

CHAIN’s setting specified in §5.5. Given the evaluation result in §5.6.1, we

use Pie19 for instantiating SeqPoW and extracting random outputs from

blocks. The entire project takes approximately 23000 lines of code (LoC),

where the RANDCHAIN implementation adds/changes approximately 4500

LoC over Parity-bitcoin. We use dstat [200] for monitoring system

resource utilisation.

121

We specify O3-level optimisation for compilation, and deploy the

project to clusters with {128, 256, 512, 1024} nodes on Amazon’s EC2 in-

stances. Specifically, we deploy {16, 32, 64, 128} t2.micro EC2 instances

(1 GB RAM, one CPU core and 60-80 Mbit/s network bandwidth) in 13

regions around the globe1, and each instance runs 8 RANDCHAIN nodes.

Each node maintains up to 8 outbound connections and 125 inbound con-

nections, which is same as Bitcoin’s setting [199]. When a node starts, it

randomly connects to 8 peers, accepts connections from other peers, and

starts gossiping messages with them. As mining is not allowed in cloud

computing platforms, we simulate SeqPoW.Solve(·) rather than actually ex-

ecuting it. For our SeqPoW implementation, the t2.micro EC2 instance

can do squaring operations in SeqPoW.Solve(·) for 233868 times per second

on average. We test blocktime of {1, 5, 10} seconds by adjusting the SeqPoW

difficulty. For each group of the experiments, we sample 30 minutes of the

execution, collect logs from all nodes, parse the logs and calculate the met-

rics. The total size of logs is 1.74 GB.

Block propagation delay (BPD). Figure 5.6 shows the distribution of BPD

for different sizes of clusters. First, with the increasing number of nodes

(from 128 to 1024), the BPD never exceeds 1.3 seconds. In other words, the

system can produce a random output every 1.3 seconds, which is 2.3x faster

than RandHerd (⇠3 seconds on a 1024-node cluster) and 6.6x faster than

HydRand (⇠8.6 seconds on a 128-node cluster). This is expected given the

linear communication complexity.

Second, BPD is usually either less than 0.4 second or more than 0.6 sec-

ond, but is hardly in-between values. This implies that a block can reach

most nodes within 2 hops: The two peaks around the saddle of 0.4⇠0.6s

indicate the average delays for 1-hop and 2-hop block propagation, respec-

tively.
1The regions include North Virginia, North California, Oregon, Ohio, Canada, Mumbai,

Seoul, Sydney, Tokyo, Singapore, Ireland, Sao Paulo, London, and Frankfurt.

122

(a) 128 nodes. (b) 256 nodes.

(c) 512 nodes. (d) 1024 nodes.

Figure 5.6: Distribution of block propagation delay (BPD), represented as
violin plots. The light blue and dark blue parts indicate the distribution of
BPD when blocks are propagated to 50% and 80% of nodes, respectively.

Third, the average BPD increases slowly with more nodes. This is con-

sistent with other linear protocols [201]. In linear protocols, the average BPD

is proportional to the average number of intermediate nodes of two random

nodes. In Bitcoin’s setting where each node connects to k random peers, the

network is structured as an Erdos-Renyi random graph [202], in which two

random nodes have O(lognlog k) intermediate nodes on average.

Last, BPD increases when blocks are produced more frequently. This

is because a t2.micro instance only has a single processor and limited

network capacity, making the overhead of verifying and propagating blocks

non-negligible.

Block size. The major part of a block is the SeqPoW proof that takes

s·log2(T) Bytes, where T depends on the time taken to find a solution and

the number of iterations executed in a time unit. Recall that the computer

123

(a) Block size and its es-
timated overhead. (b) Network overhead. (c) Decentralisation.

Figure 5.7: Block size, network overhead and decentralisation. (a) Block size
and estimated network overhead between two nodes amortised by time v.s.
blocktime. The dark blue increasing line is on the block size and the light
blue decreasing line is on the overhead. (b) Network overhead, quantified
as the bandwidth utilisation of each node with different blocktimes. (c) De-
centralisation level, visualised as the number of blocks produced by distinct
nodes. The blue and black lines are the kernel density estimation and the
closest normal distribution, respectively.

can do squaring operations for 233868 times per second. Given blocktime

t, the SeqPoW proof size is s · log2(233868 · t) ⇡ s · (18 + log2 t), and the

network overhead between two nodes amortised by time is s·(18+log2 t)
t

. Fig-

ure 5.7a shows the relationship between blocktime, block size and network

overhead. When blocktime is {1, 5, 10} seconds and s = 32 Bytes, the block

size is about {576, 1336, 1912} Bytes, and the amortised network overhead is

about {576, 267, 191} Bytes/s. When blocktime is 60 seconds (the setting of

Drand [203] and the NIST randomness beacon [100]), the block size is about

3402 Bytes, and the amortised network overhead is about 57 Bytes/s.

Network overhead. Figure 5.7b shows the bandwidth utilisation re-

sult. It shows that RANDCHAIN utilises less bandwidth compared to Rand-

Herd and HydRand: Even with blocktime of 1 second, each node utilises

⇠200KB/s bandwidth per second, which is comparable with RandHerd

(⇠200KB/s on a 1024-node cluster) and HydRand (180⇠310KB/s on a 128-

node cluster). The bandwidth utilisation remains stable with more nodes, as

RANDCHAIN is linear. These two results are as expected since RANDCHAIN

is linear. The inbound and outbound bandwidths are identical, as the input

(i.e., the last block) and the output (i.e., the new block) are identical in terms

124

of size, leading to identical bandwidth utilisation. With longer blocktime,

the node requires less bandwidth, as nodes send and receive blocks less fre-

quently.

Decentralisation. Figure 5.7c shows the distribution of nodes w.r.t. the

number of blocks they produce on the main chain, in the experiment with

1024 nodes and the blocktime of 1 second. The kernel estimated distribution

is close to the normal distribution, meaning that nodes have comparable

chance of producing blocks, similar to RandHerd and HydRand that are

“one-man-one-vote”. The result is consistent with our experimental setting

where nodes use the same processors.

5.7 Comparison with existing DRBs

In this section, we develop a unified evaluation framework for DRBs,

and compare RANDCHAIN with existing DRBs. Our evaluation shows that

RANDCHAIN is the only protocol that is secure, scalable and fair simultane-

ously, without relying on any trusted party.

5.7.1 Overview of existing DRBs

DRG-based DRBs. Participants execute the single-shot Distributed

Randomness Generation (DRG) protocol periodically. DRG can be con-

structed from various cryptographic primitives, such as threshold cryp-

tosystems [99], [142], [143], Verifiable Random Functions (VRFs) [144]–[146],

and Publicly Verifiable Secret Sharing (PVSS) [36], [101], [107], [147]–[149].

To relax the network model assumptions, reduce the communication com-

plexity and/or improve the fault tolerance capacity, these DRBs usually rely

on a centralised dealer [99], [107], [143], [148] and/or combine techniques

such as leader election [36], [142], [144]–[147], sharding [36], [142], crypto-

graphic sortition [145], Byzantine consensus [101], [145] and erasure cod-

ing [107], [148].

125

Table 5.4: Comparison of RANDCHAIN with existing DRBs.

Protocol System model Correctness Performance

Nam
e

Prim
iti

ves

Net.
model

Tru
st

Fau
lt tol. ca

p.

Consis
ten

cy

Liven
es

s

Fair
nes

s

Unifo
rm

dist
.

Unpred
ict

ab
ili

ty

Unbias
ib

ili
ty

Pub. ver.

Comm. co
mpl.

Late
ncy

DRG-based DRBs

Cachin et al. [99] Thr. Sig. Async. Dealer‡ 1/3 3 3 1 3 3 3 3 O(n3) O(�)
HERB [143] Homo.

Thr. Enc.
Part. sync. Dealer‡ 1/3 3 3 1 3 3 3 3 O(n) O(�)

Dfinity [142] VRF +
Thr. Sig.

Sync. - 1/3 3 3 1 3 3 7† 3 O(cn)⇧¶ O(�) ⇠ 1¶

Ouro. Praos [144] VRF Part. sync. - 1/2 3 3 1 3 3 7† 3 O(n)¶ O(�) ⇠ 1¶

GLOW [146] VRF Sync. - 1/3 3 3 1 3 3 7† 3 O(n)¶ O(�) ⇠ 1¶

Algorand [145] VRF Sync. - 1/3 3 3 1 3 3 7† 3 O(cn)⇧¶ O(�) ⇠ 1¶

Ouroboros [147] PVSS Sync. - 1/2 3 3 1 3 3 3 3 O(n3) O(�)
SCRAPE [148] PVSS Part. sync. Dealer‡ 1/2 3 3 1 3 3 3 3 O(n3) O(�)
RandShare [36] PVSS Async. - 1/3 3 3 1 3 3 3 3 O(n3) O(�)

RandHound [36] PVSS Sync. - 1/3 3 3 1 3 3 7† 3 O(c2n)⇧¶ O(�) ⇠ 1¶

RandHerd [36] PVSS Sync. Dealer‡ 1/3 3 3 1 3 3 3 3 O(c2 log n)⇧ O(�)
HydRand [101] PVSS Sync. - 1/3 3 3 1 3 3 3 3 O(n2) O(�)
Albatross [107] PVSS Part. sync. Dealer‡ 1/2 3 3 1 3 3 3 3 O(n) O(�)

Kogias et al. [149] HAVSS Async. - 1/3 3 3 1 3 3 3 3 O(n4) O(�)

SC-based DRBs RanDAO [40] VDF Part. sync.x Blockchainx 1/2x 3 3 1 3 3 3 3 O(n) tblock + �
Yakira et al. [204] Escrow-

DKG
Part. sync.x Blockchainx 1/3x 3 3 1 3 3 3 3 O(n) tblock + �

ISF-based DRBs
Unicorn [108] Sloth Async. Setup (n-1)/n 3 3 ! 0⌦ 3 3 3 3 O(n) Any +�

Ephraim et al. [109] Continu-
ous VDF

Async. Setup (n-1)/n 3 3 ! 0⌦ 3 3 3 3 O(n) Any +�

RandRunner [161] Trapdoor
VDF

Async. Setup 1/2 3 3 1 3 7? 3 3 O(n) ⇠ O(n2) Any +�

DRBs from ext. entr.
Clark et al. [112] Rand.

extractors
Async. Data src. (n-1)/n 3 3 - 3 3 3 7q O(n) Any +�

Bonneau et al. [111] Rand.
extractors

Async.x Blockchainx (n-1)/nx 3 3 ! 0⌦ 3 3 3 7q O(n) tblock + �

Bünz et al. [205] Proof-of-
Delay

Async.x Blockchainx (n-1)/nx 3 3 ! 0⌦ 3 3 3 7q O(n) tblock + �

This work RANDCHAIN SeqPoW +
Nak.

consensus

Sync. - 1/2 3 3 > 1
5 3 3 3 3 O(n) tblock + �

‡ The analysis assumes the dealer is a trusted third party. While the dealer can be implemented in a distributed manner [150], it introduces extra communication
overhead.
† The corrupted leader can withhold the random output and enforce participants to start a new round, as analysed in [101], [107].
⇧We use c to denote the size of shards in Dfinity [142], RandHound and RandHerd [36], and the size of the committee in Algorand [145].
¶ The corrupted leader can send the random output and advance the round for a subset of participants, so that participants are executing different rounds. The DRB
requires an extra round synchronisation protocol that suffers from either exponential latency [153] or worst-case communication complexity of � O(n2) [151], [152].
? The adversary can always corrupt leaders and produce random outputs efficiently via the trapdoor.
q Entropy generated by the external source is not verifiable.
⌦ In Unicorn and Ephraim et al., the participant with the fastest processor can always propose random outputs earlier than other participants. In DRBs with PoW-
based blockchains as external entropy, mining can be accelerated by using parallelism. Both cases weaken the fairness degree to near zero.
x These DRBs are usually built upon public blockchains. When considering the public blockchain as a part of the DRB, the system model will also respect that of the
public blockchain. For example, the DRB may be built upon Ethereum, which requires synchronous networks and fault tolerance capacity ↵ < 1

2 .

Other types. In Smart contract (SC)-based DRBs [40], [204], [206], partic-

ipants submit their inputs to an external smart contract, which combines

them to a single random output. In DRBs from external entropy, partici-

pants periodically extract randomness from real-world entropy, e.g., real-

time financial data [112] and public blockchains [111], [205], [207]. In Itera-

tively sequential function (ISF)-based DRBs [108], [109], [161], participants

use intermediate outputs of an ISF as random outputs, and use succinct

proofs for the ISF to make outputs verifiable.

5.7.2 Evaluation framework for DRBs

We extend our model in §5.2 to build an evaluation framework for

DRBs. Apart from synchronous networks in §5.2.1, the framework addition-

ally considers partially synchrony [17] where messages are delivered within

126

a known finite time-bound � after an unknown Global Stabilisation Time

(GST) and asynchrony where messages are delivered without a known time

bound. Apart from system model aspects in §5.2.1, the framework also con-

cerns trust assumptions that some proposals assume in order to guarantee

correctness properties. Apart from the correctness properties in §5.2.2, the

framework also concerns fairness and public verifiability: Whether a random

output is publicly verifiable.

5.7.3 Evaluation

Table 5.4 summarises the evaluation results. Let � be the network la-

tency bound in the synchrony period, � be the actual network delay, and

GST be the global stabilisation time.

System model. Most DRG-based DRBs employ synchronous leader elec-

tion protocols, except for the following proposals. Cachin et al., RandShare

and Kogias et al. employ randomised common coin techniques to achieve

asynchrony. Ouroboros Praos allows “empty slots” (where participants pro-

duce no block) when no leader is elected before GST, and guarantees an

elected leader after GST, leading to partial synchrony. HERB, SCRAPE, and

Albatross employ a dealer who relays all messages and proceeds the pro-

tocol whenever receiving enough shares, which is guaranteed after GST,

leading to partial synchrony. These DRBs have to trust the dealer, otherwise

a corrupted dealer can selectively multicast messages to allow a subset of

nodes to predict random outputs, or withhold messages to bias random out-

puts. While the dealer can be implemented in a distributed manner [150],

it introduces extra communication overhead. SC-based DRBs rely on a per-

missionless blockchain to achieve partial synchrony. The blockchain is as-

sumed to be trusted, otherwise a corrupted blockchain can censor trans-

actions to bias random outputs, which is known as the Miner Extractable

Value (MEV) issue [208]. ISF-based DRBs and DRBs from external entropy

127

proceed as long as a single participant is honestly executing the ISF or sam-

pling the entropy, except for RandRunner which requires a reliable broad-

cast with fault tolerance degree ↵ < 1
2 . ISFs require a trusted setup, other-

wise the adversary who previously knows the seed can learn random out-

puts earlier than other participants. The entropy source has to be trusted,

otherwise the adversary can manipulate the entropy and bias random out-

puts. In DRBs based on permissionless blockchains, the blockchains usu-

ally employ Nakamoto-style consensus and thus assume synchronous net-

works. If the blockchain-based DRBs allow nodes to run a blockchain pro-

tocol on their own, then it incurs more communication overhead.

Correctness properties. All DRG-based DRBs achieve consistency and

liveness. Note that DRG-based DRBs define liveness as termination (where

correct participants eventually learn the random output at the end of each

round), and our evaluation of DRG-based DRBs follows such definition. All

DRBs achieve the ideal fairness, i.e., µ = 1, except for DRBs from PoW-based

blockchains [111], [205], Unicorn [108], Ephraim et al. [109] and RAND-

CHAIN. DRBs from PoW-based blockchains allow accelerating mining by

parallelism. For Unicorn and Ephraim et al., the participant with the fastest

processor can always propose random outputs earlier than other partici-

pants. Both cases weaken the fairness degree to near zero. RANDCHAIN

achieves µ > 1
5 by making the mining process unpredictable [120], [166]

and non-parallelisable, as analysed in §5.5.2-5.5.3. All DRBs satisfy uniform

distribution and unpredictability, except for RandRunner [161] where the

adversary can keep corrupting leaders and computing random outputs ef-

ficiently via the trapdoor, breaking unpredictability. In Dfinity, Ouroboros

Praos, GLOW, Algorand and RandHound, the corrupted leader can with-

hold the random output and enforce participants to start a new round,

breaking the unbiasibility, as analysed in [101], [107]. DRBs from external

128

entropy do not satisfy public verifiability, as the external entropy is not pub-

licly verifiable.

Performance metrics. In all dealer-less DRG-based DRBs, either the

leader election, view change or PVSS protocol requires the all-to-all broad-

cast operations, leading to at least O(n2) communication complexity. To re-

duce communication complexity, HERB, RandHerd and Albatross employ a

dealer to relay messages; GLOW allows participants to determine a unique

leader locally given the last random output; Dfinity, RandHound and Rand-

Herd apply sharding techniques to divide participants into different shards;

Algorand samples a subset of participants to execute the protocol; and SC-

based DRBs rely on a smart contract that relays all messages. RandRunner

is linear in the best case, but requires reliable broadcasts with O(n2) commu-

nication complexity in the worst case. The other two ISF-based DRBs and

DRBs from external entropy achieve O(n) communication complexity.

Asynchronous DRG-based DRBs terminate within O(�), as asyn-

chronous networks do not have �. In HERB, SCRAPE, RandHerd and Al-

batross, the random output is produced once the dealer receives enough

shares, leading to the latency of O(�). In Ouroboros and HydRand, the

leader election terminates in O(�). In GLOW, when the leader is correct,

the latency is O(�). When the leader is corrupted, then it can deliver random

outputs and advance the round for a subset of participants, so that partic-

ipants will execute different rounds. To re-synchronise the round, nodes

have to execute an extra round synchronisation protocol with either expo-

nential latency (by using the time doubling mechanisms [153]) or at least

O(n2) worst-case communication complexity (by using the broadcast-based

mechanisms [151], [152]). In Dfinity, Ouroboros Praos, Algorand, and Rand-

Hound, the leader election terminates within O(�), and a corrupted leader

can cause the round synchronisation issue similar in GLOW. SC-based DRBs

and DRBs from blockchain entropy achieve the latency of the parameterised

129

block interval tblock plus �. ISF-based DRBs and DRBs from other entropy

can achieve any latency plus �, according to the frequency of sampling in-

termediate outputs and entropy, respectively.

5.8 Limitations and resolutions

We discuss three limitations and the corresponding resolutions for

RANDCHAIN, including the energy-efficiency, churn tolerance and finality

support. We consider the concrete resolutions and analysis as future work.

5.8.1 Energy efficiency

As RANDCHAIN requires all nodes to solve SeqPoW puzzles to pro-

duce a random output, RANDCHAIN seems to be less energy-efficient than

existing DRG-based DRBs. In fact, whether RANDCHAIN is less energy-

efficient than existing DRG-based DRBs remains arguable. In terms of

communication, RANDCHAIN costs strictly less energy than DRG-based

DRBs, which require at least O(n2) communication complexity. The en-

ergy cost of communication is not always less than that of computation,

as shown by existing literature [209]. In terms of computation, it remains

arguable whether computing a random output through threshold crypto-

graphic primitives (which can involve computationally intensive operations

such as pairing, Lagrange interpolation, and Zero Knowledge Proofs) is

more energy-efficient than non-parallelisable mining, where every node ex-

ecutes a single SeqPoW instance. In addition, with shorter block intervals,

the energy cost by computing a random output in RANDCHAIN reduces

linearly, while that in collaborative DRBs remains constant. We consider

the energy efficiency analysis and improvement of RANDCHAIN as future

work.

130

5.8.2 Churn tolerance

Similar to existing DRBs, RANDCHAIN does not tolerate churn, i.e.,

nodes joining and leaving. However, with little modifictaions, RAND-

CHAIN can tolerate churn like PoW-based consensus protocols. To tolerate

churn [77], PoW-based blockchains adjust difficulty parameters adaptively

to the rate of new blocks. In RANDCHAIN, the difficulty adjustment mecha-

nism can use the number i of iterations running SeqPoW.Solve(·) to infer the

historical block rate. If historical values of i are large, then this means that

mining is too hard and the difficulty should be reduced, and vice versa. We

consider a concrete construction and analysis on the difficulty adjustment

mechanism as future work.

5.8.3 Finality

Due to the probabilistic Nakamoto consensus, RANDCHAIN does not

achieve finality, and an appended block may be reverted later. A block

being reverted does not lead to financial loss, as the random output is re-

vealed only after the block becomes stable, guaranteed by the unbiasibility

property. However, when a block is reverted, some randomness-based ap-

plications may abort the execution. We consider two approaches to achieve

finality, namely the quorum mechanism and herding-based consensus, and

consider concrete constructions and analysis as future work.

Quorum mechanism Quorum [210] is the minimum number of votes that

a proposal has to obtain for being agreed by nodes. A vote is usually a

digital signature with some metadata, and a quorum of votes is called a

quorum certificate. The quorum size is n � f , where n and f be the number

of nodes and faulty nodes in the system, respectively. Achieving agreement

in synchronous networks and partially synchronous networks require n �

2f + 1 and n � 3f + 1, respectively [17], [210].

131

RANDCHAIN can employ the quorum mechanism as follows. A node

signs a block to vote it. A node’s view is represented as the latest block hash.

Nodes proactively propagate their votes, i.e., signatures on blocks. A node

finalises a block if collecting a quorum certificate, i.e.,� 2f +1 votes, on this

block. The fault tolerance assumption changes to n � 3f + 1. RANDCHAIN

still keeps Nakamoto consensus as a fallback solution. If there are multiple

forks without quorum certificates, nodes mine on the longest fork. A block

can be considered finalised with a sufficiently long sequence of succeeding

blocks, even without a quorum certificate.

Herding-based consensus Herding is a social phenomenon where people

make choices according to the choices of other people. Herding-based con-

sensus allows nodes to decide proposals according to neighbour nodes’

votes only, rather than a quorum of votes. Existing research [187], [211]

shows that, herding-based consensus can achieve agreement with over-

whelming probability in a short time period.

RANDCHAIN can employ herding-based consensus as follows. Upon

a new block, nodes execute a herding-based consensus on it. If a block is

the only block in a long time period, then nodes will agree on this block di-

rectly. If there are multiple blocks within a short time period, then nodes will

agree on the most popular block among them with overwhelming probabil-

ity. This approach has also been discussed in Bitcoin Cash community, who

seeks to employ Avalanche [187] as a finality layer for Bitcoin Cash [212].

132

Chapter 6

Fair delivery of Decentralised Randomness Bea-

cons

6.1 Introduction

Decentralised Randomness Beacon (DRB) is a protocol where a set of

participants jointly generates a sequence of random outputs. It has been

a promising approach to provide secure randomness to other protocols

and applications. There have been emerging DRB proposals [101], [203],

[213], [214] and deployed DRB systems [215], [216], and DRBs have been

used by many high-financial-stake applications such as blockchains [113],

[142], [144], [147], lotteries [217], games [218], [219], and non-fungible to-

kens (NFTs) [220], [221].

Applications have two common approaches to use a DRB, namely 1) by

using a random output at a certain height which the DRB has not reached

yet, and 2) by using a random output produced near a certain time in the

future. For example, Polygon Hermez [222] and Celo [223] used the 697500-

th random output [224] and the random output produced near 29/10/2021

9am UTC [225] of Drand [203] for their zkSNARK trusted setup, respec-

tively.

Existing DRBs are designed with three main security properties in con-

sideration, namely consistency, liveness and unpredictability [213], [214]. Con-

sistency states that all correct participants (who generate random outputs)

share the same view on a unique ledger, i.e., sequence of random out-

puts. Liveness states that all correct participants produce random outputs

no slower than a certain rate. Unpredictability states that no participant

133

can distinguish a future random output from a uniformly sampled random

string of the same length.

None of these properties captures the advantage that some participants

learn random outputs earlier than other participants. Such an advantage,

however, is not desired in practice. In time-sensitive protocols whose exe-

cution depends on the randomness from a DRB, the advantage allows an

adversary to behave adaptively according to random outputs, compromis-

ing the fairness and/or security in these protocols. In the above example

of zkSNARK trusted setup, if the adversary learns the random output be-

fore the trusted setup starts, then Hermez’s trusted setup will allow the last

participant to decide some properties of the agreed parameter [224], and

Celo’s trusted setup will be insecure against an adaptive adversary [226].

Another example is the on-chain lottery which determines the winner out

of all players by using random outputs from a DRB. If the adversary learns

the random output before the lottery starts, then it learns whether it will

win the lottery in advance, and thus can decide whether to participate in

the lottery according to its outcome.

However, a systematic and formal study on this advantage is still miss-

ing. Existing DRB models only focus on certain attacks leading to certain

aspects in this advantage [144], [213]. Similar security properties in other

primitives cannot be adapted to capture this advantage directly, as they ei-

ther concern eventual delivery without quantifying the advantage [227], or

concern the advantage among correct participants excluding Byzantine par-

ticipants [52], [163], [181], [228].

6.1.1 Contributions

In this chapter, we initiate the study of delivery-fairness, the security

property capturing the advantage that some participants learn random out-

puts earlier than other participants in DRBs. We formalise delivery-fairness,

134

prove its lower bound, and analyse the delivery-fairness guarantee of state-

of-the-art DRBs, including Drand [203], HydRand [101], GRandPiper [213]

and SPURT [214]. Through the analysis, we identify attacks on delivery-

fairness and obtains several insights for improving delivery-fairness. The

insights allow us to suggest lock-step variants for HydRand and SPURT

with better delivery-fairness (where SPURT achieves the optimal value),

without affecting system models or security properties. Table 6.1 sum-

marises our results.

Delivery-fairness and its lower bound (§6.3). We base our study on exist-

ing DRB models [146], [213], [214]. As specified in §6.2, we consider a fixed

set of n participants and an adversary who can corrupt up to f participants

among them at the beginning, where f is a corruption parameter subjected

to the protocol design. The network is synchronous, where messages are de-

livered in at least the actual network latency � and at most a known upper

bound�. Participants jointly execute the DRB protocol to agree on a unique

ledger containing a sequence of random outputs securing three properties,

namely consistency, liveness and unpredictability.

Atop the DRB model, we provide the first formal definition of delivery-

fairness in §6.3. The delivery-fairness concerns two aspects of advantage,

namely the length-advantage, i.e., how many random outputs an adversary

can learn earlier than correct participants, and the time-advantage, i.e., how

much time an adversary can learn a given random output earlier than cor-

rect participants.

Definition 6.1.1 (Delivery-fairness, informal; formalised in Definition 6.3.1).

A DRB protocol satisfies (!,)-delivery-fairness if the following holds for

any two participants (pi, pj) and any time t, except for negligible probability:

• !-length-advantage: At time t, pi’s ledger pruning the last ! random

outputs pj’s ledger; and

135

• -time-advantage: Participant pi’s ledger at time t precedes or is equal

to pj’s ledger at time t+ .

When ! and are smaller, the length-advantage and time-advantage

of any participant over the other participants is smaller, thus the DRB pro-

vides stronger delivery-fairness guarantee. We stress that delivery-fairness

is achievable in synchronous networks, where messages are delivered in at

least the actual network latency � and at most a known upper bound �.

Otherwise, the adversary can arbitrarily delay messages in asynchronous

networks or the asynchrony period in partially synchronous networks, in-

creasing ! and to values that are impractical.

We then prove the lower bound of delivery-fairness in synchronous

networks. The intuition behind the proof is that, if the time difference of

learning a random output between any two participants is smaller than

� � �, then the group of Byzantine participants can produce valid random

outputs without communicating with correct participants, contradicting to

unpredictability or consistency.

Theorem 6.1.1 (Delivery-fairness lower bound of DRB, informal; formalised

in Theorem 6.3.1). There does not exist a correct DRB protocol that achieves

(!,)-delivery fairness with ! < 1 or < �� � under synchronous networks.

Analysis of delivery-fairness of existing DRBs (§6.4-6.6). With the formal-

isation, we analyse the delivery-fairness of state-of-the-art DRB protocols,

namely Drand [203], HydRand [101], GRandPiper [213] and SPURT [214],

in §6.4-6.6. Table 6.1 summarises the results. Through the analysis, we iden-

tify attacks on delivery-fairness and obtains several insights for improving

delivery-fairness. Specifically, we identify a new attack called latency manip-

ulation attack that can compromise the delivery-fairness in the original ver-

sions of Drand, HydRand and SPURT, i.e., making ! and too large to be

practical. This attack is rooted in their non-lock-step design that participants

136

Table 6.1: Summary of evaluation results under synchronous networks.

Protocol No DKG Fault tolerance
Comm. compl. Latency

(!,)-Delivery-fairness¶
Best Worst Best Worst

Existing
work

Drand [203] 7 n � 2f + 1 O(n2) O(n2) � � (1,1)

Lock-step Drand [229] 7 n � 2f + 1 O(n2) O(n2) � � (1,�� �)

HydRand [101] 3 n � 3f + 1 O(n2) O(n3)† 3� 3� (1,1)

GRandPiper [213] 3 n � 2f + 1 O(n2) O(n2) 11� 11� (c+ 1, (11c+ 1)�� �)‡

SPURT [214] 3 n � 3f + 1 O(n2) O(n2) 7� (f + 7)�⇤ (1,1)

This
chapter

Lock-step HydRand 3 n � 3f + 1 O(n2) O(n3)† 3� 3� (c+ 1, (3c+ 1)�� 3�)‡

Lock-step SPURT 3 n � 3f + 1 O(n2) O(n2) 7� (f + 7)�⇤ (1,�� �)

¶ In (!,)-delivery-fairness (Definition 6.3.1), the delivery-fairness is better when ! and are smaller. When ! = 1 and =
�� �, the delivery-fairness is optimal. When !, =1, the DRB is considered to not satisfy delivery-fairness. Here � and � are
the actual network latency and the latency upper bound, respectively.
† In the worst case, the adversary does not reveal its committed secrets for f consecutive epochs. In the next epoch, the correct
leader needs to broadcast f O(n)-size recovery certificates to all participants, leading to O(n3) communication complexity.
‡ Value c is a random variable meaning that “c consecutive leaders are Byzantine”. In the round-robin leader election used in
HydRand and GRandPiper, the best, average and worst cases of c are 0, 2, and f , respectively.
⇤ In the worst case, the adversary controls f consecutive leaders and aborts these f consecutive epochs before a correct epoch
with 7�, leading to (f + 7)� worst-case latency.

can make progress once receiving sufficient messages, without the need of

waiting for a fixed time period. Following this observation, we suggest

lock-step variants for HydRand and SPURT that resist against the latency

manipulation attack and thus achieve the better delivery-fairness (where

SPURT achieves the optimal value), without affecting system models or se-

curity properties. In addition, a previously known unpredictability-focused

attack, which we call private beacon attack, can also weaken the delivery-

fairness of HydRand and GRandPiper. The private beacon attack is rooted

in their design that the epoch leader solely samples the entropy for the ran-

dom output. To resist against the attack, the entropy should instead be sam-

pled by a group of at least f + 1 participants, where f is the number of

Byzantine participants.

6.2 Model

In this section, we provide the model of a DRB. The model is adapted

from existing collaborative DRB proposals [101], [213], [214], and is differ-

ent from the model in §5.2, which focuses on competitive DRBs like RAND-

CHAIN.

137

6.2.1 System model

Participants. We consider a fixed number of n participants. Each partici-

pant pk 2 [pn] generates a pair of secret key and public key (skk, pkk), and is

uniquely identified by its public key in the system. We assume each partici-

pant has the knowledge of other participants’ public keys.

Adversary. We consider a static adversary A. In the beginning of the

protocol, A can corrupt at most f participants, where f is a corruption pa-

rameter subjected to the protocol design. After that, A cannot change the set

of corrupted participants or corrupt more participants. A fully controls cor-

rupted participants, including observing the participant’s internal state and

controlling its messages and outputs, without any latency. A can read all

messages between participants, but cannot modify or drop messages sent

by correct participants. We also refer to a corrupted participant as Byzantine

participant. We assume A is probabilistically polynomial-time (PPT), and

thus cannot break standard cryptographic primitives.

Network model. We assume synchronous networks: A can decide to deliv-

ery any message in at least the actual network delay � and at most a known

upper bound �. In practice, � << �.

We will conduct analysis assuming synchronous networks for all DRBs,

although some of them can work in relaxed network models. The reason

is that the delivery-fairness is a concrete measure and is meaningful only

in synchronous networks. Otherwise, in asynchronous networks or the

asynchrony period in partially synchronous networks, the adversary can

arbitrarily delay messages to increase its advantage, leading to impractical

delivery-fairness guarantee. Consequently, applications that require time-

sensitive random outputs will be insecure or unfair. Thus, when the appli-

cation scenarios demand a delivery-fair DRB, the application and DRB have

to be deployed in synchronous networks.

138

6.2.2 Components of DRBs

The set of n participants continuously execute the DRB protocol ⇧ to

produce a sequence of random outputs. Specifically, participants jointly

produce and agree on a ledger formed as a sequence of blocks. Each agreed

block has to meet a verification predicate FV (·). Each block deterministi-

cally derives a random output, which can be extracted by a random output

extraction function FR(·). Both FV (·) and FR(·) are accessible to anyone in-

side and outside the system, and their instantiation depends on the concrete

protocol design.

Ledger. A ledger T is formed as a sequence of blocks. Let T [e] be the

e-th block in the ledger T . Let |T | be the length of ledger T . Let T [p : q]

be the ledger from p-th block to (q � 1)-th block of ledger T . Parameter p

and q can be set empty, indicating the beginning and the end of the ledger,

respectively. Let T d` = T [: `] be the ledger from pruning the last ` blocks of

ledger T . We denote a ledger T is a prefix of or equals to another ledger T 0

as T � T 0.

Epoch. DRBs are executed in epochs. In each epoch, participants are ex-

pected to produce and agree on a new block. The time period of an epoch

can be fixed by the protocol design, or be variant depending on Byzantine

behaviours and/or actual network delay. In leader-based DRBs, in each

epoch, a leader is elected to drive the protocol execution. In some leader-

based DRBs (e.g., SPURT [214]), a Byzantine epoch leader can abort the pro-

tocol, so that no block is produced in that epoch.

Verification predicate FV (·). To be agreed, a block has to meet the verifi-

cation predicate FV (·). In FV (, T, B) ! {0, 1}, given security parameter ,

ledger T and block B as input, outputs 1 if B is a valid successor block of T .

A ledger T is valid in  if for all ` 2 [|T | � 1], FV (, T d`, T [`]) = 1. Let T t

i
be

participant pi’s longest valid ledger at time t.

139

Random output extraction function FR(·). Each block contains a random

output, which can be extracted by the random output extraction function

FR(·). In FR(, T)! Re, given security parameter  and a ledger T of length

|T | = (e�1) as input, FR(, T) can derive a random output Re. That is, every

block Be is associated with a random output Re.

6.2.3 Security properties of DRBs

A DRB protocol ⇧ should satisfy the following properties, namely con-

sistency, liveness, and unpredictability.

Consistency. Consistency ensures that correct participants agree on a

unique ledger, and thus a unique sequence of random outputs. The con-

sistency definition follows the common prefix property in blockchain pro-

tocols [18].

Definition 6.2.1 (`-consistency, from [18]). For any , there exists a negli-

gible function negl(·) such that the following holds except for probability

negl(). For any two correct participants pi and pj (i = j is possible) at time

t,

(T t

i
)d` � T

t

j
_ (T t

j
)d` � T

t

i

Liveness. Liveness ensures that correct participants produce new ran-

dom outputs at an admissible rate. The liveness definition follows the chain

growth property in blockchain protocols [230].

Definition 6.2.2 ((t, ⌧)-liveness, from [230]). For any , there exists a neg-

ligible function negl(·) such that the following holds except for probability

negl(). For any honest participant pi and time t0 � t,

|T
t
0

i
|� |T

t
0�t

i
| � t · ⌧

140

Unpredictability. Each random output should be unpredictable: Given an

agreed ledger, the adversary can predict the next random output before it

is produced. If the adversary can predict future random outputs, then it

may take advantage in randomness-based applications. The unpredictabil-

ity definition follows the paradigm that without protocol transcripts from

correct participants, no adversary can distinguish between a future random

output of the DRB and a randomly sampled string of the same length [146],

[214].

Definition 6.2.3 (Unpredictability, from [214]). A DRB protocol ⇧ is unpre-

dictable if for every , there exists a negligible function negl(·) such that the

following holds. Assuming all participants have agreed on a ledger of e

consecutive random outputs R1, . . . , Re. For any future random output Re0

where e0 > e and any probabilistic polynomial-time (PPT) adversary A, if

A does not have the knowledge of protocol transcripts associated with Re0

from correct participants, then

|Pr[A(Re0) = 1]� Pr[A(r) = 1]|  negl()

, where r is a randomly sampled -bit string, and A(x)! {0, 1} outputs 1 if

A guesses x to be the random output in epoch e0 and otherwise 0.

6.2.4 Performance metrics

DRBs concern two performance metrics, namely communication com-

plexity and latency.

Communication complexity. Communication complexity is the total

amount of communication required to complete a protocol [96]. In DRBs,

the communication complexity is quantified as the amount of bits trans-

ferred among participants for generating a random output. A protocol may

141

have different communication complexity in the best-case and worst-case

executions.

Latency. Latency is the time required to complete a protocol. In the context

of DRBs, the latency is quantified as the time participants take to generate

a random output. Similarly, a protocol may have different latencies in the

best-case and worst-case executions.

6.3 Delivery-fairness property

In this section, we formally define the delivery-fairness property. The

delivery-fairness concerns two aspects of the advantage: length-advantage

and time-advantage. Length-advantage concerns how many random outputs

the adversary can learn earlier than correct participants. Time-advantage

concerns how much time the adversary can learn a random output earlier

than correct participants. We also prove the lower bound of the delivery-

fairness, representing the optimal guarantee.

6.3.1 Defining delivery-fairness

We define delivery-fairness through two strawman definitions that are

intuitive but incomplete. We begin with the fairness notion in multiparty

computation (MPC) protocols that, if the adversary receives the output, then

correct participants eventually receive the output [231]. We then generalise

the fairness notion to the continuous time model, making it consistent with

the DRB settings.

Attempt #1: Time advantage. We first consider relaxing the round-based

fairness definition to the continuous time model by introducing a time pa-

rameter . Namely, if a participant learns a random output at time t, then all

other participants learn this random output no later than time t + . How-

ever, this definition fails to capture that the adversary may learn more than

one random outputs in advance than correct participants.

142

Attempt #2: Length and time advantage. We then consider capturing both

length and time advantage. Let ! be the length parameter and be the time

advantage parameter. A DRB protocol satisfies (!,)-delivery-fairness if

for any two participants pi, pj : 1) pi’s ledger is longer than pj’s ledger by no

more than ! random outputs, and 2) pj’s ledger at time t + is no shorter

than pi’s ledger at time t.

However, the definition does not specify whether the last ! random

outputs of pj at time t + should be identical to the last ! random outputs

of pi at time t or not. If not, then this contradicts to the consistency property.

Attempt #3: Length and time advantage with consistency. We then add

the consistency guarantee to the definition in attempt #2, leading to our final

definition. Specifically, delivery-fairness concerns the adversary’s length

advantage and time advantage, parameterised by ! and , respectively. The

!-length-advantage states that the longest valid ledger pruning the last !

blocks is a prefix of the valid ledger in any participant’s view at any time.

The -time-advantage states that the shortest valid ledger at time t should

“catch up with” all participants’ ledgers at time t after the time period of

 . When ! and are smaller, the DRB provides stronger delivery-fairness

guarantee.

Definition 6.3.1 ((!,)-Delivery-Fairness). A DRB protocol ⇧ satisfies

(!,)-delivery-fairness if for every , there exists a negligible function

negl(·) such that the following holds for any two participants pi, pj and any

time t except for probability negl():

• !-length-advantage: (T t

i
)d! � T

t

j

• -time-advantage: T t

i
� T

t+
j

143

6.3.2 Lower bound of delivery-fairness

We prove that (1,� � �)-delivery-fairness is the optimal delivery-

fairness guarantee. Specifically, we prove the following theorem.

Theorem 6.3.1 (Delivery-fairness lower bound of DRB). There does not exist a

DRB protocol that simultaneously satisfies the following in synchronous networks:

• consistency, liveness and unpredictability as in §6.2; and

• (!,)-delivery fairness with ! < 1 or < �� �

The intuition behind the proof is that, if the time difference of learning a

random output between any two participants is smaller than���, then the

group of Byzantine participants can produce valid random outputs without

communicating with correct participants, contradicting to unpredictability

or consistency.

Proof. Assuming such a DRB protocol exists. Assuming at time t, all partic-

ipants have agreed on a ledger of e consecutive random outputs R1, . . . , Re,

and start producing Re+1. A sets the latency among correct participants to

be �, the latency of messages from any corrupted participant to any cor-

rect participant to be �, and the latency of messages from any correct par-

ticipant to any corrupted participant to be �. By unpredictability, without

messages from correct participants, corrupted participants cannot learn the

value of Re+1. Thus, the fastest possible way for corrupted participants to

learn a random output is to get messages from correct participants, which

is at least t + �. Given the latency set by A, a correct participant receives

messages only at t+�.

By the assumption that the time-advantage between correct and cor-

rupted participants is smaller than���, correct participants learns the ran-

dom output Re+1 before t + �. Thus, a correct participant has to learn the

random output R0
e+1 that satisfies the verification predicate. If R0

e+1 = Re+1,

144

then this means that a participant can solely produce random outputs with-

out interacting with the other participants. Thus, f corrupted participants

can also produce random outputs without interacting with the other correct

participants, contradicting to the unpredictability property. If R0
e+1 6= Re+1,

then this means that f corrupted participants can produce valid random

outputs conflicted with those from the other participants, contradicting to

the consistency property.

6.4 Drand

In this section, we analyse the delivery-fairness of Drand [203], a DRB

protocol adopted by Cloudflare [215]. Through the analysis, we identify an

attack on the delivery-fairness, which we call latency manipulation attack. We

show that two designs are necessary to resist against the latency manipula-

tion attack, namely 1) lock-step execution and 2) broadcasting final random

outputs. The Drand protocol specified in the documentation [232] does not

satisfy delivery-fairness, while its actual implementation [229] has adopted

these two designs, achieving the optimal (1,�� �)-delivery fairness.

6.4.1 Primitive: BLS threshold signature

BLS threshold signature [233] is a threshold version of the BLS signa-

ture [234]. A (k, n)-BLS signature allows any k out of n participants to jointly

sign a message. It requires a distributed key generation (DKG) protocol,

where the set of n participants agree on security parameter , threshold

k  n a public key pk, and each participant pi receives a secret key ski.

The BLS threshold signature ⇧BLS consists of the following functions.

• Setup(, k, n) ! (sk1, . . . , skn, pk): A DKG protocol that takes security

parameter , threshold k and number n of participants, outputs n se-

cret key shares sk1, . . . , skn and a public key pk.

145

• Sign(ski,m) ! �i: On input secret key ski and message m, outputs

signature share �i.

• Aggregate(#»�) ! {�,?}: On input k different signature shares #»� , out-

puts a signature � if every signature share �i 2 #»� is correctly signed

by ski otherwise ?.

• Verify(pk,m, �) ! {0, 1}: On input public key pk, message m and sig-

nature �, outputs 1 if � is aggregated from k different correct signature

shares otherwise 0.

Threshold BLS signature is unique: For any two subsets (#»� ,
»
�0) of k

different signature shares in {�i}i2[n] on a message m, ⇧BLS.Aggregate(
#»�) =

⇧BLS.Aggregate(
»
�0). Standard security properties of threshold signatures are

less relevant to delivery-fairness analysis and thus are omitted.

6.4.2 Protocol specification

Drand requires a distributed key generation (DKG) and achieves the

fault tolerance capacity of n � 2f + 1. It has two variants, namely the

non-lock-step ⇧Drand specified in the documentation [232] and the lock-step

⇧LS
Drand in the actual implementation [229]. Compared to ⇧Drand, ⇧LS

Drand re-

quires participants to wait for a time period during the phase of broadcast-

ing signatures for each epoch e. In synchronous networks, the time period

is at least �. In Drand’s implementation ⇧LS
Drand [229], the default time pe-

riod (named DefaultBeaconPeriod) is 60 seconds. Figure 6.1 outlines

the specification of ⇧Drand and ⇧LS
Drand from the perspective of participant pi

in epoch e.

146

1. (Setup) All participants jointly complete the one-time setup as follows.

(a) All participants participate in ⇧BLS.Setup(, f + 1, n), so that each par-
ticipant pi obtains the public key pk and a secret key ski.

(b) All participants agree on the initial unique signature �0.

2. (Broadcast signature) Upon the signature �e�1 in epoch e� 1 from others or
itself, participant pi does the following.

(a) pi executes ⇧BLS.Verify(pk,H(ek�e�2),�e�1) to verify whether �e�1 is
valid.

(b) pi executes �e

i
 ⇧BLS.Sign(ski, H(ek�e�1)) to generate signature share

�e

i
.

(c) pi broadcasts �e

i
.

(d) pi sets a timer �.

3. (Generate random output) Upon timer� expires and receiving at least f +1
signatures in epoch e� 1, participant pi does the following.

(a) pi executes �e
 ⇧BLS.Aggregate({�e

i
}) to obtain the aggregated signa-

ture �e.

(b) pi broadcasts �e.

(c) pi calculates the random output Re H(�e).

Figure 6.1: Specification of Drand ⇧Drand. Extra specification of its lock-step
variant ⇧LS

Drand is labelled in blue.

6.4.3 Delivery-fairness analysis of ⇧Drand: The latency ma-

nipulation attack

We identify a new attack latency manipulation attack that can increase

the adversary’s advantage of delivery-fairness in the non-lock-step ⇧Drand.

The latency manipulation attack only requires the adversary to manipulate

the latency among participants (subjected to the network model), and does

not require equivocating or withholding messages. Thus, the attack is un-

accountable and does not affect other security properties or performance

metrics.

The latency manipulation attack is presented in Figure 6.2 and depicted

in Figure 6.3. The adversary A follows the protocol with n � 2f correct

participants (e.g., n�2f = 1 in Drand) while delaying all messages from and

to the other f correct participants. Under the latency manipulation attack,

147

In the beginning of the DRB protocol, the adversary A does the follows.

1. A chooses n� 2f correct participants.

2. A sets the latency of messages among f corrupted participants and n � 2f
correct participants to be �.

3. A sets the latency of messages from, to and among the other f correct partic-
ipants to be �.

Figure 6.2: Latency manipulation attack on DRBs.

f

1

f

Correct participantsCorrupted participants
Latency

=

Broadcast signature shares

Figure 6.3: Example of the latency manipulation attack on the non-lock-step
Drand ⇧Drand with � = 3�. The adversary A chooses n � 2f = 1 correct
participant, sets the latency among f corrupted participants and the chosen
correct participant (above the brown horizontal line) to be �, and sets the
latency from, to, and among other f correct participants (below the brown
horizontal line) to be �. Consequently, participants above and below the
brown horizontal line learn random outputs for every � and�, respectively.
The advantage accumulates linearly with the execution time: Participants
above the brown horizontal line learn R2, R3, and R4 earlier than partici-
pants below the brown horizontal line by 2�, 4� and 6�, respectively. After a
sufficiently long time, the delivery-fairness degree (!,) will both become
1.

the adversary and one correct participant learn random outputs in every �

while the other f correct participants produce random outputs in every �.

Consequently, the adversary’s advantage, i.e., length-advantage degree !

and time-advantage degree , accumulates linearly with the execution time

After a sufficient long time period of execution, ! and will become 1,

leading to impractical delivery-fairness guarantee.

148

f

1

f

Latency

=

Correct participantsCorrupted participants Broadcast signature shares

Figure 6.4: Example of the latency manipulation attack on the lock-step
Drand ⇧LS

Drand with � = 3�. While corrupted participants will enter the next
epoch immediately after learning a random output, correct participants will
stay in every epoch for�, even learning the random output of this epoch in
advance (i.e., � since the beginning of the epoch). Consequently, A can only
gain (1,�� �)-delivery-fairness.

6.4.4 Delivery-fairness of ⇧LS
Drand

We analyse the delivery-fairness guarantee of ⇧LS
Drand, and show that

⇧LS
Drand achieves optimal (1,�� �)-delivery-fairness. The improvement com-

pared to the non-lock-step ⇧Drand is due to the lock-step design, where cor-

rect participants will wait for � before entering the next epoch and broad-

casting signature shares, even learning the random output of this epoch in

advance, as depicted in Figure 6.4.

Lemma 6.4.1 (⇧LS
Drand epoch execution). In ⇧LS

Drand, at the end of every epoch e,

i.e., t = e ·�, for any two participants (pi, pj), T t

i
= T

t

j
.

Proof. The proof is by induction: Given the base case where all participants

start executing the protocol, assuming an induction hypothesis holds at the

end of epoch e� 1, we prove the induction step that the hypothesis holds at

the end of epoch e. The proof implies that the induction hypothesis holds at

the end of every epoch.

• Bese case: At time t = 0, for any two participants (pi, pj), T 0
i
= T

0
j

.

• Induction hypothesis: At time t = (e � 1)�, for any two participants

(pi, pj), T t

i
= T

t

j
.

149

• Proof goal: At time t = e ·�, for any two participants (pi, pj), T t

i
= T

t

j
.

The induction step is as follows. After (e � 1) · �, n � f participants

sign (ek�e�1) and broadcast their signatures to each other. No later than

t = (e�1) ·�+� < e ·�, n�f participants will receive n�f signatures and

can reconstruct �e, which leads to T
t

i
= T

t

j
and thus closes the induction

proof.

Lemma 6.4.2 (⇧LS
Drand length-advantage). ⇧LS

Drand achieves 1-length-advantage.

That is, for every , there exists a negligible function negl(·) such that the following

holds except for probability negl(). For any two participants (pi, pj) and any time

t, (T t

i
)d1 � T

t

j
.

Proof. By Lemma 6.4.1, at the end of every epoch e, i.e., t = e · �, for any

two participants (pi, pj), T t

i
= T

t

j
. Therefore, for any t 2 ((e � 1) · �, e · �],

participants only differ in �e, leading to 1-length-advantage.

Lemma 6.4.3 (⇧LS
Drand time-advantage). ⇧LS

Drand achieves (�� �)-time-advantage.

That is, for every , there exists a negligible function negl(·) such that the following

holds except for probability negl(). For any two participants (pi, pj) and any time

t, T t

i
� T

t+���
j

.

Proof. By Lemma 6.4.1, at the end of every epoch e, i.e., t = e ·�, for any two

participants (pi, pj), T t

i
= T

t

j
. Starting from time t,the adversary will learn

the next random output no earlier than t+ �, while correct participants will

learn the next random output no later than t + �, leading to (� � �)-time-

advantage.

Theorem 6.4.4 (⇧LS
Drand delivery-fairness). ⇧LS

Drand achieves (!,)-delivery-

fairness where ! = 1 and = �� �.

Proof. By Lemma 6.4.2-6.4.3, this theorem holds.

150

6.4.5 Gained insights

Through the analysis, we obtain two insights on improving the

delivery-fairness. First, the lock-step execution is necessary to bound the

adversary’s length-advantage to 1. Otherwise, without the lock-step exe-

cution, the adversary can always launch the latency manipulation attack

and grow its ledger faster than correct participants. In addition, broadcast-

ing the reconstructed random output (line 3b of Figure 6.1) is necessary to

bound the adversary’s time-advantage to �. Although correct participants

will eventually receive enough shares to reconstruct the random output, the

latency manipulation attack allows the adversary to produce random out-

puts faster than correct participants, leading to time-advantage of more than

� if the random output is computed locally and is not broadcasted.

6.5 HydRand and GRandPiper

In this section, we analyse the delivery-fairness of HydRand [101]

and GRandPiper [213], two DRB protocols based on the rotating leader

paradigm and PVSS. We observe that a previously known unpredictability-

focused attack, which we call private beacon attack, weakens the delivery-

fairness of HydRand and GrandPiper. The attack is rooted in their design is

that the entropy of a random output is solely provided by the epoch leader.

To resist against the attack, the entropy should instead be provided by a

group of at least f + 1 participants.

6.5.1 Primitives

HydRand and GRandPiper employ a number of cryptographic primi-

tives, including leader election, Byzantine broadacst, accumulator and pub-

licly verifiable secret sharing (PVSS). Similarly, security properties of these

151

primitives are less relevant to delivery-fairness analysis and thus are omit-

ted.

Leader election. Leader election protocol ⇧LE allows participants to elect

a leader for every epoch. Specifically, given the set of participants and the

agreed ledger (recording historical random outputs and leaders) in epoch

e� 1 as input, ⇧LE outputs a leader le for epoch e. Let X(⇧LE, c) be the event

that c consecutive leaders are corrupted in ⇧LE.

HydRand and RandPiper employ a round-robin leader election pro-

tocol ⇧RR
LE , where a leader is elected from all participants excluding last f

leaders and misbehaving leaders randomly with the last random output.

Existing analysis [213] has proven that the probability Pr
⇥
X(⇧RR

LE , c)
⇤

that

X(⇧RR
LE , c) happens in ⇧RR

LE is Pr
⇥
X(⇧RR

LE , c)
⇤
=

(fc)
(n�f)c . The best, average, and

worst values of c are 0, 2, and f , respectively.

Byzantine broadcast. In Byzantine broadcast ⇧BB, a designated broad-

caster in a set of n participants broadcasts a value m to other participants

such that the following holds [235]–[237]:

• Agreement: If two correct participants commit values v and v0 respec-

tively, then v = v0.

• Termination: All correct participants eventually commit a value.

• Validity: If the designated broadcaster is correct, then all correct par-

ticipants commit m.

By executing the leader election and allowing the leader to launch a

Byzantine broadcast protocol for each epoch, one can yield a state machine

replication (SMR) protocol. In SMR, participants commit client requests as

a linearisable ledger (aka log) with two guarantees, namely consistency that

every two correct participants commit the same value at the same ledger

position and liveness that every client request is eventually committed by all

correct participants [237].

152

Accumulator. Accumulator [123] allows to compress a set D of values into

a short accumulation value z. For each value di 2 D, there is a short witness

wi proving that di is one of the values accumulated into z. An accumulator

⇧Acc consists of the following algorithms:

• Setup(, n)! k: On input parameter  and accumulation threshold n,

outputs accumulation key k. Note that n is the upper bound on the

total number of values that can be securely accumulated.

• Eval(k,D)! z: On input key k and a set D of values, outputs accumu-

lation value z.

• CreateWit(k, z, di,D)! {wi,?}: On input key k, accumulation value z,

value di and the set D of values, outputs witness wi if di 2 D otherwise

?.

• Verify(k, z, di, wi) ! {0, 1}: On input key k, accumulation value z for

D, value di and witness wi, outputs 1 if di 2 D otherwise 0.

PVSS. A (k, n)-Public Verifiable Secret Sharing (PVSS) [148], [238] allows

one to distribute a secret s with n parties. Each party pi receives a share si.

Anyone can encrypt si to an encrypted share ci by using pi’s public key pki.

Party pi can decrypt the encrypted share ci back to si by using its secret key

ski. A set of k different shares can be used for reconstructing the secret. A

PVSS scheme ⇧PVSS consists of the following algorithms:

• Gen() ! (sk, pk): On input security parameter , outputs key pair

(sk, pk).

• Encrypt(pki, si) ! ci: On input public key pki and share si, outputs

encrypted share ci.

• Decrypt(ski, ci) ! si: On input secret key ski and encrypted share ci,

outputs share si. It holds that si = Decrypt(ski,Encrypt(pki, si)).

153

• Share({pki}i2[n], k, s) ! (#»s , #»c , #»⇡): On public keys {pki}i2[n], threshold

k, and secret s, outputs shares #»s = {si}i2n, encrypted shares #»c =

{ci}i2n = {Encrypt(pki, si)}i2n, and proofs #»⇡ = {⇡i}i2n.

• Verify(ci, ⇡i) ! {0, 1}: On input encrypted share ci and proof ⇡i, out-

puts 1 if ci is encrypted from a certain valid share otherwise 0. Note

that the proof ⇡i does not reveal which share is associated with ci.

• Recon(#»s)! s: On input a set #»s of k valid shares, outputs secret s.

6.5.2 HydRand protocol specification

HydRand does not require distributed key generation and achieve the

fault tolerance capacity of n � 3f + 1. The original HydRand protocol

⇧HydRand in the paper [101] and implementation [239] is non-lock-step. We

also study its lock-step variant ⇧LS
HydRand that resists against the latency ma-

nipulation attacks and achieves better delivery-fairness. Figure 6.5 outlines

the specification of ⇧HydRand and ⇧LS
HydRand from the perspective of participant

pi in epoch e.

6.5.3 HydRand delivery-fairness analysis

The latency manipulation attack in Figure 6.2 also applies to the non-

lock-step ⇧HydRand, similar to the non-lock-step ⇧Drand. Specifically, A always

sets the latency among its corrupted participants and n� 2f = f +1 correct

participants as �, while the latency from, to and among the other f correct

participants as�. To exclude the impact of the latency manipulation attack,

we focus on analysing ⇧LS
HydRand.

Bhat et al. [213] observes an attack on the unpredictability of HydRand

and GRandPiper, and does not name it. This attack, which we call private

beacon attack, can also weaken the delivery-fairness of HydRand (including

both ⇧HydRand and ⇧LS
HydRand) and GRandPiper. In this attack, the adversary

154

grows its own ledger to learn random outputs earlier than correct partici-

pants. As HydRand allows the epoch leader to solely sample the entropy,

the epoch leader can learn the random output instantly without commu-

nicating with others. With c consecutive Byzantine leaders, the adversary

can learn c future random outputs. Same as the latency manipulation at-

tack, the private beacon attack does not require equivocating or withhold-

ing messages, and thus remains unaccountable. The private beacon attack

is presented in Figure 6.6 and depicted in Figure 6.7.

We analyse the impact of private beacon attacks on the delivery-

fairness for ⇧LS
HydRand. Recall that X(⇧LE, c) denotes the event that “c con-

secutive leaders are corrupted in ⇧LE”.

Lemma 6.5.1. ⇧LS
HydRand achieves (c + 1)-length-advantage with probability

Pr[X(⇧LE, c)]. That is, for every , there exists a negligible function negl(·) such

that the following holds except for probability negl(). For any two participants

(pi, pj) and any time t, (T t

i
)dc+1

� T
t

j
with probability Pr[X(⇧LE, c)].

Proof. Assuming A does not corrupt the leader le in the current epoch e. In

epoch e, A can launch the latency manipulation attack, so that it learns Re

earlier than correct participants. When X(⇧LE, c) happens with probability

Pr[X(⇧LE, c)], the leader corrupts further c consecutive leaders le+1, . . . , le+c

and learns further c random outputs Re+1, . . . , Re+c. Therefore, A achieves

(c+ 1)-length-advantage with probability Pr[X(⇧LE, c)].

Lemma 6.5.2. ⇧LS
HydRand achieves ((3c+1)��3�)-time-advantage with probability

Pr[X(⇧LE, c)]. That is, for every , there exists a negligible function negl(·) such

that the following holds except for probability negl(). For any two participants

(pi, pj) and any time t, T t

i
� T

t+(3c+1)��3�
j

with probability Pr[X(⇧LE, c)].

Proof. Assuming when epoch e starts at time t, A does not corrupt the leader

le. A directs corrupted participants to follow the protocol while launch-

ing the latency manipulation attack, so that after three consecutive mes-

155

sage transfers, A learns Re at time t + 3� and the other correct partici-

pants learn Re at time t + 3�. When X(⇧LE, c) happens with probability

Pr[X(⇧LE, c)], the leader corrupts further c consecutive leaders le+1, . . . , le+c

and learns further c random outputs Re+1, . . . , Re+c. The correct partici-

pants learn Re+c only at t + 3� + 3c · �. Therefore, the time advantage is

(t+3�+3c ·�)�(t+3�) = (3c+1)��3� with probability Pr[X(⇧LE, c)].

Theorem 6.5.3 (⇧LS
HydRand delivery-fairness). ⇧LS

HydRand achieves (!,)-delivery-

fairness where ! = c+ 1 and = (3c+ 1)�� 3� with probability Pr[X(⇧LE, c)].

Proof. By Lemma 6.5.1-6.5.2, this theorem holds.

6.5.4 GRandPiper protocol specification

GRandPiper [213] follows the HydRand’s approach with three major

modifications. First, GRandPiper enforces participants to recover the se-

cret value committed by the leader, without allowing the leader to reveal it

by itself. Second, GRandPiper replaces the Acknowledge and Vote-confirm

phase in HydRand with an explicit Byzantine broadcast protocol ⇧BB. Note

that the Byzantine broadcast and the round-robin leader election constitute

a SMR protocol, as described in the RandPiper paper. Third, GRandPiper

formalises the Hydrand’s idea of separating the process of committing and

revealing secret values as a queue-based mechanism, where each partici-

pant buffers previously committed secret values and pops one value to re-

construct for each epoch.

GRandPiper does not require distributed key generation and achieve

the fault tolerance capacity of n � 2f + 1. The GRandPiper protocol

⇧GRandPiper is constructed from ⇧LE, ⇧BB, and ⇧PVSS. ⇧LE is instantiated with

⇧RR
LE , ⇧BB is instantiated with a specialised protocol with O(n2) communic-

taion complexity and latency tBB = 11�. ⇧GRandPiper achieves O(n2) commu-

nication complexity and 12� latency. Figure 6.8 outlines the specification of

⇧GRandPiper from the perspective of participant pi in epoch e.

156

6.5.5 GRandPiper delivery-fairness analysis

Lemma 6.5.4 (⇧GRandPiper length-advantage). ⇧GRandPiper achieves (c+1)-length-

advantage with probability Pr[X(⇧LE, c)]. That is, for every , there exists a neg-

ligible function negl(·) such that the following holds except for probability negl().

For any two participants (pi, pj) and any time t, (T t

i
)dc+1

� T
t

j
with probability

Pr[X(⇧LE, c)].

Proof. The proof is identical to that of Lemma 6.5.1.

Lemma 6.5.5 (⇧GRandPiper time-advantage). ⇧GRandPiper achieves ((11c+1)���)-

time-advantage with probability Pr[X(⇧LE, c)]. That is, for every , there exists

a negligible function negl(·) such that the following holds except for probability

negl(). For any two participants (pi, pj) and any time t, T t

i
� T

(11c+1)���
j

with

probability Pr[X(⇧LE, c)].

Proof. By Lemma 6.5.4, for every epoch e, i.e., at time t = e · tBB + �, the

adversary learns the (e+c)-th random output with probability Pr[X(⇧LE, c)].

Meanwhile, correct participants will learn the (e+c)-th random output after

c epochs plus a � in the DRB routine, i.e., at time t = (e + c) · tBB +�. This

leads to (c · tBB +� � �)-time-advantage with probability Pr[X(⇧LE, c)]. As

tBB = 11�, c · tBB +�� � = (11c+ 1)�� �.

Theorem 6.5.6 (⇧GRandPiper delivery-fairness). ⇧GRandPiper achieves (!,)-

delivery-fairness where ! = c + 1 and = (11c + 1)� � � with probability

Pr[X(⇧LE, c)].

Proof. By Lemma 6.5.4-6.5.5, this theorem holds.

6.5.6 Gained insights

In HydRand and GRandPiper, the entropy of a random output is pro-

vided by a sole leader. In this case, the adversary can always launch the

private beacon attack as long as the leader is Byzantine. To mitigate the

157

private beacon attack, the protocol should prevent the adversary from con-

trolling the entropy for a random output. To this end, the entropy should

instead be provided by a group of at least f + 1 participants rather than a

single participant.

6.6 SPURT

In this section, we analyse the delivery-fairness of SPURT [214]. The

analysis shows that by making SPURT lock-step, SPURT achieves the opti-

mal (1,�� �)-delivery-fairness.

6.6.1 Protocol specification

SPURT is constructed from a Byzantine broadcast protocol ⇧BB and a

specialised PVSS protocol ⇧uniform
PVSS . ⇧BB is a variant of HotStuff [153] with

best-case latency of 4� and worst-case latency tBB = 4�. ⇧uniform
PVSS differs from

the traditional⇧PVSS in three aspects. First, ⇧uniform
PVSS .Recon(·) outputs e(hs

0, h1)

rather than secret s itself, where e(·) is a bilinear pairing function and (h0, h1)

are public parameters. Second, an encrypted share in ⇧uniform
PVSS consists of

two elements (vi, ci). Last, proof ⇡i in ⇧uniform
PVSS .Share(·)/Verify(·) is omitted in

certain scenarios for better performance. To keep notations consistent, we

denote (vi, ci) in ⇧uniform
PVSS as a single element ci, and explicitly include ⇡i in

⇧uniform
PVSS .Verify(·).

SPURT [214] does not require distributed key generation and achieve

the fault tolerance capacity of n � 3f + 1. The original SPURT protocol

⇧SPURT in the paper [214] and implementation [240] is non-lock-step. We

also study its lock-step variant⇧LS
SPURT that resists against the latency manip-

ulation attacks and achieves optimal delivery-fairness. Figure 6.9 outlines

the specification of ⇧SPURT and ⇧LS
SPURT from the perspective of participant pi

in epoch e.

158

6.6.2 Delivery-fairness analysis

Similar to Drand and HydRand, the non-lock-step ⇧SPURT does not re-

sist against the latency manipulation attack. SPURT resists against the pri-

vate beacon attack, as the entropy of a random output is jointly provided

by f +1 participants. We analyse the delivery-fairness guarantee of ⇧LS
SPURT,

and show that ⇧LS
SPURT achieves the optimal (1,�� �)-delivery-fairness.

Lemma 6.6.1 (⇧LS
SPURT epoch execution). In ⇧LS

SPURT, at the end of every epoch e,

i.e., t = e · (3�+ tBB), for any two participants (pi, pj), T t

i
= T

t

j
.

Proof. The proof is identical to that of Lemma 6.4.1.

Lemma 6.6.2 (⇧LS
SPURT length-advantage). ⇧LS

SPURT achieves 1-length-advantage.

That is, for any , there exists a negligible function negl(·) such that the following

holds except for probability negl(). For any two participants (pi, pj) and any time

t, (T t

i
)d1 � T

t

j
.

Proof. The proof is identical to that of Lemma 6.5.4, except that the adver-

sary does not learn c extra random outputs via the private beacon attack

compared to correct participants.

Lemma 6.6.3 (⇧LS
SPURT time-advantage). ⇧LS

SPURT achieves (� � �)-time-

advantage. That is, for every , there exists a negligible function negl(·) such that

the following holds except for probability negl(). For any two participants (pi, pj)

and any time t, T t

i
� T

���
j

.

Proof. The proof is identical to that of Lemma 6.5.5, except that the adver-

sary does not learn c extra random outputs via the private beacon attack

compared to correct participants.

Theorem 6.6.4 (⇧LS
SPURT delivery-fairness). ⇧LS

Drand achieves (!,)-delivery-

fairness where ! = 1 and = �� �.

Proof. By Lemma 6.6.2-6.6.3, this theorem holds.

159

6.7 Related work

A systematic and formal study on this advantage is still missing. Ex-

isting DRB models only focus on certain attacks leading to certain aspects

in this advantage [144], [213]. Similar security properties in other primi-

tives cannot be adapted to capture this advantage directly, as they either

concern eventual delivery without quantifying the advantage [227], or con-

cern the advantage among correct participants excluding Byzantine partici-

pants [52], [163], [181], [228].

Similar properties in DRBs. Previous research either informally studies

such advantage, or formally studies certain attacks leading to this advan-

tage. Ouroboros Praos [144] states that a DRB is leaky if the leader can learn

the random output in the next epoch, and embeds the property in the Uni-

versal Composability model. RandPiper [213] combines the “leaky” notion

into the unpredictability property, yielding the d-unpredictability property,

where the adversary can learn at most d future random outputs in advance.

However, the d-unpredictability only captures length-advantage, i.e., how

many random outputs the adversary can learn earlier than correct partic-

ipants, but not time-advantage, i.e., how much time the adversary can learn

a given random output earlier than correct participants. In addition, Rand-

Piper only studies d-unpredictability under the private beacon attack where

the adversary solely samples random outputs, neglecting other possible at-

tacks on delivery-fairness. SPURT [214] defines the “nearly simultaneous

beacon output” as a part of the unpredictability property, meaning that all

correct participants learn a random output within a constant time after the

adversary can learn it. The “nearly simultaneous” notion only captures the

time-advantage but not the length-advantage. In addition, it quantifies the

time-advantage asymptotically rather than concretely, making it less practi-

cal in the real-world networks.

160

Guaranteed output delivery and fairness in Multiparty Computation.

Guaranteed output delivery (GOD) and fairness are properties of multi-

party computation (MPC) protocols, where participants jointly compute a

function of their inputs securely under a subset of corrupted participants.

GOD specifies that corrupted participants cannot prevent the correct partici-

pants from receiving the function’s output. Fairness specifies that corrupted

participants should receive the function’s output if and only if correct partic-

ipants receive it. GOD and fairness are equivalent when broadcast channels

are accessible [227], which is our setting. However, these two properties are

usually analysed under discrete time models which only concern eventual

delivery, and thus do not allow quantitative analysis.

Consistent length in Blockchain. Blockchain protocols allow participants

to jointly maintain a blockchain. The consistent length property [52], [163],

[181], [228] of blockchain protocols specify that if a correct participant’s

blockchain is of length ` at time t, then any correct participant’s blockchain

at time t+ is of length at least `. Blockchains trivially satisfy the property

in synchronous networks, as a correct participant will send its chain to other

correct participants within the synchronous latency �.

Adapting the consistent length property from blockchain protocols to

DRBs suffers from two limitations. First, it only concerns the difference of

blockchains between correct participants, excluding corrupted participants.

In particular, the adversary may grow its blockchain faster than correct par-

ticipants, while withholding its blockchain. Second, it only concerns the

time advantage, i.e., how much time the adversary learns blocks earlier than

correct participants, but does not concern how many blocks the adversary

can learn earlier than correct participants.

161

1. (Propose) Upon a new random output Re�1, participants execute as follows.

(a) Participants execute ⇧LE to determine the leader le.

(b) Leader le chooses a new secret s, obtains shares, encrypted shares and
share proofs (#»s , #»c , #»⇡) ⇧PVSS.Share({pki}i2[n], f + 1, s), obtains the
accumulation value z of #»c via z ⇧Acc.Eval(k,

#»c), and obtains all wit-
nesses #»w via wi ⇧Acc.CreateWit(k, z, ci,

#»c) for every i 2 [n].

(c) Leader le constructs a block Be and broadcasts Be. Be includes 1)
information of epoch e: (e, #»c , #»⇡ , #»w, z), 2) information of epoch e�:
(e�, s�, H(Be�), CC(B�

e
)), and 3) information of in-between epochs

k 2 (e�, e): {(Rk, RC(k))}k2(e�,e), where e� is the last epoch where
the leader honestly reveals its secret, CC(Be�) ia a collection of� f +1
signatures on Be� , Rk is the recovered secret and RC(k) ia a collection
of � f + 1 signatures on Bk.

(d) All participants set a timer �.

2. (Acknowledge) Upon receiving a valid block Be {before/and} � expires,
participant pi executes as follows.

(a) pi broadcasts an ACKNOWLEDGE message containing H(Be) and
(e,Re, s�, Be� , H(Be�), {Rk}k2(e�,e), z) signed by leader le, and set a
new timer �.

(b) Otherwise, if � expires and no valid block Be is received, participant
pi moves to the vote-recover phase and sets a new timer�.

3. (Vote-confirm) Upon receiving � 2f + 1 ACKNOWLEDGE messages on a
valid block Be {before/and} � expires, participant pi executes as follows.

(a) pi broadcasts a CONFIRM message containing H(Be), and sets a new
timer �.

(b) Upon receiving � f + 1 CONFIRM messages {before/and} � expires
(which is guaranteed), pi commits block Be, calculates random output
Re H(Re�1ks�), and starts a new epoch.

(c) Otherwise, if � expires and < 2f + 1 ACKNOWLEDGE messages on
a valid block Be are received, pi moves to the vote-recover phase and
sets a new timer �.

4. (Vote-recover) If there exists a phase where the condition does not meet after
the timer expires, participant pi moves to the vote-recover phase to recover
the secret s� committed in B�

e
jointly with others. Specifically,

(a) pi obtains the decrypted share s�
i

via⇧PVSS.Decrypt(ski, c
�
i
) and broad-

casts RECOVER message (s�
i
, c�

i
,⇡�

i
, w�

i
, Re�1).

(b) Upon receiving � f + 1 RECOVER messages {before/and} � expires
(which is guaranteed), pi recovers the secret s� ⇧PVSS.Recon(

»

s�)

(where
»

s� is the� f +1 shares in RECOVER messages), and calculates
random output Re H(Re�1ks�).

Figure 6.5: Specification of HydRand⇧HydRand. Extra specification of its lock-
step variant ⇧LS

HydRand is labelled in blue.

162

While following the DRB protocol, the adversary A does the follows.

1. Upon a new random output Re, A calculates the next leader le+1 based on
⇧LE.

2. If the next leader le+1 is a Byzantine participant, A follows the protocol to
sample the random output Re+1 locally and repeats step 1.

Figure 6.6: Private beacon attack on DRBs.

Block generated by a
correct participant

Block generated by a
corrupted participant

Adversary's view

Correct
participants' view

Current
epoch

Figure 6.7: Example of a private beacon attack on the lock-step HydRand
⇧LS

HydRand. Assuming at the current epoch e = 6, the leader l6 is a corrupted
participant. Leader l6 reveals its committed secret and calculates the current
random output R6, which determines the next epoch’s leader l7, and so on.
When l6, l7 and l8 are all corrupted participants, the adversary A can learn
R7 and R8 when epoch e = 6, weakening the delivery-fairness.

1. (SMR routine) Upon timere�1 = tBB ends, all participants execute as follows.

(a) Leader election. Participants calculate the leader based on the round-
robin approach same as HydRand. All participants set a new timere =
tBB.

(b) Block proposal. If elected as leader, leader le chooses a random value
se, executes (#»s , #»c , #»⇡) ⇧PVSS.Share({pki}i2[n], f + 1, s), creates block
Be = (#»c , #»⇡), and triggers the Byzantine broadcast protocol ⇧BA over
Be. Each ⇧BA instance terminates in at most f epochs.

(c) Block agreement. Upon agreeing on block B�
e

sent by leader le� for
epoch e�, participant pi pushes B�

e
into queue Q(le�).

(d) Blame. Upon timere ends, if no block is proposed in epoch e � t, then
remove le�t from future proposals.

2. (DRB routine) Upon timere�1 ends, participant pi executes as follows.

(a) pi pops the committed block Be� = (
»

c�,
»

⇡�) from queue Q(le�).

(b) pi decrypts its share s�
i
 ⇧PVSS.Decrypt(ski, c

�
i
) and broadcasts s�

i
.

(c) Upon f + 1 valid shares in
»

s�, Participant pi reconstructs
se� ⇧PVSS.Recon(

»

s�), and calculates the random output Re�

H(se� , Re��1, . . . , Re��t).

Figure 6.8: Specification of GRandPiper ⇧GRandPiper.

163

1. (Commitment) Upon reconstructing Re�1, every participant pi executes as
follows.

(a) pi executes (#»si,
#»ci,

»⇡i) ⇧uniform
PVSS .Share({pkj}j2[n], f, s).

(b) pi sends tuple (#»ci,
»⇡i) to leader le.

(c) Set a timer �.

2. (Aggregation) Upon receiving f + 1 tuples and � expires, leader le executes
as follows.

(a) le aggregates these tuples as (ĉ, ⇡̂) = {(ĉi, ⇡̂i)}i2[n] = {(⇧c̄i,⇧⇡̄i)}i2[n],
where (c̄i, ⇡̄i) is the i-th column of f + 1 encrypted shares and proofs,
respectively.

(b) le computes the digest h H(Ikĉ) where I is the set of f + 1 indices.

3. (Agreement) Leader le executes as follows.

(a) For each participant pi, le sends (e, h, I, ĉ, c̄i, ⇡̄i) to pi.

(b) le triggers ⇧BB over h with all participants.

(c) Set a timer tBB.

4. (Reconstruction) Upon deciding on h and tBB expires, participant pi executes
as follows.

(a) pi decrypts the aggregated share ŝi ⇧uniform
PVSS .Decrypt(ski, ĉi), and

broadacsts ŝi. Set a timer �.

(b) Upon receiving f + 1 such decrypted shares ŝ and � expires, pi aggre-
gates them to s =

P
ŝ, calculates the beacon output Re e(hs

0, h1) via
pairing, and broadcasts Re. Set a timer �.

(c) Upon receiving f + 1 Re messages and � expires, pi decides on Re.

Figure 6.9: Specification of SPURT ⇧SPURT. Extra specification of its lock-
step variant ⇧LS

SPURT is labelled in blue.

164

Chapter 7

On the honest majority assumption of permission-

less blockchains

7.1 Introduction

Proof-of-work (PoW) based consensus – first introduced by Bitcoin [1]

allows distributed participants (aka. nodes) to agree on the same set of

transactions. In Bitcoin, all transactions are organised as a blockchain, i.e.,

chain of blocks. Anyone can create a block of transactions, and append it

into the Bitcoin blockchain as a unique successor of the last block. To create

a block, one needs to solve a computationally hard Proof-of-Work (PoW)

puzzle. In PoW, the puzzle solver (aka. miner) needs to find a nonce to

make the hash value of the block smaller than a target value.

The blockchain may have forks: Miners may create different valid

blocks following the same block. In Bitcoin, miners always choose the

longest fork of its blockchain in order to agree on a single fork. How-

ever, a fork that is currently longer may be reverted by another fork, and

all transactions in the currently longer fork will be deemed invalid. This

gives the attacker an opportunity to spend a coin in a fork, then creates

another longer fork to erase this transaction. This is called double-spending

attack. To launch a double-spending attack in PoW-based consensus, an at-

tacker should have enough mining power to create a fork growing faster

than the current one. This requires the attacker to control a majority of min-

ing power in the network. Double-spending attacks using the majority of

mining power is known as 51% attacks.

165

���
���

���
�

���
���

���
�

���
���

���
�

���
���

���
�

���
���

���
�

���
���

���
�

���
���

���
�

���
���

���
�

���
���

���
�

���
���

���
�

���
���

���
�

'DWH

��
�

��
�

��
�

/R
VV
��8

6
'
�

9HUJH��;9*�
�����PLOOLRQV

0RQDFRLQ��021$�
������PLOOLRQV

9HUJH��;9*�
������PLOOLRQV

%LWFRLQ�*ROG��%7*�
������PLOOLRQV

=HQ&DVK��=(1�
������PLOOLRQV

)/2��)/2�
��������PLOOLRQV

$XUXP�&RLQ��$8�
�����PLOOLRQV

9HUWFRLQ��97&�
�����PLOOLRQV

(WKHUHXP�&ODVVLF��(7&�
�����PLOOLRQV

%LWFRLQ�&DVK�%&+�
�����PLOOLRQV (WKHUHXP�&ODVVLF��(7&�

�����PLOOLRQV

(WKHUHXP�&ODVVLF��(7&�
�����PLOOLRQV

(WKHUHXP�&ODVVLF��(7&�
�����PLOOLRQV

Figure 7.1: 51% Attacks in 2018-2020 [241]. We omit the 51% attack on Lite-
coin Cash on June 4, 2018 as the loss is unknown.

Honest majority. To avoid 51% attacks, PoW-based consensus should as-

sume the honest majority: The majority of mining power in the system fol-

lows the protocol. Otherwise, the adversary with the majority of mining

power can launch 51% attacks. Such security guarantee depends on the to-

tal mining power in the system: With more mining power in the system,

controlling the majority of mining power will be more difficult.

Fact and Fiction. Ideally, there is only one blockchain in the world, and all

miners will participate in this blockchain. This makes controlling 51% min-

ing power extremely difficult. However, there exists numerous PoW-based

blockchains [2]. As the total available mining power is shared amoung dif-

ferent blockchains, no blockchain enjoys the ideal security guarantee, and

blockchains with more mining power is more secure than those with less

mining power.

The existence of multiple blockchains gives the opportunity to 51% at-

tacks and makes the honest majority breakable. As shown in Figure 7.1, there

have been several 51% attacks, causing the loss of more than $41 million.

Most notably, within a month from 29/07/2020 to 29/08/2020, there were

three huge 51% attacks on Ethereum Classic (ETC) [242]–[244], where the

166

largest one reverted more than 8,000 blocks and caused the loss of $9.0 mil-

lion.

Incentive and rationality. For better security guarantee, a PoW-based

blockchain should attract miners to contribute mining power. To attract

miners, PoW-based blockchains usually employ an incentive mechanism,

where a miner creating a block will be rewarded for its contribution. Such

incentive mechanism makes PoW-based blockchains to assume miners are

rational [245], i.e., making decisions for profit. The frequent huge 51% at-

tacks on ETC indicate that, miners’ rational choice may not only be mining

honestly, but can also be launching 51% attacks. This leaves us a question

that, does the incentive mechanism really encourages miners to mine hon-

estly and secures the blockchain?

7.1.1 Contributions

While prior research [246]–[257] analyse PoW-based blockchains as a

stand-alone system, we analyse PoW-based blockchains in the precense of

externally available mining resources. We formally analysing two vari-

ants of 51% attacks using externally available mining power, and show that

51% attacks are feasible and more profitable than honestly mining for most

blockchains. Our analysis leads to two results: 1) the honest majority as-

sumption does not hold for these blockchains, and 2) instead of encourag-

ing miners to mine honestly, the incentive mechanism encourages miners to

launch 51% attacks and break “honest majority”. Specifically, we make the

following contributions.

Formalisation of two 51% attacks (§7.2). We consider two variants of

51% attacks that make use of externally available mining power. One is

mining power migration attack, where the adversary migrates mining power

from a stronger blockchain to attack a weaker blockchain. The other is

the previously known cloud mining attack [14], where the adversary rents

167

mining power from cloud mining services (e.g., Nicehash[13]) to attack a

blockchain.

Whether these two attacks are feasible or profitable are unknown.

Straightforward estimations are coarse-grained so may lead to biased esti-

mations and consequently wrong conclusions. To identify PoW-based con-

sensus’ (overlooked) weaknesses and provide insights and directions to-

wards securing them, we formalise the two 51% attacks using 51-MDP –

a MDP-based model extended from Gervais et al. [253]. 51-MDP takes pa-

rameters of blockchains and the adversary as input, and outputs the cost

and reward of launching a 51% attack. Of independent interest, 51-MDP

can be leveraged to formally study all attacks on PoW-based blockchains

while considering external environment.

Evaluaion of 51% attacks in existing blockchains (§7.3-7.4). We apply

51-MDP to evaluate two attacks on existing PoW-based blockchains. The

results show that for most PoW-based blockchains, launching both 51% at-

tacks is feasible and more profitable than hoenstly mining. For example, a

miner with 12.5% mining power in Bitcoin can profit 6% ($1,894,650) more

than honestly mining Bitcoin by double-spending a transaction of 300,000

BCH ($37,893,000) on BitcoinCash. The required mining power is not diffi-

cult to obtain – at the time of writing, F2Pool controls 17.7% mining power

in Bitcoin [258].

Detailed case study of an 51% attack (§7.5-7.6). We apply 51-MDP to study

the 51% attack on ETC happened at 07/01/2019. On 07/01/2019, an anony-

mous attacker launched a series of 51% attacks and double-spent more than

$1.1 million on a cryptocurrency exchange Gate.io[259]. The attack is sus-

pected to be a cloud mining attack using mining power from Nicehash [260].

We first analyse the pattern of double-spent transactions, and reveal the at-

tacker’s strategy for maximising and stabilising revenue. We then apply

51-MDP to reverse-engineer the attacker’s revenue. The results show that,

168

the attacker is expected to earn $84773.40, which is close to $100,000 – the

attacker returned to Gate.io later[261]. This indicates the attacker was likely

to launch 51% attacks in the fine-grained way described in this chapter.

Countermeasures (§7.7). We discuss potential countermeasures of these

two 51% attacks derived from our observed insights. For quick remedies,

we suggest ways of detecting such 51% attacks, and reacting upon detected

51% attacks. Among these approaches, we use 51-MDP to show that in-

creasing the number of confirmation blocks is the most practical and effec-

tive countermeasure, which is also evidenced by the evaluation result of

XMR (Figure 7.5) in §7.4. The recent recommended update aligns with our

suggestions. For long-term remedies, we consider consensus with accumu-

lated reputations as a future work.

7.2 Formalisation

We consider two 51% attacks that make use of externally available min-

ing power: Mining power migration attacks and cloud mining attacks. Min-

ing power migration attacks use mining power from other blockchains, while

cloud mining attacks use mining power from cloud mining services. We for-

mally study these two 51% attacks by proposing a Markov Decision Process

(MDP)-based model called 51-MDP. 51-MDP takes our defined blockchain

parameters as input, and outputs an optimal attack strategy with expected

revenue of this attack.

7.2.1 System model and notations

We assume miners are rational and blockchains may share the same

mining algorithm. For simplicity, our model only considers two blockchains

BC1 and BC2 with the same mining algorithm. Table 7.1 summarises all

notations used in this chapter. Let D1 and D2 be the difficulties, R1 and R2

be the mining rewards of BC1 and BC2, respectively. Let d = D1
D2

and r = R1
R2

.

169

Table 7.1: Notations of parameters in 51-MDP.

Symbol Definition

BC1, BC2 The stronger blockchain and the weaker blockchain
D1, D2 Difficulty of BC1 and BC2

d Fraction of BC1’s difficulty towards BC2’s difficulty, i.e., d = D1
D2

Hh,1, Ha,1 Honest and adversary’s mining power on BC1

Hh,2, Ha,2 Honest and adversary’s mining power on BC2

Ha, Hh Total honest and adversary’s mining power, i.e., Ha = Ha,1 + Ha,2, Hh =
Hh,1 +Hh,2

h1, h2 Fraction of the adversary’s mining power towards BC1 and BC2’s honest
mining power, respectively, i.e., h1 = Ha

Hh,1
and h2 = Ha

Hh,2

R1, R2 Mining reward of a block on BC1 and BC2

r Fraction of BC1’s mining reward of a block towards BC2’s, i.e., r = R1
R2

vtx Amount of the attacking transactions
� Propagation parameter of the adversary
pr Renting price of a mining algorithm
� Fraction of migrated mining power by the adversary
� Step of adjusting �

Nc Number of blocks required to confirm a transaction

As 51% attacks (on BC2) are usually completed within a short time period,

we assumes D1, D2, R1 and R2 remain stable during the attack.

In a mining power migration attack, the adversary migrates its mining

power on BC1 to launch 51% attacks on BC2. Let Ha,1, Ha,2 be the adver-

sary’s mining power, and Hh,1, Hh,2 be the honest mining power on BC1 and

BC2, respectively. Let Ha = Ha,1 +Ha,2, Hh = Hh,1 +Hh,2, H1 = Hh,1 +Ha,1

and H2 = Hh,2 +Ha,2. Let � = Ha,2

Ha
be the fraction of mining power that the

adversary allocates to BC2. Let h1 =
Ha
Hh,1

and h2 =
Ha
Hh,2

be the ratio between

the adversary’s mining power and the honest mining power on BC1 and

BC2, respectively.

In a cloud mining attack, the adversary rents mining power to launch

51% attacks on BC2. We assume that the adversary has sufficient money for

renting mining power that is compatible with the victim blockchain BC2,

and there exists unlimited rentable mining power from cloud mining ser-

vices. To keep notations consistent, we denote the rentable mining power

as Ha. Thus, h2 =
Ha
Hh,2

is the fraction of rented mining power out of rentable

170

mining power, and � = Ha,2

Ha
be the fraction of rented mining power out of

the rentable mining power. Let pr be the price of renting a unit of mining

power (e.g. hash per second) for a time unit.

Let � 2 [0, 1] be the adversary’s propagation parameter: When there are

two simultaneous blocks mined by the adversary and an honest miner, � of

honest miners receive the adversary’s block earlier than the honest block.

Let Nc be the required number of blocks for the blockchain network to con-

firm a transaction.

7.2.2 The 51-MDP model

Table 7.2: State transitions and reward matrices of 51-MDP.

State ⇥ Action Resulting State Probability
Reward

Condition
R�

migration
R�

cloud
Rmine Rtx

(lh, la, �, fork), ADOPT (0, 0, �, ir) 1 0 0 0 0 lh > la � Nc

(lh, la, �, fork), OVERRIDE (0, 0, �, ir) 1 0 0 laR2 vtx la > lh � Nc

(lh, la, �, fork), WAIT (lh, la +1, �, p) �h2

�h2+1
��h2R1

d(1+�h2)
��h2D2pr

1+�h2
0 0 lh < Nc

(lh+1, la, �, p) 1
�h2+1

��h2R1

d(1+�h2)
��h2D2pr

1+�h2
0 0 lh < Nc

(lh, la, �, fork), WAIT INC (lh, la+1, � + �, p) (�+�)h2

(�+�)h2+1
�(�+�)h2R1

d(1+(�+�)h2)
�(�+�)h2D2pr

1+(�+�)h2
0 0 lh < Nc

(lh+1, la, � + �, p) 1
(�+�)h2+1

�(�+�)h2R1

d(1+(�,+�)h2)
�(�+�)h2D2pr

1+(�+�)h2
0 0 lh < Nc

(lh, la, �, fork), WAIT DEC (lh, la+1, � � �, p) (���)h2

(���)h2+1
�(���)h2R1

d(1+(���)h2)
�(���)h2D2pr

1+(���)h2
0 0 lh < Nc

(lh+1, la, � � �, p) 1
(���)h2+1

�(���)h2R1

d(1+(���)h2)
�(���)h2D2pr

1+(���)h2
0 0 lh < Nc

(lh, la, �, fork), MATCH (lh, la +1, � , ir) �h2+�
�h2+1

��h2R1

d(1+�h2)
��h2D2pr

1+�h2

(la+1)R2�h2

�h2+�
vtx lh = la � Nc

(lh +1, la, � , r) 1��
�h2+1

��h2R1

d(1+�h2)
��h2D2pr

1+�h2
0 0 lh = la � Nc

(lh, la, �, fork), MATCH INC (lh, la + 1, � + �, ir) (�+�)h2+�
(�+�)h2+1

�(�+�)h2R1

d(1+(�+�)h2)
�(�+�)h2D2pr

1+(�+�)h2

(la+1)R2(�+�)h2

(�+�)h2+�
vtx lh = la � Nc

(lh + 1, la, � + � , r) 1��
(�+�)h2+1

�(�+�)h2R1

d(1+(�+�)h2)
�(�+�)h2D2pr

1+(�+�)h2
0 0 lh = la � Nc

(lh, la, �, fork), MATCH DEC (lh, la +1, � � �, ir) (���)h2+�
(���)h2+1

�(���)h2R1

d(1+(���)h2)
�(���)h2D2pr

1+(���)h2

(la+1)R2(���)h2

(���)h2+�
vtx lh = la � Nc

(lh +1, la, � � � , r) 1��
(���)h2+1

�(���)h2R1

d(1+(���)h2)
�(���)h2D2pr

1+(���)h2
0 0 lh = la � Nc

The 51-MDP model – summarised in Table 7.2 – describes the attacks

as a series of actions performed by an adversary. At any time, the adversary

lies in a state, and can perform an action, which transits its state to another

state by a certain probability. For each state transition, the adversary may

get some reward or penalty. Formally, our 51-MDP model is a four-element

tuple (S,A, P,R) where S is the state space containing all possible states of

an adversary; A is the action space containing all possible actions performed

by an adversary; P is the stochastic transition matrix presenting the prob-

abilities of all state transitions; and R is the reward matrix presenting the

rewards of all state transitions.

171

State space S consists of four dimensions (lh, la, �, fork). Parameters lh and

la are the length of the honest and the adversary’s forks on BC2, respectively.

Eventually, nodes will agree on only one of these two forks. Let � 2 [0, 1]

be the ratio of mining power allocated on BC2 out of the adversary’s total

mining power, and � 2 [0, 1] be the step of adjusting �. We denote the the

state of the adversary’s fork as fork, which has three possible values.

• Relevant (fork = r) means the adversary’s fork is published but the

honest blockchain is confirmed by the network. This indicates that the

attack is unsuccessful at present. (Note that the adversary can keep

trying and may succeed in the future.)

• Irrelevant (fork = ir) means the adversary’s fork is published and

confirmed in network. This indicates a successful attack.

• Private (fork = p) means the adversary’s fork is private and only the

adversary is mining on it. This indicates that an attack is in process.

Action space A includes actions that the adversary can perform given a

state. The adversary’s possible actions include:

• ADOPT. The adversary accepts the honest blockchain and discards its

fork, which means the adversary aborts its attack.

• OVERRIDE. The adversary publishes its fork (which is longer than

the honest one). Consequently, the honest blockchain is overridden,

and the payment transaction from the adversary is successfully re-

verted.

• MATCH. The adversary publishes its fork with the same length as the

honest blockchain.

• WAIT. The adversary keeps mining on its fork. The adversary can

perform WAIT in two scenarios. One is when lh < Nc, i.e., the mer-

chant is still waiting for the payment confirmation. The other is when

172

MATCH has failed, i.e., Nc < la  lh but the adversary does not give

up its fork.

When performing MATCH and WAIT, the adversary can adjust min-

ing power allocated to BC2. We denote two variants of MATCH as

MATCH INC and MATCH DEC, where the adversary adds and reduces

�h2 mining power allocated to BC2, i.e., � 7! {� + �, � � �}, respectively.

Similarly, we denote two variants of WAIT as WAIT INC and WAIT DEC.

State Transition Matrix P is defined as a 3-dimensional matrix S ⇥A⇥ S :

Pr[s, a 7! s0], where S is the state space, and A is the action space. Each point

(s, a, s0) means that, the participant at state s 2 S performs the action a 2 A

to transit its state to s0 2 S with probability Pr[s, a 7! s0]. An action a tran-

sits a state s to one of multiple possible states s01, s02, · · · , s0n with probability

Pr[s, a 7! s0
i
], where

P
n

i=1 Pr[s, a 7! s0
i
] = 1.

When a = WAIT[INC, DEC], the adversary is mining its fork alone,

until either the honest miners or the adversary mine a new block. The prob-

ability of la 7! la+1 (i.e., the adversary mines the next block) and lh 7! lh+1

(i.e., the honest miners mine the next block) are

Pr[la 7! la + 1] =
Ha,2

Ha,2 +Hh,2
=

�Ha

�Ha +Hh,2
=

�h2

�h2 + 1
(7.1)

Pr[lh 7! lh + 1] = 1� Pr[la 7! la + 1] =
1

�h2 + 1
(7.2)

When a = MATCH[ENC, DEC], the adversary tries to overtake the

honest fork once la � Nc and la = lh. Besides the adversary’s mining power,

the eclipsed mining power of �Hh,1 mines on the adversary’s blockchain

after MATCH. Therefore, the possibility of la 7! la + 1 and lh 7! lh + 1

173

becomes

Pr[la 7! la + 1] =
�Ha + �Ha,2

�Ha +Hh,2
=
�h2 + �

�h2 + 1
(7.3)

Pr[lh 7! lh + 1] = 1� Pr[la 7! la + 1] =
1� �

�h2 + 1
(7.4)

Reward Matrix R is defined as S⇥A⇥S : Re(s, a 7! s0), where the adversary

performs action a 2 A which transits the system from state s 2 S to a new

state s0 2 S while getting reward Re(s, a 7! s0). The reward is twofold: the

reward of mining Rmine and the reward from the double-spent transactions

Rtx. The adversary also costs some money on the mining power, and we

denote the cost as R�. Thus, Re(s, a 7! s0) = Rmine + Rtx � R�.

Rmine. The adversary receives the block reward Rmine on BC2 only when

its fork is published and accepted by the honest network. Therefore, only

OVERRIDE and the winning scenarios of MATCH[INC, DEC] have a

positive Rmine, while Rmine = 0 in other scenarios. When performing

OVERRIDE, the adversary’s blockchain of length la is directly accepted,

so Rmine = laR2. When performing MATCH[INC, DEC], the adversary

needs to win the next block so that its blockchain overrides the honest one,

leading to Rmine = (la + 1)R2.

Rtx. Similar to Rmine, the adversary receives the double-spent money only

when its fork is published and accepted by the honest network. Therefore,

Rtx = vtx for OVERRIDE and the winning scenarios of MATCH-style ac-

tions, while Rtx = 0 for other scenarios.

R�. We analyse the cost of mining power migration attacks R�
migration

and

cloud mining attacks R�
cloud

, separately. R�
migration

is the loss of block rewards

from BC1 due to the migrated mining power. Consequently, the cost can

be computed as the mining reward of the migrated mining power on BC1

during the time of state transition. For ADOPT and OVERRIDE actions,

state transitions take negligible time. For WAIT-style and MATCH-style

174

actions, a state transition is triggered by a new block. Therefore, R�
migration

under WAIT-style and MATCH-style actions can be calculated as follows:

R�
migration

(la 7! la + 1) = R�
migration

(lh 7! lh + 1) (7.5)

= ��Ha ·R1 ·
D2

Hh,2 + �Ha

·
1

D1
(7.6)

=
��h2R1

d(1 + �h2)
(7.7)

R�
cloud

is from renting cloud mining power. The price pr of renting cloud

mining power is quantified as “the price of renting a unit of mining power

for a time unit”. Similar with the mining power migration attack, only WAIT-

style and MATCH-style actions take a non-negligible time period. There-

fore, R�
cloud

under WAIT-style and MATCH-style actions can be calculated

as follows:

RBC1(la 7! la + 1) = RBC1(lh 7! lh + 1) (7.8)

= ��Ha · pr ·
D2

Hh,2 + �Ha

(7.9)

=
��h2D2pr

1 + �h2
(7.10)

7.3 Model evaluation

In order to identify the most important aspects on the profitability of

51% attacks, we use 51-MDP to evaluate our two 51% attacks. Together

with public blockchain data, attackers can identify blockchains that are most

profitable to attack, and defenders can prepare for potential 51% attacks in

advance.

7.3.1 Experimental methodology.

We implement 51-MDP using Python 2.7 and the pymdptoolbox li-

brary[262]. We give an upper bound limit = 10 for la and lh. We choose

175

� = 0.2, so the value of � can be (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). We apply the Val-

ueIteration algorithm [263] with a discount value of 0.9 and an epsilon value

of 0.1. We apply this discount value to encourage the adversary to finish

the attack in a short time. In practice, the longer time a 51% attack takes,

the more risk it will have. For example, shifting mining power to the victim

blockchain might be detected by threat intelligence services. We choose a

small discount factor to quantify such risk. We omit the evaluation of cloud

mining attacks as both attacks share the same parameters D2, h2, R2, vtx, �

and Nc.

7.3.2 Evaluation

We categorise parameters in 51-MDP to five types according to their

related aspects: 1)Mining status which includes two mining difficulties (D1

and D2) and two ratios of adversary’s mining power (h1 and h2); 2)Incentive

which includes mining reward (R1 and R2) and the adversary’s transaction

amount vtx; 3)Adversary’s network condition which includes the propa-

gation parameter � of the adversary; 4)Vigilance of the merchant which in-

cludes the number Nc of required block confirmations; and 5)Mining power

price which includes pr only. Figure 7.2 shows the evaluation results.

Mining status. Figure 7.2a shows the impact of mining-related parameters

on the adversary’s net revenue. We observe that the net revenue increases

monotonically with D2 decreasing and h2 increasing. Mining difficulty vari-

ation reflects the fluctuation of network mining power. When D2 decreases,

network mining power decreases, then mining on BC2 will be easier. Also,

launching a 51% attack will be in a lower cost and easier to succeed, which

encourages both types of our attacks on BC2. By these observations, at-

tackers prefer to invest more computing power to BC2, then h2 increases by

migrating attacker’s mining power from other blockchain or renting from

176

'�

��
��

��
��

K ��
�

�
�

1
HW
�UH
YH
QX
H

�

��

��

��

��

��

(a) Mining status h2 and D2.

5� ��
��

��
��

Y W[��
��

��
��

1
HW
�UH
YH
QX
H

�

��

��

��

��

���

(b) Incentive vtx and R2.

��� ���
͇

������

������

������

������

1
HW
�UH
YH
QX
H

(c) The adversary’s net-
work condition �.

��� ��� ���
1F

�

��

��
1
HW
�UH
YH
QX
H

(d) Vigilance of the mer-
chant Nc.

� � �
SU

�

��

��

��

1
HW
�UH
YH
QX
H

(e) Mining power price
pr.

Figure 7.2: Impacts of parameters on the net revenue of 51% attacks.

cloud services. Therefore, both decreasing D2 and increasing h2 incentivise

51% attacks on BC2.

Incentive. Figure 7.2b shows the impact of incentive-related parameters on

the net revenue. We observe that increasing R2 and vtx leads the adversary

to profit more. When R2 increases, mining BC2 will be more profitable, and

51% attacks on BC2 will also be more profitable. This encourages both types

of 51% attacks on BC2. The 51% attack generates vtx out of thin air, so vtx is

the direct revenue of the 51% attack, and increasing vtx directly increases the

net revenue. Therefore, both increasing R2 and vtx incentivise 51% attacks

on BC2.

Adversary’s network condition. Figure 7.2c shows the impact of � on the

relative revenue. In particular, we can see that the relative reward increases

slightly with � increasing. Interestingly, when the attacker’s propagation

parameter � = 0.7, the curve slope increases.

According to our model, � counts only when the adversary launches

the MATCH action. When h2 � 1, the adversary can always launch the

177

51% attack, regardless of the reward. Therefore, the MATCH action is an

infrequent choice compared to OVERRIDE, so the influence of � is negligi-

ble in our case. The slope change is suspected to be when �Ha + �Hh,2 �

(1 � �)Hh,2. At that point, the allocated mining power from the adversary

plus its eclipsed honest mining power outperforms the un-eclipsed hon-

est power. Consequently, the adversary is confident to override the small

blockchain by MATCH action.

Vigilance of the merchant. Figure 7.2d shows the impact of Nc on the

net revenue. We observe the net revenue decreases monotonically with Nc

increasing, and finally reaches 0. More block confirmations require the ad-

versary to keep mining secretly for a longer time. This leads to a lower

probability and greater cost of successful 51% attack through both types of

attacks, and discourages 51% attacks on BC2.

Mining power price. The impact of the mining power price pr is shown

in Figure 7.2e. We observe that the net revenue decreases sharply with pr

increasing, and finally reaches 0. When the price of renting mining power is

low, the related blockchains are vulnerable to the cloud mining attack as the

attack cost is also low. Increasing pr leads to the greater cost of launching

51% attack through renting cloud mining power, which will discourage this

kind of 51% attacks on BC2.

7.3.3 Analysis

We observe some insights from the results. First, the attacker’s profit

is mainly affected by the parameters that are out of the attacker’s control.

The only important parameter that the adversary can control is vtx, which is

bound to its budget. Thus, to maximise the profit, an attacker should choose

its target carefully. Once choosing the targeted blockchains, the adversary

has little control over the attack.

178

���
���

���
���

���
���

���
���

YW[��%&+�

����

�����

�����

�����

�����

�����

1
HW
�UH
YH
QX
H�
�%
&
+
� K�� �������

K�� �������
K�� �������
K�� �������
K�� �������

(a) BTC and BCH

���
��

���
��

���
��

���
��

YW[��(7&�

�

���

���

���

����

����

1
HW
�UH
YH
QX
H�
�(
7&

� K�� ������
K�� �������
K�� �������
K�� �������

(b) ETH and ETC

� � � � �
YW[��%&1� �H�

�

�

�

1
HW
�UH
YH
QX
H�
�%
&
1
�

�H�
K�� �������
K�� �������
K�� �������

(c) XMR and BCN

Figure 7.3: Mining power migration attacks on three different pairs of
blockchains. We use � = 0.3 for this group of experiments.

In addition, although either the attackers or the defenders cannot fully

control important parameters, monitoring them in real-time is possible. By

monitoring these parameters, attackers can identify targets with most ex-

pected profit, and defenders (e.g. the cryptocurrency exchanges and the

merchants) can be aware of potential attacks then perform countermeasures.

For example, one of the effective countermeasures is to increase Nc, which

greatly reduces the attacker’s profit according to Figure 7.2d.

7.4 Evaluation of blockchains in the wild

This section evaluates the security of mainstream PoW-based

blockchains against 51% attacks. We evaluate the mining power migration at-

tack on 3 pairs of top-ranked blockchains with the same mining algorithm:

1) Bitcoin (BTC) and BitcoinCash (BCH) with Sha256d, 2) Ethereum (ETH)

and EthereumClassic (ETC) with Ethash, and 3) Monero(XMR) and Byte-

Coin (BCN) with CryptoNight. Our evaluation shows that, the mining power

migration attack is feasible and profitable on BTC/BCH and ETH/ETC, but

it is not as effective on XMR/BCN.

For the cloud mining attack, we evaluated the security of ten leading

PoW-based blockchains. Our evaluation shows that the cloud mining attacks

are feasible and profitable on most selected blockchains.

179

7.4.1 Mining power migration attacks

We evaluate the profitability and feasibility of the mining power migra-

tion attack on 3 pairs of top-ranked cryptocurrencies with the same mining

algorithm: BTC/BCH, ETH/ETC, and XMR/BCN. By permuting the ad-

versary mining power Ha and the transaction value vtx, our experiments

reveal their relationship with the relative revenue. As shown in Figure 7.3,

it is easy and profitable for a miner of BTC (or ETH) to launch a 51% attack

on BCH (resp. ETC). In particular,

• With approximately 12.5% mining power of BTC (5000E + 15h/s),

an adversary can gain 6% (15000 BCH, or $1,894,650) extra profit

(than honest mining) by double-spending a transaction of 300000 BCH

(equivalent to $37,893,000).

• With approximately 11.27% mining power of ETH (16E + 12h/s), the

adversary can gain 1.33% (600 ETC, or $2,556) extra profit by double-

spending a transaction of 90000 ETC (equivalent to $383,400).

The required mining power is not difficult to achieve. The top three

mining pools in ETH are Sparkpool (30.9%), Ethermine (23.3%), f2pool2

(10.7%) [258]; and the top three mining pools in BTC are F2Pool (17.7%),

Poolin (16.1%), BTC.com (11.9%) [264].

However, for XMR, a miner cannot profit much from the mining power

migration attack. This is because the total available mining power in Monero

is only about 2.8 times of the mining power in the BCN, although their mar-

ket caps differ greatly. Meanwhile, the total available mining power in BTC

is about 27.8 times of the total mining power in BCH; and the total available

mining power in ETH is about 16.4 times of the total mining power in ETC.

180

���
%&

+
���

/7&

���
�;0

5
���

�(7
&
���

�%7
*
���

�6&

���
�.0

'
���

�(7
1
���

�59
1
���

�;=
&

&RLQ

�

�����

�����

�����

�����

������

������

1
HW
�UH
YH
QX
H�
�8
6
'
�

Figure 7.4: Cloud mining attacks on selected 10 PoW blockchains. We use
vtx = $500,000 , h2 = 2 and � = 0.3. We use the value of Nc recommended
by cryptocurrency communities.

7.4.2 Cloud mining attacks

We evaluate ten leading PoW-based blockchains against the cloud min-

ing attack. There are 22 PoW-based blockchains in the top 100 blockchains by

market cap [2]. DigiByte and Verge use multiple mining algorithms simul-

taneously, and NiceHash does not support Bytom, ByteCoin, Electroneum,

WaltonChain, and Aion. In addition, NiceHash does not have enough min-

ing power to attack BTC with SHA256D, ETH with Ethash, ZEC with Equi-

hash, DOGE with Scrypt and DASH with X11. Thus, we focus on analysing

the rest ten leading blockchains. We set vtx = $500, 000 (i.e., the double-

spending transaction amount is $500,000), and h2 = 2 (i.e., the rentable min-

ing power is twice of the honest mining power). We choose the value of Nc

according to the recommended values from cryptocurrency community, as

listed in Table 7.3.

Figure 7.4 summarises our evaluation results. It shows that, unfortu-

nately, all selected blockchains are vulnerable towards cloud mining attacks.

For example:

181

Table 7.3: Data of 15 PoW blockchains and NiceHash prices.

Rank Rent($/h/s) Coin Price($) Hashrate Nc

Bitcoin 1 2E-18 3585.99 4E+19 6
Ethereum 3 1.36E-13 118.53 142E+14 12

BitcoinCash 4 2E-18 126.31 1.44E+18 6
Litecoin 8 3.34E-14 30.84 2.77E+14 6
Monero 14 9.13E-11 43.64 9.29E+8 10

Dash 15 3.53E-16 71.79 2.32E+15 6
EthereumClassic 18 1.36E-13 4.26 8.62E+12 12

Zcash 20 1.38E-08 54.77 3.36E+9 6
Dogecoin 23 3.34E-14 0.002132 3.76E+14 6

BitcoinGold 26 1.38E-08 11.93 3170000 6
Siacoin 46 3.74E-17 0.002389 1.88E+15 6

Komodo 55 1.38E-08 0.640292 4.48E+7 30
Electroneum 67 9.13E-11 0.006184 4.4E+9 20
Ravencoin 94 3.36E-13 0.011905 5.9E+12 6

Zcoin 99 2.79E-12 4.83 9.69E+10 6

• the attacker needs approximately $2,000 to launch a cloud mining attack

on ETC for an hour, and the net revenue will be $33,899 if successful;

and

• the attacker needs approximately $2,600 to launch a cloud mining attack

on BCH for an hour, and the net revenue will be $117,198 if successful.

Evaluation of KMD The only exception is Komodo (KMD): The attacker

cannot profit much by launching cloud mining attacks on KMD. The reason

is that the value of Nc recommended by the KMD community is 30 [265] –

much higher than other blockchains. As shown in §7.3, increasing Nc can

significantly reduce the profit of 51% attacks. Figure 7.5 shows the prof-

itability of cloud mining attacks on KMD. Although feasible, both attacks

on KMD will not give much extra profit - the attacker can only gain 1% ⇠

2% more revenue compared to honest mining.

182

��� ��� ��� ��� ��� ��� ���
YW[��.0'� �H�

�

�

�

�

�

1
HW
�UH
YH
QX
H�
�.
0
'
�

�H�
�PLJUDWLRQ��K�� ���������K�� ��������
�PLJUDWLRQ��K�� ���������K�� ���������
�PLJUDWLRQ��K�� ���������K�� ���������
�PLJUDWLRQ��K�� ���������K�� ���������
�UHQWLQJ��K�� ��������
�UHQWLQJ��K�� ���������
�UHQWLQJ��K�� ���������
�UHQWLQJ��K�� ���������

Figure 7.5: Profitability of mining power migration attacks and cloud min-
ing attacks on Komodo (KMD). We choose � = 0.3, and Nc = 30 - the values
recommended by KMD community.

7.5 Case study: The 51% attack on Ethereum Clas-

sic

On 07/01/2019, a 51% attack happened to Ethereum Classic (ETC): The

attacker double-spent transactions of more than $1.1 million on a cryptocur-

rency exchange Gate.io[259]. Though the mining power source remains un-

known, the attack is highly suspected as a cloud mining attack. In this sec-

tion, we investigate this 51% attack as a case of cloud mining attacks. We

use 51-MDP to evaluate the attack and estimate the attacker’s revenue. The

evaluation result shows that the attacker launches the cloud mining attack

in a fine-grained way, and obtains the theoretically optimal revenue from

the attack. We also analyse the attacker’s behaviours, and show that the

attacker’s strategy is the best practice of launching cloud mining attacks.

183

Table 7.4: All 12 double-spent transactions during the 51% attack on
ETC[269]. Transaction IDs and addresses are shortened.

Trans. ID From To Amount
(ETC)

Height Waiting
time
(#block)

0x1b47a700c0 0x3ccc8f7415 0xbbe1685921 600 7249357 -
0xbba16320ec 0x3ccc8f7415 0x2c9a81a120 4000 7254430 5073
0xb5e0748666 0x3ccc8f7415 0x882f944ece 5000 7254646 216
0xee31dffb66 0x3ccc8f7415 0x882f944ece 9000 7255055 409
0xfe2da37fd9 0x3ccc8f7415 0x2c9a81a120 9000 7255212 157
0xa901fcf953 0x3ccc8f7415 0x2c9a81a120 15700 7255487 275
0xb9a30cee4f 0x3ccc8f7415 0x882f944ece 15700 7255554 67
0x9ae83e6fc4 0x3ccc8f7415 0x882f944ece 24500 7255669 115
0xaab50615e3 0x3ccc8f7415 0x53dffbb307 5000 7256012 343
0xd592258715 0x07ebd5b216 0xc4bcfee708 26000 7261492 5480
0x9a0e8275fc 0x07ebd5b216 0xc4bcfee708 52800 7261610 118
0x4db8884278 0x07ebd5b216 0xc4bcfee708 52200 7261684 74

Total: 219500 ETC

7.5.1 The attack details

Ethereum Classic (ETC) is a PoW-based blockchain forked from

Ethereum (ETH). In 07/01/2019, a 51% attack on ETC resulted in the loss of

more than 1.1 million dollars. The attack lasted for 4 hours, approximately

from 0:40 am to 4:20 am UTC, 07/01/2019. During the attack, the attacker

repetitively created coin withdrawal transactions on the Gate.io cryptocur-

rency exchange[266] and launched double-spending attacks[259]. Among

these attempts, 12 transactions were successfully double-spent (listed in Ta-

ble 7.4). Interestingly, the attacker later returned ETC equivalent to $100,000

back to Gate.io[261].

While the source of the mining power for this attack remains unknown,

the NiceHash cloud mining platform [13] is highly suspected. One day be-

fore the attack, an anonymous person rented all available Ethash (the min-

ing algorithm used by ETH/ETC) mining power from NiceHash[267], [268].

184

� ����� ����� ����� ����� ����� �����
YW[��(7&�

�

����

����

1
HW
�UH
YH
QX
H�
�(
7&

�

0LJUDWLRQ�$WWDFN
&ORXG�0LQLQJ�$WWDFN

Figure 7.6: Simulated 51% attack on ETC. The blue line denotes the relative
reward of cloud mining attacks. The orange line denotes the relative reward
of mining power migration attacks for making comparisons. We also marked
different transaction amounts in the attack using dots.

7.5.2 Evaluation

Table 7.4 summarises the attack-related data. According to

Gate.io[266], during the attack’s time period, Nc = 12 – the recommended

value of the ETH community and ETC community[270]. The price of ETC

and BTC was $5.32 and $4061.47, respectively. The mining difficulty of ETC

was 131.80E+12, and the ratio h2 was about 1.16. The block reward is 4

ETC coins, and the price of Nicehash mining power was 3.8290 BTC/TH/-

day. We keep assuming � = 0.3 as there is no data on � and the impact

of � is relatively small. Figure 7.6 shows our evaluation result. We mark

the transaction values used by the attacker. We also plot the same curve in

the mining power migration attack to compare the profitability of two mining

power sources.

The result shows that when the transaction value is over 5000 ETC,

double-spending is more profitable than by honest mining. Having a trans-

action (or a set of transactions) of value over 5000 ETC (approximately

$26,000 at the time of attack) should not be difficult for an attacker, so the

incentive of launching double-spending attacks is very strong. In addition,

cloud mining attacks are more profitable than mining power migration attacks.

This means that renting mining power to attack ETC is much cheaper than

185

migrating mining power from ETH. This is because both ETH and ETC use

Ethash[271] as the mining algorithm. Ethash is a memory-hard function,

making it GPU-friendly while ASIC-resistant[272]. Thus, any GPU can be

used for mining ETH/ETC, making mining power much cheaper than that

from dedicated hardware such as ASICs.

7.5.3 Estimating the attacker’s net revenue

According to Table 7.4, the attacker has stolen 219,500 ETC, which is

the attacker’s gloss revenue. As we don’t know transactions of failed 51%

attack attempts, the cost of the attack is unknown. Thus, it’s hard to de-

termine the cost of attacks, and we cannot calculate the attacker’s revenue

directly. Nevertheless, we can apply 51-MDP to estimate the attacker’s net

revenue. As we know the amount of mining power of the attacker, we can

estimate the success rate of attacks. With the success rate, we can estimate

the total amount of transactions for failed attacks, and therefore derive the

total amount of double-spending transactions. With the total amount and

blockchain data as input, 51-MDP can estimate the attacker’s net revenue.

By using this method, we find that our estimated net revenue is approx-

imately $84773.40, which is close to $100,000 – the value that the attacker

returned to Gate.io after the attack[261].

Modelling. We first calculate the success rate of the attack. Let Nc be

the required number of blocks to confirm transactions, and h2 be the ratio

of attacker’s mining power over the honest network. Then, the attacker

controls p = h2
h2+1 of the total mining power. Mining can be modelled as

a binomial distribution B(na + nh, p) where na and nh are the numbers of

blocks that the adversary and the honest miners have mined, respectively.

Let Pr[X = na] be the probability of the attacker to mine na blocks while

honest miners mine hh blocks, and we have

186

Pr[X = na] = Pr[na;na +Nc, p] (7.11)

When nh = Nc ^ na < Nc, the attack fails. Thus, the probability P of a

successful 51% attack is calculated as

P = 1�
Nc�1X

na=0

Pr[na;na +Nc, p] (7.12)

Then, we estimate the net revenue from observed successful attacks.

Let Rs and Rf be the estimated revenue of successful and failed attack at-

tempts, respectively. We have

Rs

P
=

Rs

1� P
=) Rf =

(1� P)Rs

P
(7.13)

and the estimated total net revenue R is

R = Rs +Rf = Rs +
(1� P)Rs

P
(7.14)

Estimation. Summing profits of all successful transactions in Fig-

ure 7.6, the attacker’s gloss revenue is approximately 9000 ETC coins (RS =

9000). Recall that h2 = 1.16, and the attacker controls p = h2
h2+1 = 53.7% of

ETC mining power. Recall that Nc = 12 in ETC. From Equation 7.12, the

success rate P of an attack can be calculated as

187

P = 1�
Nc�1X

na=0

Pr[na;na +Nc, p] (7.15)

= 1�
Nc�1X

na=0

Cna
na+Nc

pna(1� p)Nc (7.16)

= 56.48% (7.17)

From Equation 7.14, we calculate the estimated net revenue R as

R = Rs +Rf = Rs +
(1� P)Rs

P
(7.18)

= 9000 +
(1� 0.5648) · 9000

0.5648
(7.19)

= 9000 + 6934.85 = 15934.85 (ETCcoins) (7.20)

Therefore, the attacker’s net revenue is expected to be 9000+ 6934.85 =

15934.85 ETC coins. At the time of attack, 15934.85 ETC coins is equivalent to

$84773.40, which is slightly less than $100,000 – the amount that the attacker

returned to Gate.io. To achieve the optimal revenue, the attacker should

launch cloud mining attacks using the optimal strategy, which is usually fine-

grained. This indicates that, the attacker adopted a near optimal strategy

for launching cloud mining attacks.

7.6 The attacker’s strategy

According to Table 7.4, the attacker continuously increased the value of

new transactions throughout the attack (except the last double spending of

the first account). It is suspected that this behaviour belongs to the strategies

used by the attacker to maximise and stabilise its revenue, for the following

reasons.

188

Stabilising the revenue. First, launching multiple small double-spending

attempts can stabilise the expected revenue. Double-spending attacks may

fail even if the adversary controls more than 50% of the computing power.

Compared to a one-off attempt, the revenue will be more stable if dividing

a transaction into multiple smaller transactions.

Bypassing risk management systems. Second, this strategy may be

used for bypassing risk management systems of cryptocurrency exchanges.

Cryptocurrency exchanges run risk management systems to combat misbe-

haviours, including fraudulent payments and abnormal login attempts. A

huge coin withdrawal transaction is very likely to trigger the risk manage-

ment system, while multiple small transactions might be overlooked. In ad-

dition, a big transaction may lead to longer confirmation time, and a longer

attack period is easier to be detected. Therefore, bypassing the risk manage-

ment system is naturally a part of the attacker’s strategy. According to the

Gate.io report [259], the risk management system ignored transactions from

the attacker, as the attack was decently prepared – they registered and real-

name authenticated the account on Gate.io more than 3 months before the

attack. The attacker slowly increasing the transaction value is also highly

suspected as an approach for reverse-engineering the threshold of invoking

the risk management system.

Using multiple wallets. In addition, we investigate the waiting time be-

tween each two attacks (quantified by using the number of blocks). The

waiting time varies mostly from 67 blocks to 409 blocks. Interestingly,

there are two large gaps of more than 5000 blocks before the transactions

0xbba16320ec and 0xd592258715. The first gap is after the first attack, and

the second gap is before the attacker changed its account. The first gap

may be because the attacker was cautious when first launching the double-

spending attack. The attacker double-spent a transaction of 600 ETC coins,

which is much smaller than its following transactions. After the first at-

189

tack, the attacker waited for a long time to confirm the success of it, then

started to increase the transaction value. The second gap may be because

the attacker ran out of money in its first account 0x3ccc8f7415, so changed

to another account 0x07ebd5b216. The last transaction 0xd592258715 sent

by account 0x3ccc8f7415is is right before the second gap. It’s value is 5000

ETC coins, which is much smaller than its previous transaction of 24500

ETC coins. After the transaction 0xd592258715, the attacker changed to its

another account 0x07ebd5b216, leading to the second time gap.

7.7 Discussions on attack prevention

This section discusses short term and long term solutions to detect and

prevent both the mining power migration attack and cloud mining attack. We

make use of the 51% attack incident on ETC (see §7.5) as an example, and

demonstrate how to make use of 51-MDP to gain insights that helps to de-

fend against such cloud mining attacks in Section 7.7.1.

7.7.1 Quick remedies

We first discuss several quick remedies for cryptocurrency exchanges to

reduce the damage of 51% attacks. It consists of detecting potential attack

attempts, and reacting upon detection through conventional risk manage-

ment techniques.

Detecting 51% attacks. For the two 51% attacks, the attacker needs to move

a considerable amount of mining power from somewhere, such as the other

blockchain or a cloud mining service.

This gives us an opportunity to detect the anomaly state where a

“large” portion of mining power suddenly disappears from a source. For

example, a potential victim can monitor the available compatible mining

power of other blockchains or cloud mining services. If there is a sudden

change on the amount of total available mining power, then this might in-

190

dicate a potential 51% attack. The threshold of “large” is blockchain specific

according to the risk management rules. For example, a blockchain which

cares less on such attacks can set the threshold to 100% of its current total

mining power. That is, once the disappearance of this amount of mining

power in other sources is detected, then an alarm of a potential attack is

raised. However, this will not detect an attacker who gains 90% mining

power from one source, and 10% from another sources. A more cautious

blockchain may set a tighter threshold, e.g. 5%, however, this may cause

false positive alarms.

There are two limitations of this method. First, it may introduce false

positive detections, and it is hard to identify which blockchain will be the

victim upon detection. Second, it is expensive to monitor all the possi-

ble mining compatible blockchains and cloud mining services in real-time.

Even though, the monitoring result may be inaccurate.

Reactions upon 51% attacks. Upon detecting the two 51% attacks, the ex-

change can take several reactions to prevent them from happening. First,

the exchange can increase the number Nc of block confirmations. According

to Figure 7.7, for the 51% attack on ETC in 2019, the attack can be avoided

if increasing Nc to 18. The ETC community’s action further proves the ef-

fectiveness of increasing Nc: After the last 51% attack [244], the ETC com-

munity urged to raise Nc to 10,000 [273], while it takes approximately two

weeks to generate 10,000 blocks. Second, the exchange can decrease the

maximum amount of cash out. Figure 7.2b and 7.7 show the impact of the

transaction amount vtx on the 51% attack on ETC. If the maximum amount

of cash out was limited to 9,000 ETC (approximately $38340.0), then the at-

tacker would no longer profit. Third, limiting the frequency of cash out also

discourages 51% attacks. With a limited frequency of cash out, the attacker

will need more time to launch attacks, and thus the attack takes more op-

portunity cost. Last, when the risk management system considers attacks

191

�� �� �� �� ��
1F

�

���

���

���

���

���

1
HW
�UH
YH
QX
H�
�(
7&

�
W[����
W[�����

W[�����
W[�����

�� �� ��
�

��

���

Figure 7.7: Impacts of vtx and Nc on the ETC attack.

are likely to happen, then the exchange can halt all cash out temporarily.

We consider quantifying the effectiveness of these countermeasures based

on existing Anti-Money Laundering models as future work.

7.7.2 Long term solutions

Though easy to deploy, these quick remedies are not sufficient. First,

they sacrifice the usability of blockchains. Second, all of them only minimise

the effect of the potential attacks, rather than eliminating them.

Improving the PoW protocol from the protocol-level is also a promis-

ing approach to defend against our attacks. There are limited works aiming

at minimizing the effects of powerful miners being malicious. For example,

RepuCoin[48] aims at mitigating the 51% attacks in PoW protocols by in-

troducing the “physics-based reputation”. In RepuCoin, the weight of each

miner is decided by the reputation rather than the mining power. The rep-

utation of a miner depends on the mining power, but also takes the past

contribution of miners into consideration. In this way, a 51% attacker can-

not gain a high-enough reputation within a short time period, and the 51%

attacks we studied become much harder to launch.

192

Table 7.5: Taxonomy of existing attacks and analyses.

System setting
Standalone

system
System +
external

environment

Adversary’s
objective

Optimise
profit

Selfish mining
[246]–[249]

Fickle mining
[274], [275]

Break con-
sistency &

liveness

51% attacks
[250]–[257]

Bribery attacks
[14], [257],

[276], [277] +
This work

7.8 Related work

Table 7.5 classifies existing attacks and analyses on PoW-based

blockchains. To our knowledge, we are the first to challenge the honest ma-

jority assumption of PoW-based blockchains in the presence of externally

available mining power. Most existing papers [246]–[257] analyse PoW-

based blockchains while assuming the honest majority and omitting exter-

nal factors. In this section, we compare our work with two closely related

work, namely fickle mining[274], [275] and bribery attacks[14], [257], [276],

[277].

Fickle mining[274], [275] is that, a miner adaptively allocates mining

power on two blockchains with the same mining algorithm (e.g., BTC and

BCH) for extra profit. Similar to mining power migration attacks, fickle min-

ing also consider miners’ behaviours between multiple blockchains. While

fickle mining assumes the honest majority and miners mine honestly, we

consider the honest majority can be broken and rational miners can launch

51% attacks.

Bonneau et al.[14] introduce the family of bribery attacks, where an

adversary bribes other miners and asks them to launch 51% attacks. They

discuss two bribery attacks: one is our cloud mining attack, and the other

is by creating a mining pool with negative fee. While Bonneau et al.[14]

193

only informally discuss them, we formally study the cloud mining attack and

additionally consider mining power migration attack. There have been new

bribery attack vairants[257], [276], [277], where an adversary bribes miners

to mine on a previous block and fork the blockchain. While these attacks

are triggered by an external adversary, our results show that even without

an external adversary, miners are incentivised to launch 51% attacks.

194

Chapter 8

On the optionality and fairness of Atomic Swaps

8.1 Introduction

Atomic Swap allows two parties on two blockchains to exchange their

assets “atomically” without trusted third parties. The swap is “atomic” in

the sense that the swap either succeeds or fails for both parties. It can be

used for supporting cross-shard transactions in sharded blockchains. For

example, a user Alice who has some coins in shard #1 hopes to make trans-

actions on a smart contract in shard #2, thus needs to obtain some coins in

shard #2. To this end, Alice can initiate an Atomic Swap with Bob, where

Alice provides coins in shard #1 and Bob provides coins in shard #2. By do-

ing Atomic Swap with users in different shards, Alice can transact on any

shard in a sharded blockchain.

Meanwhile, Atomic Swap is a central primitive in many applications,

such as Decentralised Exchanges (DEXes), Decentralised Finance (DeFi)

platforms. To date, there are more than 250 DEXes [278], more than 30 DEX

protocols [279], and more than 4,000 active traders [280] constituting the

market volume of about 50,000 ETH [280].

Atomic Swap can be implemented by using Hashed Time-locked Con-

tracts (HTLCs) [281]. The HTLC is a type of transaction that, the payee

should provide the preimage of a hash value before a specified deadline,

otherwise the payment fails - the money goes back to the payer and the

payee will not get any money.

However, being atomic does not indicate the Atomic Swap is fair. In an

Atomic Swap, the swap initiator can decide whether to proceed or abort the

swap, and the default maximum time for him to decide is 24 hours [15]. This

195

enables the swap initiator to speculate without any penalty. More specifi-

cally, the swap initiator can keep waiting before the timelock expires. If the

price of the swap participant’s asset rises, the swap initiator will proceed

the swap so that he will profit. If the price of the swap participant’s asset

drops, the swap initiator can abort the swap, so that he won’t lose money.

A user with ID “ZmnSCPxj” at the Lightning-dev mailing list [282]

pointed out that, this problem is equivalent to the Optionality in Finance,

which has already been studied for decades [283]. In Finance, an investment

is said to have optionality if 1) settling this investment happens in the fu-

ture rather than instantly; 2) settling this investment is optional rather than

mandatory. For an investment with optionality, the option itself has value

besides the underlying asset, which is called the premium. The option buyer

should pay for the premium besides the underlying asset, even if he aborts

the contract. In this way, he can no longer speculate without penalties.

In the Atomic Swap, the swap initiator has the optionality, as he can

choose whether to proceed or abort the swap. Unfortunately, the swap ini-

tiator is not required to pay for the premium - the Atomic Swap does not

take the optionality into account. Furthermore, Atomic Swap should not

have optionality. Atomic Swap is designed for currency exchange, and the

currency exchange has no optionality. Instead, once both parties agree on a

currency exchange, it should be settled without any chance to regret.

8.1.1 Contributions

In this chapter, we investigate the unfairness of the Atomic Swap. We

start from describing the Atomic Swap and the American Call Option in Fi-

nance, then we show how an Atomic Swap is equivalent to a premium-free

American Call Option. After that, we then evaluate how unfair the Atomic

Swap is from two different perspectives, namely quantifying the unfairness

and estimating the premium. Furthermore, we propose an improvement

196

on the Atomic Swap, which implements the premium mechanism, to make

it fair. Our improvement supports blockchains with smart contracts (e.g.

Ethereum) directly, and can support blockchains with scripts only (e.g. Bit-

coin) by adding a single opcode. We also implement our protocol in Solidity

(a smart contract programming language for Ethereum), and give detailed

instructions on implementing our protocols on Bitcoin. Specifially, we make

the following contributions.

We show that the Atomic Swap is equivalent to the premium-free Amer-

ican Call Option, and thus is unfair to the participant (§8.3). We describe

the Atomic Swap and the American Call Option, then show that an Atomic

Swap is equivalent to a premium-free American Call Option, which is a type

of Options (in Finance). More specifically: the initiator and the participant

in an Atomic Swap are the option buyer and the option seller in an Ameri-

can Call Option, respectively; the initiator asset and the participant asset in

an Atomic Swap are the used currency and the underlying asset in an Amer-

ican Call Option, respectively; the participant asset’s timelock in an Atomic

Swap is the strike time in an American Call Option; the current price of

the participant asset in an Atomic Swap is the strike price in an American

Call Option; redeeming cryptocurrencies in an Atomic Swap is equivalent

to exercising the contract in an American Call Option.

Thus, Atomic Swap is unfair to the participant, especially in the highly

volatile cryptocurrency market. In practice, the initiator can decide whether

to proceed the swap while investigating the cryptocurrency market. How-

ever, proceeding or aborting the swap does not require the initiator to pay

for the premium. This leads to the scenario that, if the participant’s asset

price rises before the strike time, he will proceed the swap to profit, other-

wise he will abort the swap to avoid losing money. In this way, the swap

initiator can speculate without any risk in Atomic Swaps.

197

We quantify the unfairness and the premium’s value in Atomic Swap

(§8.4). We quantify how unfair the Atomic Swap with mainstream cryp-

tocurrency pairs is, and compare this unfairness with those of conventional

financial assets (stocks and fiat currencies). We first classify the unfairness

to two parts, namely the profit when the price rises and the mitigated loss

when the price drops, then quantify them based on historical exchange rate

volatility. Our results show that, in the default timelock setting, the profit

and the mitigated loss of our selected cryptocurrency pairs are approxi-

mately 1%, while for stocks and fiat currencies the values are approximately

0.3% and 0.15%, respectively.

We use the Cox-Ross-Rubinstein option pricing model to estimate how

much the premium should be for Atomic Swaps. In Finance, the Cox-

Ross-Rubinstein model [16] is the conventional option pricing model for

American-style options. Our results show that, in the default timelock set-

ting, the premium should be approximately 2% for Atomic Swaps with

cryptocurrency pairs, while the premium is approximately 0.3% for Ameri-

can Call Options with stocks and fiat currencies. Also, the premium values

rise for all assets with the strike time increasing, then start to converge when

the strike time reaches 300 days.

We propose an improvement on the Atomic Swap to make it fair (§8.5).

With the observation that the unfairness is from the premium, we propose

an improvement on the Atomic Swap, which implements the premium

mechanism, to make it fair. It supports both the currency exchange-style

Atomic Swap and the American Call Option-style Atomic Swap. In the cur-

rency exchange-style Atomic Swap, the premium will go back to the swap

initiator if the swap is successful. In the American Call Option-style Atomic

Swap, the premium will definitely go to the swap participant if the partici-

pant participates in the swap.

198

We describe how to implement our protocol on existing blockchains

(§8.6). We give instructions to implement our protocols on exist-

ing blockchains, including blockchains supporting smart contracts and

blockchains supporting scripts only. For blockchains supporting smart

contracts (e.g. Ethereum), our protocol can be directly implemented.

For blockchains supporting scripts only (e.g. Bitcoin), our protocol

can be implemented by adding one more opcode. We call the opcode

“OP LOOKUP OUTPUT”, which looks up the owner of a specific UTXO

output. We give the reference implementation in Solidity as an example

of smart contracts. We also give that in Bitcoin script (which assumes

“OP LOOKUP OUTPUT” exists) as an example of scripts.

8.2 Background

In this section, we explain basic concepts of Atomic Swap and the Op-

tion (in Finance).

8.2.1 Atomic Swap

An Atomic Swap [15] is that two parties exchange their assets “atom-

ically”. “Atomic” means the swap is indivisible: It either succeeds or fails

for both parties.

In Blockchain, the Hashed Time-locked Contract (HTLC) [281] enables

the Atomic Swap without trusted third parties. HTLC was originally intro-

duced to secure routing across multiple payment channels [284]. In a HTLC-

style transaction, the payee can redeem the payment prior to a deadline only

by providing the preimage of a specific hash value, otherwise the payment

will expire and the money will go back to the payer. This is achieved by

the hashlock - to lock the payment by a hash value, and the timelock - to

give the deadline of redeeming. The timelock avoids locking money in a

payment forever when the payee cannot provide the preimage.

199

8.2.2 Option in Finance

In Finance, an option is a contract which gives the option buyer the

right to buy or sell an asset, at a specified price prior to or on a specified

date [283]. Here the option buyer can choose whether to fulfill the contract.

The specified price is called the strike price; the specified date is called the

strike time; the party proposing the option is called the option seller; the other

party choosing to fulfill or abort the contract is called the option buyer; the

asset is called the underlying asset; and fulfilling the contract is called exercis-

ing.

The option has two types, namely the American-style Option and the

European-style Option. They differ from the strike time: The European-

style Option buyer can only exercise the contract on the strike time, and

the American-style Option buyer can exercise the contract no later than the

strike time.

Who holds the option is irrelevant with who is buying the underlying

asset. More specifically, the option buyer is who can decide to exercise or

abort the contract. Whether the option buyer is buying or selling the under-

lying asset depends on the option contract. In Finance, if the option buyer

is the party buying the underlying asset, this option is a “Call Option”, oth-

erwise this option is a “Put Option” [285].

Besides the underlying asset, the option contract itself is considered to

have value. The value of the contract is called the premium. The option buyer

should pay for the premium to the option seller once both parties agree on

the option contract.

The premium is priced prior to the contract agreement. As the premium

is the only variable within the option contract, pricing the premium is also

known as the option pricing problem. Option Pricing is rather a complex task,

and is still a hot research topic in Finance and Applied Mathematics.

200

The Black-Scholes (BS) Model is the first widely used model for option

pricing [286]. It can estimate the value of European-style Options using

the historical price of the underlying asset. The Cox-Ross-Rubinstein (CRR)

model [16], also known as the Binomial Option Pricing model, extends the

BS model for pricing American-style Options.

8.3 Atomic Swap and American Call Option

In this section, we describe the Atomic Swap (the original version on

Bitcointalk [15]) and the American Call Option, then point out that an

Atomic Swap is equivalent to an American Call Option without the pre-

mium.

8.3.1 Atomic Swap

Security assumptions

First, we assume blockchains involved in the Atomic Swap are se-

cure, and execute all transactions correctly. The Atomic Swap is based on

blockchains. If the blockchains are insecure, the Atomic Swap will also be

insecure.

Second, we assume the HTLC mechanism in blockchains is reliable.

More specifically, 1) blockchains produce new blocks with stable speeds;

2) the hash algorithms used by HTLCs are secure; 3) blockchains execute

HTLCs correctly.

Third, the time for confirming a transaction is negligible compared to

timelocks in HTLCs. In practice, the swap initiator’s timelock is 48 hours

and the swap participant’s timelock is 24 hours by default [15], while con-

firming a transaction is less than 1 hour for most blockchains.

201

Figure 8.1: Sequence diagram of the Atomic Swap.

Process

Assuming the swap initiator Alice hopes to get x2 Coin2 from the swap

participant Bob in exchange of x1 Coin1. Coin1 is the cryptocurrency on the

blockchain BC1, and Coin2 is the cryptocurrency on the blockchain BC2. We

denote the Atomic Swap as

AS = (x1, Coin1, x2, Coin2)

Let Alice be the holder of the address �A,1 on BC1 and the address �A,2

on BC2. Let Bob be the holder of the address �B,1 on BC1 and the address

�B,2 on BC2. �A,1 holds Coin1 with the amount no smaller than x1, and �B,2

holds Coin2 with the amount no smaller than x2.

Figure 8.1 shows the process of AS . In detail, AS consists of four stages:

Initiate, Participate, Redeem, and Refund.

202

Figure 8.2: Sequence diagram of the American Call Option.

Initiate. Alice initiates AS at this stage. First, Alice picks a random secret

s only known to herself, and computes the hash h = H(s) of s, where H is

a secure hash function. Then, Alice creates an HTLC script C1 that “Alice

pays x1 Coin1 from �A,1 to �B,1 if Bob can provide s which makes H(s) = h

before or on a timelock �1 (which is a timestamp). After �1, Alice can refund

the money - get x1 Coin1 back.” After creating C1, Alice publishes C1 as a

transaction txC,1 on BC1. Note that h is published when publishing txC,1.

Besides C1, Alice also creates a refund script R1 that “Alice pays x1 Coin1

from �A,1 to her another address.” This is to ensure x1 Coin1 can no longer

be redeemed by others. Alice can publish R1 only after �1. If Bob does not

redeem x1 Coin1 and �1 expires, Alice can refund x1 Coin1 by publishing R1

as a transaction txR,1 on BC1.

203

Participate. Bob participates in AS after Initiate. With the published h

in txC,1, Bob creates another HTLC script C2 that “Bob pays x2 Coin2 from

�B,2 to �A,2 if Alice can provide s before or on a timelock �2 (which is a

timestamp). After the time of �2, Bob can refund the money - get x2 Coin2

back.” Here �2 should expire before �1. After creating C2, Bob publishes C2

as a transaction txC,2 on BC2. Note that Alice knows s so she can redeem

x2 Coin2 in txC,2 anytime before �2, but Bob cannot redeem x1 Coin1 in txC,1

because he does not know s. Besides C2, Bob also creates a refund script R2

that “Bob pays x2 Coin2 from �B,2 to his another address.” This is to ensure

x2 Coin2 can no longer be redeemed by Alice. Bob can do this only after �2.

If Alice does not redeem x2 Coin2 before �2 expires, Bob can refund x2 Coin2

by publishing R2 as a transaction txR,2 on BC2.

Redeem/refund. At this stage, Alice can choose either to redeem x2 Coin2

or refund x1 Coin1. Note that both Redeem and Refund are atomic: if Alice

chooses to redeem x2 Coin2, Bob can also redeem x1 Coin1; if Alice chooses

to refund x1 Coin1, Bob can also refund x2 Coin2.

• Redeem. Alice redeems x2 Coin2 by publishing s, then Bob can also

redeem x1 Coin1 with the published s. First, Alice provides s to txC,2

in order to redeem x2 Coin2 in txC,2. As a result, Alice redeems x2

Coin2, but exposes s to Bob. After that, Bob provides s to txC,1 in order

to redeem x1 Coin1 in txC,1. In this way, Alice and Bob successfully

exchanges x1 Coin1 and x2 Coin2.

• Refund. If Alice does not redeem x2 Coin2 after �2 expires, Bob can

refund his x2 Coin2 by publishing txR,2. As a result, Alice cannot re-

deem x2 Coin2, and will not publish s. After �1, Alice can also refund

her x1 Coin1 by publishing txR,1.

Atomicity analysis. We can see that AS either succeeds or fails for both

Alice and Bob. In detail,

204

• If Alice misbehaves when triggering Initiate, Bob will lose nothing as

he hasn’t deposited x2 Coin2 yet.

• If Bob misbehaves when triggering Participate, Alice can choose to

abort AS by triggering Refund.

• Alice can only choose to redeem x2 Coin2 by triggering Redeem or

wait �2 to expire. Once Alice triggers Redeem, Bob can also trigger

Redeem. Once �2 expires, Bob can trigger Refund to get his x2 Coin2

back.

However, one may take both x1 Coin1 and x2 Coin2 if the other does

not trigger Redeem or Refund on time. For example, if Bob does not trigger

Redeem after Alice triggers Redeem and �1 expires, Alice can also refund

x1 Coin1 by triggering Refund. It is Bob to blame in this case, because he

should have had enough time - at least �2� �1 (48 - 24 = 24 hours by default)

- to redeem x1 Coin1. Another example is that Alice broadcasts txC,1 after

�2, but Bob has already triggered Refund. Therefore, Bob can also redeem

x1 Coin1 with s in txC,1 before �1. Similarly, it is Alice to blame in this case,

because she should have had enough time - before �2 (24 hours by default) -

to trigger Redeem.

8.3.2 American Call Option

The American Call Option is a contract that “one can buy an amount of

an asset with an agreed price prior to or on an agreed time in the future”.

Here, the agreed price is usually called the strike price; and the contract set-

tlement is called exercising; the one who proposes the contract and buys the

asset is called the option buyer; the one who sells the asset is called the option

seller.

As mentioned in Section 8.2.2, the option contract itself has value,

called the premium. In an American Call Option, the option buyer should

205

pay for the premium when the contract is agreed by both parties, and should

pay for the asset when the contract is exercised.

We denote an American Call Option contract ⇧ as

⇧ = (⇡1, ⇡2, K,A, T, C)

where the option buyer Alice with ⇡1 hopes to buy ⇡2 from the option

seller Bob; ⇡1 and ⇡2 are Alice’s currency and Bob’s asset, respectively; K is

the strike price with the unit ⇡2/⇡1 - the price of ⇡2 measured in ⇡1; A is the

amount of the asset ⇡2 that Bob wants to sell; T is the agreed strike time; C

is the premium with the unit ⇡1.

The process of an American Call Option is as follows:

1. Advertise: Alice creates and advertises an American Call Option con-

tract ⇧ = (⇡1, ⇡2, K,A, T, C).

2. Contract: If Bob believes ⇧ is profitable and Alice does not abort ⇧,

Bob will participate in ⇧. When Bob participates, Alice should pay C

to Bob first. Note that Alice does not pay for A ⇡2 at this stage. Also

note that Bob cannot abort ⇧ after participating in ⇧.

3. Exercise or Abort: Alice exercises ⇧ - pays AK ⇡1 to Bob - no later

than T , and Bob gives A ⇡2 to Alice. If Alice does not exercise ⇧ no

later than T , ⇧ will abort - Alice gets ⇡1 back and Bob gets ⇡2 back. In

other words, both of them get their underlying asset back, but Alice

loses the premium C to Bob when Contract.

206

8.3.3 An Atomic Swap is a premium-free American Call Op-

tion

We show that an Atomic Swap is equivalent to a premium-free Ameri-

can Call Option. More specifically, AS = (x1, Coin1, x2, Coin2) is equivalent

to the American Call Option contract

⇧ = (Coin1, Coin2,
x2

x1
, x2, �2, 0)

where: Advertise in the American Call Option is equivalent to Initiate

in the Atomic Swap; Contract in the American Call Option is equivalent

to Participate in the Atomic Swap; Exercise in the American Call Option

is equivalent to Redeem in the Atomic Swap; Abort in the American Call

Option is equivalent to Refund in the Atomic Swap.

In the American Call Option context, the option buyer Alice wants to

buy x2 Coin2 from the option seller Bob by using x1 Coin1. Coin1 is the

currency Alice uses, Coin2 is the asset Bob has. This is equivalent to that

Alice with ⇡1 wants to buy ⇡2 from Bob. �2 is the timelock of the contract

transaction on BC2, which is equivalent to the strike time T in ⇧. In AS Bob

can refund his asset back after �2 to abort AS , while ⇧will be automatically

aborted after the strike time T . Establishing AS does not require Alice to

pay anything other than x1 Coin1 to Bob, which is equivalent to ⇧ with

C = 0.

Note that both the Atomic Swap and the American Call Option are

“speculative”: Both the cryptocurrency exchange rates in Atomic Swaps

and asset prices in the American Call Options are fluctuating overtime.

Therefore, the “premium-free” property enables Alice to speculate without

any risk: If Bob’s asset price rises right before the strike time, she will pro-

ceed the swap to profit, otherwise she will abort the swap to avoid the loss.

Therefore, without the premium, Alice is risk-free towards the market.

207

8.4 Unfairness of Atomic Swaps

In this section, we evaluate the unfairness of the Atomic Swap based

on our observation in Section 8.3. In particular, our evaluations are from

two perspectives: quantifying the unfairness and estimating the unpaid pre-

mium. Quantifying the unfairness is based on analysing the historical ex-

change rate volatility. Estimating the unpaid premium is based on the Cox-

Ross-Rubinstein model - the conventional option pricing model for pricing

American-style options in Finance. Furthermore, we also evaluate conven-

tional financial assets - the stocks and the currency exchanges - and compare

their results with cryptocurrencies. The code for the evaluation is available

on Github github-repo.

8.4.1 Experimental setting

We collected relevant data of mainstream cryptocurrencies for one year,

starting from May 3th, 2018 to May 3th, 2019. In particular, the cryptocur-

rency exchange rate data was retrieved from from CoinGecko 1; the stock

index data was retrieved from Yahoo Finance 2; the currency exchange rate

data was retrieved from Investing.com 3.

8.4.2 Quantifying the unfairness

Assume that Alice initiates the swap by triggering Initiate(·) at the time

t, then by default �1 = t + 48(hours). We also assume that Bob participates

in the swap by triggering Participate(·), then by default �2 = t+ 24(hours).

In this way, Alice can decide whether to proceed the swap within

�1 � �2 = 24(hours). When Bob’s asset price rises, Alice profits directly.

When Bob’s asset price drops, Alice can abort the swap to avoid losing
1
https://www.coingecko.com. Data was fetched at May 4th, 2019.

2
https://finance.yahoo.com. Data was fetched at May 4th, 2019.

3
https://www.investing.com. Data was fetched at May 4th, 2019.

208

https://www.coingecko.com
https://finance.yahoo.com
https://www.investing.com

money. Based on this observation, we classify Alice’s advantages to two

parts, namely the profit when Bob’s asset price rises and the mitigated loss

when Bob’s asset price drops.

We then test the unfairness by using a single Atomic Swap with the

value of x USD, then we show the degree of unfairness in dollars based

on the historical data. For each day, Alice may either profit ↵ percent of x

directly (when Bob’s asset price rises), or mitigate � percent of x by aborting

the swap (when Bob’s asset price drops) on average. Assume the possibility

for Bob’s asset price to rise is P↵, and to drop is P� . Then, the expected

profit rate is E↵ = ↵P↵, and the expected mitigated risk rate is E� = �P� .

Therefore, the expected unfairness is that Alice profits E↵x and mitigates

the risk of losing E�x. Also, as E↵ and E� are equally calculated, adding up

them together (E↵ + E�) can derive the total unfairness.

Experimental methodology. In our scenario, quantifying the unfairness is

to calculate E↵ and E� , so we calculate E↵ and E� for each selected cryp-

tocurrency pair. Furthermore, we also quantify the unfairness of stock in-

dices and fiat currencies in the same setting, in order to make comparisons.

We use S&P500 and Dow Jones Index (DJI) as examples of stock indices, and

USD-EUR and USD-GBP as examples of fiat currencies.

Results and analysis. Figure 8.3 shows the calculated E↵, E� , the max-

imum daily rises max↵ and the maximum daily drops max� for 8 main-

stream cryptocurrency pairs, stock indices (S&P500 and DJI) and fiat cur-

rency exchange rates (USD-EUR and USD-GBP). For each plot, points in the

red Profit Area indicate that Alice profits directly at those days, and points

in the green Risk Area indicate that Alice can abort the swap to mitigate the

risk at those days.

We observe that for all chosen cryptocurrency pairs, max↵ and max� are

considerably big - ranging from 8% to 25%. Meanwhile, max↵ and max� of

stock indices are much smaller than all cryptocurrency pairs, and max↵ and

209

Figure 8.3: The daily percentage changes for all selected cryptocurrency
pairs, stock indices and fiat currency pairs over one year (from 03/05/2018
to 03/05/2019). For each figure, E↵, E� , max↵ and max� are the expected
profit rate, the expected mitigated risk rate, the maximum daily profit and
the maximum daily mitigated risk, respectively. The red area is the Profit
Area where Alice profit from the rising asset price, and the green area is the
Risk Area where Alice mitigates the loss from the dropping asset price.

210

Figure 8.4: The expected profit rate E↵ and the expected mitigated risk rate
E� for each cryptocurrency pair, stock index and fiat currency pair.

max� of fiat currencies are even smaller than stock indices. This indicates

that in the setting of an 24-hour Atomic Swap, the Atomic Swap with cryp-

tocurrencies is much more unfair than with stocks, and the Atomic Swap

with stocks are more unfair than with fiat currencies.

Figure 8.4 visualises E↵ and E� of all evaluated items in Figure 8.3. In

particular, we classify scatters to 4 groups based on their E↵ and E� : The

first group (0 < E↵ < 0.005 ^ 0 < E� < 0.005) consists of all stock indices

(S&P500 and DJI) and all fiat currency pairs (USD-GBP and USD-EUR); the

second group (0.005 < E↵ < 0.015 ^ 0.005 < E� < 0.015) consists of most

cryptocurrency pairs; the third group (0.010 < E↵ < 0.015 ^ E� > 0.015)

only contains one cryptocurrency pair BTC-BNB; the fourth group (E↵ >

0.015 ^ 0.010 < E� < 0.015) only contains the last cryptocurrency pair BTC-

BCH. Moreover, we draw a line E� = E↵ to separate two areas: E� > E↵

and E� < E↵.

Obviously, the Atomic Swap with first-group items is fairer than with

second-group items, and the Atomic Swap with second-group items is fair

than with third-group and fourth-group items. More specifically, we can

211

get the following results. First, the Atomic Swap with cryptocurrency pairs

is more unfair than with stocks and fiat currency pairs. This result is con-

sistent with results in Figure 8.3. Second, E� and E� � E↵ of BTC-BNB are

bigger than of others. This means the exchange rate of BTC-BNB, and drops

generally over the last year. Meanwhile, E↵ and E↵ � E� of BTC-BCH are

bigger than of others. This means the exchange rate of BTC-BCH, and rises

generally over the last year. Both observations indicate that BTC-BNB and

BTC-BCH are highly volatile, so the Atomic Swap with those assets is more

unfair than with other assets. Third, all dots are close to the line E� = E↵,

while the dots of stock indices and fiat currency pairs almost lay on this

line. A dot lying on E� = E↵ means the exchange rate rises and drops at

the same level. Therefore, although more volatile than stocks and fiat cur-

rencies, exchange rates of cryptocurrency pairs rise and drop at the same

level.

8.4.3 Estimating the premium

The unfairness of the Atomic Swap comes from the fact that Alice can

abort the contract without punishment. In Finance, the premium mecha-

nism guarantees the good behaviours. As the Atomic Swap is equivalent

to the premium-free American Call Option, the Cox-Ross-Rubinstein (CRR)

Model [16] can be used for estimating the premium of Atomic Swaps.

Therefore, we can evaluate the unfairness of the Atomic Swap by esti-

mating the premium for American Call Options with cryptocurrencies.

As the premium is the only variable in an option contract, estimating

the premium is also called the “Option Pricing” problem. In Finance, the

Black-Scholes (BS) Model [286] is utilised to price the European Call Op-

tions, while the CRR model is utilised to price the American Call Options.

212

Table 8.1: Summary of symbols in the Cox-Ross-Rubinstein Model.

Variable Description Comment
u, d The rising and dropping rates for prices in the

binomial tree T

u · d = 1

�d,�a The daily and annualised percentage change
rates of asset prices

T The strike time (measured in years)
n The depth of T we pick n = 36

�t The time period between two adjacent nodes
on T (measured in years)

�t =
T

n

St,i The asset price of the i-th node on the t

�t
-th

level of T
Ct,i The premium of the i-th node on the t

�t
-th

level of T
p, q The probabilities that the asset price rises and

drops

Therefore, in order to evaluate the unfairness of the Atomic Swap, we

use the CRR Model to estimate how much the premium should be in the

Atomic Swap.

The Cox-Ross-Rubinstein Model Explained

S 2T
n ,1 = u2

· S0,1

ST
n ,1 = u · S0,1

S0,1 S 2T
n ,2 = S0,1

ST
n ,2 = d · S0,1

S 2T
n ,3 = d2 · S0,1

p

(1� p)

P
2

(1� p)p

(1�
p)p

(1� p) 2

Figure 8.5: The binomial price tree T .

The Cox-Ross-Rubinstein (CRR) Model [16] - a.k.a. the Binomial Op-

tions Pricing Model (BOPM) - is a numerical method for pricing American-

style Options. Intuitively, the CRR model enumerates all possible asset

prices of the asset in the near future based on the price volatility, then

213

reverse-engineers the premium based on the enumerated asset prices. More

specifically, using the CRR model to price the American Call Option ⇧ =

(⇡1, ⇡2, K,A, T, C) follows the steps below:

1. Creating the binomial price tree

2. Calculating the premiums for leaf nodes

3. Iteratively reconstructing the premiums for non-leaf nodes

Creating the binomial price tree. The binomial price tree T of the height

n (as shown in Fig. 8.5) represents the possible future prices within the time

period T discretely. n can be picked arbitrarily: With larger n, the result

will be more accurate, but the computing overhead will be heavier. Each

node Tt,i is attached with an asset price St,i and a premium price Ct,i, where

t 2 {0, T
n
, 2T

n
, . . . , T} is the point of time, and i is the id of this node at its

level. The CRR model assumes that the asset price will either move up or

down by a specific factor per step in T . The move-up factor is u, and the

move-down factor is d. For example, given the initial asset price S0,1, the

asset price after one move-up ST
n ,1 is u · S0,1, and the asset price after one

move-down ST
n ,2 is d · S0,1.

u and d are calculated using the annualised volatility �a of the underly-

ing asset price. In the CRR model, the move-up and move-down are sym-

metric - u · d = 1, and the rate of move-up and move-down is positive cor-

related with �a:

u = e�a
p

T
n (8.1)

d = e��a
p

T
n =

1

u
(8.2)

214

Here, T is measured in years, and �a is defined as the standard devi-

ation of the annual price changes in percentage. �a can be computed from

the standard deviation �d of daily price changes in percentage as below:

�a = �d
p

d (8.3)

�d =

sP
d

i=1(S
0
i
� S̄ 0)2

d� 1
(8.4)

where d is the number of trading days within a year. For cryptocur-

rencies, d equals to the number of a days within a year. Note that S 0
i

is the

percentage change of the price on day i, rather than the price itself. S̄ 0 is the

average value of all S 0
i
s within the d days.

Each asset price St,i can be calculated directly by St,i = S0,1 · uNu�Nd ,

where S0,1 is the initial asset price, and Nu, Nd are the times of move-ups

and move-downs, respectively.

Calculating the premiums for leaf nodes. In the first step, only the asset

prices are determined rather than the premiums. This step further deter-

mines the premiums for leaf nodes. For each leaf node Tn,i, the premium is

Cn,i = max[(Sn,i �K), 0].

Iteratively reconstructing the premiums for earlier nodes. We back-

propagate the premiums for leaf nodes to earlier premiums. Each earlier

premium is calculated from premiums of the later two nodes weighted by

their possibilities. The move-up and move-down possibility are p and q

where p+q = 1, and the risk-free rate is r = q. More specifically, each earlier

premium Ct��t,i is calculated from later premiums as:

Ct��t,i = e�r�t(pCt,i + qCt,i+1) (8.5)

215

where �t = T

n
, and p, q, r are computed as

p =
e(r�q)�t

� d

u� d
(8.6)

q = 1� p (8.7)

r = q (8.8)

such that the premium distribution simulates the geometric Brownian

motion [287] with parameters r and �.

In this way, the earliest premium C0,1, which is our targeted estimated

premium C - can be calculated by iteratively back-propagating the later pre-

miums.

Table 8.1 summarises all symbols used in the Cox-Ross-Rubinstein

model.

Figure 8.6: Estimated premium with different strike times for each cryp-
tocurrency pair, stock index and fiat currency pair. Lines with the marker
“x” are for stock indices; lines with the marker “o” are for fiat currencies;
and lines without marker are for cryptocurrency pairs.

216

Experiments. We use the same data as Section 8.4.2, and choose n = 36 for

the CRR model. We estimate the premium for the same assets (8 cryptocur-

rency pairs + 2 stock indices + 2 fiat currency pairs in Section 8.4.2) with the

strike time T ranging from 1 to 300. Figure 8.6 shows our pricing results.

First, we observe that the premium of cryptocurrency pairs is much

more expensive than of stocks, and the premium of stocks is more expen-

sive than of fiat currencies at any given time. Recall the evaluated unfairness

in Section 8.4.2, its results are consistent with the premium pricing results:

The more volatile the market is, the more unfair the Atomic Swap will be,

and the higher the premium should be. Second, with the default strike time

T = 1 of the Atomic Swap, the premium for cryptocurrency pairs vary from

approximately 1% to 2.3% of the underlying asset value, but the values for

stocks and fiat currency pairs are approximately 0.3%. Third, for all evalu-

ated items, the premium values rise monotonically with T increasing. This

is because the longer expiration time lets Alice to have more control on the

option - he has more time to predict the price and decide to exercise or abort

the option.

8.5 Fair Atomic Swaps

In this section, we propose an improvement on the original Atomic

Swap to make it fair. It implements the premium mechanism, and sup-

ports both the currency exchange-style Atomic Swap and the American Call

Option-style Atomic Swap.

8.5.1 Design

Difference between Currency Exchange and Options

We first summarise the design objectives for Atomic Swap.

To our knowledge, the Atomic Swap protocol is originally designed for

the fair exchange between different cryptocurrencies. However, according

217

to our analysis, the protocol is unfair due to the Optionality and the free

premium. Also, for (crypto)currency exchange, the protocol should have no

Optionality. The currency exchange and the American Call Option differ in

Finance: The currency exchange is a type of Spots [288], while the American

Call Option is a type of Options. The Spot Contract and the Option Contract

aim at different application scenarios: The Spot Contract aims at exchang-

ing the ownership of assets, while the Option Contract aims at providing

Alice an “option” to trade. More specifically, Spots and Options differ in the

following aspects:

• The Spot Contract is exercised immediately, while the Option Contract

is exercised on or prior to a specified date in the future.

• The Spot Contract cannot be aborted once signed by both parties,

while in the Option Contract Alice can abort the contract with the loss

of the premium.

• The Spot Contract itself has no value, while the Option Contract itself

has value - the premium.

Premium for Currency Exchange and American Call Options

According to Section 8.5.1, the currency exchange-style Atomic Swaps

and the American Call Option-style Atomic Swaps differ in design objec-

tives.

Atomic Swaps for Currency Exchange. For the currency exchange, both

parties are not permitted to abort the contract once signed. However, in

Atomic Swaps, Alice can abort the swap by not releasing the random se-

cret. Therefore, the protocol should discourage Alice to abort the swap. To

achieve this, we can use the premium mechanism as the collateral: Alice

should deposit the premium besides her asset when Initiate. The premium

should follow that: Alice pays the premium to Bob if Bob refunds his asset

218

after his timelock but before Alice’s timelock. If Alice’s timelock expires,

Alice can refund her premium back.

Atomic Swaps for American Call Options. For the American Call Op-

tions, Alice should pay for the premium besides the underlying asset, re-

gardless of whether the swap is successful or not. In reality, the option sell-

ers are trustworthy - the option sellers never abort the contract. However,

in Atomic Swaps, Bob can abort the contracts like Alice. To keep the Atomic

Swap consistent with the American Call Options, the premium should fol-

low that: Alice pays the premium to Bob if 1) Alice redeems Bob’s asset

before Bob’s timelock, or 2) Bob refunds his asset after Bob’s timelock but

before Alice’s timelock. If Alice’s timelock expires, Alice can refund her

premium back.

8.5.2 Our protocol

We propose an improvement on the Atomic Swap, which implements

the premium mechanism, to make it fair. It can fulfill design objectives

of both the currency exchange and the American Call Option. Figure 8.7)

shows the process of our Atomic Swap.

We denote our Atomic Swap protocol AS
0 as

AS
0 = (x1, Coin1, x2, Coin2, pr)

where pr is the amount of the premium measured in Coin2. In our

protocol, besides x1 Coin1, Alice should also lock pr Coin2 on BC2, which

will be described later.

Similar to the original Atomic Swap AS , our protocol consists of four

stages: Initiate, Participate, Redeem and Refund.

Initiate. Different from AS , Alice also creates Bob’s contract script C2 and

its associated transaction txC,2 when Initiate in AS
0.

219

Figure 8.7: Sequence diagram of our Atomic Swap. For currency exchange-
style Atomic Swaps, the premium will go back to Alice if the swap is suc-
cessful (the left dotted line). For American Call Option-style Atomic Swaps,
the premium will go to Bob if the swap is successful (the right dotted line).

220

C1 and txC,1 is the same as in AS , while C2 and txC,2 are more sophisti-

cated. C2 contains two coherent sub-contracts Casset

2 and C
pr

2 .

In C2, Casset

2 is the contract for the asset x2 Coin2, which is the same as in

AS . Cpr

2 is the contract for the premium pr, which implements the premium

mechanism in the Atomic Swap. It supports both the currency exchange-

style Atomic Swap and the American Call Option-style Atomic Swap. In

more detail, the rules of Cpr

2 are shown below:

C
pr

2 for currency exchange Alice pays pr to Bob with the condition: Bob re-

funds x2 Coin2 after �2 and before �1. If �1 expires, Alice can refund pr

back.

C
pr

2 for American Call Options Alice pays pr to Bob with one of the two

conditions: 1) Alice redeems x2 Coin2 before �2. 2) Bob refunds x2

Coin2 after �2 but before Delta1 (note that �2 < �1). If �1 expires, Alice

can refund pr back.

Alice published txC,1 on BC1 and txC,2 on BC2. Note that Alice only

triggers C1 and C
pr

2 to execute at this stage. Bob will deposit x2 Coin2 trigger

C
asset

2 to execute when Participate.

Participate. Bob decides whether to participate in AS
0 by auditing txC,1 and

txC,2. If Bob thinks contracts are fair, he will participate in AS
0, otherwise

Bob will not participate and look for more profitable contracts from others.

To participate in AS
0, Bob deposits x2 Coin2 in C

asset

2 , and triggers C
asset

2 to

execute.

Redeem. Alice redeeming x2 Coin2 and Bob redeeming x1 Coin1 are the

same in AS
0 and AS . But in addition, riles in C

pr

2 will work once triggering

Redeem for AS
0.

Refund. Refunding x1 Coin1 for Alice and x2 Coin2 for Bob are the same

as in AS . But in addition, rules in C
pr

2 will work once triggering Refund for

AS
0.

221

8.6 Implementation

In this section, we describe how to implement our Fair Atomic Swap

protocol in Section 8.5 on different blockchains. In particular, blockchains

with smart contracts (such as Ethereum) can support our protocol directly,

while blockchains with scripts only (such as Bitcoin) require an extra op-

code which we call OP LOOKUP OUTPUT. In addition, we provide refer-

ence implementations in Bitcoin scripts and Solidity smart contracts, and

the Solidity implementation is available on Github github-repo.

8.6.1 Requirements

To implement our protocol, the blockchain should support 1) stateful

transactions, 2) the timelock and 3) the hashlock.

Stateful transactions. Transactions should be stateful: Executing a trans-

action can depend on prior transactions. In our protocol, whether pr goes

to Alice or Bob depends on the status of Coin2. Therefore, the transaction of

pr relies on the status of Coin2 payment transaction.

Hashlock. The transactions should support the hashlock: A payment is

proceeded only when the payee provides the preimage of a hash. In our

protocol, exchanging Coin1 and Coin2 atomically is based on the hashlock

- Alice redeems Coin2 first by releasing the preimage, then Bob can redeem

Coin1 by using the released preimage.

Timelock. The transactions should support the timelock: A payment will

expire after a specified time if the payee cannot redeem the payment. In our

protocol, the transactions of Coin1, Coin2 and pr are all timelocked, in order

to avoid locking money in transactions forever.

222

8.6.2 Smart contracts

Smart contracts support all aforementioned functionalities, so can eas-

ily implement our protocol. We use Solidity - one of programming lan-

guages for Ethereum smart contracts [39] - as an example. Our implementa-

tions are based on the original Atomic Swap Solidity implementation [289],

but extend the premium mechanism. Extending the premium mechanism

includes:

1. The enumeration PremiumState for maintaining the premium payment

state

2. The modifiers isPremiumRedeemable() and isPremiumRefundable() for

checking whether the premium can be redeemed or refunded

3. The methods redeemPremium() and refundPremium() for redeeming and

refunding the premium

1 enum A s s e t S t a t e { Empty , F i l l e d , Redeemed , Refunded }

2 enum PremiumState { Empty , F i l l e d , Redeemed , Refunded }

Listing 8.1: Maintaining the state of the asset and the premium.

The premium payment state PremiumState. In the original smart contract,

an enumeration State maintains the asset state: empty means the asset has

not been deposited; filled means the asset has been deposited; redeemed

means the asset has been redeemed; refunded means the asset has been

refunded.

In our contract, we decouple State to the asset state AssetState and the

premium state PremiumState. Both AssetState and PremiumState are the same

as the original State. The code is shown in Listing 8.1. Empty means Alice

has not triggered Initiate, and has not deposited the premium yet. Filled

means Alice has deposited the premium, indicating that Alice has triggered

223

1 // Premium is refundable when

2 // 1. Alice initiates but Bob does not participate

3 // after premium’s timelock expires

4 // 2. asset2 is redeemed by Alice

5 modifier isPremiumRefundable (bytes32 secretHash) {

6 // the premium should be deposited

7 require (swaps [secretHash] . premiumState == PremiumState . F i l l e d)
;

8 // Alice invokes this method to refund the premium

9 require (swaps [secretHash] . i n i t i a t o r == msg . sender) ;
10 // the contract should be on the blockchain2

11 require (swaps [secretHash] . kind == Kind . P a r t i c i p a n t) ;
12 // if the asset2 timelock is still valid

13 i f block . timestamp <= swaps [secretHash] . assetRefundTimestamp {

14 // the asset2 should be redeemded by Alice

15 require (swaps [secretHash] . a s s e t S t a t e == A s s e t S t a t e .
Redeemed) ;

16 } e lse { // if the asset2 timelock is expired

17 // the asset2 should not be refunded

18 require (swaps [secretHash] . a s s e t S t a t e != A s s e t S t a t e .
Refunded) ;

19 // the premium timelock should be expired

20 require (block . timestamp > swaps [secretHash] .
premiumRefundTimestamp) ;

21 }

22 ;
23 }

24 // Premium is redeemable for Bob when asset2 is refunded

25 // which means Alice holds the secret maliciously

26 modifier isPremiumRedeemable (bytes32 secretHash) {

27 // the premium should be deposited

28 require (swaps [secretHash] . premiumState == PremiumState . F i l l e d)
;

29 // Bob invokes this method to redeem the premium

30 require (swaps [secretHash] . p a r t i c i p a n t == msg . sender) ;
31 // the contract should be on the blockchain2

32 require (swaps [secretHash] . kind == Kind . P a r t i c i p a n t) ;
33 // the asset2 should be refunded

34 // this also indicates the asset2 timelock is expired

35 require (swaps [secretHash] . a s s e t S t a t e == A s s e t S t a t e . Refunded) ;
36 // the premium timelock should not be expired

37 require (block . timestamp <= swaps [secretHash] .
premiumRefundTimestamp) ;

38 ;
39 }

Listing 8.2: The condition to redeem and refund the premium for currency-
exchange-style Atomic Swaps.

224

1 // Premium is refundable for Alice only when Alice initiates

2 // but Bob does not participate after premium’s timelock expires

3 modifier isPremiumRefundable (bytes32 secretHash) {

4 // the premium should be deposited

5 require (swaps [secretHash] . premiumState == PremiumState . F i l l e d)
;

6 // Alice invokes this method to refund the premium

7 require (swaps [secretHash] . i n i t i a t o r == msg . sender) ;
8 // the contract should be on the blockchain2

9 require (swaps [secretHash] . kind == Kind . P a r t i c i p a n t) ;
10 // premium timelock should be expired

11 require (block . timestamp > swaps [secretHash] .
premiumRefundTimestamp) ;

12 // asset2 should be empty

13 // which means Bob does not participate

14 require (swaps [secretHash] . a s s e t S t a t e == A s s e t S t a t e . Empty) ;
15 }

16 // Premium is redeemable for Bob when asset2 is redeemed or

refunded

17 // which means Bob participates

18 modifier isPremiumRedeemable (bytes32 secretHash) {

19 // the premium should be deposited

20 require (swaps [secretHash] . premiumState == PremiumState . F i l l e d)
;

21 // Bob invokes this method to redeem the premium

22 require (swaps [secretHash] . p a r t i c i p a n t == msg . sender) ;
23 // the contract should be on the blockchain2

24 require (swaps [secretHash] . kind == Kind . P a r t i c i p a n t) ;
25 // the asset2 should be refunded or redeemed

26 require (swaps [secretHash] . a s s e t S t a t e == A s s e t S t a t e . Refunded | |

swaps [secretHash] . a s s e t S t a t e == A s s e t S t a t e . Redeemed) ;
27 // the premium timelock should not be expired

28 require (block . timestamp <= swaps [secretHash] .
premiumRefundTimestamp) ;

29 ;
30 }

Listing 8.3: The condition to redeem and refund the premium for American
Call Option-style Atomic Swaps.

225

Initiate, but neither Alice nor Bob refunds or redeems the premium. Re-

deemded and refunded means Bob redeems the premium and Alice refunds

the premium, respectively.

isPremiumRedeemable() and isPremiumRefundable(). Checking whether

the premium is redeemable or refundable is the most critical part of our pro-

tocol. Because the premium payment relies on the Coin2 payment, checking

the premium refundability and redeemability involves checking the Coin2

status - AssetState in our implementation.

isPremiumRedeemable() and isPremiumRefundable() for the currency

exchange-style Atomic Swap are shown in Figure 8.2, and for the Ameri-

can Call Option-style Atomic Swap are shown in Figure 8.3. The currency

exchange-style Atomic Swap and the American Call Option-style Atomic

Swap differ when AssetState = Redeemed: In the currency exchange-style

Atomic Swap the premium belongs to Alice while in the American Call

Option-style Atomic Swap the premium belongs to Bob.

redeemPremium() and refundPremium(). redeemPremium() and refund-

Premium() are similar to redeemAsset() and refundAsset(), and their executions

are secured by isPremiumRedeemable() and isPremiumRefundable(). The code

is shown in Listing 8.4.

8.6.3 Bitcoin script

Unfortunately, Bitcoin cannot support our protocol directly, because

Bitcoin does not support the stateful transaction functionalities. First, the

Bitcoin script is designed to be stateless [290]. Second, there is no such

things like the Ethereum’s “world state” [39] in Bitcoin: The only state in

Bitcoin is the Unspent Transaction Outputs (UTXOs) [1].

New Opcode OP LOOKUP OUTPUT. In order to make Bitcoin script

support our protocol, we use an opcode called OP LOOKUP OUTPUT.

OP LOOKUP OUTPUT was proposed, but has not implemented in Bitcoin

226

1 function redeemPremium (bytes32 secretHash)
2 public
3 isPremiumRedeemable (secretHash)
4 {

5 // transfer the premium to Bob

6 swaps [secretHash] . p a r t i c i p a n t . t r a n s f e r (swaps [secretHash] .
premiumValue) ;

7 // update the premium state to redeemded

8 swaps [secretHash] . premiumState = PremiumState . Redeemed ;
9 // notify the function invoker

10 emit PremiumRedeemed (
11 block . timestamp ,
12 swaps [secretHash] . secretHash ,
13 msg . sender ,
14 swaps [secretHash] . premiumValue
15) ;
16 }

17 function refundPremium (bytes32 secretHash)
18 public
19 isPremiumRefundable (secretHash)
20 {

21 // transfer the premium to Alice

22 swaps [secretHash] . i n i t i a t o r . t r a n s f e r (swaps [secretHash] .
premiumValue) ;

23 // update the premium state to refunded

24 swaps [secretHash] . premiumState = PremiumState . Refunded ;
25 // notify the function invoker

26 emit PremiumRefunded (
27 block . timestamp ,
28 swaps [secretHash] . secretHash ,
29 msg . sender ,
30 swaps [secretHash] . premiumValue
31) ;
32 }

Listing 8.4: The functions for redeeming and refunding the premium.

227

yet [291]. It takes the id of an output, and produces the address of the

output’s owner. With OP LOOKUP OUTPUT, the Bitcoin script can de-

cide whether Alice or Bob should take the premium by “¡asset2 output¿

OP LOOKUP OUTPUT ¡Alice pubkeyhash¿ OP EQUALVERIFY”.

Implementing OP LOOKUP OUTPUT is easy in Bitcoin - it only

queries the ownership of an output from the indexed blockchain database.

This neither introduces computation overhead, nor breaks the “stateless”

design of the Bitcoin script.

Decoupling the contract creation and the contract invocation. For smart

contracts, the contract is created and invoked in separate transactions: Cre-

ating the contract is by publishing a transaction which creates the smart

contract, and invoking the contract is by publishing a transaction which

invokes a method in the smart contract. However, Bitcoin has no smart con-

tracts, and the “contract” is created and invoked in a single transaction. In

this way, the timelock starts right after the contract creation rather than the

contract invocation. This is problematic: The premium contract should not

be triggered until Bob participates in the swap.

Thanks to the multi-signature transaction functionality in Bitcoin, Alice

and Bob can first create the contract off-chain, then invoke the contract on-

chain.

Multi-signature transactions refer to transactions signed by multiple ac-

counts [290]. A M-of-N (M  N) multi-signature transaction means the

transaction requires M out of N accounts to sign it. If less than M ac-

counts sign the transaction, the transaction cannot be verified as valid by

the blockchain. In Bitcoin, constructing a multi-signature transaction re-

quires accounts to create a multi-signature address first [290].

With multi-signature transactions, we can decouple the contract cre-

ation and invocation as follows: first, Alice and Bob create a 2-of-2 multi-

signature address; second, Alice and Bob mutually construct and sign a

228

transaction which includes the premium payment and the Coin2 payment;

finally, they publish the transaction in the name of the 2-2 multi-signature

address.

Note that constructing and signing the transaction is done off-chain:

first, Bob creates the Coin2 transaction and sends it to Alice; second, Al-

ice creates the premium transaction which uses OP LOOKUP OUTPUT to

check the ownership of Coin2 transaction outputs; third, Alice merges the

Coin2 transaction and the premium transaction to a single transaction, signs

the transaction, and sends it to Bob; finally, Bob signs the transaction and

sends it to Alice. At this stage, both Alice and Bob have obtained the mutu-

ally signed transaction, which consists of both the premium transaction and

the Coin2 transaction.

The premium transaction. Listing 8.5 and Listing 8.6 show the premium

transaction in the Bitcoin script , for both the currency-style and the Ameri-

can Call Option-style Atomic Swaps, respectively.

1 S c r i p t S i g :
2 Redeem : <Bob sig> <Bob pubkey> 1
3 Refund : <A l i c e s i g> <Alice pubkey> 0
4 ScriptPubKey :
5 OP IF // Normal redeem path

6 // the owner of <asset2_output> should be Alice

7 // which means Alice has redeemed asset2

8 <asse t2 output> OP LOOKUP OUTPUT <Alice pubkeyhash>
OP EQUALVERIFY

9 OP DUP OP HASH160 <Bob pubkeyhash>
10 OP ELSE // Refund path

11 // the premium timelock should be expired

12 <locktime> OP CHECKLOCKTIMEVERIFY OP DROP
13 OP DUP OP HASH160 <Alice pubkey hash>
14 OP ENDIF
15 OP EQUALVERIFY
16 OP CHECKSIG

Listing 8.5: The currency exchange-style Atomic Swap contract in Bitcoin
script.

229

1 S c r i p t S i g :
2 Redeem : <Bob sig> <Bob pubkey> 1
3 Refund : <A l i c e s i g> <Alice pubkey> 0
4 ScriptPubKey :
5 OP IF // Normal redeem path

6 // the owner of the asset2 should not be the contract

7 // it should be either (redeemde by) Alice or (refunded by

) Bob

8 // which means Alice has redeemed asset2

9 <asse t2 output> OP LOOKUP OUTPUT <Alice pubkeyhash>
OP NUMEQUAL

10 <asse t2 output> OP LOOKUP OUTPUT <Bob pubkeyhash>
OP NUMEQUAL

11 OP ADD 1 OP NUMEQUALVERIFY
12 OP DUP OP HASH160 <Bob pubkeyhash>
13 OP ELSE // Refund path

14 // the premium timelock should be expired

15 <locktime> OP CHECKLOCKTIMEVERIFY OP DROP
16 OP DUP OP HASH160 <Alice pubkey hash>
17 OP ENDIF
18 OP EQUALVERIFY
19 OP CHECKSIG

Listing 8.6: The American Call Option-style Atomic Swap contract in Bitcoin
script.

8.7 Discussion

8.7.1 Security of the Atomic Swap

Although already widely adopted, the Atomic Swap has security is-

sues.

First, the security of Atomic Swaps relies on the security of blockchains:

If the blockchains involved in the swaps are insecure, the Atomic Swaps will

also be insecure.

Second, the Atomic Swap contracts are written in high-level languages,

so the compiled contracts can be insecure if the contract compilers are

flawed.

Third, the timelock is unreliable in the cross-chain scenario. Similar to

other distributed systems [292], different blockchains are unsynchronised

on the time. Blockchains timestamp events by either two approaches: Using

the block height or using the UNIX timestamp. The block height can seri-

230

alise events on a blockchain by time, but cannot serialise events outside the

blockchain. In addition, the new block generation is a random process, so

the block height cannot indicate the precise time in reality. Using the UNIX

timestamp doesn’t work, either. This is because the consensus participants

are responsible for timestamping events, but the consensus participants can

be unreliable: They may use the wrong time, either on purpose or by acci-

dent.

8.7.2 Other countermeasures

Besides our proposal, there are some other countermeasures to address

the Atomic Swap unfairness. Unfortunately, to our knowledge, all of them

either have security flaws or significantly reduce the usability of Atomic

Swaps.

The first countermeasure is to make the Atomic Swap costly by charg-

ing setting up HTLCs, or increasing the transaction fee of HTLCs. However,

these two solutions do not only significantly reduce the usability of Atomic

Swaps, but also affect HTLCs not aiming at setting up Atomic Swaps.

The second solution is to use shorter timelock for Atomic Swaps. Un-

fortunately, short timelocks may cause unexpected consequences. Confirm-

ing transactions for setting up Atomic Swaps takes time, and the time re-

quired is highly unpredictable. With short timelocks, the transactions for

setting up Atomic Swaps may be confirmed after the expiration of time-

locks.

The third solution is using a trusted third party (TTP) to implement the

premium mechanism. When Alice initiates an Atomic Swap, the TTP forces

Alice to deposit the premium. Although this TTP does not require Alice

and Bob to escrow their assets, the TTP should be trustworthy and can be a

single point of failure.

231

8.7.3 Limitations of our protocols

Still, our solutions are not perfect. The initiators of Atomic Swaps need

to hold some participant’s asset to initiate an Atomic Swap, for either collat-

eralising successful swaps or paying for the option itself. Unfortunately, the

initiators do not always have participant’s asset: They may just hope to get

some participant’s asset with only his asset. Before doing an Atomic Swap,

the initiator should get some participant’s asset by arbitrary means. For ex-

ample, he can buy some participant’s asset from cryptocurrency exchanges,

or initiate a smaller Atomic Swap with shorter timelocks and no premium.

8.8 Related Work

The Atomic Swap protocol was first proposed on the BitcoinTalk fo-

rum informally in 2013 [15]. Herlihy et al. first formalised the Atomic

Swap protocol [293]. Meyden et al. first formally analysed the Atomic

Swap smart contracts [294]. Several Atomic Swap variants were proposed

for sidechains [295] and solving conflicts from concurrent operations [296].

The optionality of Atomic Swaps was first identified by a user with

ID “ZmnSCPxj” in the Lightning-dev mail list in 2018 [282]. BitMEX Re-

search [297] and Dan Robinson [298] further claimed that the optionality

cannot be eliminated in HTLC-based Atomic Swaps. However, they do not

quantify the unfairness from such optionality.

Eizinger et al. first tried to address the optionality problem by imple-

menting the premium mechanism in Atomic Swap [299]. However, their

protocol is flawed: If Bob keeps not participating in the swap, he will get

the premium. Liu used the Atomic Swap to construct the option [300],

but paying for the premium requires an extra blockchain besides the two

blockchains, and they do not justify its fairness. IDEX [301] escrows the

premium on an Ethereum smart contract for Atomic Swaps. However, this

scheme can only support ERC20 tokens. Furthermore, IDEX fully controls

232

the smart contract, so makes no difference with centralised exchanges ex-

cept for the audibility. Interledger [302] proposed an Atomic Swap protocol

based on payment channels. In Interledger, Alice (holding coin A) creates a

payment channel with Bob (holding coin B) on the blockchain of coin A, and

Bob creates a payment channel with Alice on the blockchain of coin B. After

that, Alice gradually pays coin A to Bob, while Bob gradually pays coin B to

Alice. After both payments are finished, they settle both payment channels.

However, this scheme suffers from time-consuming interactive operations

and poor efficiency.

233

Chapter 9

Conclusion

This thesis has systematically analysed blockchain sharding protocols.

Based on the systematic analysis, we formalised and improved two over-

looked primitives in blockchain sharding protocols, namely shard allocation

and decentralised randomness beacon (DRB), and suggested countermea-

sures against security issues in cross-chain 51% attacks and atomic swaps.

We provided formal security proofs and experimental evaluations on the

proposed constructions and countermeasures, demonstrating their security

and practicality.

A number of open challenges remain as future work. The first chal-

lenge is to design a more scalable blockchain sharding protocol leveraging

our proposed primitives. While our proposed primitives are designed to

be plug-in replacements compatible with existing blockchain sharding pro-

tocols, a concrete design with formal security proofs and experimental re-

sults is of interest for the real-world adoption. Compared to other scalability

solutions that prefer security than decentralisation, such a sharding proto-

col prefers decentralisation than security, and thus offers another possible

trade-off over the blockchain trilemma. This trade-off might be of interest

for certain blockchain protocols and smart contract applications.

The second challenge is to further improve the proposed primitives in

terms of security assumptions and overhead. For example, RANDCHAIN

still requires permissioned settings, and constructing a DRB for permis-

sionless settings is still an open challenge important for permissionless

blockchains. A permissionless DRB protocol can be used for providing se-

cure randomness for other permissionless systems, most notably permis-

sionless blockchains. Meanwhile, in order to employ existing permissioned

234

DRB protocols to permissionless systems, the system needs to elect a fixed

committee, which introduces extra complexity in communication and de-

sign.

The third challenge is to define different notions for our identified se-

curity properties in shard allocation and DRB. For example, our notion

of delivery-fairness is unachievable in partially synchronous and asyn-

chronous networks, thus DRBs that aim to achieve this notion cannot toler-

ate network partitions. It might be possible to formalise a weaker delivery-

fairness notion that is achievable in partially synchronous networks. This

allows us to design a delivery-fair DRB that tolerates network partitions

and thus can be deployed in more adversarial network conditions.

235

Bibliography

[1] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system”,

2008.

[2] coinmarketcap.com, Top 100 cryptocurrencies by market capitalization,

2019. [Online]. Available: https://coinmarketcap.com.

[3] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,

“A secure sharding protocol for open blockchains”, in Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications

Security, ACM, 2016, pp. 17–30.

[4] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and

B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via

sharding”, in 2018 IEEE Symposium on Security and Privacy (SP), IEEE,

2018, pp. 583–598.

[5] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling

blockchain via full sharding”, in Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, ACM, 2018,

pp. 931–948.

[6] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,

“Chainspace: A sharded smart contracts platform”, in 25th Annual

Network and Distributed System Security Symposium, NDSS 2018, 2018.

[7] J. Wang and H. Wang, “Monoxide: Scale out Blockchains with Asyn-

chronous Consensus Zones”, in 16th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 19), 2019.

[8] Z. Team et al., “The ZILLIQA Technical Whitepaper”, Retrieved

September, 2017.

[9] “Ethereum/wiki”. https://eth.wiki/sharding/. (2020).

236

https://coinmarketcap.com
https://eth.wiki/sharding/

[10] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on

blockchain”, in Proceedings of the 1st ACM Conference on Advances in

Financial Technologies, AFT 2019, 2019.

[11] R. Han, J. Yu, and R. Zhang, “Analysing and Improving Shard

Allocation Protocols for Sharded Blockchains”, 2020, https : / /

eprint.iacr.org/2020/943.

[12] A. Zamyatin, M. Al-Bassam, D. Zindros, et al., “Sok: Communication

across distributed ledgers”, IACR Cryptology ePrint Archive, 2019:

1128, Tech. Rep., 2019.

[13] nicehash, Nicehash - largest crypto-mining marketplace, 2019. [Online].

Available: https://www.nicehash.com.

[14] J. Bonneau, “Why buy when you can rent? - bribery attacks on

bitcoin-style consensus”, in Financial Cryptography and Data Security

- FC 2016 International Workshops, BITCOIN, VOTING, and WAHC,

2016, pp. 19–26.

[15] T. Nolan, Alt chains and atomic transfers. bitcointalk. org, 2013. [Online].

Available: https://bitcointalk.org/index.php?topic=

193281.0.

[16] J. C. Cox, S. A. Ross, and M. Rubinstein, “Option pricing: A simpli-

fied approach”, Journal of financial Economics, vol. 7, no. 3, pp. 229–

263, 1979.

[17] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the pres-

ence of partial synchrony”, Journal of the ACM (JACM), vol. 35, no. 2,

pp. 288–323, 1988.

[18] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone proto-

col: Analysis and applications”, in Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Springer, 2015.

237

https://eprint.iacr.org/2020/943
https://eprint.iacr.org/2020/943
https://www.nicehash.com
https://bitcointalk.org/index.php?topic=193281.0
https://bitcointalk.org/index.php?topic=193281.0

[19] D. Boneh, S. Eskandarian, L. Hanzlik, and N. Greco, “Single secret

leader election”, in AFT ’20: 2nd ACM Conference on Advances in Fi-

nancial Technologies, New York, NY, USA, October 21-23, 2020.

[20] P. A. Bernstein, P. A. Bernstein, and N. Goodman, “Concurrency

control in distributed database systems”, ACM Computing Surveys

(CSUR), vol. 13, no. 2, pp. 185–221, 1981.

[21] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable and

secure distributed programming. Springer Science & Business Media,

2011.

[22] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency con-

trol and recovery in database systems. Addison-wesley New York, 1987,

vol. 370.

[23] C. H. Papadimitriou, “The serializability of concurrent database up-

dates”, Journal of the ACM (JACM), vol. 26, no. 4, pp. 631–653, 1979.

[24] M. J. Franklin, Concurrency control and recovery. 1997.

[25] R. Guerraoui, “Non-blocking atomic commit in asynchronous dis-

tributed systems with failure detectors”, Distributed Computing,

vol. 15, no. 1, pp. 17–25, 2002.

[26] E. A. Brewer, “Towards robust distributed systems”, in PODC, vol. 7,

2000.

[27] P. Sousa, N. F. Neves, and P. Verissimo, “How resilient are distributed

f fault/intrusion-tolerant systems?”, in 2005 International Conference

on Dependable Systems and Networks (DSN’05), IEEE, 2005, pp. 98–107.

[28] K. Antoniadis, A. Desjardins, V. Gramoli, R. Guerraoui, and M. I.

Zablotchi, “Leaderless consensus”, Tech. Rep., 2021.

238

[29] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R.

Ports, “Building consistent transactions with inconsistent replica-

tion”, ACM Transactions on Computer Systems (TOCS), vol. 35, no. 4,

p. 12, 2018.

[30] T. Haerder and A. Reuter, “Principles of transaction-oriented

database recovery”, ACM computing surveys (CSUR), vol. 15, no. 4,

pp. 287–317, 1983.

[31] “Ethereum/eth2.0-specs”. https://github.com/ethereum/

eth2.0-specs. (2020).

[32] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the

presence of faults”, Journal of the ACM (JACM), vol. 27, no. 2, pp. 228–

234, 1980.

[33] J. Aspnes, C. Jackson, and A. Krishnamurthy, “Exposing

computationally-challenged Byzantine impostors”, Technical

Report YALEU/DCS/TR-1332, Yale University Department of

Computer . . ., Tech. Rep., 2005.

[34] M. Castro, B. Liskov, et al., “Practical Byzantine fault tolerance”, in

OSDI, 1999.

[35] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B.

Ford, “Enhancing bitcoin security and performance with strong con-

sistency via collective signing”, in 25th USENIX Security Symposium

(USENIX Security 16), 2016, pp. 279–296.

[36] E. Syta, P. Jovanovic, E. K. Kogias, et al., “Scalable bias-resistant dis-

tributed randomness”, in 2017 IEEE Symposium on Security and Pri-

vacy (SP), 2017.

[37] S. Sen and M. J. Freedman, “Commensal cuckoo: Secure group par-

titioning for large-scale services”, ACM SIGOPS Operating Systems

Review, vol. 46, no. 1, pp. 33–39, 2012.

239

https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/eth2.0-specs

[38] L. Ren, K. Nayak, I. Abraham, and S. Devadas, “Practical syn-

chronous byzantine consensus”, arXiv preprint arXiv:1704.02397,

2017.

[39] G. Wood et al., “Ethereum: A secure decentralised generalised trans-

action ledger”, Ethereum project yellow paper, 2014.

[40] “Randao: A dao working as rng of ethereum”. https://github.

com/randao/randao. (2020).

[41] V. Buterin and V. Griffith, “Casper the friendly finality gadget”, arXiv

preprint arXiv:1710.09437, 2017.

[42] M. Fitzi, P. Gazi, A. Kiayias, and A. Russell, “Parallel Chains: Im-

proving Throughput and Latency of Blockchain Protocols via Paral-

lel Composition.”, IACR Cryptology ePrint Archive, vol. 2018, p. 1119,

2018.

[43] H. Yu, I. Nikolic, R. Hou, and P. Saxena, “OHIE: Blockchain Scaling

Made Simple”, 2020.

[44] J. Niu, “Eunomia: A Permissionless Parallel Chain Protocol Based on

Logical Clock”, arXiv preprint arXiv:1908.07567, 2019.

[45] S. Forestier and D. Vodenicarevic, “Blockclique: scaling blockchains

through transaction sharding in a multithreaded block graph”, arXiv

preprint arXiv:1803.09029, 2018.

[46] D. Hensgen, R. Finkel, and U. Manber, “Two algorithms for bar-

rier synchronization”, International Journal of Parallel Programming,

vol. 17, no. 1, pp. 1–17, 1988.

[47] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is

vulnerable”, in International conference on financial cryptography and

data security, Springer, 2014, pp. 436–454.

[48] J. Yu, D. Kozhaya, J. Decouchant, and P. Verissimo, “RepuCoin: Your

reputation is your power”, IEEE Transactions on Computers, 2019.

240

https://github.com/randao/randao
https://github.com/randao/randao

[49] Y. Wang, “Byzantine fault tolerance in partial synchronous net-

works”, 2020.

[50] Formal analysis of the cbc casper consensus algorithm with tla+. [On-

line]. Available: https://blog.trailofbits.com/2019/10/

25/formal-analysis-of-the-cbc-casper-consensus-

algorithm-with-tla.

[51] C. Gómez-Calzado, A. Lafuente, M. Larrea, and M. Raynal, “Fault-

tolerant leader election in mobile dynamic distributed systems”, in

2013 IEEE 19th Pacific Rim International Symposium on Dependable

Computing, IEEE, 2013, pp. 78–87.

[52] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain proto-

col in asynchronous networks”, in Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Springer, 2017,

pp. 643–673.

[53] L. Ren, “Analysis of nakamoto consensus.”, IACR Cryptol. ePrint

Arch., vol. 2019, p. 943, 2019.

[54] S. Bano, A. Sonnino, M. Al-Bassam, et al., “Consensus in the age of

blockchains”, 2019.

[55] J. A. Garay and A. Kiayias, “SoK: A Consensus Taxonomy in the

Blockchain Era”, 2020.

[56] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A Survey of Dis-

tributed Consensus Protocols for Blockchain Networks”, arXiv

preprint arXiv:1904.04098, 2019.

[57] C. Natoli, J. Yu, V. Gramoli, and P. Esteves-Verissimo, “Deconstruct-

ing Blockchains: A Comprehensive Survey on Consensus, Member-

ship and Structure”, arXiv preprint arXiv:1908.08316, 2019.

241

https://blog.trailofbits.com/2019/10/25/formal-analysis-of-the-cbc-casper-consensus-algorithm-with-tla
https://blog.trailofbits.com/2019/10/25/formal-analysis-of-the-cbc-casper-consensus-algorithm-with-tla
https://blog.trailofbits.com/2019/10/25/formal-analysis-of-the-cbc-casper-consensus-algorithm-with-tla

[58] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work

vs. bft replication”, in International workshop on open problems in net-

work security, Springer, 2015, pp. 112–125.

[59] F. Pedone and R. Guerraoui, “On transaction liveness in replicated

databases”, in Proceedings Pacific Rim International Symposium on

Fault-Tolerant Systems, IEEE, 1997, pp. 104–109.

[60] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Star-

ing into the abyss: An evaluation of concurrency control with one

thousand cores”, 2014.

[61] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker, “An eval-

uation of distributed concurrency control”, Proceedings of the VLDB

Endowment, 2017.

[62] A. Sonnino, S. Bano, M. Al-Bassam, and G. Danezis, “Replay attacks

and defenses against cross-shard consensus in sharded distributed

ledgers”, in 2020 IEEE European Symposium on Security and Privacy

(EuroS&P), IEEE, 2020, pp. 294–308.

[63] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and

paradigms. Prentice-Hall, 2007.

[64] H. Pagnia and F. C. Gärtner, “On the impossibility of fair exchange

without a trusted third party”, Technical Report TUD-BS-1999-02,

Darmstadt University of Technology . . ., Tech. Rep., 1999.

[65] “Data Concurrency and Consistency”, https://docs.oracle.

com/cd/B19306_01/server.102/b14220/consist.htm.

[66] B. Kemme, G. Ramalingam, A. Schiper, M. Shapiro, and K. Vaswani,

“Consistency in Distributed Systems”, Dagstuhl Reports, vol. 3, no. 2,

pp. 92–126, Jun. 2013. DOI: 10.4230/DagRep.3.2.92. [Online].

Available: https://hal.inria.fr/hal-00932737.

242

https://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm
https://doi.org/10.4230/DagRep.3.2.92
https://hal.inria.fr/hal-00932737

[67] H.-E. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Pérez, Consistency

management in cloud storage systems. 2014.

[68] P. Feldman, “A practical scheme for non-interactive verifiable secret

sharing”, in 28th Annual Symposium on Foundations of Computer Sci-

ence (FOCS 1987), 1987.

[69] D. Dolev and R. Reischuk, “Bounds on information exchange for

byzantine agreement”, Journal of the ACM (JACM), vol. 32, no. 1,

pp. 191–204, 1985.

[70] F. Chang, J. Dean, S. Ghemawat, et al., “Bigtable: A distributed stor-

age system for structured data”, ACM Transactions on Computer Sys-

tems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[71] G. DeCandia, D. Hastorun, M. Jampani, et al., “Dynamo: Amazon’s

highly available key-value store”, ACM SIGOPS operating systems re-

view, vol. 41, no. 6, pp. 205–220, 2007.

[72] D. Didona and W. Zwaenepoel, “Size-aware sharding for improving

tail latencies in in-memory key-value stores”, in 16th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 19), 2019,

pp. 79–94.

[73] B. Augustin, T. Friedman, and R. Teixeira, “Measuring load-balanced

paths in the Internet”, in Proceedings of the 7th ACM SIGCOMM con-

ference on Internet measurement, 2007, pp. 149–160.

[74] M. Annamalai, K. Ravichandran, H. Srinivas, et al., “Sharding the

shards: managing datastore locality at scale with Akkio”, in 13th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18), 2018, pp. 445–460.

[75] “The zilliqa design story piece by piece: Part 1 (network sharding)”,

2020, https://blog.zilliqa.com/https-blog-zilliqa-

243

https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65
https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65

com - the - zilliqa - design - story - piece - by - piece -

part1-d9cb32ea1e65.

[76] “Ethereum sharding: Overview and finality”, 2020, https : / /

medium . com / @icebearhww / ethereum - sharding - and -

finality-65248951f649.

[77] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer

networks”, in Proceedings of the 6th ACM SIGCOMM conference on In-

ternet measurement, ACM, 2006.

[78] V. Buterin. “Serenity design rationale”. https : / / notes .

ethereum.org/@vbuterin/rkhCgQteN?type=view. (2020).

[79] “On sharding blockchains faqs”. https://eth.wiki/sharding/

Sharding-FAQs. (2020).

[80] G. Avarikioti, E. Kokoris-Kogias, and R. Wattenhofer, “Divide and

Scale: Formalization of Distributed Ledger Sharding Protocols”,

arXiv preprint arXiv:1910.10434, 2019.

[81] M. Król, O. Ascigil, S. Rene, A. Sonnino, M. Al-Bassam, and

E. Rivière, “Shard scheduler: Object placement and migration in

sharded account-based blockchains”, in Proceedings of the 3rd ACM

Conference on Advances in Financial Technologies, 2021, pp. 43–56.

[82] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The bittorrent

p2p file-sharing system: Measurements and analysis”, in Interna-

tional Workshop on Peer-to-Peer Systems, Springer, 2005, pp. 205–216.

[83] Y. Kulbak, D. Bickson, et al., “The eMule protocol specification”,

eMule project, http://sourceforge. net, 2005.

[84] A. Fernández, V. Gramoli, E. Jiménez, A.-M. Kermarrec, and M. Ray-

nal, “Distributed slicing in dynamic systems”, in 27th International

Conference on Distributed Computing Systems (ICDCS’07), IEEE, 2007,

pp. 66–66.

244

https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65
https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65
https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65
https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649
https://notes.ethereum.org/@vbuterin/rkhCgQteN?type=view
https://notes.ethereum.org/@vbuterin/rkhCgQteN?type=view
https://eth.wiki/sharding/Sharding-FAQs
https://eth.wiki/sharding/Sharding-FAQs

[85] V. Gramoli, Y. Vigfusson, K. Birman, A.-M. Kermarrec, and R. van

Renesse, “A fast distributed slicing algorithm”, in Proceedings of the

twenty-seventh ACM symposium on Principles of distributed computing,

2008, pp. 427–427.

[86] F. Maia, M. Matos, R. Oliveira, and E. Riviere, “Slicing as a dis-

tributed systems primitive”, in 2013 Sixth Latin-American Symposium

on Dependable Computing, IEEE, 2013, pp. 124–133.

[87] D. J. DeWitt, J. F. Naughton, and D. F. Schneider, “Parallel sorting on

a shared-nothing architecture using probabilistic splitting”, Univer-

sity of Wisconsin-Madison Department of Computer Sciences, Tech.

Rep., 1991.

[88] A. V. Oppenheim, Discrete-time signal processing. Pearson Education,

1999.

[89] A. Dembo, S. Kannan, E. N. Tas, et al., “Everything is a race and

nakamoto always wins”, in Proceedings of the 2020 ACM SIGSAC Con-

ference on Computer and Communications Security, 2020, pp. 859–878.

[90] P. Flajolet and R. Sedgewick, Analytic combinatorics. cambridge Uni-

versity press, 2009.

[91] C. Decker and R. Wattenhofer, “Information propagation in the bit-

coin network”, in IEEE P2P 2013 Proceedings, IEEE, 2013, pp. 1–10.

[92] X. Qian, “Improved authenticated data structures for blockchain

synchronization”, Ph.D. dissertation, 2018.

[93] “Warp sync - wiki parity tech documentation”. https://wiki.

parity.io/Warp-Sync. (2020).

[94] J. R. Douceur, “The sybil attack”, in International workshop on peer-to-

peer systems, Springer, 2002.

245

https://wiki.parity.io/Warp-Sync
https://wiki.parity.io/Warp-Sync

[95] J. Dinger and H. Hartenstein, “Defending the sybil attack in p2p net-

works: Taxonomy, challenges, and a proposal for self-registration”,

in First International Conference on Availability, Reliability and Security

(ARES’06), IEEE, 2006, 8–pp.

[96] A. C.-C. Yao, “Some complexity questions related to distributive

computing (preliminary report)”, in Proceedings of the eleventh annual

ACM symposium on Theory of computing, 1979, pp. 209–213.

[97] J. Zhao, J. Yu, and J. K. Liu, “Consolidating Hash Power in

Blockchain Shards with a Forest”, in International Conference on In-

formation Security and Cryptology, Springer, 2019, pp. 309–322.

[98] B. Awerbuch and C. Scheideler, “Robust random number generation

for peer-to-peer systems”, in International Conference On Principles Of

Distributed Systems, Springer, 2006.

[99] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Con-

stantinople: Practical asynchronous Byzantine agreement using

cryptography”, Journal of Cryptology, vol. 18, no. 3, pp. 219–246, 2005.

[100] J. Kelsey, L. T. Brandão, R. Peralta, and H. Booth, “A reference for

randomness beacons: Format and protocol version 2”, National In-

stitute of Standards and Technology, Tech. Rep., 2019.

[101] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “HydRand: Effi-

cient Continuous Distributed Randomness”, in 2020 IEEE Symposium

on Security and Privacy (SP), pp. 32–48.

[102] “Random uchile - random uchile”. https://beacon.clcert.

cl/en/. (2020).

[103] “Brazilian beacon”. https : / / beacon . inmetro . gov . br/.

(2020).

[104] “Distributed randomness beacon — cloudflare”. https://www.

cloudflare.com/leagueofentropy/. (2020).

246

https://beacon.clcert.cl/en/
https://beacon.clcert.cl/en/
https://beacon.inmetro.gov.br/
https://www.cloudflare.com/leagueofentropy/
https://www.cloudflare.com/leagueofentropy/

[105] “Unicorn beacon by lacal”. http://trx.epfl.ch/beacon/

index.php. (2020).

[106] “Drand - distributed randomness beacon”. https : / / drand .

love/. (2020).

[107] I. Cascudo and B. David, “Albatross: Publicly attestable batched ran-

domness based on secret sharing”,

[108] A. K. Lenstra and B. Wesolowski, “A random zoo: Sloth, unicorn,

and trx”, IACR Cryptol. ePrint Arch., vol. 2015, p. 366, 2015.

[109] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass, “Continuous

verifiable delay functions”, in Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Springer, 2020,

pp. 125–154.

[110] R. Han, J. Yu, and H. Lin, “Randchain: Decentralised randomness

beacon from sequential proof-of-work”, IACR Cryptol. ePrint Arch.,

2020.

[111] J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin as a public ran-

domness source.”, IACR Cryptol. ePrint Arch., vol. 2015, p. 1015, 2015.

[112] J. Clark and U. Hengartner, “On the use of financial data as a random

beacon.”, EVT/WOTE, vol. 89, 2010.

[113] J. Benet and N. Greco, “Filecoin: A decentralized storage network”,

Protoc. Labs, pp. 1–36, 2018.

[114] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions”,

in 40th Annual Symposium on Foundations of Computer Science, IEEE,

1999.

[115] Y. Dodis, “Efficient construction of (distributed) verifiable random

functions”, in International Workshop on Public Key Cryptography,

Springer, 2003, pp. 1–17.

247

http://trx.epfl.ch/beacon/index.php
http://trx.epfl.ch/beacon/index.php
https://drand.love/
https://drand.love/

[116] S. Goldberg, J. Vcelak, D. Papadopoulos, and L. Reyzin, “Verifiable

random functions (VRFs)”, 2018.

[117] S. Hohenberger and B. Waters, “Constructing verifiable random

functions with large input spaces”, in Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Springer,

2010, pp. 656–672.

[118] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda,

“Privacy pass: Bypassing internet challenges anonymously”, Pro-

ceedings on Privacy Enhancing Technologies, vol. 2018, no. 3, pp. 164–

180, 2018.

[119] S Goldberg, D Papadopoulos, and J Vcelak, draft-goldbe-vrf: Verifiable

Random Functions.(2017), 2017.

[120] V. Bagaria, A. Dembo, S. Kannan, et al., “Proof-of-stake longest chain

protocols: Security vs predictability”, arXiv preprint arXiv:1910.02218,

2019.

[121] J. Neu, E. N. Tas, and D. Tse, “Ebb-and-flow protocols: A resolution

of the availability-finality dilemma”, arXiv preprint arXiv:2009.04987,

2020.

[122] S. Sankagiri, X. Wang, S. Kannan, and P. Viswanath, “Blockchain

cap theorem allows user-dependent adaptivity and finality”, arXiv

preprint arXiv:2010.13711, 2020.

[123] N. Barić and B. Pfitzmann, “Collision-free accumulators and fail-

stop signature schemes without trees”, in International conference on

the theory and applications of cryptographic techniques, Springer, 1997,

pp. 480–494.

[124] “Crates/rug”, 2020, https://crates.io/crates/rug.

[125] “Crates/bitvec”, 2020, https://crates.io/crates/bitvec.

248

https://crates.io/crates/rug
https://crates.io/crates/bitvec

[126] “Schnorr vrfs and signatures on the ristretto group”, 2020, https:

//github.com/w3f/schnorrkel.

[127] “The ristretto group”, 2020, https://ristretto.group/.

[128] “Crates/rand”, 2020, https://crates.io/crates/rand.

[129] “Cargo-bench”, 2020, https://doc.rust-lang.org/cargo/

commands/cargo-bench.html.

[130] “Criterion.rs”, 2020, https : / / github . com / bheisler /

criterion.rs.

[131] V. Ramasubramanian and E. G. Sirer, “The design and implementa-

tion of a next generation name service for the internet”, ACM SIG-

COMM Computer Communication Review, vol. 34, no. 4, pp. 331–342,

2004.

[132] M. Saad, S. Chen, and D. Mohaisen, “Root cause analyses for the de-

teriorating bitcoin network synchronization”, in 2021 IEEE 41st Inter-

national Conference on Distributed Computing Systems (ICDCS), IEEE,

2021, pp. 239–249.

[133] M. Saad, S. Chen, and D. Mohaisen, “Syncattack: Double-spending

in bitcoin without mining power”, in Proceedings of the 2021 ACM

SIGSAC Conference on Computer and Communications Security, 2021,

pp. 1668–1685.

[134] A. Lakshman and P. Malik, “Cassandra: a decentralized structured

storage system”, ACM SIGOPS Operating Systems Review, vol. 44,

no. 2, pp. 35–40, 2010.

[135] B. F. Cooper, R. Ramakrishnan, U. Srivastava, et al., “PNUTS: Ya-

hoo!’s hosted data serving platform”, Proceedings of the VLDB Endow-

ment, vol. 1, no. 2, pp. 1277–1288, 2008.

249

https://github.com/w3f/schnorrkel
https://github.com/w3f/schnorrkel
https://ristretto.group/
https://crates.io/crates/rand
https://doc.rust-lang.org/cargo/commands/cargo-bench.html
https://doc.rust-lang.org/cargo/commands/cargo-bench.html
https://github.com/bheisler/criterion.rs
https://github.com/bheisler/criterion.rs

[136] S. Che, G. Rodgers, B. Beckmann, and S. Reinhardt, “Graph coloring

on the GPU and some techniques to improve load imbalance”, in

2015 IEEE International Parallel and Distributed Processing Symposium

Workshop, IEEE, 2015, pp. 610–617.

[137] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A

scalable content-addressable network”, in Proceedings of the 2001 con-

ference on Applications, technologies, architectures, and protocols for com-

puter communications, 2001, pp. 161–172.

[138] C. Lin, Y. Jiang, X. Chu, H. Yang, et al., “An effective early warning

scheme against pollution dissemination for BitTorrent”, in GLOBE-

COM 2009-2009 IEEE Global Telecommunications Conference, IEEE,

2009, pp. 1–7.

[139] X. Lou and K. Hwang, “Collusive piracy prevention in P2P content

delivery networks”, IEEE Transactions on Computers, vol. 58, no. 7,

pp. 970–983, 2009.

[140] P. Dhungel, D. W. 0001, B. Schonhorst, and K. W. Ross, “A measure-

ment study of attacks on BitTorrent leechers.”, in IPTPS, vol. 8, 2008,

pp. 7–7.

[141] M. Jelasity and A.-M. Kermarrec, “Ordered slicing of very large-scale

overlay networks”, in Sixth IEEE International Conference on Peer-to-

Peer Computing (P2P’06), IEEE, 2006, pp. 117–124.

[142] T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology

overview series, consensus system”, arXiv preprint arXiv:1805.04548,

2018.

[143] A. Cherniaeva, I. Shirobokov, and O. Shlomovits, “Homomorphic

Encryption Random Beacon.”, IACR Cryptol. ePrint Arch., vol. 2019,

p. 1320, 2019.

250

[144] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos: An

adaptively-secure, semi-synchronous proof-of-stake blockchain”, in

Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Springer, 2018, pp. 66–98.

[145] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algo-

rand: Scaling byzantine agreements for cryptocurrencies”, in Pro-

ceedings of the 26th Symposium on Operating Systems Principles, 2017,

pp. 51–68.

[146] D. Galindo, J. Liu, M. Ordean, and J.-M. Wong, “Fully distributed

verifiable random functions and their application to decentralised

random beacons”, in European Symposium on Security and Privacy,

2021.

[147] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A

provably secure proof-of-stake blockchain protocol”, in Annual In-

ternational Cryptology Conference, Springer, 2017, pp. 357–388.

[148] I. Cascudo and B. David, “SCRAPE: Scalable randomness attested

by public entities”, in International Conference on Applied Cryptography

and Network Security, Springer, 2017, pp. 537–556.

[149] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman, “Asynchronous

Distributed Key Generation for Computationally-Secure Random-

ness, Consensus, and Threshold Signatures”, in Proceedings of the

2020 ACM SIGSAC Conference on Computer and Communications Se-

curity, 2020, pp. 1751–1767.

[150] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure dis-

tributed key generation for discrete-log based cryptosystems”, in In-

ternational Conference on the Theory and Applications of Cryptographic

Techniques, Springer, 1999.

251

[151] O. Naor, M. Baudet, D. Malkhi, and A. Spiegelman, “Cogsworth:

Byzantine View Synchronization”, arXiv preprint arXiv:1909.05204,

2019.

[152] O. Naor and I. Keidar, “Expected Linear Round Synchronization:

The Missing Link for Linear Byzantine SMR”, in 34th International

Symposium on Distributed Computing, DISC 2020, October 12-16, 2020,

Virtual Conference, ser. LIPIcs, vol. 179, Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2020, 26:1–26:17.

[153] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-

Stuff: BFT consensus with linearity and responsiveness”, in Proceed-

ings of the 2019 ACM Symposium on Principles of Distributed Computing,

ACM, 2019, pp. 347–356.

[154] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay func-

tions”, in Annual international cryptology conference, Springer, 2018,

pp. 757–788.

[155] “[ANSWERED] Why is bitcoin proof of work parallelizable ?”,

https://bitcointalk.org/index.php?topic=46739.0.

[156] K. Pietrzak, “Simple verifiable delay functions”, in 10th innovations

in theoretical computer science conference (itcs 2019), Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2018.

[157] B. Wesolowski, “Efficient verifiable delay functions”, in Annual In-

ternational Conference on the Theory and Applications of Cryptographic

Techniques, Springer, 2019, pp. 379–407.

[158] “paritytech/parity-bitcoin: The Parity Bitcoin client”, https : / /

github.com/paritytech/parity-bitcoin.

[159] J. A. Garay, A. Kiayias, and N. Leonardos, “Full analysis of

nakamoto consensus in bounded-delay networks.”, IACR Cryptol.

ePrint Arch., vol. 2020, p. 277, 2020.

252

https://bitcointalk.org/index.php?topic=46739.0
https://github.com/paritytech/parity-bitcoin
https://github.com/paritytech/parity-bitcoin

[160] B. Y. Chan and E. Shi, “Streamlet: Textbook Streamlined

Blockchains.”, in AFT ’20: 2nd ACM Conference on Advances in

Financial Technologies, New York, NY, USA, October 21-23, 2020, ACM,

2020, pp. 1–11.

[161] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. Weippl,

“RandRunner: Distributed Randomness from Trapdoor VDFs with

Strong Uniqueness”, in 28th Annual Network and Distributed System

Security Symposium, NDSS 2021, virtually, February 21-25, 2021, The

Internet Society, 2021.

[162] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner,

“Craft: Composable randomness beacons and output-independent

abort mpc from time”, 2020.

[163] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the

permissionless model”, in 31st International Symposium on Distributed

Computing (DISC 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer In-

formatik, 2017.

[164] J. Long and R. Wei, “Nakamoto Consensus with Verifiable Delay

Puzzle”, arXiv preprint arXiv:1908.06394, 2019.

[165] B. Cohen and K. Pietrzak, The chia network blockchain, 2019.

[166] J. Brown-Cohen, A. Narayanan, A. Psomas, and S. M. Weinberg,

“Formal barriers to longest-chain proof-of-stake protocols”, in Pro-

ceedings of the 2019 ACM Conference on Economics and Computation,

2019, pp. 459–473.

[167] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan, “Proofs of work

from worst-case assumptions”, in Annual International Cryptology

Conference, Springer, 2018, pp. 789–819.

[168] S. Dobson, S. Galbraith, and B. Smith, “Trustless groups of unknown

order with hyperelliptic curves”, 2020.

253

[169] B. Wesolowski and R. Williams, “Lower bounds for the depth of

modular squaring”, 2020.

[170] J. Katz, J. Loss, and J. Xu, “On the security of time-lock puzzles and

timed commitments”, in Theory of Cryptography Conference, Springer,

2020, pp. 390–413.

[171] N. Döttling, S. Garg, G. Malavolta, and P. N. Vasudevan, “Tight ver-

ifiable delay functions”, in International Conference on Security and

Cryptography for Networks, Springer, 2020, pp. 65–84.

[172] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and

timed-release crypto”, 1996.

[173] M. Mahmoody, T. Moran, and S. Vadhan, “Publicly verifiable proofs

of sequential work”, in Proceedings of the 4th conference on Innovations

in Theoretical Computer Science, 2013, pp. 373–388.

[174] B. Cohen and K. Pietrzak, “Simple proofs of sequential work”, in

Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Springer, 2018, pp. 451–467.

[175] C. Percival, Stronger key derivation via sequential memory-hard func-

tions, 2009.

[176] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: new genera-

tion of memory-hard functions for password hashing and other ap-

plications”, in 2016 IEEE European Symposium on Security and Privacy

(EuroS&P), IEEE, 2016, pp. 292–302.

[177] J. Alwen, B. Chen, K. Pietrzak, L. Reyzin, and S. Tessaro, “Scrypt is

maximally memory-hard”, in Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Springer, 2017,

pp. 33–62.

254

[178] S. Deb, S. Kannan, and D. Tse, PoSAT: Proof-of-Work Availability

and Unpredictability, without the Work, 2020. arXiv: 2010 . 08154

[cs.CR].

[179] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake”, self-published paper, August, vol. 19, 2012.

[180] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas,

“Ouroboros genesis: Composable proof-of-stake blockchains with

dynamic availability”, in Proceedings of the 2018 ACM SIGSAC Con-

ference on Computer and Communications Security, 2018, pp. 913–930.

[181] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable

consensus and applications to provably secure proof of stake”, in

International Conference on Financial Cryptography and Data Security,

Springer, 2019, pp. 23–41.

[182] L. Fan and H.-S. Zhou, “A scalable proof-of-stake blockchain in

the open setting (or, how to mimic nakamoto’s design via proof-

of-stake)”, Cryptology ePrint Archive, Report 2017/656, Tech. Rep.,

2017.

[183] M. Chen, C. Hazay, Y. Ishai, et al., “Diogenes: Lightweight scalable

rsa modulus generation with a dishonest majority”, in 2021 IEEE

Symposium on Security and Privacy (SP), IEEE, 2021, pp. 590–607.

[184] M. Chen, R. Cohen, J. Doerner, et al., “Multiparty Generation of an

RSA Modulus”, in Advances in Cryptology - CRYPTO 2020 - 40th An-

nual International Cryptology Conference, CRYPTO 2020, Santa Barbara,

CA, USA, August 17-21, 2020, Proceedings, Part III, ser. Lecture Notes

in Computer Science, vol. 12172, Springer, 2020, pp. 64–93.

[185] V. Attias, L. Vigneri, and V. Dimitrov, “Implementation study of

two verifiable delay functions”, in 2nd International Conference on

255

https://arxiv.org/abs/2010.08154
https://arxiv.org/abs/2010.08154

Blockchain Economics, Security and Protocols (Tokenomics 2020), Schloss

Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[186] D. Boneh, B. Bünz, and B. Fisch, “A Survey of Two Verifiable Delay

Functions.”, IACR Cryptol. ePrint Arch., vol. 2018, p. 712, 2018.

[187] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scal-

able and probabilistic leaderless bft consensus through metastabil-

ity”, arXiv preprint arXiv:1906.08936, 2019.

[188] T. Dinsdale-Young, B. Magri, C. Matt, J. B. Nielsen, and D. Tschudi,

“Afgjort: A partially synchronous finality layer for blockchains”,

in International Conference on Security and Cryptography for Networks,

Springer, 2020, pp. 24–44.

[189] AMD Breaks 8GHz Overclock with Upcoming FX Processor, Sets World

Record, http : / / hothardware . com / News / AMD - Breaks -

Frequency-Record-with-Upcoming-FX-Processor/.

[190] “Why has CPU frequency ceased to grow?”, https://software.

intel.com/content/www/us/en/develop/blogs/why-

has-cpu-frequency-ceased-to-grow.html.

[191] “supranational/vdf-fpga-round1-results”, https : / / github .

com/supranational/vdf-fpga-round1-results.

[192] “supranational/vdf-fpga-round2-results”, https : / / github .

com/supranational/vdf-fpga-round2-results.

[193] “supranational/vdf-fpga-round3-results”, https : / / github .

com/supranational/vdf-fpga-round3-results.

[194] K. A. Negy, P. R. Rizun, and E. G. Sirer, “Selfish mining re-

examined”, in International Conference on Financial Cryptography and

Data Security, Springer, 2020, pp. 61–78.

256

http://hothardware.com/News/AMD-Breaks-Frequency-Record-with-Upcoming-FX-Processor/
http://hothardware.com/News/AMD-Breaks-Frequency-Record-with-Upcoming-FX-Processor/
https://software.intel.com/content/www/us/en/develop/blogs/why-has-cpu-frequency-ceased-to-grow.html
https://software.intel.com/content/www/us/en/develop/blogs/why-has-cpu-frequency-ceased-to-grow.html
https://software.intel.com/content/www/us/en/develop/blogs/why-has-cpu-frequency-ceased-to-grow.html
https://github.com/supranational/vdf-fpga-round1-results
https://github.com/supranational/vdf-fpga-round1-results
https://github.com/supranational/vdf-fpga-round2-results
https://github.com/supranational/vdf-fpga-round2-results
https://github.com/supranational/vdf-fpga-round3-results
https://github.com/supranational/vdf-fpga-round3-results

[195] E. Heilman, “One weird trick to stop selfish miners: Fresh bitcoins, a

solution for the honest miner”, in International Conference on Financial

Cryptography and Data Security, Springer, 2014, pp. 161–162.

[196] R. Zhang and B. Preneel, “Publish or perish: A backward-compatible

defense against selfish mining in bitcoin”, in Cryptographers’ Track at

the RSA Conference, Springer, 2017, pp. 277–292.

[197] H. Abusalah, C. Kamath, K. Klein, K. Pietrzak, and M. Walter, “Re-

versible proofs of sequential work”, in Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques,

Springer, 2019, pp. 277–291.

[198] “facebook/rocksdb: A library that provides an embeddable, persis-

tent key-value store for fast storage.”, https://github.com/

facebook/rocksdb.

[199] Protocol documentation - Bitcoin Wiki, https://en.bitcoin.it/

wiki/Protocol_documentation, 2015.

[200] “dstat-real/dstat: Versatile resource statistics tool”, https : / /

github.com/dstat-real/dstat.

[201] H. Yu, I. Nikolić, R. Hou, and P. Saxena, “Ohie: Blockchain scaling

made simple”, in 2020 IEEE Symposium on Security and Privacy (SP),

IEEE, 2020, pp. 90–105.

[202] P. Erdős and A. Rényi, “On the evolution of random graphs”, Publ.

Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[203] “Drand - Distributed Randomness Beacon.”, https : / / drand .

love/.

[204] D. Yakira, A. Asayag, I. Grayevsky, and I. Keidar, “Economically Vi-

able Randomness”, arXiv preprint arXiv:2007.03531, 2020.

257

https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://github.com/dstat-real/dstat
https://github.com/dstat-real/dstat
https://drand.love/
https://drand.love/

[205] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-delay and random-

ness beacons in ethereum”, IEEE Security and Privacy on the blockchain

(IEEE S&B), 2017.

[206] D. Yakira, I. Grayevsky, and A. Asayag, “Rational Threshold Cryp-

tosystems”, arXiv preprint arXiv:1901.01148, 2019.

[207] M. Andrychowicz and S. Dziembowski, “Distributed Cryptography

Based on the Proofs of Work.”, IACR Cryptol. ePrint Arch., vol. 2014,

p. 796, 2014.

[208] P. Daian, S. Goldfeder, T. Kell, et al., “Flash Boys 2.0: Frontrunning

in Decentralized Exchanges, Miner Extractable Value, and Consen-

sus Instability”, in 2020 IEEE Symposium on Security and Privacy (SP),

2020, pp. 566–583.

[209] J. Großschädl, A. Szekely, and S. Tillich, “The energy cost of crypto-

graphic key establishment in wireless sensor networks”, in Proceed-

ings of the 2nd ACM symposium on Information, computer and communi-

cations security, 2007, pp. 380–382.

[210] D. Malkhi and M. Reiter, “Byzantine quorum systems”, Distributed

computing, vol. 11, no. 4, pp. 203–213, 1998.

[211] T.-H. H. Chan, R. Pass, and E. Shi, “Consensus through herding”, in

Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Springer, 2019, pp. 720–749.

[212] “BCH Avalanche Transactions Show Finality Speeds 10x Faster Than

Ethereum”, https://news.bitcoin.com/bch-avalanche-

transactions - show - finality - speeds - 10x - faster -

than-ethereum/.

[213] A. Bhat, N. Shrestha, Z. Luo, A. Kate, and K. Nayak, “Randpiper–

reconfiguration-friendly random beacons with quadratic communi-

258

https://news.bitcoin.com/bch-avalanche-transactions-show-finality-speeds-10x-faster-than-ethereum/
https://news.bitcoin.com/bch-avalanche-transactions-show-finality-speeds-10x-faster-than-ethereum/
https://news.bitcoin.com/bch-avalanche-transactions-show-finality-speeds-10x-faster-than-ethereum/

cation”, in Proceedings of the 2021 ACM SIGSAC Conference on Com-

puter and Communications Security, 2021, pp. 3502–3524.

[214] S. Das, V. Krishnan, I. M. Isaac, and L. Ren, “Spurt: Scalable dis-

tributed randomness beacon with transparent setup”, Cryptology

ePrint Archive, 2021.

[215] “Distributed Randomness Beacon — Cloudflare”, https://www.

cloudflare.com/leagueofentropy/.

[216] Chainlink VRF, https://docs.chain.link/docs/chainlink-

vrf/.

[217] PancakeSwap Lottery, https : / / pancakeswap . finance /

lottery.

[218] PolyRoll: Decentralized Games, https://polyroll.org/.

[219] The Economic Impact of Random Rewards in Blockchain Video Games,

https://blog.chain.link/the-economic-impact-of-

random-rewards-in-blockchain-video-games/.

[220] CryptOrchids: NFT plants that must be watered weekly, https : / /

cryptorchids.io/.

[221] 16 Ways to Create Dynamic Non-Fungible Tokens (NFT) Using Chainlink

Oracles, https://blog.chain.link/create-dynamic-nfts-

using-chainlink-oracles/.

[222] “Polygon Hermez”, https://hermez.io/.

[223] “Celo: Mobile-First DeFi Platform for Fast, Secure, and Stable Digital

Payments”, https://celo.org/.

[224] “Join Hermez Trusted Setup Phase 2 Ceremony!”, https://blog.

hermez.io/hermez-trusted-setup-phase-2/.

[225] “Phase 2 setup random beacon of Celo”, https://github.com/

celo-org/celo-bls-snark-rs/issues/227.

259

https://www.cloudflare.com/leagueofentropy/
https://www.cloudflare.com/leagueofentropy/
https://docs.chain.link/docs/chainlink-vrf/
https://docs.chain.link/docs/chainlink-vrf/
https://pancakeswap.finance/lottery
https://pancakeswap.finance/lottery
https://polyroll.org/
https://blog.chain.link/the-economic-impact-of-random-rewards-in-blockchain-video-games/
https://blog.chain.link/the-economic-impact-of-random-rewards-in-blockchain-video-games/
https://cryptorchids.io/
https://cryptorchids.io/
https://blog.chain.link/create-dynamic-nfts-using-chainlink-oracles/
https://blog.chain.link/create-dynamic-nfts-using-chainlink-oracles/
https://hermez.io/
https://celo.org/
https://blog.hermez.io/hermez-trusted-setup-phase-2/
https://blog.hermez.io/hermez-trusted-setup-phase-2/
https://github.com/celo-org/celo-bls-snark-rs/issues/227
https://github.com/celo-org/celo-bls-snark-rs/issues/227

[226] S. Bowe, A. Gabizon, and I. Miers, “Scalable multi-party computa-

tion for zk-snark parameters in the random beacon model”, Cryptol-

ogy ePrint Archive, 2017.

[227] R. Cohen and Y. Lindell, “Fairness versus guaranteed output deliv-

ery in secure multiparty computation”, Journal of Cryptology, vol. 30,

no. 4, pp. 1157–1186, 2017.

[228] R. Pass and E. Shi, “Thunderella: Blockchains with optimistic instant

confirmation”, in Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, Springer, 2018, pp. 3–33.

[229] “Drand: A Distributed Randomness Beacon Daemon - Go imple-

mentation”, https://github.com/drand/drand.

[230] A. Kiayias and G. Panagiotakos, “Speed-security tradeoffs in

blockchain protocols.”, IACR Cryptol. ePrint Arch., vol. 2015, p. 1019,

2015.

[231] R. Pass, E. Shi, and F. Tramer, “Formal abstractions for attested exe-

cution secure processors”, in Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Springer, 2017,

pp. 260–289.

[232] “Drand Specification”, https : / / drand . love / docs /

specification.

[233] A. Boldyreva, “Threshold signatures, multisignatures and blind sig-

natures based on the gap-diffie-hellman-group signature scheme”,

in International Workshop on Public Key Cryptography, Springer, 2003,

pp. 31–46.

[234] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil

pairing”, in International Conference on the Theory and Application of

Cryptology and Information Security, Springer, 2001.

260

https://github.com/drand/drand
https://drand.love/docs/specification
https://drand.love/docs/specification

[235] K. Nayak, L. Ren, E. Shi, N. H. Vaidya, and Z. Xiang, “Improved ex-

tension protocols for byzantine broadcast and agreement”, in 34th In-

ternational Symposium on Distributed Computing (DISC 2020), Schloss

Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[236] I. Abraham, K. Nayak, L. Ren, and Z. Xiang, “Good-case latency

of byzantine broadcast: A complete categorization”, arXiv preprint

arXiv:2102.07240, 2021.

[237] I. Abraham, K. Nayak, L. Ren, and Z. Xiang, Byzantine agreement,

broadcast and state machine replication with near-optimal good-case la-

tency, 2020. arXiv: 2003.13155 [cs.CR].

[238] B. Schoenmakers, “A simple publicly verifiable secret sharing

scheme and its application to electronic voting”, in Annual Interna-

tional Cryptology Conference, Springer, 1999, pp. 148–164.

[239] “HydRand: Python implementation of the HydRand protocol”,

https://github.com/PhilippSchindler/HydRand.

[240] “SPURT implementation, forked from HydRand”, https : / /

github.com/sourav1547/HydRand.

[241] komodoplatform.com, The anatomy of a 51% attack and how you can

prevent one, 2019. [Online]. Available: https://komodoplatform.

com/51-attack-how-komodo-can-help-prevent-one.

[242] T. Zimwara, Ethereum classic suffers 51% attack again: Delisting risk

amplified, 2020. [Online]. Available: https : / / news . bitcoin .

com / ethereum - classic - suffers - 51 - attack - again -

delisting-risk-amplified.

[243] P. Thompson, Over $1m double-spent in latest ethereum classic 51% at-

tack, 2020. [Online]. Available: https://coingeek.com/over-

1m- double- spent- in- latest- ethereum- classic- 51-

attack.

261

https://arxiv.org/abs/2003.13155
https://github.com/PhilippSchindler/HydRand
https://github.com/sourav1547/HydRand
https://github.com/sourav1547/HydRand
https://komodoplatform.com/51-attack-how-komodo-can-help-prevent-one
https://komodoplatform.com/51-attack-how-komodo-can-help-prevent-one
https://news.bitcoin.com/ethereum-classic-suffers-51-attack-again-delisting-risk-amplified
https://news.bitcoin.com/ethereum-classic-suffers-51-attack-again-delisting-risk-amplified
https://news.bitcoin.com/ethereum-classic-suffers-51-attack-again-delisting-risk-amplified
https://coingeek.com/over-1m-double-spent-in-latest-ethereum-classic-51-attack
https://coingeek.com/over-1m-double-spent-in-latest-ethereum-classic-51-attack
https://coingeek.com/over-1m-double-spent-in-latest-ethereum-classic-51-attack

[244] D. Howarth, Hackers launch third 51% attack on ethereum classic this

month, 2020. [Online]. Available: https://decrypt.co/40196/

hackers - launch - third - 51 - attack - on - ethereum -

classic-this-month.

[245] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C.

Porth, “BAR fault tolerance for cooperative services”, in SOSP 2005,

2005, pp. 45–58.

[246] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is

vulnerable”, in Financial Cryptography and Data Security - 18th Inter-

national Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014,

Revised Selected Papers.

[247] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gen-

eralizing selfish mining and combining with an eclipse attack”, in

IEEE European Symposium on Security and Privacy, EuroS&P 2016,

Saarbrücken, Germany, March 21-24, 2016, 2016, pp. 305–320.

[248] Y. Kwon, D. Kim, Y. Son, E. Y. Vasserman, and Y. Kim, “Be selfish

and avoid dilemmas: Fork after withholding (FAW) attacks on bit-

coin”, in Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -

November 03, 2017, 2017, pp. 195–209.

[249] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish min-

ing strategies in bitcoin”, in Financial Cryptography and Data Security -

20th International Conference, FC 2016, Christ Church, Barbados, Febru-

ary 22-26, 2016, Revised Selected Papers.

[250] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone

protocol: Analysis and applications”, in Advances in Cryptology - EU-

ROCRYPT 2015 - 34th Annual International Conference on the Theory

262

https://decrypt.co/40196/hackers-launch-third-51-attack-on-ethereum-classic-this-month
https://decrypt.co/40196/hackers-launch-third-51-attack-on-ethereum-classic-this-month
https://decrypt.co/40196/hackers-launch-third-51-attack-on-ethereum-classic-this-month

and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-

30, 2015, Proceedings, Part II, 2015, pp. 281–310.

[251] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain pro-

tocol in asynchronous networks”, in Advances in Cryptology - EURO-

CRYPT 2017 - 36th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Paris, France, April 30 - May

4, 2017, Proceedings, Part II, 2017, pp. 643–673.

[252] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone

protocol with chains of variable difficulty”, in Advances in Cryptol-

ogy - CRYPTO 2017 - 37th Annual International Cryptology Conference,

Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, 2017,

pp. 291–323.

[253] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and

S. Capkun, “On the security and performance of proof of work

blockchains”, in CCS, 2016.

[254] L. Kiffer, R. Rajaraman, and A. Shelat, “A better method to analyze

blockchain consistency”, in Proceedings of the 2018 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS 2018, Toronto,

ON, Canada, October 15-19, 2018, 2018, pp. 729–744.

[255] R. Zhang and B. Preneel, “Lay down the common metrics: Evalu-

ating proof-of-work consensus protocols’ security”, in Proceedings of

the 40th IEEE Symposium on Security and Privacy, ser. S&P, IEEE, 2019.

[256] M. Carlsten, H. A. Kalodner, S. M. Weinberg, and A. Narayanan, “On

the instability of bitcoin without the block reward”, in Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications

Security, Vienna, Austria, October 24-28, 2016, 2016, pp. 154–167.

263

[257] A. Judmayer, N. Stifter, A. Zamyatin, et al., Pay-to-win: Incentive

attacks on proof-of-work cryptocurrencies, Cryptology ePrint Archive,

2019.

[258] etherchain, Top miners over the last 24h - etherchain.org, 2019. [On-

line]. Available: https : / / www . etherchain . org / charts /

topMiners.

[259] gate.io, Gate.io research: Confirmed the etc 51% attack and attacker’s ac-

counts - gate.io news, 2019. [Online]. Available: https : / / www .

gate.io/article/16735.

[260] D. Z. Morris, The ethereum classic 51% attack is the height of crypto-

irony. [Online]. Available: https : / / breakermag . com / the -

ethereum - classic - 51 - attack - is - the - height - of -

crypto-irony.

[261] gate.io, Gate.io got back 100k usd value of etc from the etc 51% attacker,

2019. [Online]. Available: https://www.gate.io/article/

16740.

[262] I. Chadès, G. Chapron, M.-J. Cros, F. Garcia, and R. Sabbadin, “Mdp-

toolbox: A multi-platform toolbox to solve stochastic dynamic pro-

gramming problems”, Ecography, vol. 37, no. 9, pp. 916–920, 2014.

[263] S. M. Ross, Introduction to stochastic dynamic programming. 2014.

[264] blockchain.com, Bitcoin hashrate distribution - blockchain.info, 2019.

[Online]. Available: https://www.blockchain.com/en/pools.

[265] komodoplatform, Security: Delayed proof of work (dpow), 2018. [On-

line]. Available: https://komodoplatform.com/security-

delayed-proof-of-work-dpow/.

[266] gate.io, Gate.io - the gate of blockchain assets exchange, 2019. [Online].

Available: https://www.gate.io.

264

https://www.etherchain.org/charts/topMiners
https://www.etherchain.org/charts/topMiners
https://www.gate.io/article/16735
https://www.gate.io/article/16735
https://breakermag.com/the-ethereum-classic-51-attack-is-the-height-of-crypto-irony
https://breakermag.com/the-ethereum-classic-51-attack-is-the-height-of-crypto-irony
https://breakermag.com/the-ethereum-classic-51-attack-is-the-height-of-crypto-irony
https://www.gate.io/article/16740
https://www.gate.io/article/16740
https://www.blockchain.com/en/pools
https://komodoplatform.com/security-delayed-proof-of-work-dpow/
https://komodoplatform.com/security-delayed-proof-of-work-dpow/
https://www.gate.io

[267] D. Z. Morris, The Ethereum Classic 51% attack is the height of crypto-

irony, 2019. [Online]. Available: https : / / breakermag . com /

the-ethereum-classic-51-attack-is-the-height-of-

crypto-irony/.

[268] W. Messamore, Nicehash to smaller cryptocurrency miners : If you can’t

beat 51% attackers who lease our hash power, join them, 2019. [On-

line]. Available: https : / / www . ccn . com / nicehash - to -

smaller-cryptocurrency-miners-if-you-cant-beat-

51-attackers-who-lease-our-hash-power-join-them.

[269] M. Nesbitt, Deep chain reorganization detected on ethereum classic (etc),

2019. [Online]. Available: https : / / blog . coinbase . com /

ethereum - classic - etc - is - currently - being - 51 -

attacked-33be13ce32de.

[270] reddit, How many confirms is considered ’safe’ in ethereum?, 2019. [On-

line]. Available: https://www.reddit.com/r/ethereum/

comments/4eplsv/how_many_confirms_is_considered_

safe_in_ethereum.

[271] J. Ray, Dagger hashimoto, 2019. [Online]. Available: https : / /

github.com/ethereum/wiki/wiki/Dagger-Hashimoto.

[272] J. Ray, Ethash design rationale, 2018. [Online]. Available: https :

//github.com/ethereum/wiki/wiki/Ethash- Design-

Rationale.

[273] E. C. Community, Tweet of ethereum classic, 2020. [Online]. Avail-

able: https : / / twitter . com / eth _ classic / status /

1299832466643931136.

[274] Y. Kwon, H. Kim, J. Shin, and Y. Kim, “Bitcoin vs. bitcoin cash: Co-

existence or downfall of bitcoin cash?”, in 2019 IEEE Symposium on

Security and Privacy (SP), IEEE, 2019, pp. 935–951.

265

https://breakermag.com/the-ethereum-classic-51-attack-is-the-height-of-crypto-irony/
https://breakermag.com/the-ethereum-classic-51-attack-is-the-height-of-crypto-irony/
https://breakermag.com/the-ethereum-classic-51-attack-is-the-height-of-crypto-irony/
https://www.ccn.com/nicehash-to-smaller-cryptocurrency-miners-if-you-cant-beat-51-attackers-who-lease-our-hash-power-join-them
https://www.ccn.com/nicehash-to-smaller-cryptocurrency-miners-if-you-cant-beat-51-attackers-who-lease-our-hash-power-join-them
https://www.ccn.com/nicehash-to-smaller-cryptocurrency-miners-if-you-cant-beat-51-attackers-who-lease-our-hash-power-join-them
https://blog.coinbase.com/ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de
https://blog.coinbase.com/ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de
https://blog.coinbase.com/ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de
https://www.reddit.com/r/ethereum/comments/4eplsv/how_many_confirms_is_considered_safe_in_ethereum
https://www.reddit.com/r/ethereum/comments/4eplsv/how_many_confirms_is_considered_safe_in_ethereum
https://www.reddit.com/r/ethereum/comments/4eplsv/how_many_confirms_is_considered_safe_in_ethereum
https://github.com/ethereum/wiki/wiki/Dagger-Hashimoto
https://github.com/ethereum/wiki/wiki/Dagger-Hashimoto
https://github.com/ethereum/wiki/wiki/Ethash-Design-Rationale
https://github.com/ethereum/wiki/wiki/Ethash-Design-Rationale
https://github.com/ethereum/wiki/wiki/Ethash-Design-Rationale
https://twitter.com/eth_classic/status/1299832466643931136
https://twitter.com/eth_classic/status/1299832466643931136

[275] A. Spiegelman, I. Keidar, and M. Tennenholtz, “Game of coins”,

arXiv preprint arXiv:1805.08979, 2018.

[276] K. Liao and J. Katz, “Incentivizing blockchain forks via whale trans-

actions”, in International Conference on Financial Cryptography and Data

Security, Springer, 2017, pp. 264–279.

[277] F. Winzer, B. Herd, and S. Faust, “Temporary censorship attacks in

the presence of rational miners”, in 2019 IEEE European Symposium

on Security and Privacy Workshops (EuroS&PW), IEEE, 2019, pp. 357–

366.

[278] distribuyed/index: A comprehensive list of decentralized exchanges (DEX)

of cryptocurrencies, tokens, derivatives and futures, and their protocols.

2019. [Online]. Available: https://github.com/distribuyed/

index.

[279] evbots/dex-protocols: A list of protocols for decentralized exchange. 2019.

[Online]. Available: https : / / github . com / evbots / dex -

protocols.

[280] DEXWatch — DEX explorer, 2019. [Online]. Available: https://

dex.watch/.

[281] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable off-

chain instant payments”, 2016.

[282] ZmnSCPxj, An Argument For Single-Asset Lightning Network.

Lightning-dev, 2018. [Online]. Available: https : / / lists .

linuxfoundation.org/pipermail/lightning-dev/2018-

December/001752.html.

[283] D. J. Higham, An introduction to financial option valuation: mathematics,

stochastics and computation. Cambridge University Press, 2004, vol. 13.

266

https://github.com/distribuyed/index
https://github.com/distribuyed/index
https://github.com/evbots/dex-protocols
https://github.com/evbots/dex-protocols
https://dex.watch/
https://dex.watch/
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-December/001752.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-December/001752.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-December/001752.html

[284] Almkglor and Harding, Payment channels - Bitcoin Wiki, 2018. [On-

line]. Available: https://en.bitcoin.it/wiki/Payment_

channels.

[285] B. M. Smith, “A history of the global stock market: From ancient

rome to silicon valley”, in University of Chicago press, 2004, p. 20.

[286] F. Black and M. Scholes, “The pricing of options and corporate liabil-

ities”, Journal of political economy, vol. 81, no. 3, pp. 637–654, 1973.

[287] I. Karatzas and S. E. Shreve, “Brownian motion”, in Brownian Motion

and Stochastic Calculus, Springer, 1998, pp. 47–127.

[288] J. Hull, Introduction to futures and options markets. prentice Hall Engle-

wood Cliffs, NJ, 1991.

[289] AltCoinExchange/ethatomicswap: Ethereum atomic swap, 2019. [On-

line]. Available: https://github.com/AltCoinExchange/

ethatomicswap.

[290] K. Okupski, “Bitcoin developer reference”, Eindhoven, 2014.

[291] M. Brown, Bitcoin script for a competitive crowdfunding-like contract,

2015. [Online]. Available: https://bitcoin.stackexchange.

com / questions / 36229 / bitcoin - script - for - a -

competitive-crowdfunding-like-contract.

[292] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems:

concepts and design, fifth. pearson education, 2012, p. 2.

[293] M. Herlihy, “Atomic cross-chain swaps”, in Proceedings of the 2018

ACM Symposium on Principles of Distributed Computing, ACM, 2018,

pp. 245–254.

[294] R. van der Meyden, “On the specification and verification of atomic

swap smart contracts”, arXiv preprint arXiv:1811.06099, 2018.

267

https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
https://github.com/AltCoinExchange/ethatomicswap
https://github.com/AltCoinExchange/ethatomicswap
https://bitcoin.stackexchange.com/questions/36229/bitcoin-script-for-a-competitive-crowdfunding-like-contract
https://bitcoin.stackexchange.com/questions/36229/bitcoin-script-for-a-competitive-crowdfunding-like-contract
https://bitcoin.stackexchange.com/questions/36229/bitcoin-script-for-a-competitive-crowdfunding-like-contract

[295] P. Robinson, D. Hyland-Wood, R. Saltini, S. Johnson, and J. Brainard,

“Atomic Crosschain Transactions for Ethereum Private Sidechains”,

arXiv preprint arXiv:1904.12079, 2019.

[296] V. Zakhary, D. Agrawal, and A. E. Abbadi, “Atomic commitment

across blockchains”, arXiv preprint arXiv:1905.02847, 2019.

[297] B. Research, Atomic Swaps and Distributed Exchanges: The Inadvertent

Call Option, 2019. [Online]. Available: https://blog.bitmex.

com/atomic-swaps-and-distributed-exchanges-the-

inadvertent-call-option/.

[298] D. Robinson, HTLCs Considered Harmful, 2019. [Online]. Available:

https : / / cyber . stanford . edu / sites / g / files /

sbiybj9936/f/htlcs_considered_harmful.pdf.

[299] T. Eizinger, L. Fournier, and P. Hoenisch, The state of atomic swaps.

diyhpl.us, 2018. [Online]. Available: http://diyhpl.us/wiki/

transcripts / scalingbitcoin / tokyo - 2018 / atomic -

swaps/.

[300] J. A. Liu, “Atomic swaptions: Cryptocurrency derivatives”, arXiv

preprint arXiv:1807.08644, 2018.

[301] Whitepaper - Idex, 2019. [Online]. Available: https : / / idex .

market/whitepaper.

[302] S. Thomas and E. Schwartz, “A protocol for interledger payments”,

URL https://interledger. org/interledger. pdf, 2015.

268

https://blog.bitmex.com/atomic-swaps-and-distributed-exchanges-the-inadvertent-call-option/
https://blog.bitmex.com/atomic-swaps-and-distributed-exchanges-the-inadvertent-call-option/
https://blog.bitmex.com/atomic-swaps-and-distributed-exchanges-the-inadvertent-call-option/
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/htlcs_considered_harmful.pdf
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/htlcs_considered_harmful.pdf
http://diyhpl.us/wiki/transcripts/scalingbitcoin/tokyo-2018/atomic-swaps/
http://diyhpl.us/wiki/transcripts/scalingbitcoin/tokyo-2018/atomic-swaps/
http://diyhpl.us/wiki/transcripts/scalingbitcoin/tokyo-2018/atomic-swaps/
https://idex.market/whitepaper
https://idex.market/whitepaper

	Introduction
	Contributions

	Background and Model
	System setting
	System components
	Blockchain protocol
	Sharded blockchain

	Evaluation of sharded blockchains
	Introduction
	Protocol stack
	Data layer
	Membership layer
	Intra-shard layer
	Cross-shard layer

	Existing sharded blockchains
	Data layer
	Intra-shard layer
	Leader election
	Consensus

	Cross-shard layer
	Concurrency Control
	Atomic Commit

	System-level analysis
	Evaluation
	Coherence of system settings

	Analysing and improving shard allocation protocols for sharded blockchains
	Introduction
	Formalising shard allocation
	System model
	Syntax
	Correctness properties
	Performance metrics

	Evaluating existing protocols
	Evaluation criteria
	Overview of evaluated proposals
	System model
	Correctness properties
	Performance metrics

	Observation and insights
	Impossibility and trade-off
	Parameterising the trade-off

	Wormhole: Memory-dependent shard allocation
	Primitives: RB and VRF
	Key challenge and strawman designs
	The Wormhole design
	Theoretical analysis
	Comparison with existing protocols

	Integration of Wormhole
	Design choices related to Wormhole
	Integration analysis

	Evaluation of Wormhole
	Overhead analysis
	Simulation

	Related work

	RandChain: A scalable and fair Decentralised Randomness Beacon
	Introduction
	Model of DRBs
	System model
	Correctness properties
	Performance metrics

	Design goals and strawman designs
	Design goals: scalability and fairness
	Strawman designs

	Sequential Proof-of-Work
	Preliminaries on VDFs
	Basic idea of SeqPoW
	Definition
	Constructions
	Security and efficiency analysis

	RandChain: DRB from SeqPoW
	DRB structure
	Synchronising and agreeing on blocks
	Non-parallelisable mining
	Extracting a random output from a block
	Security analysis

	Implementation and evaluation
	SeqPoW: benchmarks
	RandChain: end-to-end evaluation

	Comparison with existing DRBs
	Overview of existing DRBs
	Evaluation framework for DRBs
	Evaluation

	Limitations and resolutions
	Energy efficiency
	Churn tolerance
	Finality

	Fair delivery of Decentralised Randomness Beacons
	Introduction
	Contributions

	Model
	System model
	Components of DRBs
	Security properties of DRBs
	Performance metrics

	Delivery-fairness property
	Defining delivery-fairness
	Lower bound of delivery-fairness

	Drand
	Primitive: BLS threshold signature
	Protocol specification
	Delivery-fairness analysis of Drand: The latency manipulation attack
	Delivery-fairness of DrandLS
	Gained insights

	HydRand and GRandPiper
	Primitives
	HydRand protocol specification
	HydRand delivery-fairness analysis
	GRandPiper protocol specification
	GRandPiper delivery-fairness analysis
	Gained insights

	SPURT
	Protocol specification
	Delivery-fairness analysis

	Related work

	On the honest majority assumption of permissionless blockchains
	Introduction
	Contributions

	Formalisation
	System model and notations
	The 51-MDP model

	Model evaluation
	Experimental methodology.
	Evaluation
	Analysis

	Evaluation of blockchains in the wild
	Mining power migration attacks
	Cloud mining attacks

	Case study: The 51% attack on Ethereum Classic
	The attack details
	Evaluation
	Estimating the attacker's net revenue

	The attacker's strategy
	Discussions on attack prevention
	Quick remedies
	Long term solutions

	Related work

	On the optionality and fairness of Atomic Swaps
	Introduction
	Contributions

	Background
	Atomic Swap
	Option in Finance

	Atomic Swap and American Call Option
	Atomic Swap
	American Call Option
	An Atomic Swap is a premium-free American Call Option

	Unfairness of Atomic Swaps
	Experimental setting
	Quantifying the unfairness
	Estimating the premium

	Fair Atomic Swaps
	Design
	Our protocol

	Implementation
	Requirements
	Smart contracts
	Bitcoin script

	Discussion
	Security of the Atomic Swap
	Other countermeasures
	Limitations of our protocols

	Related Work

	Conclusion

