
Expansion-based Service Workflow Replanning with
Limited Change

Jian Feng Zhang, Ryszard Kowalczyk and Boris B. Wu
Faculty of Information and Communication Technology

Swinburne University of Technology
Hawthorn, VIC 3122, AUSTRALIA

email:{jfzhang;rkowalczyk;bwu}@ict.swin.edu.au
http://www.it.swin.edu.au/centres/ciamas/

Abstract: Service Oriented Architecture and Web Services provide an integration in-
frastructure for service workflow composition and execution. Many planning tech-
niques can be facilitated to construct the service workflow at a building phase (plan-
ning), however, it is difficult and challenging to maintain the qualities of service work-
flow at execution phase, as the delayed response time, the limited throughput and ser-
vice faults are common that often violate, or fail the service goals. Then service work-
flow re-planning should be in place in order to deal with the unpredictable situations
during service workflow execution. In this paper, we consider an expansion-based re-
planning algorithm with the use of a limited change strategy. It addresses the problem
of least affecting the original service workflow structure whiles the service goals of the
workflow remains valid. We will show simulation results of the proposed replanning
strategy based on experiments with service workflow replanning. The results of the
simulation are analyzed for the consideration of further research.

1 Introduction

Web service (WS) and service oriented architecture (SOA) have received a wide inter-
est, as their underlying infrastructure enables loosely-coupled integration and composition
of services. Composing a number of services can be regarded as the WS counterpart of
workflow planning, where the service activities, for example service invocation activities,
replace the workflow task activities while the control activities remains same according
to business process logics. Then the composed services for a given service goal can be
executed as a workflow automatically. However, WS environments are complex, uncertain
and dynamic, and service workflows do not always proceed as planned. Hence, one of
the challenges is to respond to the changing situations timely and properly during service
workflow execution.

Traditionally in plan-then-execute life cycle, it relies on anticipating possible situations in
the planning phase. Exception handling techniques are utilized to accommodate various
situations occurring in execution phase. This class of approaches have commonly been
applied to adaptive workflow systems [18][13][14]. A typical example is illustrated in [4],
where preassembled repair plans are prepared in advance, and are invoked to deal with spe-

163



cific exceptions during worflow execution. Those approaches have possible exception to
be enumerated in advance, which requires substantial work of modeling and identification
during the planning phase.

For a planned workflow to be executed in dynamic and uncertain environments such as
web services, it is hard to anticipate possible exceptions as well as to prepare handling
means. Service failures are unpredictable. Even if a service can be identified in advance
to likely fail, it is hard to foresee what services will be available for replacement when
the failure actually happens. While plan-then-execute approaches lack flexibility needed
by service workflow, recent approaches, so calledmonitoring-and-replanning, have shown
some advantages. The basic idea of replanning is to generate a new plan in case when one
or more services have problems during execution [10]. It can be seen as a process that
removes the services which possibly hinder the reachability of the goal, and adds new
services in order to reach the goal [15]. In practice, replanning should take the service
costs into account in addition to resolving the failure. We argue that replanning strategies
would be an important factor that affects the quality of replanning, and different concerns
for the costs may influence the preferences for replanning strategies.

Motivated by previous work in replanning, we propose an approach to adapt service work-
flow plans during execution. It is tailored from multi-agents based Adaptive Service Level
and Process Management(ASAPM) project currently being carried out in our research cen-
ter. In this approach agents monitor the execution progress. Each time a faulty service is
detected, the replanning agent is triggered to launch the replanning process. The replan-
ning is based on an expansion-based mechanism with the principle of limited change to the
original plan, which will be presented in this paper together with the experimental results
and analysis.

The rest of this paper is organized as follows. In Section 2 we briefly introduce the back-
ground of this research, including assumptions and aims. Section 3 presents our approach
in more details in terms of the architecture and algorithms. In Section 4, a scenario is stud-
ied as an example to explain the approach. Then we show some experimental results in
Section 5, and finally discussion and observation of the approach are given to conclude
this paper.

2 Problem Statement and Requirement Analysis

This paper complies with traditional interpretation of workflow replanning, i.e. replanning
is triggered during the service workflow execution, and the triggering events could be ei-
ther functional failures of services, or violations to the specified Quality of Service (QoS).
Figure 1 shows how the replanning works. The service pool is the source of services,
which is assumed to provide adequate facilities, e.g. indexing and searching, for the plan-
ner to find services with required capabilities. As we mentioned in the previous section,
replanning strategy is an important factor that makes one replanning different from others.
In this section, we discuss some important considerations that we were concerned with in
architecture design and strategy development.

164



Initial

request

Execution

Planning

Service

Pool

Abbildung 1: The concept of replanning at execution

2.0.1 Replanning costs

There are two types of costs involved in service workflow planning. One is referred to
as the service cost, e.g. the total execution cost or the number of services in a planned
workflow. The service cost is usually one of the QoS attributes, and is commonly employed
to evaluated the quality of a plan. The less is the total service cost, the better is the plan.
In the context of replanning, service cost can be used to measure the replanning efficiency,
e.g. a good replanning preserves a plan’s service costs while maintaining its reachability
to the goal. However, the service cost is not the only criterion in replanning. There is
another type of cost which is referred to as replanning cost, e.g. the time spent in replanning
process. The replanning cost might not necessarily be introduced to service users, but it
is an important criterion for the evaluation of a service management system. The less is
the replanning cost, the better is the replanning performance. In the development of a
replanning system, both costs need to be taken into account. Heuristically, limiting the
changes to the old plan reduces the overall cost.

2.0.2 Service information abstraction

Web service provides a high level of information abstraction. Services expose their infor-
mation through standard interface in standardized syntax/semantics such like WSDL, and
hide the details of internal mechanisms and operation behaviors. On the one hand, it facil-
itates many automated processing, including automated composition. On the other hand,
the planner can only see the services as ”black boxes”. Hence some techniques succeeding
in traditional workflow systems are not suitable for WS workflow due to the lack of the
knowledge of internal mechanisms. For example, failure of a truck delivery service may
be caused by flatted tyre or engine problems. In the approach presented by [4], the planner
may add a task of replacing the flat tyre or fixing the engine to resume the delivery. In
the service environments, this is not the case since the information of flatted tyre or en-
gine problems of the service will not be available at the time of replanning. The planner
will remove the service in whole instead of fixing the service. Replanning in Web service

165



workflow can rely only on the abstracted service information exposed through standard
interface.

2.0.3 Dynamic service environment

Web service environment is uncertain and dynamic. Errors arise unpredictably. Situations,
such as the availability of services, keep changing. Exception-handling alike approaches,
including those using prepared repair plans, are not suitable for such a dynamic environ-
ment since it is impossible to identify all, if any, possible failures and prepare recovery
schema in advance. Furthermore, since the services may become available/unavailable at
any time, the repairing plans prepared in advance could become obsolete.

The replanning architecture and strategy that we are going to described in the next sections
are based on the analysis of problems and requirements given above, designed to meet the
needs of cost-effectiveness, service orientation and flexibility. It is referred to as expansion-
based replanning in the following sections. And its major features can be described as:

• Limited changes to the old plan so that the overall cost can be kept at minimal level.

• No reliance on anticipation since the replanning is invoked during service execution
and takes the advantages of service information abstraction.

• Fully automated so that no human intervention is needed during replanning process,
and the system can make timely response to exceptions in execution.

The system works by “monitoring-and-replanning“. When a service request from a service
user arrives, the planner will composes an initial service workflow plan that satisfies the
user’s functional and non-functional requirements. Then the workflow is enacted and exe-
cuted, and this phase is referred to as workflow execution. Execution progress is monitored
through till the end of this phase. Whenever service errors and violations occur during ex-
ecution, the replanning process is invoked to fix the workflow plan. During replanning, an
expansion-based mechanism is utilized to limit the changes to the old plan.

3 The Architecture and Strategy

In this section, we introduce the replanning architecture and the replanning strategy. The
architecture of the replanning is developed based on the multi-agents technologies, where
each service has an agent, referred to as a service agent, whose tasks are to manage the ser-
vice, e.g. service invocation and monitoring, as well as interact with other service agents.
Not like the service agents, a planner agent will not manage individual services directly. In-
stead, it interacts with service agents to collect information necessary for replanning, e.g.,
the states of the services involved in replanning, and the “neighborhood” of the service
agents.

166



Service

Pool

planner AI planner

Abbildung 2: the multi-agent based replanning architecture

3.1 The replanning architecture using Multi-Agents

Figure 2 shows a graphic view of the multi-agents based architecture of service workflow
replanning. We assume that a service pool is available (in the context of SOA, the service
pool is regarded as a service database such like UDDI). The planner (planner agent) has
an access to the service pool in order to search for particular services and capabilities.

Current Web services are stateless entities. The previous work seldom consider the state
of the services in replanning. In our approach, a service agent is created for each service
to manage it, whose job includes monitoring the local state of the service and managing
the connections to its “neighborhood“. In such a way, a stateless service becomes a state-
ful service. The planner agent consults with the service agents about service states during
replanning. From workflow execution point of view, the multi-agent workflow is executed
in distributed manner. The service agents and the planner agent are created on JADE plat-
form. The protocol used for communications among agents is ACL - agent communication
language. While the interaction between services and corresponding service agents is im-
plemented in a proprietary way, it is easy to be adopted to WS standards(WSDL/SOAP),
via WS2JADE [17], for example, which provides an integration mechanism for agent sys-
tem and Web service.

When an initial request comes, the planner selects services from the pool to compose a
workflow plan. Each service is managed by a service agent. When service agent detects
its managed service is not available due to failures or availability, it reports to the planner.
The planner replans to repair current plan, then the execution continues. We use an existing
AI planning engine to make initial plan and replan. Replanning is carried out by iterations
of ëxpanding problem area and trying”, i.e. expansion-based replanning, which is to be
described in the next section. In each iteration, the planning engine gets a planning problem
constructed by the planner agent as its input, and outputs a plan of the problem or notice of
failure. In another word, it is not needed to modify the codes or algorithms of the planning
engine being utilized in this strategy.

167



3.2 Expansion mechanisms for replanning

To limiting the changes to the old plan, we consider an expansion-based mechanism that
is utilized in replanning discussed in the following subsection. Our observation on replan-
ning processes tells that the less services are involved in replanning, the less services are
probably changed before a valid new plan is reached. If a service in the current plan fails,
our approach starts by considering the failed service as a replanning area, and looking
for a service or an equivalent subplan to replace the failed service. In the case that there
is not a replacement service or equivalent subplan available, we expand the replanning
area around the failed service, so that it also covers a number of services adjacent to the
failed one. Then we look for a service or an equivalent subplan to replace the enlarged
area. If such a replacement is found, some existent services are removed and some new
services are added. If no replacement is found in this area, then larger and larger areas are
considered.

From the viewpoint of planning, we can describe the expansion mechanism as follows:
Given a set of initial states I and a set of goal states G, a plan is such a network of services
that the services are connected by matching preconditions with effects, with the precondi-
tions unmatched within the network being satisfied by I, and the effects unmatched within
the network satisfying G. If a service fails, we define a replanning area, which includes
only the failed service initially. The services adjacent to the replanning area have their
preconditions and/or effects unmatched. Let the set of unmatched effects be I’, and the
set of unmatched preconditions be G’, the problem of fixing the failure can be seen as the
problem of composing a valid plan for the replanning area, with I’ as initial states and G’
as goal states.

If no plan can be found with I’ and G’, the replanning area is expanded and covers some
services previously adjacent to the boarder. A new set of initial states Iänd a new set of
goal states Gäre derived and assigned to I’ and G’. The new sets of I’ and G’ are ready for
another try of planning. In this way, the process goes on until the plan is fixed or there is
no place allowing for expansion.

A replanning process consists of a number of iterations. Each of the iterations consists of
three basic operations, constructing the planning problem, searching for a sub-plan and
expanding the replanning area.

• Constructing planning problem : The planner constructs I’ and G’ by consulting
the service agents adjacent to the replanning area: what conditions are available and
what conditions need to be satisfied.

• Searching for a plan : The planner searches the service pool, looking for proper
services to compose a subplan for the current problem.

• Expanding replanning area : If the planner fails to find such a subplan, planner
removes some of the services on border of the replanning area so that the planner
can exploit chances with new I’ and G’.

If there exists a solution, in the worst case a plan will be found when the replanning area

168



has been expanded as large as the original plan. However, in most cases, when a large
number of services are available, replanning is expected to succeed in a smaller area.

3.3 Expansion Strategies

The framework is not bound to specific strategies of expanding the replanning area. Here
we present some strategies based on the plan’s structure and the services’ status and prop-
erties.

(a) We can expand the replanning area blindly forward and backward alternatively, thus it
is expanded with the failed service as the central point. While it is the simplest one
among the strategies tested in our experiments, it performs as effective as others.

(b) Considering that when the replanning is launched, the services before the replanning
area (near the initial states) are more likely finished already or in execution, we can
expand the replanning area forward (to the goal) first to look for a solution, and
expand backward (to the initial) if no solution is found after the expansion reaches
the goal.

With the same observation but different concerns, considering that it is more com-
plex to stop an executing service or undo a finished one than removing a service not
executed yet, we can expand the replanning area backward first so that planner can
try replanning before more services start or finish execution.

(c) We also propose an expansion strategy guided by a heuristic motivated by A* search [8].
This heuristic is based on expected cost of finding a new plan after removing a node.
Among the nodes on the boarder of the replanning area, the one with the lowest
heuristic value is chosen to be removed.

The heuristic value of node n is calculated as f(n) = g(n) + h(n), where g(n) is the
distance from the failure point to n, and h(n) is the number of conditions that will
become unsatisfied if node n is removed.

The idea behind g(n) is that the resulted plan is expected to be no better than original
one, which means the distance from the failed node to n in the resulted plan is no
shorter than the distance in the original plan. The idea behind h(n) is that the number
of unsatisfied conditions suggests how difficult it is to find a sub-plan. This heuristic
is based on ”localänd ”current”data, i.e., the planner can calculate it by consulting
only agents involved in current replanning till now.

In the above strategies we did not consider the services’ execution status. When replanning
is launched, the plan is partially executed, some services have already finished, some are
executing and others are not executed yet. Services of different execution states may have
different preference to be removed. We model a service’s execution states as finished,
executing and not-executed-yet, and a service has two parameters indicating whether it can
be undone after execution and whether it can be stopped in execution. The service agents

169



report such information when they are consulted by the planner. We combine following
priority rules with above strategies:

1. As for a finished service, if it can not be undone, then it can not be removed; if it
can be undone, then it can be removed;

2. As for an executing service, if it can not be stopped and undone safely, then it can
not be removed; if it can be stopped and undone safely, then it can be removed;

3. As for a not-executed-yet service, it can be removed;

4. Not-executed-yet services have higher priority to be removed than executing ser-
vices;

5. Executing services have higher priority to be removed than finished services.

Thus the services fall into three catalogues: can not be removed, prefer not to be removed,
and can be removed. Similarly, a priority queue can be constructed according to services’
utilities/costs. We describe the strategies here to show that the framework allows strategies
based on various concerns and preferences. Further discussion is out of the scope of this
paper.

4 A Scenario

We present a scenario in this section to illustrate how expansion-based replanning works
in two situations: a failure happens to a service which is being executed, and a service is
found to be unavailable before it starts to execute.

Factory

A

Warehouse

A1

Airport A

Warehouse

A2

Station A

Port A

Station B

Port B

Factory B

Warehouse B1

Warehouse B2

Airport B

t1 t2

t3

t4

t5

t6

Abbildung 3: The workflow of transportation

We suppose a company needs to transport a quantity of goods from factory A to factory
B. The map (Fig 3) shows there are ports, airports, train stations, etc between the two
factories. A number of delivery services are available to be hired (arrowed lines between
the sites in Fig 3 ). We choose a number of delivery services and compose them into a plan
that is indicated as the dash line in Fig 3 where

170



t1: Factory A to Warehouse A2

t2: Warehouse A2 to Airport A

t3: Airport A to Airport B

t4: Airport B to Warehouse B2

t5: Warehouse B2 to Warehouse B1

t6: Warehouse B1 to Factory B.

Each of the tasks is managed by a service agent, in the order of the task flow of the com-
posed services:

t1 → t2 → t3 → t4 → t5 → t6 (1)

Now let us consider two situations to see how the replanning is carried out.

Situation 1 - Service fails in execution

Current status : task t1 is finished; Task t2 is in execution; tasks t3-t6 are waiting for exe-
cution; i.e. the goods is on the way from Warehouse A2 to airport A.

Error : t2 fails to execute and its agent reports the failure to the planner.

Replanning process is shown in Figure 4 :

1. Planner looks for a subplan to replace t2, i.e. transporting goods from Warehouse
A2 to Airport A, and fails.

2. Planner expands the replanning area. Since t1 has already finished, it can not be
removed. Planner expands the replanning area forward, removing t3.

3. Planner looks for a sub-plan that transports goods from WarehouseA2 to AirportB,
and fails.

4. Planner expands the replanning area. Again, it can only be expanded forward, and
t4 is removed. Planner looks for a subplan that transports goods from WarehouseA2
to WarehouseB2, and fails.

5. Planner expands the replanning area forward, removing t5. It looks for a subplan that
transports goods from WarehouseA2 to WarehouseB1. This time it finds a subplan
successfully: a) t7: WarehouseA2’WarehouseA1 b) t8: WarehouseA1’PortA c) t9:
PortA’PortB d) t10: PortB’WarehouseB1

6. Replace t2-t5 in original plan with t7-t10, and the plan is fixed.

171



t

1

t1 t2 t3 t4 t5 t6

Factory

A

Warehouse

A2

Airport

A

Airport

B

Warehouse

B2

Warehouse

B1

Factory

B

t7 t8 t9 t10

Warehouse

A1

Port A Port B

Abbildung 4: Situation1

t

1

t1 t2 t3 t4 t5 t6

Factory

A

Warehouse

A2

Airport

A

Airport

B

Warehouse

B2

Warehouse

B1

Factory

B

t11 t12 t13 t14

Airport

A

Airport

B

Warehouse

B2

Abbildung 5: Situation 2

Situation 2 - Service becomes unavailable before being executed

Current status : same as situation1,i.e. t1 is finished; t2 is in execution; t3-t6 are waiting
for execution.

Error : The goods is on the way fromWarehouse A2 to airport A. Then the agent monitor-
ing t3 (from Airport A to Airport B) finds the scheduled flight is canceled for bad weather.

Replanning process is shown in Figure 5

1. Planner can not find transport from Airport A to Airport B. It removes task t2 from
plan. (Task t2 is in execution. We suppose the agent in charge of t2 agrees to cancel
t2.)

172



2. Planner can not find transport from Warehouse A2 to Airport B. It removes task t4
from plan.

3. Planner can not find transport from Warehouse A2 to Warehouse B2. Task t1 has
already finished, and we suppose the agent in charge of t1 refuses to cancel t1. Task
t5 is removed.

4. Planner finds a way to transport goods from Warehouse A2 to Warehouse B1. The
plan is fixed.

5 Experiment Result

For the experimental validation of our approach, we implemented a prototype system with
Jade as agent platform and FFv1.0 [9] as AI planning engine. In our framework we use AI
planning engine as a black-box, not depending on specific implementation techniques. FF
suits this usage well since it supports standardized input format (PDDL).We implemented
a prototype with Jade agent platform and FFv1.0 planner for experiment and illustration.
Fig 6 shows its GUI.

Abbildung 6: GUI of the replanning system

The service model in our experiment is simple but enough for testing our approach. A ser-
vice has a set of preconditions and a set of effects. Preconditions and effects are presented
as the existence of sets of tokens. We devised service domains for test. (5 domains, each
of which has 2000 randomly generated services.) We compared the number of changed
services in replanning from scratch with the number in expansion-based replanning. In
expansion-based replanning we used 3 of the expansion strategies mentioned before. In
the experiment, the system triggers replanning by choosing a service randomly in a plan
and stopping it to simulate a failure. In fig 7 we can see that the planner fixes each fail-
ure in 4 ways to allow their comparison: from scratch, expanding forward and backward
alternatively, expanding forward till end then backward, expanding by checking heuristic
values. In general, the results show that expansion-based replanning removes and adds less
services than replanning from scratch, and the performance of the 3 expansion strategies

173



0

2

4

6

8

10

12

14

16

18

removed

added

Abbildung 7: Numbers of removed and added services in replanning on a plan (Experimental results
of replanning on 8 failures happening in a plan are shown in this chart. Each failure is fixed in 4
ways (left to right in each group of columns): 1: from scratch 2: expanding backward and forward
alternatively 3: expanding forward till end then backward 4: expanding by checking heuristic value.
)

are similar in most cases. More experiments show the same result (fig 8) except for a small
number of exceptional cases.

0

2

4

6

8

10
Removed

Added

removed 9 1.647059 1.941176 1.588235

added 9.235294 3.294118 3.294118 3.529412

1 2 3 4

Abbildung 8: Average numbers of removed and added services (1: from scratch 2: expanding back-
ward and forward alternatively 3: expanding forward till end then backward 4: expanding by check-
ing heuristic value)

Another observation is that the number of added services and the number of removed
services are in an approximate direct ratio: the number of added services is no less than,
and will not be too much larger than the number of removed services, which we can see
more clearly in fig 9. The former fact is easier to interpret since a good planner makes an
optimal plan at first and has to make a less good one after a useful service fails. The reason
for the latter fact is that: if there are services available in the pool, which are similar to the
removed ones, we can expect the new plan is similar to the previous one, though we can
not predicate the level of similarity exactly. This observation suggests that we are probably
able to, to some extent, control the number of added services by controlling the number
of removed services, and the number of removed services can be controlled by tuning the
size of the replanning area. In other words, the size of the replanning area is hopefully an
effective means of adjusting the range of cost ready to pay for changing running plans,
thus the balance of changing cost and resulted plan’s optimality can be achieved by tuning

174



removed & added

0

2

4

6

8

10

12

14

16

18

removed

added

Abbildung 9: Numbers of removed and add services

this parameter according to business requirements.

6 Related Work

Brian Drabble [4] presented plan-repair mechanisms similar to the idea of exception han-
dling in programming languages. When a condition that deviates from the normal flow
of execution occurs, the execution switches to a predefined repair plan. Repair plans deal
with specific failures. After the repair plan is completed, the execution switches back to the
normal flow. That approach can not deal with failures that are not predicted in planning
phase. And if it is in dynamic WS environment, the prepared repair plans may become
outdated before they are invoked. Our approach does not require subplans to be prepared
in advance.

GPG [1] is a domain independent planner capable of planning from scratch and replanning
in case the plan becomes invalid due to changed original initial states or goal states. Both
planning and replanning are based on graph planning [2]. When a plan becomes invalid,
GPG constructs a new planning graph for altered initial and goal states. It looks for an
adapted plan with two search techniques. The systematic search technique uses the new
planning graph to compare with the old plan in order to find out inconsistencies. The local
search uses the new planning graph together with the old plan to construct a partial plan,
from which the algorithm searches through the plan space. GPG deals with the failures
arising from the changed initial and goal states. In our approached we deal with both the
failures within the plan and on the initial and goal states.

Replan (Boella and Damiano 2002) organizes actions (action library) in an abstraction hi-
erarchy similar to hierarchical task network, where an abstract action can be decomposed
into a sequence of primitive or abstract actions. The planning process starts from decom-
posing the topmost action in the hierarchy that achieve the goal. Decomposition goes on
until it obtains a set of plans. A partial plan is sequence of abstract and primitive actions
that achieve the goal, and a plan contains only primitive actions. Each plan is associated
with a derivation tree, which is built during the planning process and will be used in re-
planning. The tree shows how the primitive actions in the plan are derived from abstract

175



actions. In replanning, the planner locates an invalidated leaf node, removes the subtree
containing the node, and refines the tree (partial plan). If the refinement fails, it removes
larger subtree that contains the failed node and starts refinement again. That approach re-
quires the history of planning(derivation tree) is recorded and accessible in replanning.
Our approach does not require records of the history data.

deWeerdt et al [6][7] and Krogt [15] presented a general view of replanning/plan repair
by modifying a general planning model called refinement planning [10]. Refinement plan-
ning sees the construction of a plan as an iterative refinement of the set of all possible
plans. deWeerdt [6][7] and Krogt [15] added an operation of unrefinement to refinement
planning so that it can model plan repair in general. In the general model, plan repair is a
process consisting of two operations: unrefinement, i.e. removing actions from a plan, and
refinement, i.e. adding actions to a plan.

As it was remarked by Kambhampati [10], past replanning systems often assume the fail-
ure of a plan comes from altered initial or goal states, because they stem from the research
on plan reuse: reuse the current plan to solve a new problem that has new initial and goal
states. GPG states the assumption explicitly. deWeerdt and Krogt’s general framework
does not make this assumption explicitly [6][15][7]. However, its algorithm starts unre-
finement by removing actions depending on initial states or producing goals, and the plan
is shrunk from the outside in. We may consider it an implicit assumption in their work that
failures are caused by changed initial and goal states. Under this assumption, execution
failures, which happen within the plan, will not trigger the replanning process properly.
Our approach removed this restriction. Wherever a failure happens, the replanning process
is launched to solve it, and the unrefinement starts from the service where failure happens.
Since the initial and goal states are presented as dummy services, changes to initial and
goal states will also be dealt with as well as failures of other services.

7 Conclusion and Further Work

In this paper we propose an approach to adapting service workflow plans in response
to service failure during execution. Agents are used to monitor the execution progress
and start expansion-based replanning when detecting failures. AI planning technologies
are used to automate the replanning process, thus the system avoids human intervention.
Replanning is carried out in an ëxpanding problem area and tryingßtyle so as to limit
the changes to the old plan when generating a new valid plan. The experimental results
show that expansion-based replanning can repair a failed plan with less changes to it in
comparison with replanning from scratch. We also find that the number of added services
is in an approximate direct ratio to the number of removed services, and the latter is related
to the size of the replanning area, which suggests the possibility of controlling the changes
to the old plan by tuning the size of the replanning area.

Our future work includes examining other strategies for expansion, and investigating mech-
anisms for fully decentralized replanning, i.e. enabling service agents to repair the plan in
cooperation with each other so as to eliminate the need of a dedicated planning agent.

176



Literatur

[1] Alfonso Gerevini, I. S. (2000). Fast Plan Adaptation through Planning Graphs: Local and Sys-
tematic Search Techniques. the Fifth International Conference on AI Planning Systems (AIPS-
00), Menlo Park, CA, AAAI Press.

[2] Avrim L. Blum, M. L. F. (1997). ”Fast planning through planning graph analysis.Ärtificial In-
telligence 90(1-2): 281 - 300.

[3] Bernhard Nebel, J. K. (1995). ”Plan reuse versus plan generation: a theoretical and empirical
analysis.Ärtificial Intelligence 76(1-2): 427 - 454.

[4] Brian Drabble, J. D. A. T. (1997). Repairing plans on the fly. Proceedings of the NASA Work-
shop on Planning and Scheduling for Space, Oxnard CA, USA.

[5] DanWu, E. S., James Hendler, Dana Nau, Bijan Parsia (2003). Automatic Web Services Com-
position Using SHOP2. International Conference on Automated Planning & Scheduling, ICAPS
2003, Trento, Italy.

[6] deWeerdt, R. v. d. K. a. M. (2004). The two faces of plan repair. Proceedings of the BNAIC
(BNAIC-04), pp. 147–154, Groningen, the Netherlands.

[7] deWeerdt, R. v. d. K. a. M. (2005). Plan Repair as an Extension of Planning. Proceedings of the
International Conference on Automated Planning and Scheduling (ICAPS-05), 2005., Monterey,
California, U.S.A.

[8] Hart, P. E., Nilsson, N. J.; Raphael, B. (1968). Ä Formal Basis for the Heuristic Determination
of Minimum Cost Paths”. IEEE Transactions on Systems Science and Cybernetics SSC4 (2): pp.
100C107.

[9] Hoffmann, J. (2001). ”FF: The Fast-Forward Planning System.ÄI Magazine 22(3): 57-62.

[10] Kambhampati, W. C. a. S. (2005). Replanning: A new perspective. Poster Program, ICAPS
2005, Monterey, California, U.S.A.

[11] M. Pistore, P. B., E. Cusenza, A. Marconi, P. Traverso (2004). WS-GEN: A Tool for the Au-
tomated Composition of Semantic Web Services. Proceedings of the International Semantic Web
Conference, Hiroshima, Japan, 2004.

[12] Matthias Klusch, A. G., Marcus Schmidt (2005). Semantic Web Service Composition Plan-
ning with OWLS-Xplan. Proceedings of the 1st Intl. AAAI Fall Symposium on Agents and the
Semantic Web, 2005, Arlington VA, USA, AAAI Press.

[13] Peter J. Kammer, G. A. B., Mark Bergman (1998). Requirements for Supporting Dynamic
and Adaptive Workflow on the WWW. CSCW 1998 Workshop; Towards Adaptive Workflow
Systems, November 1998, Seattle, WA.

[14] Peter J. Kammer, G. A. B., Richard N. Taylor,Mark Bergman (2000). ”Techniques for Support-
ing Dynamic and Adaptive Workflow.”Computer Supported Cooperative Work vol. 9(no. 3-4):
269-92.

[15] Roman van der Krogt, M. d. W., Nico Roos,Cees Witteveen (2004). Unrefinement Planning:
Extending Refinement Planners with Plan Repair Capabilities. Proceedings of the 23rd Annu-
al Workshop of the UK Planning and Scheduling Special Interest Group (PlanSIG-04), Cork,
Ireland.

177



[16] Subbarao Kambhampati, C. A. K., Qiang Yang (1995). ”Planning as Refinement Search: A
unified framework for comparative analysis of Search Space Size and Performance.Ärtificial In-
telligence 76(1-2): 167-238.

[17] Xuan Thang Nguyen,Ryszard Kowalczyk (2005). WS2JADE: Integrating Web Service with
Jade Agents. Workshop on Service-Oriented Computing and Agent-Based Engineering (SO-
CABE’2005) in conjunction with 4th International Joint Conference on Autonomous Agents &
Multi-Agent Systems (AAMAS’2005), Utrecht, the Netherlands, July 25-29, 2005.

[18] Yanbo Han, A. S., Christoph Bussler (1998). A Taxonomy of AdaptiveWorkflowManagement.
ACM CSCW 98 workshop proceedings, 1998, Seattle.

178


